当前位置:文档之家› 基于S7-200PLC控制的变频恒压供水控制系统设计

基于S7-200PLC控制的变频恒压供水控制系统设计

基于S7-200PLC控制的变频恒压供水控制系统设计
基于S7-200PLC控制的变频恒压供水控制系统设计

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

摘要

近年来,随着我国国民经济的迅速发展,能源紧缺问题日益明显,因此应用变频调速技术来提高供水质量,降低能耗,在供水领域已得到越来越广泛的重视。变频恒压供水控制系统采用先进的变频调速、PLC等技术组成一闭环控制系统,用于民用建筑、生产用水,可使水泵出口压力保持恒定。恒压供水的基本控制策略是:采用可编程控制器(PLC)与变频调速装置构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,即根据实际设定水压自动调节水泵电机的转速和水泵的数量,自动补偿用水量的变化,以保证供水管网的压力保持在设定值,既可以满足生产供水要求,还可节约电能,使系统处于可靠工作状态,实现恒压供水。

关键字:水泵、变频器、恒压控制、PLC

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

Abstract

In recent years, with the rapid development of China's national economy, the energy shortage problem is becoming increasingly apparent, so the application of VVVF technology to improve water quality, reduce energy consumption, in the field of water supply has been more and more attention. Inverter control constant pressure water supply system using advanced Frequency Control, PLC and other technical components of a closed-loop control system for civil construction, production water, can maintain a constant outlet pressure pumps. Constant pressure water supply is the basic control strategy: the use of programmable logic controller (PLC) and constitutes a frequency converter control system, optimized control of the governor to run pumps, and automatically adjusts the number of running pumps to complete the water supply closed-loop control of pressure, that is, according to the actual settings automatically adjust water pressure pump motor speed and the number of pumps, automatic compensation for changes in water consumption to ensure that the pressure of the water supply network to maintain the set value, both the water supply to meet the production requirements, but also to save power, the system is in reliable working condition, to achieve constant pressure water supply.

Key words: water pump ; inverter ;constant pressure control ; energy saving effects

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

目录

摘要 (1)

Abstract (2)

目录 (3)

第一章前言 (5)

1.1供水系统简介 (5)

1.2目前国内的四类供水控制方式 (5)

1.2.1 逻辑电子电路控制方式 (6)

1.2.2 单片微机电路控制方式 (6)

1.2.3 带PID回路调节器和/或可编程序控制器(PLC)的控制方式 (6)

1.2.4 新型变频调速供水设备 (6)

1.3变频调速技术发展历程及展望 (7)

1.4变频恒压供水的原理 (8)

1.5变频恒压供水的意义 (9)

第二章方案的确定 (11)

2.1设计内容和要求 (11)

2.2方案的选择 (11)

2.2.1调速调节流量的方法 (11)

2.2.2压力控制点设在水泵出口处 (11)

2.2.3VVVF调速的优点 (12)

2.2.4选用PLC的优点 (13)

2.2.5单闭环控制系统的优点 (14)

2.2.6采用PID调节器的优点 (14)

2.2.7水泵和变频器的选择以及切换的原则 (14)

2.2.8各种按钮以及显示 (15)

2.3方案的设计 (15)

2.4.工作原理 (17)

2.5系统优点 (18)

第三章系统论述 (20)

3.1系统的组成 (20)

3.2系统各部分的介绍 (20)

3.2.1水泵电机 (20)

3.2.2变频器 (21)

3.2.3 可控制编程器(PLC) (22)

3.2.4压力变送器 (23)

3.2.5 PID调节器 (23)

3.2.6控制信号 (23)

3.2.7保护部分 (24)

3.2.8显示部分和故障报警 (24)

第四章系统设计 (26)

4.1 主电路图的设计 (26)

4.2控制电路的设计 (26)

4.2.1控制电路的设计 (26)

4.3软件梯形图的设计 (28)

4.4元器件的选择 (33)

4.4.1水泵的选择 (33)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

4.4.2变频器的选择 (34)

4.4.3接触器的选择 (36)

4.4.4热继电器的选择 (38)

4.4.5低压断路器的选择 (38)

4.4.6 PID调节器的选择 (39)

4.4.7压力变送器的选择 (40)

4.4.8按钮开关的选择 (40)

4.4.9 其它元器件的选择 (41)

4.5布置图 (41)

4.5.1面板的布置 (42)

4.5.2控制柜的布置 (42)

4. 6接线图 (42)

第五章系统分析 (43)

5.1工况分析 (43)

5.2程序调试 (43)

5.2.1自动工作方式调试 (44)

5.2.2手动工作方式调试 (44)

5.2.3故障部分调试 (45)

结束语 (46)

致谢 (47)

参考文献 (48)

附录A:使用说明书 (49)

附录B:指令语言: (50)

附录3:元器件清单 (54)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

第一章前言

1.1供水系统简介

我国的传统供水方式一般有三种:恒速泵供水,水塔及高低位水箱供水,气压罐供水。恒速泵供水在用户的用水量变化时,供水管路上水压也会随着变化,这个变化较大,效率也变化很大,无论从管路设计还是从能耗角度讲都不合理。这种供水方式只适用于供水量不大及供水量稳定的场合,而供水量大,变化频繁的场合是不适用的。为了改善上述系统,人们首先采用了水塔和高低位水箱的办法解决供水的矛盾,这种方式的优点是水泵充分工作在额定点,耗能十分合理,管路上压力恒定,供水稳定,不足之处是投资大,占地大,建造周期长,在当前对供水设备的小型化,经济化,灵活化的要求下,人们想出了一种气压供水的方法。气压供水设备利用气压罐做调节容器来调节供水量,这种方式供水能使水泵工作在最大效率附近,耗能比恒速泵更合理,管路上压力变化不大,比水塔,高低位水箱投资少,制造简单,占地少,周期短。但气压罐供水不足之处也很明显,当供水量比较大时(50m3以

消耗钢材也很多,而且由气压供水本身构造决定必然是差压供水,这就多消耗了电能,比例一般占总电能的10%~30%。,积累下来也造成了巨大的电能浪费。

随着变频器技术的日益成熟,变频调速技术在各个领域得到了广泛的应用。由于交流电动机变频调速系统具有高效节能,控制灵活,通用性强等诸多优点,因此越来越被广泛地应用到现代生产,生活中。尤其在当前资源紧张的大环境中,对节能的要求更为紧迫。近年来,随着我国国民经济的迅速发展,能源紧缺问题日益明显,因此应用变频调速技术来提高供水质量,降低能耗,在供水领域已得到越来越广泛的重视。

随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活消防供水系统。然而,由于新系统多会继续使用原有系统的部分旧设备(如水泵),在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意想不到的问题。本文介绍的变频控制恒压供水系统,是在对一个典型的水塔供水系统的技术改造实践中,根据尽量保留原有设备的原则设计的,该系统很好的解决了旧设备需要频繁检修的问题,既体现了变频控制恒压供水的技术优势,同时有效的节省了资金。

1.2目前国内的四类供水控制方式

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1.2.1 逻辑电子电路控制方式

这类控制电路难以实现水泵机组全部软启动、全流量变频调节。往往采用一台泵固定于变频状态,其余泵均为工频状态的方式。因此控制精度较低、水泵切换时水压波动大、调试比较麻烦、工频泵起动有冲击、抗干扰能力较弱。但成本较低。

1.2.2 单片微机电路控制方式

这类控制电路优于逻辑电路,但在应付不同管网、不同供水情况时调试较麻烦,追加功能时往往要对电路进行修改,不灵活也不方便。电路的可靠性和抗干扰能力都不是很高。

1.2.3 带PID回路调节器和/或可编程序控制器(PLC)的控制方式

该方式变频器的作用是为电机提供可变频率的电源,实现电机的无级调速,从而使管网水压连续变化。传感器的任务是检测管网水压。压力设定单元为系统提供满足用户需要的水压期望值。压力设定信号和压力反馈信号在输入可编程控制器后,经PID调节器的控制,输出给变频器一个转速控制信号。由PID回路调节器输入给变频器一个转速调节信号。由于变频器的转速控制信号是由可编程控制器或PID回路调节器给出的,所以对可编程控制器来说,既要有模拟量输入接口,又要有模拟量输出接口。由于带模拟量输入/输出接口的可编程控制器价格很高,这无形中就增加了供水设备的成本。若采用带有模拟量输入/数字量输出的可编程控制器,则要在可编程控制器的数字量输出口另接一块PWM调制板,将可编程控制器输出的数字量信号转变为模拟标准信号,控制器的成本没有降低,还增加了连线和附加设备,降低了整套设备的可靠性。如果采用一个开关量输入/输出的可编程控制器和一个PID回路调节器,其成本也和带模拟量输入/输出的可编程控制器差不多。所以,在变频调速恒压给水控制设备中,PID控制信号的输入和输出确定就成为降低给水设备成本的一个关键环节。

