当前位置:文档之家› 固相萃取技术的应用与研究新进展

固相萃取技术的应用与研究新进展

固相萃取技术的应用与研究新进展
固相萃取技术的应用与研究新进展

固相萃取技术的应用与研究新进展

摘要: 固相萃取技术( SPE) 是近年来发展较快并得到广泛应用的一种新前处

理方法,介绍了固相萃取技术的基本原理及方法。对固相萃取技术在食品、药品、和环境检测等领域的应用进行了综述,阐述了目前对固相萃取技术的研究

开发和发展展望。

Abstract:Solid phase extraction ( SPE) technology is a fast-developing sample preparation method with wide application, and the principle and methods were introduced. The applications of SPE in

the analysis of food,drug andenvironment were summarized,and the development and prospect of the research of solid phase extraction

was also reviewed.

关键词: 固相萃取; 样品处理; 应用

概述

固相萃取( solid phase extraction,SPE) 是近年来发展迅速的样品前

处理方法,固相萃取技术就是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分

离和富集目标化合物的目的,大大增强对分析物特别是痕量分析物的检出能力,提高被测样品的回收率。固相萃取是一个包括液相和固相的物理萃取过程。在

固相萃取中,固相对分离物的吸附力比溶解分离物的溶剂更大。当样品溶液通

过吸附剂床时,分离物浓缩在其表面,其他样品成分通过吸附剂床; 通过只吸

附分离物而不吸附其他样品成分的吸附剂,可以得到高纯度和浓缩的分离物。

它大大弥补了液液萃取法的缺陷,具有节省时间、溶剂用量少、不易乳化等优点,具有很好的通用性,可满足样品制备自动化的要求。

多种新型固相萃取( SPE) 的新方法如固相微萃取( SPME) 、搅拌棒吸附

萃取( SBSE) 、基质固相分散萃取( MSPD) 、分子印迹固相萃取( MISPE) 、免疫亲和固相萃取( IASPE) 、整体柱固相萃取( MonolithicSPE) 、碳纳米管固

相萃取( CNT -SPE) 是近年发展起来的新型样品前处理方法。固相微萃取技术( SPME) 中涂层是主宰萃取选择性、富集倍数、使用寿命等最重要的因素,具有操作简便、无需有机溶剂、萃取速度快、易于与仪器联用等特点。作为SPME 技术基础上发展的一种类型,搅拌棒吸附萃取( SBSE) 技术是一种无溶剂或少溶剂的样品前处理方法,SBSE 一般是在内封磁芯的玻璃管上涂覆一层聚二甲基硅氧烷( Poly dimethyl siloxane,PDMS) 或套上一定厚度的PDMS 硅橡胶管制成。萃取时,搅拌棒在完成搅拌的同时吸附目标物,对目标组分的富集倍数提高了约100 倍,因而更适合于样品中超痕量组分的分析。MSPD 由美Louisiana 州立大学Barker首先提出,它可同时分散和萃取固体、半固体样品,是一种简单高效的提取净化方法,这种技术的缺点是难以实现自动化,对脂肪含量高的样品经常需要多次净化处理才能进行分析。采用分子印迹材料作为一种特效的固相萃取吸附材料较好地克服了由于样品复杂所带来的内源性干扰问题,不仅能用于富集分析物,而且能有效地除去样品基质的干扰。净化后的样品可以直接注入色谱仪器中进行分析,由于预识别能力较强,其潜在的应用前景好而受到广泛的关注。免疫亲和固相萃取具有快速、无样品基干扰、对分析人员和环境无污染的优点。

随着越来越多的新型吸附剂和新的操作模式的不断涌现,固相萃取作为样品前处理技术成为化学分离和纯化的一个强有力工具,从痕量样品的前处理到工业规模的化学分离,固相萃取技术在多个领域得到了广泛应用。本文对近年发展起来的多种新型固相萃取技术在食品、药品和环境等领域的应用

1 在食品分析中的应用

由于食品中有毒有害物质严重危害人民的健康,而食品样品的基体和组成相当复杂,且被分析物处于痕量状态,需要富集才能被检出,测定时往往又存在相互干扰,这都给分析测试造成了一定困难。因此样品前处理方法已成为食品安全分析中一个十分重要的环节,是浓缩痕量组分、提高方法的灵敏度以及

除去干扰物质的重要手段。传统的样品前处理技术包括液液萃取、蒸馏、结晶、过滤、预沉淀、离心、吸附、索氏提取等,普遍存在回收率低、样品用量大使

用的有机溶剂多,并且操作复杂、费时甚至会使分析物分解或损失等缺点,而

固相萃取( SPE)技术作为新近快速发展起来的样品前处理技术在食品行业得到

了广泛的应用。

Hemandez Borges 等报道了SPME 和不同的在线预浓缩-超敏感毛细管电泳

-紫外检测器联用技术,定量分析苹果和橙汁中的5 种农残留,通过对4 种不

同在线预浓缩方法的比较,发现反极性去基质富集的灵敏度、有效性和重复性

最好,检出限可达3. 1 μg /L,低于欧盟的最大残留量( MRLs) 的要求。Huang 等制备了一系列单体混合物,然后将其聚合形成整体柱搅拌棒固相萃取

材料。这些材料对极性化合物的萃取效率优于PDMS 涂层。该研究组[13]还以聚( 乙烯基咪唑-二乙烯苯) 整体柱材料作为搅拌棒固相萃取涂层材料,对牛

奶中5 种磺胺类药物残留进行了HPLC 分析,加标样品的最低检出限和定量限分别为1. 30 ~ 7. 90 ng /mL 和4. 29 ~ 26. 3 ng /mL,平均回收率为83% ~99%,RSD( n = 3) 为1. 3% ~ 13%。Kristenson 等用微量自动基质固相分散