1.2.4 新型变频调速供水设备

针对传统的变频调速供水设备的不足之处,国内外不少生产厂家近年来纷纷推出了一系列新型产品,如华为的TD2100;施耐德公司的Altivar58泵切换卡;SANKEN 的SAMCO-I系列;ABB公司的ACS600、ACS400系列产品;富士公司的G11S/P11S 系列产品;这些产品将PID调节器以及简易可编程控制器的功能都综合进变频器内,

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊形成了带有各种应用宏的新型变频器。由于PID运算在变频器内部,这就省去了对可编程控制器存贮器内部,这就省去了对可编程控制器存贮容量的要求和对PID算法的编程,而且PID参数的在线调试非常容易,这不仅降低了生产成本,而且大大提高了生产效率。由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试非常简单、方便。这类变频器的价格仅比通用变频器略微高一点,但功能却强很多,所以采用带有内置PID 功能的变频器生产出的恒压供水设备,降低了设备成本,提高了生产效率,节省了安装调试时间。

1.3变频调速技术发展历程及展望

作为高性能的调速传动,直流发电机-电动机调速控制方法长期以来一直被广泛应用。但是直流电动机由于换向器和电刷维护保养很麻烦,价格也昂贵。使用异步电机实现性能好的调速一直是人们的理想。异步电机的调速方法很多,例如变极调速、有极调速、定子调压调速、串级调速、变频调速等。但是由于各种各样的缺点均没有得到广泛的应用。70年代以后,由于微电子技术、电力电子技术和微处理机技术的发展,促使晶体管变频器的诞生。晶体管变频器不但克服了以往交流调速的许多缺点,而且调速性能可以和直流电动机的调速性能相媲美。三相异步电动机具有维修方便、价格便宜、功率和转速适应面宽等优点,其变频调速技术在小型化、低成本和高可靠性方面占有明显的优势。到80年代末,交流电机的变频调速技术迅速发展成为一项成熟的技术,它将供给交流电机的工频交流电源经过二极管整流变成直流,再由IGBT 或GTR模块等器件逆变成频率可调的交流电源,以此电源拖动电机在变速状态下运行,并自动适应变负荷的条件。它改变了传统工业中电机启动后只能以额定功率、定转速的单一运行方式,从而达到节能目的。现代变频调速技术应用于电力水泵供水系统中,较为传统的运行方式是可节电40%~60%,节水15%~30%。众所周知,水泵的耗功率与转速三次方成正比,水泵是根据工频是设计的,但正常运行时多数时间是流量较少时的情况,变频能使转速根据流量的变化而变化,速度可以下降20%,比工频运行能节省20%-40%的耗能。

由于变频调速具有调速的机械特性好,效率高,调速范围宽,精度高,调整特性曲线平滑,可以实现连续的、平稳的调速,体积小、维护简单方便、自动化水平高等一系列突出的优点而倍受人们的青睐。尤其当它应用于风机、水泵等大容量负载时,可以获得其它调速方式无法比拟的节能效果。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1.4变频恒压供水的原理

在供水中,水泵的电能消耗及设备的维护管理费用在生产成本中占有很大的比例,水泵电机作为一种高耗能通用机械,其耗电量占全国电量总消耗的21%以上,具有很大而节能潜力。由于常规供水系统是采用常规的阀门来控制水量的,而轴功率与转速的三次方成正比,造成相当部分电能消耗在阀门和额定转速运行下的电机。因此,这种调控虽然简单,但从节约能耗的角度来看,很不经济。近年来电机调速技术的应用,为水泵的节能开辟了一个新途径。它可以通过调节电动机的转速来适应水量和水压的变化,使水泵始终在高效区工作,将大大地降低水泵能耗,合理地进行设备管理与维护,对节约能源和提高供水企业的经济效益具有极其重要的意义。

水泵的设计负荷是按最不利条件下最大时流量及相应扬程设定的。但实际运行中水泵每天只有很短时间的最大流量,其流量随外界用水情况在变化,扬程也因流量和水位的变化而变化。因此水泵不能总保持在一个工况点,需要根据实际情况进行控制。通常采用的方法有阀门控制和调速控制。阀门控制是通过增加管道的阻抗而达到控制流量的目的,因而浪费了能量,而电动机调速控制可以通过改变水泵电动机的转速来改变水泵的工况点,使其流量与扬程适应管用水量的变化,维持压力的恒定,从而达到节能效果。

由流体力学可知,水泵给管网供水时,水泵的输出功率P与管网的水压H及出水流量Q的乘积成正比:水泵的转速n与出水量Q成正比;管网的水压H与出水流量Q 的平方成正比。由上属关系有,水泵的输出功率P与转速n的三次方成正比,即:P=k

1

HQ (1—1)

n=k

2

Q (1—2)

H=k

3

Q2 (1—3)

P=kn3 (1—4)

式中k

1

、k

2

、k

3

、k为比例常数。

当系统出水量减小时,通过变频调速装置将供水水泵转速调小,则水泵的输出功率也随转速的变小而减小。变频调速节能原理图如图1.1所示:

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

图1.1变频调速节能原理图

图中曲线1、2、3为管网阻力特性曲线,曲线4为水泵转速为n1时的运行特性曲线,曲线5为水泵转速为n2时的运行特性曲线。

水泵原来的工作点为曲线3和曲线4的交点A,此时的出水量为Q1,管网压力为H1,水泵的转速为n1.当系统的出水流量减小到Q2时,系统管网特性曲线1,曲线1和曲线4的交点B为运行工作点。此时管网压力值为H2,水泵输出功率正比于H2×Q2。由于H2>H1,高出的压力能量就被浪费了,同时过高的压力对管网和设备还可能造成伤害。如采用变频调速装置,将此时水泵的转速调至n2,曲线5和曲线2的交点C为水泵的运行工作点。调速后观望的压力仍保持为H1,出水量为Q2,水泵的输出功率正比于H1×Q2。从图中可见,阴影部分正比于浪费的功率输出。例如,当Q2为Q1的80%时,通过调速将n2调至n1的80%,则水泵的输出功率P为P的51.2%。如不采取调速控制,48.8%的能量将被浪费。可见变频调速的经济效益十分可观。

1.5变频恒压供水的意义

新型供水方式与过去的水塔或高位水箱以及气压供水方式相比,不论是设备的投资,运行的经济性,还是系统的稳定性、可靠性、自动化程度等方面都具有无法比拟的优势,而且具有显著的节能效果。恒压供水调速系统的这些优越性,引起国内几乎所有供水设备厂家的高度重视,并不断投入开发、生产这一高新技术产品。目前该产品正向高可靠性、全数字化微机控制,多品种系列化的方向发展。追求高度智能化,系列标准化是未来供水设备适应城镇建设成片开发、智能楼宇、网络供水调度和整体规划要求的必然趋势。

本系统所采用的恒压供水系统具有很重要的意义。用户用水是经常变化的,因此,

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊供水不足和供水过剩的情况时有发生。而用水和供水之间的不平衡集中地反应在供水的压力上:用水多而供水少,则压力低;用水少而供水多,则压力高。保持供水的压力恒定,可使供水和用水之间保持平衡,即用水多时供水也多,用水少时供水也少,从而提高了供水质量。恒压供水对于某些工业和特殊用户是非常重要的。例如在某些生产过程中,若自来水供水因故压力不足或短时缺水,可能影响产品质量,严重时使产品报废和设备损坏。又如当发生火警时,若供水压力不足或无水供应,不能迅速灭火,可能引起重大的经济损失和人员伤亡。所以,某些用水区采用恒压供水系统具有较大的经济和社会意义。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

第二章方案的确定

2.1设计内容和要求

为一建筑物设计其供水系统。此供水系统所要满足的要求:

1)用水量:正常供水量25立方米/小时,最大供水量65立方米/小时,扬程70米;

2) 控制压力为0.3MPa,控制范围0.3+0.03MPa,同时设定压力可调;

3) 设定自动、手动两种工作方式;

4) 设置各种所需保护;

5)面板上有压力、频率、电压等显示功能;

6)面板上有工作显示和故障显示,具有故障报警。

2.2方案的选择

2.2.1调速调节流量的方法

由水泵-管道供水原理可知,调节供水流量,原则上有二种方法;一是节流调节,开大供水阀,流量上升;关小供水阀,流量下降。另一种方法是调速调节,水泵转速升高,供水流量增加;转速下降,流量降低,对于用水流量经常波动变化的场合(例如生活用水),采用调速调节流量。众所周知,水泵消耗功率与转速的三次方成正比。即P=Kn3,P:为水泵消耗功率;n:为水泵运行时的转速;K为比例系数,可以使水泵运行的转速随流量的变化而变化,最终达到节能的目的。本系统节能效果显著。

2.2.2压力控制点设在水泵出口处

一般来说,压力控制点可设在两个典型位置。一是设在供水水泵出口处,在给水设备间内,管理维护都较方便,另一办法是设在用户最不利点处,远离给水设备,虽然管理不便,但是供水能耗少。

在本系统中,将压力控制点设置在水泵出口处,因为其本身就是一个节能系统,主要是考虑到管理维护方便。将压力控制点设置在水泵出口处,可以很敏感地检测到压力的变化,压力变送器检测到压力信号,转化为4~20mA的电流信号,并把信号传送给PID调节器。PID调节器把压力变送器输送来的电信号进行处理,并输出电信号,控制变频器,从而控制水泵转速。这部分的信号都是模拟信号。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊2.2.3VVVF调速的优点

由转速n=60 f(1-s)/ p可知,异步电动机调速有以下几方法:

1.改变磁极对数p (变极调速)

定子磁场的极对数取决于定子绕组的结构。所以,要改变p,必须将定子绕组制为可以换接成两种磁极对数的特殊形式。通常一套绕组只能换接成两种磁极对数。

变极调速的主要优点是设备简单、操作方便、机械特性较硬、效率高、既适用于恒转矩调速,又适用于恒功率调速;其缺点是有极调速,且极数有限,因而只适用于不需平滑调速的场合。

2.改变转差率s (变转差率调速)

以改变转差率为目的调速方法有:定子调压调速、转子变电阻调速、电磁转差离合器调速、串极调速等。

3.改变频率f (变频调速)

当极对数p不变时,电动机转子转速与定子电源频率成正比,因此,连续的改变供电电源的频率,就可以连续平滑的调节电动机的转速。

异步电动机变频调速具有调速范围广、调速平滑性能好、机械特性较硬的优点,可以方便的实现恒转矩或恒功率调速,整个调速特性与直流电动机调压调速和弱磁调速十分相似,并可与直流调速相媲美。因此本系统选用变频调速,用变频器的频率变化来控制电动机的转速。

变频调速是一种新兴的技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,在小区供水和工厂供水控制中发挥了很大的作用。与用调节阀门来实现的恒压供水系统相比,用变频器调速来实现恒压供水具有更好的节能效果。但变频器也有它固有的缺点:给电网造成谐波污染,给交流电动机造成不利的影响,给电子装置带来干扰。

启动方法:自动工作方式下,所有的水泵电动机都是变频启动;手动工作方式下,所有的水泵都是直接启动。

按照控制方式可分为四类:恒压频比控制方式、转差频率控制方式、矢量控制方式、直接转矩控制方式。在进行电机调速时,通常要考虑的一个重要因素是,希望保持电机中每极磁通量为额定值,并保持不变。如果磁通太弱,即电机出现欠励磁,将会影响电机的输出转矩,由

T=

m

c

m

φ'

2

I cos '

2

φ(2-1)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

(式中 T :电磁转矩,

m

φ:主磁通,'

2

I:转子电流,cos '

2

φ:转子回路功率因素),可知,电机磁通的减小,势必造成电机电磁转矩的减小。由于电机设计时,电

机的磁通常处于接近饱和值,如果进一步增大磁通,将使电机铁心出现饱和,从而导致电机中流过很大的励磁电流,增加电机的铜损耗和铁损耗,严重时会因绕组过热而损坏电机。因此,在改变电机频率时,应对电机的电压进行协调控制,以维持电机磁通的恒定。

在交流异步电动机中,外加电源电压U

1

要和定子绕组的反电动势E

1

基本保持平

衡。由U

1

=E

1

=4.44f

1

N

1m

φ可知:磁通量大小与电压和频率的比值有关。当f1下降时,磁通增加,引起电动机铁心饱和,严重时将烧毁电动机,这是不允许的。为了保持气

隙磁通

m

φ不变,就要求降低供电频率的同时降低输出电压,保持U/f为常数。为此,用于交流电气传动中的变频器实际上是变压(Variable Voltage,简称VV)变频(Variable Frequency,简称VF)器,即VVVF。所以,通常也把这种变频器叫作VVVF 装置或VVVF。

2.2.4选用PLC的优点

继电器是具有惯性的器件,动作有延迟,而系统的动作顺序要充分考虑这种延迟。继电器控制电路实习的控制功能比较简单,只限于逻辑、定时、计数等一些简单的控制。由于这种控制关系往往是针对某一固定的生产工艺设计的,当生产过程发生变更时,须重新设计,改变继电器及接线。同时,继电器的机械动作还会造成控制速度低,安装施工工程量大,系统不易扩展,维护工作量大,故障不易查找等缺点。

可控制编程器(PLC)是一种新型的工业自动化控制装置。它具有控制方便、可靠性高、容易掌握、体积小、价格适宜等特点,在国内外得到了广泛地应用。多年来,PLC从其产生到现在,实现了接线逻辑到存储逻辑的飞跃;其功能从弱到强,实现了逻辑控制到数字控制的进步;其应用领域从小到大,实现了单体设备简单控制到胜任运动控制、过程控制及集散控制等各种任务的跨越。今天的PLC在处理模拟量、数字运算、人机接口和网络的各方面能力都已大幅提高,成为工业控制领域的主流控制设备,在各行各业发挥着越来越大的作用。

PLC的可靠性高,控制功能强,与外部设备连接方便,体积小,重量轻,维护方便,克服了继电器控制电路的缺点。基于PLC的控制方式与其他控制方式相比,性价比高。因此,本系统采用基于PLC的控制电路。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊2.2.5单闭环控制系统的优点

变频恒压供水控制系统采用先进的变频调速、PLC等技术组成一闭环控制系统,用于民用建筑、生产用水,可使水泵出口压力保持恒定。当用水量增大或减小时,水泵转速随之进行调节,达到调节水压恒定的目的。

开环系统结构简单,很容易实现,但是容易受干扰信号的影响,也不容易使水压保持恒定。调节系统结构简单仅一单闭环系统,便于使用和维护。一般来说,结构简单,使用维护较简单方便,同时可靠性也较高。由于本系统的控制要求比较简单,单闭环的结构就可以实现控制要求,也避免了复杂闭环系统的冗繁。单闭环系统能够时刻感受到水压信号的变化,将其反馈与给定信号进行比较,及时调整变频器的功率,通过其调节水泵的转速,达到水压的恒定的目的,经济实用,设计合理。

2.2.6采用PID调节器的优点

由于带模拟量输入/输出接口的可编程控制器价格很高,这无形中就增加了供水设备的成本。若采用带有模拟量输入/数字量输出的可编程控制器,则要在可编程控制器的数字量输出口另接一块PWM调制板,将可编程控制器输出的数字量信号转变为模拟标准信号,控制器的成本没有降低,还增加了连线和附加设备,降低了整套设备的可靠性。如果采用一个开关量输入/输出的可编程控制器和一个PID回路调节器,其成本也和带模拟量输入/输出的可编程控制器差不多。所以,在变频调速恒压给水控制设备中,PID控制信号的输入和输出确定就成为降低给水设备成本的一个关键环节。