法提取柑橘中的有机磷、拟除虫菊酯类杀虫剂,萃取物可以不经后续净化而直

接进行GC-MS 分析。该方法仅需25 mg 样品和100 μL 有机溶剂,检出限为

4 ~ 90 μg /kg,回收率为83% ~118%,RSD 为10% ~ 13%。用同样的方法测定了苹果、梨和葡萄中的有机磷、拟除虫菊酯类杀虫剂,均得到了较好的结果。

Baggiani 等以有孔氯甲基化聚苯乙烯为基质,甲基丙烯酸( MAA) 为功能

单体,乙二醇二甲基丙烯酸酯( EDMA) 为交联剂制备印迹聚合物,将其作为固

相萃取柱的填料分离富集红酒中的杀菌剂嘧霉胺,并进行HPLC 分析。该方法能选择性地检测出嘧霉胺和嘧啶胺杀菌剂,而非嘧啶胺类杀菌剂及其类似物均未

检出。其检出限达到0. 1 μg /mL,回收率为80% ~ 90%。Guzman Vazquezde Prada而先进分离技术如毛细管电泳法却存在着成本高、不利于大规模应用等诸多问题。因此,完善已有分离技术,寻找其他更有效的分离方法和技术,实现

腐植酸的高效精细分级提纯仍面临挑战。随着新型分离技术的不断出现,反应

与分离、电渗析与萃取、生物酶-膜分离、络合-超滤等耦合技术的快速发展,腐植酸的高效精细分级与纯化必有广阔的发展前景。发展了一种在线MISPE 方

法选择性地富集牛奶中痕量的磺胺甲基嘧啶,并用伏安法进行检测。这种方法

的浓缩因子为45,平均回收率为97% ~ 103%,RSD 为28%,其检出限低于国际

食品法典委员会( Codex Alimentarius Commission) 标准规定的最大残留量25 μg /L。Katsumata 等将50 mg 多壁碳纳米管作为吸附剂装入玻璃固相萃取柱中,用于富集有机磷农药二嗪磷,获得了满意的结果。由于食品和农产品样品

的多样性和复杂性,新型固相萃取技术作为一种样品前处理技术,因其独特的

优势在食品分析中将得到更广泛的应用。

2 在药物分析中的应用

在药物分析过程中,对被测样品的预处理是极为重要的一步,是分析过程成败与否的关键。由于固相萃取技术有诸多优点使其在药物分析和药物检测上发

展迅速。朱炳辉等将含磷酸二氢钾的样品与甲醇的混合溶液流过Sep -Park

C18 固相萃取小柱,牛磺胆酸被小柱饱和吸附后的流出液作反相高效液相色谱

法测定用的供试液,结果在0. 0253 ~0. 253 mg /mL 质量浓度范围内,牛磺

胆酸钠进样浓度与峰面积响应值呈良好的线性关系,r = 0. 999。该方法测定

蛇胆川贝液和蛇胆汁中的牛磺胆酸含量,简便实用,分析结果准确可靠,可作

为蛇胆川贝液和蛇胆汁的质量控制方法。同时,根据各目标成分的离子化能力

强弱,采用强阳离子固相萃取柱进行预分组和净化处理,建立了一种固相萃取

-高液相色谱测定保健品中格列吡嗪、格列齐特、格列本脲、格列喹酮、盐酸

二甲双胍、盐酸苯乙双胍和瑞格列奈7 种降糖化学药物的方法,此方法能够对

非法掺入合成药的降糖样品进行快速地筛查和定量分析。Hu 等以莱克多巴胺为模板分子,采用微波辅助加热制备了磁性分子印迹微球,并采用分散固相萃取、液相色谱、荧光检测法萃取分离了猪肉和猪肝中的多种激动剂类药物残留,回

收率为82. 0% ~ 92. 0%,RSD 为5. 8% ~ 10. 0%。磁分离技术和分散固相萃取方法的结合避免了柱填充过程并且吸附剂可以多次重复使用。Xu 等制备了一种新颖的具有均匀分子印迹涂覆层的吸附搅拌棒,并应用于吸附搅拌萃取猪肉、猪肝和饲料中痕量的莱克多巴胺等β-激动剂类药物,方法的回收率为73.

6% ~ 92. 3%,RSD 为2. 9% ~ 8. 1%。在内填磁芯的玻璃毛细管表面合成的

莱克多巴胺印迹层厚度( 20. 6 μm) 均匀,结合牢固,表现出很好的萃取容量和选择性,并且可重复使用40 次以上。利用固相微萃取技术还可以分析人体体液中的抗抑郁和抗组胺等药物,如Namera 等用一种简单的方法即顶空-固相微萃取-气质联用分析血液中的四环抗抑郁剂。他们将0. 5 mL 血液用0. 5 mL 1 mol /L NaOH处理后加入内标,再置于密封的12 mL 的顶空瓶中,加热至120℃,用100 μL 聚二甲氧基硅烷纤维萃取45 min,采用GC 分离后,用选择离子检测方式下的质谱法( SIM-MS) 进行分析。该方法的检测限低于ng /g 级,线性范围达3 个数量级,RSD 为5% ~10%。