对控制系统的基本要求有:稳定性、准确性、快速性等。比例环节(P)具有快速性,积分环节(I)具有无偏差和稳定性,微分环节(D)具有快速性和超前性。因此系统采用PID调节器。

2.2.7水泵和变频器的选择以及切换的原则

供水需可靠保证,首先给水设备要可靠,由合适选择运行可靠性能优良的泵保证,其次采取某些措施保证供水不间断高质量供水(例如有手动控制保证自动控制失灵时的供水,各种故障保护动作时能及时停止相关泵供水同时转为手动检修状态以检修出故障处实施维护修理 )防止因设备故障而断水等。任何品牌的变频器与变频供水控

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊制器配合,即可实现多泵并联恒压供水。

从安全的角度出发,为本系统选择三台水泵供水。当一台水泵发生故障时,可以启动其他水泵进行供水。从经济的角度出发,当三台水泵同时工频运行时,要满足最大的用水量。这样就可以把水泵功率选小,与之相匹配的变频器的功率也就可以选小。利用变频器调速,使电动机的驱动在可变速情况下工作,使流量和马达转速成正比,产生的压差与速度的平方成正比,因此在减小速度时,只损失很小的能量,节能效果相当可观。因此,本系统采用三台水泵供水,一台变频器进行控制。

水泵的切换方式为:三台水泵,一台水泵作第一级变频运行,另二台作第二级变频备用泵。当第一级变频泵达到工频运行时,切换至工频,第二台备用泵变频启动。当第二级变频泵达到工频运行时,切换至工频,第三台备用泵变频启动。停泵时停第三、二级泵。

2.2.8各种按钮以及显示

设定工作、检修两种工作状态,设定自动、手动两种工作方式,需要两个旋钮进行实现。为了节省PLC的输入/输出点,只将旋钮的一个触点接入输入口。

设置了所需保护;低压断路器和热继电器来保护水泵电机。

面板上有压力、频率、电压等显示功能,分别由PID调节器,频率表,电压表来实现;

面板上有工作显示和故障显示,工作显示包括工频运行指示灯和变频运行指示灯;每台水泵都有故障显示等,变频器的故障指示灯。还有故障报警功能。

2.3方案的设计

三台水泵供水,压力控制点设在水泵出口处,用变频器、PLC、调节器等组成闭环调节系统,以保正水泵出口压力恒定。闭环系统的原理框图如下:

┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

水泵的切换方式为:

三台水泵,一台水泵作第一级变频运行,另二台作第二级变频备用泵。当第一级变频泵达到工频运行时,切换至工频,第二台备用泵变频启动。当第二级变频泵达到工频运行时,切换至工频,第三台备用泵变频启动。停泵时停第三、二级泵。

恒压供水的基本控制策略是:采用可编程控制器(PLC)与变频调速装置构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,即根据实际设定水压自动调节水泵电机的转速和水泵的数量,自动补偿用水量的变化,以保证供水管网的压力保持在设定值,既可以满足生产供水要求,还可节约电能,使系统处于可靠工作状态,实现恒压供水。

其中变频器的作用是为电机提供可变频率的电源,实现电机的无级调速,从而使管网水压连续变化,同时变频器还可作为电机软启动装置,限制电机的启动电流。压力变送器的作用是检测管网水压。PID调节器实现管网水压的PID调节。PLC控制单元则是泵组管理的执行设备,同时还是变频器的驱动控制,根据用水量的实际变化,自动调整其它工频泵的运行台数。变频器和PLC的应用为水泵转速的平滑性连续调节提供了方便。水泵电机实现变频软启动, 消除了对电网、电气设备和机械设备的冲击,延长机电设备的使用寿命。

系统采用基于可编程控制器(PLC)控制的变频调速方式,自动调节水泵电机转速,自动完成电机的变频运行与工频运行的切换,自动完成各种保护,显示,报警功能,使水压平稳过渡,延长设备使用寿命,提高供水质量,降低能耗。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊2.4.工作原理

变频器是恒压供水控制系统的核心部件,水泵电机是输出执行装置,其转速由变频器控制,实现变流量恒压供水。变频器接受PID调节器发出的信号,实现对水泵速度的控制;控制器综合给定信号和反馈信号后,经过PID调节器,向变频器输出运转频率指令。压力传感器检测出水泵出水口处的实时出水压力,并将其转变为控制器可接受的模拟信号(即反馈信号),这样就构成了一个闭环实时控制系统。整个系统的流程图如下:

远传压力

变频恒压供水设备投入运行前,首先应设定设备的工作压力等相关运行参数,设备运行时,由远传压力表连续采集供水管网中的水压及水压变化的信号,并将其转换为电信号传送至PID控制系统,控制系统将反馈回来的信号与设定压力进行比较和运算,如果实际压力比设定压力低,则发出指令控制水泵加速运行,如果实际压力比设定压力高,则控制水泵减速运行,当达到设定压力时,水泵就维持在该运行频率上。如果变频水泵达到了额定转速(频率),经过一定时间的判断后,如果管网压力仍低于设定压力,则控制系统会将该水泵切换至工频运行,并变频启动下一台水泵,直至管网压力达到设定压力;反之,如果系统用水量减少,则系统指令水泵减速运行,当降低到水泵的有效转速后,则正在变频运行的水泵停止变频运行,将它前面的那台水泵由工频切换至变频运行,减少水泵的运行台数,直至管网压力恒定在设定压力范围内工作,变频恒压供水方式,进一步提高了工作效率,节约了能源。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

用水需求↑——管路水压↓——压力设定值与反馈值的差值↑—— PID输出↑——变频器输出频率↑——水泵电机转速↑——供水流量↑——管路水压趋于稳定

用水需求↓——管路水压↑——压力设定值与反馈值的差值↓—— PID输出↓——变频器输出频率↓——水泵电机转速↓——供水流量↓——管路水压趋于稳定

本系统有工作和检修两种状态,有手动和自动两种工作方式。供水系统一般处于工作状态,有手动和自动两种工作方式。当系统出现故障报警,进行检修时,可以把系统处于检修状态,这时只能进行手动工作。

自动工作时,三台水泵根据频率和压力信号进行自动切换。当按下自动方式的启动按钮时,一台水泵作第一级变频运行,另二台作第二级变频备用泵。随着用水量的增加,供给水泵的频率提高。当第一台变频泵达到工频运行且水压达到下限时,第一台水泵切换至工频运行,第二台备用泵变频启动。当第二台变频泵达到工频运行且水压达到下限时,第二台水泵切换至工频运行,第三台备用泵变频启动。当用水量变化时,变频器的输出频率会发生变化。当变频器的频率达到下限且水压达到上限时,正在变频工作的那台水泵先停止,它的前一台泵由工频切换至变频工作。当按下停机按钮时,所有的水泵都停止工作。

手动工作时,每一台水泵都有启动和停机按钮,来控制它们的启停。当按下一台水泵的启动按钮时,它就以工频运行。当按下停机按钮时,该台水泵就停止工作。

当水泵出现故障或者变频器出现故障时,或者蓄水池液位过低时,所有的水泵都停止工作。面板上会出现故障显示,报警器会报警。等把旋钮旋到检修状态时,停止报警,进入检修阶段。只有当系统正常后,故障显示才会恢复正常。

2.5系统优点

1.恒压供水技术因采用变频器改变电机电源频率,从而达到调节水泵转速改变水泵出口压力,相比靠调节阀门的控制水泵出口压力的方式,具有降低管道阻力大大减少截流损失的效能。

2.由于水泵工作在变频工况,在其出口流量小于额定流量时,水泵转速降低,减少了轴承的磨损和发热,延长了泵和电机的机械使用寿命。

3.由于水泵工作在变频工作状态,在其运行过程中其转速是由外供水量决定的,故系统在运行过程中可节省电能,其经济效益是十分明显的。

4.变频器直接控制电机运行,设定参数灵活方便。可灵活设定频率下限、加速时间

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊减速时间、换泵时间等各种工作参数,历史记录功能能够显示系统运行状态,查阅各种故障原因。恒压供水技术因采用变频器改变水泵电动机的运行频率,从而调节水泵转速,改变水泵出口压力,比采取手动调节阀门控制出口压力的方式,具有降低管路阻力,大大减少截流损失的效能。因实现恒压自动控制,避免操作人员频繁手动操作,大大提高了跟踪调节精度,降低了操作人员的劳动强度,节省了人力。

5. 对电网冲击小,保护功能完善。消除了水泵电机直接起动时对电网的冲击和干扰,并且设备控制系统具有短路、过流、过载、等多种保护功能,大大提高了工作效率,由于变频泵工作在变频工况,在其出口流量小于额定流量时,泵转速降低,减少了轴承的磨损和发热,延长了泵和电机的机械使用寿命。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

第三章系统论述

3.1系统的组成

该系统由系统蓄水池,水泵电机,压力传感器,PID调节器,变频器,PLC以及

各种保护和控制部分组成。

3.2系统各部分的介绍

3.2.1水泵电机

水泵电机是输出执行装置,通过调速能实现水压恒定是由水泵特性决定的。

水泵的性能曲线(即H~Q曲线)和管路性能曲线画在同一坐标系中,如图4-1所示,这两条曲线的交点A就是水泵的工作点。若把水泵的效率曲线η-Q也画在同一坐标系中,可以找出A点的扬程

A

H、流量

A

Q以及

效率

A

从图中可以看出,水泵在工作点A点提供的扬程

和管路所需的水头损失相等,水泵抽送的流量等于管

路所需的流量,从而达到能量和流量的平衡,这个平

衡点是有条件的,平衡也是相对的。一旦当水泵或管

路性能中的一个或同时发生变化时,平衡就被打破,

并且在新的条件下出现新的平衡。

A

A

H~Q

ηA

Q

Q A

η~Q

n1

H A

H x-Q

图3-1水泵工作点的确定

恒压供水系统自动控制设计要点

变频调速恒压供水系统,该系统能够根据运行负荷的变化自动调节供水系统水泵的数量和转速,使整个系统始终保持高效节能的最佳状态。 本文主要针对当前供水系统中存在的自动化程度不高、能耗严重、可靠性低的缺点加以研究,开发出一种新型的并在这三个方面都有所提高的变频式恒压供水自动控制系统。全文共分为四章。第一章阐明了供水系统的应用背景、选题意义及主要研究内容。第二章阐明了供水系统的变频调速节能原理。第三章详细介绍了系统硬件的工作原理以及硬件的选择。第四章详细阐述了系统软件开发并对程序进行解释。 关键词:变频器;恒压供水系统; PLC

Frequency conversion constant pressure water supply system, the system is capable of automatically adjusting water supply system based on load changes of quantity and speed of the pump, always maintain the high efficiency and energy saving the best state of the This article primarily for current there is a high degree of automation in the water supply system, serious disadvantages, reliability, low energy consumption study developed a new and increased in these three areas of automatic control system of frequency conversion constant pressure water supply. The text is divided into four chapters. Chapter I sets out the water supply system of main research topics on background, meaning and content. Chapter II sets out the principle of variable frequency speed adjusting energy saving of water supply systems. Chapter III details the working principle of system hardware and hardware choices. The fourth chapter elaborates system software development and to explain the procedures Key words:Cam、high deputy、automation

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

变频恒压供水控制系统

变频恒压供水控制系统 发表时间:2019-01-08T16:21:17.107Z 来源:《电力设备》2018年第24期作者:蒋正锋[导读] (四川理工技师学院四川成都 611130) 1、系统构成 整个系统由一台PLC,一台变频器,水泵机组(3台),一个压力传感器,低压电器及一些辅助部件构成。 2、系统硬件设计 2.1.1 PLC选型 本系统选用FX2N-32MR型PLC。 2.1.2 接线及I/O分配 2.3 变频器选型及接线 2.3.1 变频器选型 根据设计的要求,本系统选用FR-A740系列变频器。 2.3.2变频器的接线 变频器端子 PLC端子功能 STF Y7 电机正转 FU X2 增泵、减泵 OL X3 增泵、减泵 2.6系统主电路设计 系统主电路接线 3 系统的软件设计 (1)自动运行部分 LD M8002 SET M0 LD X015 CJ P0 LD M0 AND X000 RST M0 SET M2 SET M7 SET M8 1)启动1#泵 按下启动按钮,系统检测采用那种运行模式。如果按钮SB7没按,则使用自动运行模式。变频启动1#水泵。 LD M2 AND X002 RST M2 SET M1 SET M4 2)启动1#,2#泵: 接收到变频器上限信号,PLC通过这个上限信号后将1#水泵由变频运行转为工频运行,KM1断开KM0吸合,同时KM3吸合变频启动第2#水泵。 LD M1 AND M4 AND X003 RST M1 RST M4 SET M2 3)启动1#泵: 接到下限信号就关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。 LD M1 AND M3 AND M6 AND X003 RST M6 RST M3 SET M4 4)启动1#,2#泵: 输出的下限信号使PLC关闭KM5、KM2,开启KM3,2#水泵变频启动。 LD M1 AND M4 AND X003 RST M4 RST M1 SET M2 5)启动1#泵: 接到下限信号关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。

PLC控制恒压供水系统.docx

PLC 控制恒压供水系统 国家职业资格全省统一鉴定 维修电工技师 (国家职业资格二级) 所在省市:江苏省常州市 摘要:本设计是针对居民生活用水 /消防用水而设计的。由变 频器、 PLC 控制系统,调节水泵的输出流量。电动机泵组由三 台水泵并联而成,由变频器或工频电网供电,根据供水 系统出口水压和流量来控制变频器电动机泵组之间的切换 及速度,使系统运行在最合理的状态,保证按需供水。采用 PLC 控制的变频调速供水系统,由PLC 进行逻辑控制,由 变频器进行压力调节。通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。运行结果表明,该系统具有压力稳 定,结构简单,工作可靠操作方便等优点。

关 第一章概 述??????????????????????(1)1-1常的供水方式及恒 的??????????(1) 二、水的一般性原 ????????????????(1) 1-2PLC 、器控制的恒供水系方 案?????????(3) 二、方案特 点??????????????????????(3)四、型及目 的???????????????????(4) 硬件 ??????????????????????(6)二、器介 ?????????????????????(7)二、方 式??????????????????????(7)机速方案的比 ????????????????(9) 二、模供水系的

定?????????????????(10 ) 一、路介 ??????????????????????(11 )三、入出元件与 PLC 地址照 表????????????( 15) 程序????????????????????(17)???????????????????????? ?( 20) 致 ???????????????????????? ?( 21) 参考文 献???????????????????????( 22 )第一章概述 供水的一种典型方式是恒供水。恒供水使用器的速 功能通供水的水的速,以持供水始端力,使之保持相 的恒定,故又称恒供水。在供水以逐步渗透到各种行,品 种也从一的恒供水向多功能和高的、供水及能化控 制的方向展。 基于触摸屏和PLC 作控制器作速的恒供

变频恒压供水控制系统设计

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

14 / - 1 - 一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节

变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示: 14 / - 2 - PLC 变频PIT 恒压供水变频控制系统原理图图1 系统设备选型三、 主要电气元件参数指标1,三相异步电动机水泵:35KW1.0Mpa 恒压设定点:,两线制,4-20mA电流输出压力变送器:0-1.6Mpa VVVF变频器变频器: 1)水泵(小时,35m3/根据设计要求水泵正常供水20m3/小时,最大供水量50 ,流量扬程45m扬程。参考相关资料选择型号为IS50-32-125(50m 的水泵即可满足要求。m3/小时) (2)远传压力表结合具体有数据读取表盘等优点,由于远传压力表具有价格低、14 / - 3 - 实际设计,故在此处选择其作为反馈信号。 四、系统控制要求 1、设两台水泵。一台工作,一台备用。正常工作时,始终有 一台水泵供水。当工作泵出现故障时,备用泵自投。 2、两台泵可以互换。 3、给定压力可调,压力控制点设在水泵处。 4、具有自动,手动工作方式,各种保护、报警装置。 5、用PLC为主要器件完成控制系统的设计。

变频器恒压供水系统(多泵) (2).