3 在环境分析中的应用

近年来随着化学工业的发展和农药的大量使用导致自然环境中某些水体、

土壤、大气和生物体中有机污染物超过法定限量。而且现在对环境中有机污染

物的控制越来越严格,要求检测技术更加快速方便、灵敏可靠。由于环境样品

的复杂性使得测定的灵敏度和选择性受到限制。作为一种样品前处理技术,固

相萃取技术因其独特的优势在环境分析中得到了广泛的应用。为环境分析工作

者提供一种较为理想的前处理技术,以代替传统的提取、净化和浓缩方法。固

相萃取作为一种新型的样品处理技术已广泛用于水中有机污染物的痕量富集。

分析水中以苯并芘为代表的多环芳烃的关键在于富集水中苯并芘和与其他有机

物进行分离。采用传统荧光分光光度法测定苯并芘不仅安全性差,且操作繁琐,耗时较长。

叶振福采用SPE 和HPLC,建立了一种较为完善的分析水中苯并芘的方法。

贾瑞宝采用SPE 技术作为样品前处理方式,甲醇和水作为流动相进行梯度洗脱,建立了EPA 优先监控的16 种PAHs 同时分析的HPLC 方法,16 种PAHs 的回收率为79% ~ 104%,相对标准偏差为5. 2% ~ 19. 5%。Bulut 等以安伯莱特XAD

-2000 为固相萃取剂,富集了Mn ( Ⅱ) 、Fe ( Ⅱ) 、Co ( Ⅱ) 、Cu ( Ⅱ) 、Cd( Ⅱ) 、Zn( Ⅱ) 、Pb( Ⅱ) 和Ni( Ⅱ) 与DDTC 的螯合物,用1 mol /L 硝

酸洗脱后火焰原子吸收光度法测定,该法用于水样和蔬菜样品中铅的测定,回

收率在90% ~ 94%。Alonso 等[27]以[1,5-二( 2-吡啶) -3-磺基苯亚甲基]硫代卡巴腙修饰氨丙基微孔玻璃为固相萃取剂在线预富集铅,用10%

HNO3为洗脱剂后,ETAAS 法测定了海水和生物样品中的铅,方法的线性范围是0. 012 ~ 10 ng /mL,富集时间为90 s,富集倍率为20. 5 倍,检出限和检测限

分别为0. 012、0. 14 ng /mL。Yaneira 等[28]以二硫代氨基甲酸吡咯铵为

填充剂,在线富集了水样中的Pb( Ⅱ) ,以火焰原子吸收法测定,线性范围

5 ~ 120 μg /L,检出限1. 4 μg /L。Waters 公司推出采集空气中醛/酮小

柱Sep -Pak DNPH-硅胶,这种小柱在硅胶表面涂布了一层2,4-二硝基苯肼( DNPH) ,采样时空气中醛/酮组分在小柱上与DNPH 发生衍生反应,用有机溶

剂洗出衍生物在HPLC 系统上进行分离测定,对甲醛和酮的检测限可达3 × 10 - 12,可用于汽车尾气、工业区、居民区、室内等环境空气中醛/酮的分析。

4 展望

在化学分析中,仪器与信息技术的发展大大推动了分析学科的前进,但样

品制备技术却远远落后于仪器与电脑技术的发展,成为制约学科发展的“瓶颈”之一。目前还没有一种前处理技术可以一次性地同时提取净化食品中的所有有

毒有害物质,因此发展高选择、高效的吸附剂,拓宽样品的应用范围是固相萃

取技术研究的重要方向。固相萃取技术现已成功地应用于食品、药品、天然产

物和环境等领域的分析制备,并取得了一些进展,但其仍处于发展阶段,要很

好地用于实际样品的分析还有许多问题亟待解决。随着对其研究的不断深入和

技术仪器装置的不断完善,必将大大扩展固相萃取技术与其他高效分离检测手段的联用技术的应用范围,也必将吸引越来越多的化学工作者从事这方面的研究,这将使固相萃取技术在诸多领域获得更为广泛的应用。

煤液化技术

《近代化学》课程作业 煤液化技术的研究现状 The research status of coal liquefaction technology 姓名: 专业: 时间:

煤液化技术的研究现状 能源安全关系到一个国家的长期稳定发展,我国的煤炭资源相对于其他形式的资源而言较为丰富,但是长期以来,我国的煤炭资源一直处于低利用率水平,造成了大量的资源浪费以及环境污染等问题,随着资源的日益减少,如何提高资源利用率成为需要研究的关键问题。 煤炭液化技术可以分为直接、间接两种,所谓煤炭直接液化技术是指将粉状煤炭与循环溶剂制备成的混合油煤浆在定温、定压以及催化剂条件下,进行加氢化学反应,最终生成所需要的液态和气态烃类化合物,同时要对所生成的物体进行脱硫、脱氮处理等有害物质处理;煤炭的间接液化技术先进行的是气化处理,将煤气化后并在催化剂的作用下,通过F-T费托过程,得到相应的烃类化合物。相对于煤炭间接液化而言,直接液化在同样原料的基础上,所能够生产出的油品率更高一些。 1煤直接液化 煤的直接液化是指在适当的温度(400~500℃)和压力(20~30MPa)下,催化加氢裂化(热裂、溶剂、萃取、非催化裂化等)成液体烃类,生成少量气体烃,脱出煤中氮、氧和硫等杂原子的深度转化过程[1]。理论上讲,煤加氢液化分为轻度加氢和深度加氢。通过加氢,煤结构中某些键断开,将固态煤转变成液体产物和气态产物。 1.1煤直接液化的技术的进展 煤直接液化技术主要包括[2]:①煤浆配制、输送和预热过程的煤浆制备单元; ②煤在高温、高压条件下进行加氢反应,生成液体产物的反应单元;③将反应生成的残渣、液化油和气态产物分离的分离单元④稳定加氢提质单元。具体流程图如图1所示: 图1:煤直接液化工艺流程简图 自从1913年德国科学家F.Bergiu发明了煤炭直接液化技术后,美国、日本、英国、俄国也都独自研发出了拥有自主知识产权的液化技术。以下简单介绍几种最具代表性的煤炭直接液化工艺,如德国IGOR工艺[3]、美国H TI工艺[4]、日本NEDOL工艺[5]等。 1.1.1德国IGOR工艺 德国矿冶技术及检测公司在20世纪90年代初改进了原DT工艺,形成了先进的IGOR工艺。该工艺是将循环溶剂和加氢液化油提质加工与煤的直接液化结合成一体的新工艺技术。 该工艺与原工艺相比有如下优点:①液化残渣的固液分离改为减压蒸馏,其

固相萃取柱知识点

1、使用阳离子固相萃取柱前为什么要用甲醇和水活化 要是使用的是高聚物基质的阳离子柱,可直接上样,不用活化,要是使用的是硅胶基质的阳离子柱,活化是为了打开键合在硅胶上的碳基团链,使之充分发生作用,甲醇是为了与碳链互溶,用水过度是为了能和样品溶液相溶。 2、固相萃取技术原理及应用 一、固相萃取基本原理与操作 1、固相萃取吸附剂与目标化合物之间的作用机理 固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的 1)疏水作用力:如C18、C8、Silica、苯基柱等 2)离子交换作用:SAX, SCX,COOH、NH2等 3)物理吸附:Florsil、Alumina等 2、p H值对固相萃取的影响 pH值可以改变目标物/吸附剂的离子化或质子化程度。对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。而目标物的离子化程度则与pH值有关。如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。

3、固相萃取操作步骤及注意事项 针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。 1)填料保留目标化合物 固相萃取操作一般有四步(见图1): ? 活化---- 除去小柱内的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸) ? 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)? 淋洗---- 最大程度除去干扰物。(建议此过程结束后把小柱完全抽干) ? 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。(注意流速不要过快,以1ml/min为宜) 如下图1:

信息技术应用能力提升

信息技术应用能力提升 培训感言 在信息技术应用能力的提升培训活动这段时间里,我克服了工作和学习之间的时间冲突,合理安排时间,按时登录平台学习,积极参加学习活动,感受授课教师的风采,他们耐心的解惑和真诚的传授,使我特别的感动。 本次国培学习的都是现在信息技术发展的前沿技术,如翻转课堂,交互式电子白板的使用,微课的设计和应用,以及office2010的技术等等。培训内容既充满新鲜和实用感,又有一种挑战性。因此我在学习的过程中自始至终都是充满了乐趣,充满了兴趣。当这些课程留下让自己动手操作实践的作业的时候,我都感到很兴奋。我每次都认认真真的完成作业,有时作业做的不好,就一次次的回看视频教学以及专家的讲座,争取保质保量的完成作业。在微课培训时,老师讲解非常简洁、明了、清晰,只要培训者有时间去观看,就能掌握其中的知识点,即使一下子看不明白,可以反复地去看,直至自己学会为止,这符合了微课的设计理念。这样的培训方法既让我们学得了技术又可以在教学中边学习边实践,让我们做到学习工作两不误,真是两全其美。 这次国培给我的感觉是全新的:足不出户,就能聆听专家的讲授,与同行交流讨论。这段研修的历程,有压力,更有收获。同时也深深地体会到计算机辅助教学已经走到了我们身边,认识到课堂上要把信息技术完美地融合到教学之中,充分发挥计算机工具性能、利用网络资源、搜集信息、处理信息,从而提高教学质量。深知教育对教师在专业知识方面的要求越来越高。培训时间虽然短暂,但使我受益匪浅,其感触非一言能尽。在以后的工作岗位上,我一定扎实工作,努力学习,要不断地更新自己的教学观念,改变自己的教学行为,并把这次所学的知识运用到教学实践中,提高教育质量,让学生快乐成长。

反应萃取技术地研究进展与应用

反应萃取技术的研究进展与应用 摘要:化工过程强化技术是节能减排的重要途径,其包括设备强化和方法强化,反应萃取技术就是方法强化的技术之一。本文综述了反应萃取技术的基本原理及其分类。并介绍了其研究现状和在各个领域的应用,并对其今后的发展前景做出了预测。与传统的萃取技术相比较,反应萃取技术作为一种新型耦合技术能显著提高效率、减少废物排放,是一种高效、节能、清洁、安全、可持续发展的化工新技术。 关键词:反应萃取;进展;应用;超临界 Research Progress and Application of Reactive Extraction Technology ABSTRACT:Chemical process intensification technology is an important way of energy saving and emission reduction. It includes equipment strengthening and methods strengthening, and reaction extraction technology is one of the methods strengthening. The basic principle and classification of reaction extraction technique are reviewed in this paper.Its research status and application in various fields are introduced, and the prospect of its future development is forecasted. Compared with the traditional extraction technology, the reaction extraction technology can improve efficiency and reduce waste emissions, which is a new technology for chemical engineering, energy saving, clean, safe and sustainable development. KEY WORDS:Reaction extraction; Development; Application; Super critical