目录 1 变频器恒压供水系统简介 (1) 1.1变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (3) 2 变频恒压供水系统设计 (5) 2.1 设计任务及要求 (5) 2.2 系统主电路设计 (6) 2.3 系统工作过程 (6) 3 器件的选型及介绍 (8) 3.1 变频器简介 (8) 3.1.1 变频器的基本结构与分类 (8) 3.1.2 变频器的控制方式 (8) 3.2 变频器选型 (9) 3.2.1 变频器的控制方式 (9) 3.2.2 变频器容量的选择 (10) 3.2.3 变频器主电路外围设备选择 (12) 3.3 可编程控制器(PLC) (14) 3.3.1 PLC的定义及特点 (14) 3.3.2 PLC的工作原理 (15) 3.3.3 PLC及压力传感器的选择 (16) 4 PLC编程及变频器参数设置 (17) 4.1 PLC的I/O接线图 (17) 4.2 PLC程序 (17) 4.3 变频器参数的设置 (21) 4.3.1 参数复位 (21)

4.3.2 电机参数设置 (21) 总结 (22) 参考文献 (23)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1供水系统的基本特征。 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通

变频恒压供水控制系统设计

课题名称变频恒压供水控制系统设计 学院(部) 电子与控制工程学院 专业电气工程及其自动化 班级 2011320401 学生阿不都热扎克·阿不都拉 _ 学号 06 月 23 日至 06 月 27 日共 1 周 指导教师(签字) 2011年 06 月 7 日

目录 摘要 (3) 一、设计容 (4) 二、设计要求 (4) 三、设计容 1、方案的确定 (5) 2、变频调速恒压供水系统简介及工作原理 (6) 3、水泵的容量计算 (8) 4、水泵/变频器/PLC的选择 (9) 5、变频器参数设定 (10) 6、PID控制器参数选择 (10) 7、PLC外部接线图的设计 (11) 8、主电路的设计 (12) 9、系统的工作原理 (12) 四、设计图纸 (13) 五、操作使用说明书 (14) 六、设计体会 (15) 七、主要参考资料 (16) 附录一/附录二 (17) 附录三 (18) 附录四 (19)

摘要 随着我国社会经济的不断发展,住房制度改革的不断深入,人民生活水平的不断提高,城区中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小区供水系统的建设是其中的一个重要方面,供水的经济性、可靠性、稳定性直接影响到小区住户的正常生活与工作,也直接体现了小区物业水平的高低。传统的恒速泵加压供水、水塔高位水箱供水、气压罐供水灯供水方式普遍不通话程度的存在效率低、可靠性差、自动化不高等缺点,难以满足当前经济生活的需要。 论文分析了采用变频调速方式实现恒压供水的工作机理,通过对PID模块的参数预置,利用远传压力表的水压反馈量,构成闭环调节系统,利用变频器与水泵的配合作用实现恒压供水且有效节能。 论文论述了多种供水方案的合理性,同时也指出各种方案存在的问题,通过对比比较给出了比较适合该系统的方案——PLC控制变频恒压供水。 关键字:恒压供水变频调速 PLC

恒压供水PLC控制系统

1.1恒压供水PLC控制系统 一、实验目的 1.学习西门子PLC的使用; 2.掌握闭环调速原理; 3.掌握变频器的使用方法; 4.了解PLC控制变频恒压供水原理。 二、实验内容 1.变频器参数设置 端子号参数的设定值缺省的操作V/F曲线选择/ C003=‘1’ 最高电压设定/ C004=‘380’ 基准频率设定/ C005=‘50’ 最大频率设定/ C010=‘50’ 运行控制选择/ C012=‘1’ 2.控制要求 1)单泵控制恒压供水,当需水量不是很大,用一个泵通过PID控制进行恒压供水; 2)双泵控制恒压供水,当需水量大时,当一个泵满足不了用水需求时,进行双泵切 换恒压供水; 3)PLC模拟量控制变频开环控制; 4)分时控制,定时轮换,可以有效地防止水泵长期不用而发生的锈死现象,提高了 设备的综合利用率,降低了维护费用。 三、实验步骤 1.单泵控制恒压供水 1)按照接线图接好线路,确保接线无误,以免损坏变频器和PLC的各个模块。 2)接好总电源,打开漏电保护器,此时电压表显示电压。按下启动按钮,电压指示灯亮起。 3)把模式选择开关打到手动位置,此时手动状态指示灯亮起。检查各水泵的运行情况,确定水泵能能正常运行。 4)把模式选择开关打到自动位置。 5)打开S7-200软件把程序写到PLC中,关闭软件。 6)把PLC的开关达到RUN位置。 7)打开组态王软件,运行变频恒压供水监控程序。在主画面中选择“闭环控制”打开闭环控制画面。

8)在闭环控制模式下单击单泵运行,并单击PID设定,设定给定压力SP,进行PID参数整定。

9)单击实时曲线可观察各参数的变化。 2.双泵控制恒压供水 1)打开组态王软件,运行变频恒压供水监控程序。在主画面中选择闭环控制打开闭环控制画面。

PLC与变频器控制的自动恒压供水系统解析

PLC与变频器控制的自动恒压供水系统 1 系统简介 为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。 鉴于以上特点,从技术可靠 和>'https://www.doczj.com/doc/c37807889.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递 较>'https://www.doczj.com/doc/c37807889.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。 2 系统方案 系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。 2.1 抽水泵系统 整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台 150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。

恒压供水控制系统的设计

天津理工大学 自动化学院专业设计报告 题目:恒压供水控制系统的设计 -------------系统硬件设计 学生姓名周延学号 届 2011 班级电气07-2 指导教师杨顺峰专业电气工程及其自动化

说明 1. 专业设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成专业设计工作,合 作完成的专业设计,要在设计报告概述中明确说明分工。 3. 设计报告内容建议主要包括:设计概述、设计原理、设计方案分析、软硬件具体设计、调试分析、总结以及参考资料等内容,不同类型的设计可有所区别。 4. 设计报告字数应在3000-4000字,图纸设计应采用电子绘图、且 符合相应国标,文字规范借鉴参考毕业设计要求。 5.专业设计成绩由平时成绩(50%)、报告成绩(30%)和答辩成绩(20%) 组成。专业设计应给出适当的评语。 专业设计评语及成绩汇总表

目录 第一章绪论 (1) 绪论 (1) 变频恒压供水系统的研究现状 (3) 本课题的主要研究内容 (4) 第二章系统的理论分析及控制方案的确定 (5) 变频恒压供水系统的理论分析 (5) 变频恒压供水系统理论方案的确定 (5)

第三章系统的硬件设计 (7) 系统主要设备的选型 (7) 系统主电路分析及其设计 (9) PLC的I/O端口分配及外围接线图……………………10第四章 系统的软件设计 (13) 系统的软件设计分析 (13) PLC程序设计 (15)

第一章绪论 绪论 随着社会的发展和进步,城市建筑的供水问题日益突出,一方面要求提高供水质量,不要因为压力的波动造成供水障碍;另一方面要求供水的可靠性和安全性,在发生火灾时能够可靠供水。针对这两方面的要求,新的供水方式和控制系统应运而生,这就是PLC控制的恒压无塔供水系统。恒压供水包括生活用水的恒压控制和消防用水的恒压控制—即双恒压系统。恒压供水保证了供水的质量,以PLC为主机的控制系统丰富了系统的控制功能,提高了系统的可靠性。 传统的供水方式有:恒速泵加压供水、气压罐供水、水塔高位水箱供水、液力耦合器和电池滑差离合器调速的供水方式、单片机变频调速供水系统等方式,其优、缺点如下: (1) 恒速泵加压供水方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,破坏性大,目前较少采用。 (2) 气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求