固相萃取与固相微萃取应用之原理

固相萃取与固相微萃取应用之原理 一固相萃取 固相萃取(Solid Phase Extraction,SPE)是一种基于液-固分离萃取的试样预处理技术,由柱液相色谱技术发展而来。SPE技术自70年代后期问世以来,由于其高效、可靠及耗用溶剂量少等优点,在环境等许多领域得到了快速发展。在国外已逐渐取代传统的液-液萃取而成为样品预处理的可靠而有效的方法。 SPE技术基于液相色谱的原理,可近似看作一个简单的色谱过程。吸附剂作为固定相,而流动相是萃取过程中的水样。当流动相与固定相接触时,其中的某些痕量物质(目标物)就保留在固定相中。这时用少量的选择性溶剂洗脱,即可得到富集和纯化的目标物。固相萃取可分为在线萃取线萃取前者萃取与色谱分析同步完成;而后者萃取与色谱分析分步完成,两者在原理上是一致的。 一般固相萃取的操作步骤包括固相萃取柱(即吸附剂)的选择、柱子预处理、上样、淋洗、洗脱。在实验过程中需要具体考虑的因素如下: 1)吸附剂的选择 a.传统吸附剂 在环境分析中最为常用的反相吸附剂较适用于水样中的非极性到中等极性的有机物的富集和纯化。其中有代表性的键合硅胶C18和键合硅胶C8等。该类吸附剂主要通过目标物的碳氢键同硅胶表面的官能团产生非极性的范德华力或色散力来保留目标物。 正相吸附剂包括硅酸镁、氨基、氰基、双醇基键合硅胶及氧化铝等,主要通过目标物的极性官能团与吸附剂表面的极性官能团的极性相互作用(氢键作用等)来保留溶于非极性介质的极性化合物。由于其特殊的作用原理,在环境分析中常用于与其它类型的吸附柱联用,吸附去除干扰物,实现样品纯化。 离子交换吸附剂则主要包括强阳离子和强阴离子交换树脂,这些树脂的骨架通常为苯乙烯-二乙烯基苯共聚物,主要是通过目标物的带电荷基团与键合硅胶上的带电荷基团相互静电吸引实现吸附的。 b.抗体键合吸附剂(Immunosorbents-IS) 这类新型吸附剂充分利用了生物免疫抗原-抗体之间的高灵敏性和高选择性,尤其适应于水中痕量有机物的富集与分离。其特点为,由于绝大多数有机污染物为低分子量物质,不能在动物体内引发免疫反应,所以需把待定污染物键合到牛血清白蛋白的生物大分子载体上,使其具有免疫抗原活性,再注入纯种动物体内(如兔或羊),产生抗体,经杂交瘤技术制得相应于该有机污染物的单克隆抗体。将抗体键合到反相吸附剂的硅胶表面或聚合物表面(如C18固定相),就制得了抗体键合吸附剂,可用于分离、富集特定污染物。研制开发能专门检测各种优先污染物的单克隆抗体或多克隆抗体已成为SPE技术的前沿研究领域。 抗体键合吸附剂洗脱时一般可采用20%~80%的甲醇-水溶液,该类吸附剂经冷藏保存可多次使用。进行SPE操作时应根据目标物的性质选择适合的吸附剂。表1- 1给除了常用的吸附剂类型及其相关的分离机理、洗脱剂性质和待测组分的性质。 吸附剂的用量与目标物性质(极性、挥发性)及其在水样中的浓度直接相关。通常,增加吸附剂用量可以增加对目标物的保留,可通过绘制吸附曲线确定吸附剂用量。 2)柱子预处理 活化的目的是创造一个与样品溶剂相容的环境并去除柱内所以杂质。通常需要两种溶剂来完成任务,第一个溶剂(初溶剂)用于净化固定相,另一个溶剂(终溶剂)用于建立一个适合的固定相环境使样品分析物得到适当的保留。每一活化溶剂用量约为1~2 mL/100 mg固定相。

煤基液体油分离技术研究进展

CIESC Journal, 2017, 68(10): 3678-3692 ·3678· 化工学报 2017年第68卷第10期| https://www.doczj.com/doc/c47705383.html, DOI:10.11949/j.issn.0438-1157.20170521 煤基液体油分离技术研究进展 易兰1,2,李文英1,2,冯杰2,秦育红2,骆仲泱1 (1浙江大学能源工程学院,浙江杭州 310007;2太原理工大学煤科学与技术重点实验室,山西太原 030024) 摘要:为了推动煤基液体油分离技术的发展,实现油品中各组分利用价值的最大化,论述了煤基液体油的分离方法。煤基液体油的分离研究主要分为两个方向:某一特定组分的分离和族组分的分离。某一特定组分的分离包括酚类化合物、杂环化合物和芳烃的分离,采用的方法主要有碱洗法、溶剂萃取、沉淀法、络合法、液相色谱法、液膜萃取、超临界萃取、低共熔法和离子液体萃取。族组分分离方法主要有溶剂萃取、超临界萃取、柱色谱法和高效液相色谱法。每种分离方法各有优缺点。按分离剂和分离目标物之间的作用机制可归结为4种分离原理:发生化学反应生成第3种物质、改变溶解度、利用吸附能力的差异和形成氢键及共轭作用。最后,针对煤基液体油分离中存在的问题,提出了研究方向与建议。 关键词:煤基液体油;溶剂萃取;超临界流体;离子液体;低共熔溶剂;分离 中图分类号:TQ 028.4 文献标志码:A 文章编号:0438—1157(2017)10—3678—15 Recent progress on coal-based liquid oil separation technology YI Lan1,2, LI Wenying1,2, FENG Jie2, QIN Yuhong2, LUO Zhongyang1 (1School of Energy Engineering, Zhejiang University, Hangzhou 310007, Zhejiang, China; 2Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China) Abstract: To promote the development of coal-based liquid oil separation technology and maximize the utilization value of each component, the coal-based liquid oil separation methods were analyzed. Coal-based liquid oil separation can be divided into two directions: the separation of a particular component and the separation of group composition. The particular component includes phenols, heterocyclic compounds, and aromatics. The main methods to separate the particular component comprise caustic washing, solvent extraction, precipitation, complexation, liquid chromatography, liquid membrane extraction, supercritical fluid extraction, deep eutectic solvent extraction, and ionic liquid extraction. While the main methods for the separation of group composition are solvent extraction, supercritical extraction, column chromatography and high performance liquid chromatography. Each method has its advantages and disadvantages. These methods are roughly divided into four categories based on the separation mechanism between separation agent and target product: the third substance produced by chemical reaction, changing the solubility, taking advantage of the difference of adsorption capacity, forming the hydrogen bond and conjugation effect. At last, the improved proposals and prospects are suggested. Key words: coal-based liquid oil; solvent extraction; supercritical fluid; ionic liquids; deep eutectic solvent; separation 2017-05-02收到初稿,2017-07-07收到修改稿。 联系人:李文英。第一作者:易兰(1990—),女,博士研究生。基金项目:国家重点研发计划重点专项(2016YFB0600305)。 Received date: 2017-05-02. Corresponding author: LI Wenying, ying@https://www.doczj.com/doc/c47705383.html, Foundation item: supported by the National Key Research and Development Program of China (2016YFB0600305). 万方数据

固相萃取概述

固相萃取(SPE) 一、概述 固相萃取(Solid-Phase Extraction,简称SPE)是近年发展起来一种样品预处理技术,由液固萃取和液相色谱技术相结合发展而来,主要用于样品的分离、纯化和浓缩,与传统的液液萃取法相比较可以提高分析物的回收率,更有效的将分析物与干扰组分分离,减少样品预处理过程,操作简单、省时、省力。广泛的应用在医药、食品、环境、商检、化工等领域。 二、SPE的原理与分离模式 固相萃取是基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离、纯化,是一种包括液相和固相的物理萃取过程。SPE根据其相似相溶机理可分为四种:反相SPE、正相SPE、离子交换SPE、吸附SPE。 反相SPE中吸附剂(固定相)属于非极性或弱极性,如硅胶键合C18,C8, C4,C2,-苯基等。 正相SPE中吸附剂(固定相)属于极性键合相和极性吸附剂,如硅胶键合-NH2、-CN,-Diol(二醇基)、(A-,N-,B-)alumina、硅藻土等。 离子交换SPE中吸附剂(固定相)为带电荷的离子交换树脂,流动相为中等极性到非极性样品基质。用于萃取分离带有电荷的分析物 固相萃取的洗脱模式可以分为两种:一种是目标化合物比干扰物与吸附剂之间的亲和力更强,因而被保留,洗脱时采用对目标化合物亲和力更强的溶剂;另一种是干扰物比目标化合物与吸附剂之间的亲和力更强,则目标化合物被直接的洗脱。通常采用前一种洗脱方式。 三、SPE的主要步骤 一个完整的固相萃取步骤包括固相萃取柱的预处理、上样、淋洗、洗脱及收

集分析物四个步骤。 固相萃取柱的预处理的目的主要包括两个方面:清洗萃取柱中的固定相(填料)和活化固定相。通常用两种溶剂来完成,第一个溶剂(初溶剂)用于净化固定相,另一个溶剂(终溶剂)用于建立一个合适的固定相环境使样品分析物得到适当的保留。 上样是为了让分析物被固定相萃取:将样品倒入活化后的SPE 萃取柱,然后利用加压、抽真空或离心的方法使样品进入吸附剂(采取手动或泵以正压推动或负压抽吸方式),使液体样品以适当流速通过固相萃取柱,此时,样品中的目标萃取物被吸附在固相萃取柱填料上。 上样完成后需要对固定相进行淋洗以洗去不需要的成分,尽量的减少杂质的影响。一般选择中等强度的混合溶剂,尽可能除去基体中的干扰组分,又不会导致目标萃取物流失。 淋洗后选择适当的洗脱溶剂洗脱被分析物,收集洗脱液,挥干溶剂以备后用或直接进行在线分析。为了尽可能将分析物洗脱,使比分析物吸附更强的杂质留在SPE 柱上,需要选择强度合适的洗脱溶剂。 四、SPE 的应用 固相萃取(SPE )大多数用来处理液体样品,萃取、浓缩和净化其中的半挥发性和不挥发性化合物,也可用于固体样品,但必须先处理成液体。它是一种用途广泛的样品前处理技术,广泛的应用在医药、食品、环境、商检、化工等领域。主要典型的应用领域: 1、医药发面:血清、体液,固体、液体药物成分的检测分析 如:人体血清中的咖啡因、吴茱萸碱,吴茱萸次碱的SPE 净化及检测和血清中头孢拉定、头孢氨苄、舒必利、磺胺类等药物的检测。 2、食品、食物方面:蔬菜、水果中残留农药,肉制品中残留兽药的检测 如:猪肉中五种磺胺药物(磺胺二甲基嘧啶、磺胺间甲氧嘧啶、磺胺甲唑、预处理 (清洗、活化)上样(萃取)淋洗(去杂质)洗脱(采样分析)