基于plc的恒压供水系统的设计

PLC 基于 plc 的恒压供水系统的设计 (恒压供水系统的原理及电气控制要求。Plc 在机电系统中的应用和工作原理。西门子变频 器的工作原理 MM440。Plc 编程原理及程序设计方法。电器原理图,接线图。) 一.恒压供水系统的原理 1.系统介绍 生产生活中的用水量常随时间而变化,季节、昼夜相差很大。用水和供水的不平衡集 中体砚在水压上,用水多而供水少则水压低,用水少而供水多则水压高。以前大多采用传 统的水塔、高位水箱 或气压罐式增压设备 容易造成二次污染,同时也增大了水泵的轴功 率和能量损耗。随着电力电子技术的发展 变频调速技术广泛应用于送水泵站、加压站、工 业给水、小区和高楼供水等供水等领域。相对于传统的技术而言,它具有节能效益明显、 保护功能完善 、控制灵活方便等优点 。 恒压供水控制系统的基本控制策略是:采用电动机调速装置与可编程控制器(PLC)构成 控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的 闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。系统的控制目标是总 管的出水压力及系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入 CPU 运算处理后,发出控制指令,控制泵电动机的投运台数和运行变量泵电动机的转速, 从而达到给水总管压力稳定在设定的压力值上。 恒压供水系统由 PLC 控制器,变频器,触摸屏显示器,压力变送器,水位变送器,软 启动器,水泵电机组,电机保护装置以及其他电控设备等构成,如图 1 所示。 水 压 水 位 压力变送器 水位变送器 变频器 触摸屏显示器 软启动器 控制回路 水泵电机 图 1 恒压供水系统示意图 电机保护装置 2.系统构成 系统采用了 S7-200 型 PLC (14 个输人点,10 个输出点)、MM440 型变频器、压力传

基于三菱PLC控制的恒压供水系统设计(互联网+)

摘要 本设计是专门对日常用水而设计的恒压供水控制系统。根据国内外的研究现状以及系统的控制要求,制定出了一套适合此系统的控制方案。控制方案中,硬件设计主要对可编程控制器(PLC)机型、变频器机型以及电机泵组的机型做出了选择,同时还对系统的输入输出点进行了规划和分配。在软件设计部分,针对控制要求画出了系统的流程图,并且还对每一部分的流程图进行了功能的解释,使读者能更加轻松的了解整个系统的软件设计情况。在此课题中,还采用了MCGS组态软件,对控制系统进行监视与模拟运行,很直观的再现了现场的实际情况。最后,还对整个系统进行了运行调试,运行结果表明该系统具有水压稳定、硬件组成简单、运行可靠和操作方便等优点。 关键词:恒压供水;可编程控制器;变频器;组态软件

Abstract This design is specially designed for water constant pressure water supply control system. According to the requirements of the current research at home and abroad and the system control, develop a set of control scheme suitable for the system. In the control scheme, the hardware design is mainly to the programmable logic controller (PLC) model , frequency converter and motor pump set model made a choice, but also on the system input and output points of planning and allocation. In software design part, according to draw the flow chart of the system, and the required control and flow chart of every part of the function of explanation, so that readers can more easily understand the software design of the whole system. In this topic, also adopted the MCGS configuration software, to monitor and control system’s simulate, intuitive reproduce the actual situation of the scene. Finally, the debugging of the whole system running, the results on the surface of the system has stable pressure, simple structure, reliable operation and convenient operation. Key words: Constant pressure water supply;Programmable logic Controller;Inverter;Configuration software

变频恒压供水系统

供水系统方案图

变频恒压供水系统构成及工作原理 1系统的构成 图3-1 系统原理图 如图3-1所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,

一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。 从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、以及报警装置等部分组成。 (1)执行机构 执行机构是由一组水泵组成,它们用于将水供入用户管网,图2.3中的3个水泵分为二种类型: 调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。 恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。 (2)信号检测 在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号: ①水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。 ②报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为开关量信号。 (3)控制系统 供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。 ①供水控制器:它是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水

PLC恒压供水控制系统

目录 第一章绪论1 第二章 PID调节概念及基本原理3 2.1 PID调节概述3 2.1.1自动控制系统的分类3 2.2 PID控制的原理和特点4 2.2.1 PID控制的原理和特点的概念4 2.2.2 PID控制的分类5 2.3 PID控制器的参数整定6 第三章三菱FX2N型PLC的恒压变频供水系统设计实例8 3.1系统的主要控制要求9 3.2系统的硬件选型9 3.2.1 系统的控制器------- FX2n—32MR10 3.2.2 系统的模拟量输入、输出模块10 3.2.3 变频器FR—A50010 3.2.4 压力传感器TPT50311 3.3控制系统的I/O点及地址分配11 3.3.1 PLC系统的选型13

3.4 恒压供水系统的电气控制系统13 3.4.1 主电路图13 3.4.2控制电路图14 3.4.3 PLC系统外部接线图15 第四章恒压供水系统的程序设计17 4.1 系统的程序结构说明及流程图17 4.1.1初始化子程序17 4.1.2 定时中断程序18 4.1.3 主程序19 4.2程序中使用的编程组件及其含义21 第五章总结23 参考文献24 谢辞25 附录:控制系统的梯形图程序26

第一章绪论 近年来我国中小城市发展迅速,集中用水量急剧增加。据统计,从1990年到1998年,我国人均日生活用水量<包括城市公共设施等非生产用水)有175.7升增加到241.1升,增长了37.2%,与此同时我国城市家庭人均日生活用水量也在逐年提高。在用水量高峰期时供水量普遍不足,造成城市公用管网水压浮动较大。因为每天不同时段用水对供水的水位要求变化较大,仅仅靠供水厂值班人员依据经验进行人工手动调节很难及时有效的达到目的。这种情况造成用水高峰期时水位达不到要求,供水压力不足,用水低峰期时供水水位超标,压力过高,不仅十分浪费能源而且存在事故隐患<例如压力过高容易造成爆管事故)。要解决这些问题,用基于PLC控制变频调速恒压供水能实现。变频调速恒压供水系统由变频器、泵组电机、供水管网、储水箱、智能PID调节器、压力变送器、PLC控制单元等部分组成,控制系统原理图如图1.1所示。 图1.1 控制系统原理图 其中变频器的作用是为电机提供可变频率的电源,实现电机的无级调速,从而使管网水压连续变化,同时变频器还可作为电机软启动装置,限制电机的启动电流。压力变送器的作用是检测管网水压。智能PID调节器实现管网水压的PID调节。PLC控制单元则是泵组管理的执行设备,同时还是变频器的驱动控制,根据用水量的实际变化,自动调整其它工频泵的运行台数。变频器和PLC的应用为水泵转速的平滑性连续调节提供了方便。水泵电机实现变频软启动, 消除了对电网、电气设备和机械设备的冲击,延长机电设备的使用寿命。 第二章 PID调节概念及基本原理

恒压供水控制系统器说明书

一、系统概述 VC-3200系列微电脑变频供水/补水控制器是专为变频恒压供水系统和锅炉及换热系统补水而设计的微电脑控制器,可与各种品牌的变频器配套使用。具有压力控制精度高、压力稳定、第二消防压力(动压)设定、系统超压泄水自动控制、设定参数密码锁定等多项功能。 二、主要性能指标 1.可编程设定多种泵工作方式,最多可拖五台泵(1变频+4工频); 2.具有压力测量值防抖动补偿控制功能; 3.参数调整和设定具有密码锁定及保护功能; 4.采用人工智能模糊控制算法,设定参数少,控制精度高,带看门狗电路,采用数字滤波及多项抗干扰措施。 5.可接无源远传压力表、有源电压及电流型压力变送器; 6. D/A输出控制频率电压为DC 0-10V, 也可设定为DC 0-5V; 7.具有压力传感器零点和满度补偿功能; 8.具有定时自动倒泵功能; 9.具有第二压力(消防压力)设定和控制功能; 10.具有缺水自动检测保护功能和外部输入停机保护功 能; 11.系统补水控制时,具有超压自动泄水控制功能; 12.具有供水附属小泵控制功能,可设定小泵变频或工频 模式; 13.具有可选的定时自动开、关机控制功能; 14.具有小流量水泵睡眠控制功能; 15.具有手操器功能,可手动调节输出电压来控制变频器的频率; 16.可代替电接点压力表进行上、下限压力控制; 17.具有可选分时分压供水控制功能,最多有六段时间控制; 三、安装和配线端子说明 1.控制器外形尺寸: 160mm×80mm×80mm(AC-3200) 160mm×80mm×90mm (AC-3200) 2.控制柜面板开口尺寸152mm×76mm,面板卡入式安装。 3.使用环境为:无水滴、蒸汽、腐蚀、易燃、灰尘及金属微粒的场所; 4.使用环境温度:-20℃~50℃ 5.相对湿度:<95%; 6.额定工作电压:AC220V±10%; 7.控制器额定功耗:<=AC 5W; 8.控制器接线端子输出容量:3A/ AC220V 9.面板及配线端子说明:

变频恒压供水系统

变频恒压供水系统文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

供水系统方案图 变频恒压供水系统构成及工作原理 1系统的构成 图3-1 系统原理图 如图3-1所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。 从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系 统、人机界面、以及报警装置等部分组成。 (1)执行机构 执行机构是由一组水泵组成,它们用于将水供入用户管网,图中的3个水泵分为二种类型: 调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。 恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。 (2)信号检测 在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号:

①水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。 ②报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为开关量信号。 (3)控制系统 供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。 ①供水控制器:它是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵)进行控制。 ②变频器:它是对水泵进行转速控制的单元。变频器跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。 ③电控设备:它是由一组接触器、保护继电器、转换开关等电气元件组成。用于在供水控制器的控制下完成对水泵的切换、手/自动切换等。 (4)人机界面 人机界面是人与机器进行信息交流的场所。通过人机界面,使用者可以更改设定压力,修改一些系统设定以满足不同工艺的需求,同时使用者也可以从人机界面上得知系统的一些运行情况及设备的工作状态。人机界面还可以对系统的运行过程进行监示,对报警进行显示。 (5)通讯接口

plc控制的恒压供水系统(开题报告)

长春科技学院 毕业设计(论文)开题报告 题目:PLC控制的恒压供水系统学院: 专业: 班级: 学号: 姓名: 指导教师: 填表日期:

一、选题依据及意义 在我国,节电节水的潜力非常大。据有关国际组织发表的资料显示:中国的单位国民经济总产值所消耗的电是美国、德国等的4倍左右,消耗的水是他们的2倍左右。我国的大量用电设备中,风机和泵类电机的耗电量占全国发电量的50%左右,若推广新型电机调速技术,可节电40%左右,即可以节约全国发电量的1/5。由于我国人均占有水、电资源相对于别国又少很多,因此,在我国一方面水电供应紧张,而另一方面,水电的浪费又十分惊人,节电节水,不仅潜力巨大,而且意义深远。 近十年来,变频技术的应用在我国有很大的发展,并取得了良好的效果。可以说,变频技术已为大多数用户所接受。但是,不能不指出,我国在变频技术的应用方面,与发达国家的水平尚有很大差距。目前,我国在用的交流电动机使用变频调速运行的仅6%左右,而工业发达国家已达60% - 70%;日本在风机、水泵上变频调速的采用率已达10%,而我国还不足0.01%;在日本,空调器的70%采用了变频调速,而我国才刚刚起步。从这个现实出发,变频技术尚有很大的发展空间。 变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,使我国供水行业的技术装备水平从90年代初开始经历了一次飞跃。恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统,在实际应用中得到了很大的发展。 二、国内外发展情况(文献综述) 随着变频器的问世,变频调速技术在以工频交流电为主的用电场合得到了广泛的应用,其中变频恒压供水便是在变频调速领域中典型的应用。以前,国外生产的变频器主要用来控制频率、控制电机的启停、控制电机正反转和转速调节以及各种保护功能。在变频恒压供水系统中,变频器是通过可编程序控制器控制,作为控制机构和系统执行机构之间的中间环节,为保证水管内水压恒定,满足不同时间段供水量大小的需求,需在变频器外部提供压力传感器和压力控制器,对水压进行闭环控制。目前我们国内有很多公司也在做变频恒压供水的工程,可是大部分采用国外的变频器控制水泵的转速,有的采用单片机及相应的软件予以实现;有的采用可编程控制器(PLC)及相应的软件予以实现。但在系统的稳定性能、动态性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能

自动恒压供水的控制系统(plc)

一、绪论 (一) 课题的意义及应用背景 近十年来,变频技术的应用在我国有很大的发展,并取得了良好的效果。采用变频器和可编程控制器等现代控制设备和技术实现恒定水压供水,是供水领域技术革新的必然趋势,以往采用的水塔供水既不卫生又不经济,更重要的是浪费了大量的能源,本文介绍的变频调速恒压供水系统以其有效的实用性,彻底解决了上述问题,是一项颇有实用价值的调速系统,为已有的供水系统技术改造提供了切实可行的途径。 变频控制技术的进步不仅仅是异步电动机结构简单、坚固、易于维护等优点,更主要的是采用变频调速技术的异步电动机的机械特性达到了直流电动机调压调速的特性。由于计算机技术的介入,使得变频器具有丰富的功能和方便好用的特点,因此人们才有可能按照实际要求,自行构成一个适用和可靠的调速系统。 变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,充分利用变频器内置的各种功能对合理设计变频调速恒压供水设备,降低成本,保证产品质量等方面有着非常重要的意义。 变频恒压供水控制系统主要有: (1)带PID回路调节器和/或可编程序控制器(PLC)的控制系统 在该系统中,变频器的作用是为电动机提供可变频率的电源,实现电动机的无级调速,从而使管网水压可控。传感器的任务是检测管网水压;压力设定单元为系统提供满足用户需要的水压期望值;压力设定信号和压力反馈信号输入可编程控制器后,经可编程控制器内部PID控制程序的计算,输给变频器一个转速控制信号。还有一种办法是将压力设定信号和压力反馈信号送入PID回路调节器,由后者进行运算后,输给变频器一个转速控制信号。 由于变频器的转速控制信号是由可编程控制器或PID回路调节器给出的,所

变频调速恒压供水系统设计

摘要 随着改革开放的不断深入,我国中小城市的城市建设及其经济迅猛发展,人民的生活水平不断提高;同时,城市需水量日益加大,对城市供水系统提出了更高的要求。供水的可靠性、稳定性、经济节能性直接影响到城区的建设和经济的发展,也影响到城区居民的正常工作和生活。本文根据城区供水管网改造工程设计了一套由PLC、变频器、远传压力表、多台水泵机组、计算机等主要设备构成的全自动变频恒压供水及其远程监控系统,具有自动工频/变频恒压运行、可实现远程自动控制和现场手动控制等功能。论文分析了采取变频调速方式实现恒压供水相对于传统的阀门控制恒压供水方式的节能机理。通过对变频器内置PID模块参数的预置,利用远传压力表的水压反馈量,构成闭环系统,根据用水量的变化,采取PID调节方式,在全流量范围内利用变频泵的连续调节和工频泵的分级调节相结合,实现恒压供水且有效节能。论文论述了采用多泵并联供水方案的合理性,分析了多泵供水方式的各种供水状态及转换条件,分析了电机由变频转工频运行方式的切换过程及存在的问题。给出了实现有效状态循环转换控制的电气设计方案和PLC控制程序设计方案。系统有效地解决了传统供水方式中存在的问题,增强了系统的可靠性。并与计算机实现了有机的结合,提升了系统的总体性能。 关键词:PLC;变频调速;恒压供水;变频工频切换 Abstract With the continuous deepening of reforming and opening up, the construction and economy of small and medium-sized cities in China have developed rapidly. People's living standards have improved constantly. The water supply system is demanded more as city water consum ption increasing. The urban construction and economic development and also people’s daily work and life are impacted directly by the reliability, stability and the economical of energy conservation of the water supply system.An autom atic conversion and voltage constant Water Supply and remote monitoring system, which consist of the PLC, the converter, the remote transition pressure gauges, the multi-pumps unit, the computer and so on. It is of automatic line-frequency /conversion function, remote and local automatic control. In this paper, the mechanism of energy

相关主题
文本预览
相关文档 最新文档