中小学教师信息技术应用能力提升工程个人总结

湖北省中小学教师信息技术应用能力提升工程个人总结 信息技术应用能力提升工程培训为一线教师交流搭建了一个很好的平台,参加远程培训,有幸聆听各位专家讲座让我感慨颇深,受益匪浅。通过研修,我全面提升了自己的基本素养和业务综合能力,对于个人今后的发展起到了积极的促进作用,对教育教学工作也有了一种新的理解。在研修过程中,我收获颇多,特总结如下: 一、信息技术应用能力提升工程培训让我转变了思想,更新了观念 在这次远程培训中,我投入足够的精力和热情,也取得丰满的成果。从中汲取新的教育思想和理念、新的教育手段和方法,并以之来充实自己。坚持每天进行网上学习,认真观看各个专家的视频录象,通过学习,解决了我在实际教学中遇到的很多疑难问题,使自己在师德修养、教育理念、教学方法、等各方面有了很大的提升,驾驭课堂、把握教材、交流沟通、教学设计的技能也有了很大的提高,同时更新了教育理论,丰盛了教学经验。详尽做到了以下几点: 1、积极认真的观看视频学习,完成了必修课24学时,选修课28课时,撰写研修日志20篇,上传个人资源3个,每月发表了研修反思,积极提出自己的问题,课程、话题并发起了6条话题,回复了6个话题,参与了互助研讨及特色活动,按时完成教学进度。共享资源微课程被推荐为优异,圆满完成了研修学习任务。 2、认真独立完成作业教学设计和技能作品2篇,参与小组磨课和课例研析回帖6次。 二、信息技术应用能力提升工程培训让我开阔了视野,扩展了见识 我勤劳地研修学习,不仅提高了自己基本素养和业务综合能力,通过课程视频聆听了专家的专题讲座;通过课程文本加深了对专题的理解;通过课程作业反思了以往和展望即将启动的教学改革;通过网上探讨寻找到了思想的沉淀和共鸣。没有震动就没有觉醒;没有反思就没有进步。远程研修平台上的老师都积极地发表文章和评论,上传的教学资源值得借用,方法行之有效、适合新的课程理念、新的教学方法、新的评价体系,都使自己对数学教学与教研工作有了新的认识及思考。

萃取精馏分离醋酸_水溶液溶剂研究进展及机理分析

修改稿日期:2005203224;作者简介:李新利(1978 -),女,硕研,助教,电邮nanjingli @1631com 。 萃取精馏分离醋酸/水溶液溶剂研究进展及机理分析3 李新利,唐聪明 (西华师范大学化学化工学院,南充 637002) 摘要:介绍了萃取精馏法分离醋酸水溶液萃取剂的研究进展,在此基础上初步分析了萃取剂与原溶剂组分间的相互作用,醋酸提供质子给萃取剂,与萃取剂分子之间产生松弛的化学作用,从而改变了醋酸在液相中的活度系数,即改变了水对醋酸的相对挥发度。针对几种分离效果较优的萃取剂,探讨了该萃取剂与醋酸发生质子化的可能位置。本文分析结果表明,对于醋酸水溶液的分离,酰胺和砜类是可能合适的萃取精馏溶剂。 关键词:醋酸;水;萃取精馏;质子化 中图分类号:TQ 42 文献标识码:A 文章编号:100129219(2005)06263204 0 前言 萃取精馏是一种特殊精馏方法。它是向共沸物 或不易分离的混合物中加入一种萃取溶剂,使难分离组分间的相对挥发度增大,从而达到设计的分离要求。醋酸水溶液是高度非理想物系,传统的普通精馏法不仅塔板数多,能耗大,而且难以分离彻底。以萃取精馏法分离醋酸水溶液的研究已有不少的文献报道[1212],但是前人的工作主要集中于萃取剂的选择和萃取精馏塔条件实验等方面。本文在对萃取剂进行综述的基础上,分析讨论了萃取剂与醋酸分子间质子化作用位置与形成的络合物结构。 1 萃取精馏法分离醋酸水溶液萃取剂 的研究进展 111 单一萃取剂的研究进展 人们很早就知道叔胺类物质对酸与非酸溶液具有很好的分离效果。因此,Von G arwin [2] 提出用二 甲基苯胺来分离醋酸水溶液。但是二甲基苯胺与水形成最低共沸物。 Wolgang Muller [3]提出以1,22吗啉乙烷(熔点72℃,沸点20418℃[01013MPa ])为萃取剂,对醋酸含量50%(质量分数,下同)的酸水溶液进行减压萃取精馏,塔顶水含酸仅0101%;虽然1,22吗啉乙烷分离效果很好,但存在因熔沸点过高引起的需保温 管路输 送、溶剂回收塔减压操作等问题。此外,吗啉乙烷不是很常见的溶剂也限制了它的应用。 Rudolf Sartorius [4]选用N 2甲基乙酰胺做萃取 剂,在处理含酸4515%的酸水溶液时,萃取精馏塔维持常压,塔顶水含酸0101%。溶剂回收塔减压操作,顶塔顶酸含量9918%。他还发现,在萃取剂循环使用过程中,加入5%的水对分离效果没有影响, 可以降低其熔点(降至15℃ ),便以输送。在德国专利[5]中,曾用N 2甲酰吗啉做萃取剂分离甲酸或乙酸水溶液。N 2甲酰吗啉熔点较低,但是同样也存在减压操作的问题。 N 2甲基吡硌烷酮常温下以液态形式存在,与 水、醋酸混溶,同时不形成共沸物、热稳定(分解温度 在425℃ )。Cohen [6]研究了这种环状酰胺对醋酸水溶液分离效果的改善。在萃取精馏塔顶含酸量低于011%。他认为N 2甲基吡咯烷酮与醋酸形成了一种 络合物,在精馏塔底部出来的是醋酸和这种络合物的混合物。适当调节溶剂回收塔温度和压力,这种络合物就会重新分解出醋酸和N 2甲基吡硌烷酮。 Lloyd Berg [729]研究了很多物质对水2醋酸相对 挥发度的改变,代表物质为N ,N 2二甲基甲酰胺和己二腈、二甲亚砜、环丁砜、庚酸、壬酸、新葵酸、异佛乐酮、苯乙酮等。 胡兴兰[10211]等综合研究了含氮类络合剂对水/醋酸体系气液平衡的影响,所选单一溶剂包括脂肪 族胺类,像N ,N 2二甲基甲酰胺(DMF )、N 2甲基乙酰胺(NMA )、N 2甲基吡硌烷酮(NMP )、己内酰胺,和

信息技术应用能力提升培训心得体会

信息技术应用能力提升培训心得体会 安庆路第三小学孙小琼 通过“信息技术应用能力提升”网络课程的学习,我加深了对信息技术运用于语文教学的必要性和重要作用。随着计算机、多媒体、现代通讯网络为代表的信息技术的迅猛发展,信息技术已经渗透到了教育领域,在教育领域中引发了一场具有深远意义的变革。 这次培训,我感触很深。我深深地体会到计算机辅助教学已经走到了我们身边,认识到课堂上要继续加强信息技术技能的学习,并将信息技术完美地融合到教学之中,充分发挥计算机工具性能,利用网络资源,搜集信息、处理信息,从而提高教学质量。 一、不断提升自己的信息素养 在信息社会,一名高素质的教师应具有现代化的教育思想、教学观念,掌握现代化的教学方法和教学手段,熟练运用信息工具(网络、电脑)对信息资源进行有效的收集、组织、运用,这些素质的养成就要求教师不断地学习,才能满足现代化教学的需要,如果教师没有良好的信息素养,就不能成为一名满足现代教学需要的高素质的教师。 二、不断提高信息教学理念 通过认真学习教育专家关于信息技术教学目标的讲授,我才深知自己知识的匮乏及思想的落伍。多媒体在于辅助教学,不能全盘代替传统的教法;不能把教室当成电影院,不能使课件成为影片,不能让学生成为观众,更不能让教师充当放映员。我们教师应把技术整合到课堂中去,让学生参与到教学中来,充分发挥学生的自主学习,培养他们的学习能力、创造力。

三、不断整合教学方法 教育部部长陈至立在全国中小学信息技术教育会议上指出:“在开好信息技术课程的同时,要努力推进信息技术与其他学科教学的整合,鼓励在其他学科的教学中广泛应用信息技术手段,并把信息技术教育融合在其他学科的学习中。”这就要求我们要将现代信息技术与传统教学方法进行整合,形成“立体式”教学。Internet是一个知识的宝库,由于它储存容量大,媒体种类丰富,检索容易、快捷,不失为学生学习的好载体。教育资源共享,对于人、财、物是种节约,同时也使知识得到充分整合。可以引导学生将信息技术与其他学科的学习相结合,例如,语文学习中需要查找资料的时候,引导学生运用学过的网络知识在网上查阅资料,帮助了解语文知识。还可引导学生创建个人博客,并在博客上记录个人学习、成长中的点点滴滴,达到练笔的目的,促进写作水平的提高。注重实践的信息技术教学,更好地培养了学生应用计算机的能力。 信息技术与传统教学方式的整合最终目的是为了提高教学质量。实现教学内容呈现直观、交互、师生角色转变以及教的方式与学的方式的转变,从而全面提高学生的学习能力和学习兴趣,提高学生的综合素质,培养学生的创新精神与实践能力,拓展学生的知识,达到全面发展。

煤液化基础研究进展 - 煤制油及烯烃技术交流区

煤液化基础研究进展- 煤制油及烯烃 技术交流区 煤炭作为最主要的一次能源,其洁净、高效和非燃料利用越来越受到世界各国的广泛重视.煤液化技术是煤综合利用的一种有效途径,它不仅可以将煤炭转化成洁净的、高热值的燃料油,减轻燃煤型污染,还可以得到许多用人工方法难以合成的化工产品. 目前,煤液化技术仍无法同廉价的石油进行市场竞争,关键是许多理论方面的问题和一些工艺技术上的问题没有得到解决.这些问题包括:煤结构的研究及其与液化反应性的关系,催化剂、分子氢和供氢溶剂在煤液化中的作用,催化剂的中毒、固固分离、固液分离及如何使反应条件温和化和产品的高附加值化.解决这些问题不仅对发展煤化学理论,而且对开发高效的煤液化工艺都有着重要的指导意义. 近年来,国内外学者在煤液化基础研究方面作了大量的工作,对许多理论问题有了进一步深层次的认识.结合笔者的研究工作,综述了煤结构、煤相关模型化合物反应及煤与生物质共液化等方面的研究进展. 1 煤结构的研究 在分子水平上认识物质的组成和结构,认识分子在不

同条件下的化学变化和化学行为是化学研究的目的.从分子水平上揭示煤液化机理,有必要深入了解煤结构.煤结构的研究一直是煤科学领域的热点和最重要的基础研究内容,它包括两个方面内容:一是煤的化学结构即有机物各组分的分子结构及其相互间的共价键连结;二是煤的物理结构即煤的显微组分、孔结构及煤中有机物分子间和分子内的非共价键作用力. 1.1 煤结构的研究方法和分析手段 最初,人们通过煤热解、加氢裂解和其它化学方法处理后的小分子单体或对缩聚过程中得到简单的所谓单元结构来研究煤结构,但没有成功.然后,研究的重点集中于煤的骨架,包括C,H,N,O和S是怎样同碳骨架连接的,可测官能团的数量及它们与煤的类型和煤阶的关系.研究方法也从化学法如乙炔化、烷基化、选择性氧化、模型化合物反应到物理方法如GC,FTIR,ESR和NMR,从芳环和桥键结合的一维分析到二维核磁共振分析再到三维煤分子结构分析.一些先进的分析技术如X光电子能谱(XPS)、X射线散射(XRS)、X射线吸收近边结构谱(XANES)、扫描透射X—射线显微镜法(STXM)、粒子诱导的X—射线发射分析/粒子诱导的Y—射线发射分析(PIXAE/

固相萃取基本原理与操作

一、固相萃取基本原理与操作 1、固相萃取吸附剂与目标化合物之间的作用机理 固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的1)疏水作用力:如C18、C8、Silica、苯基柱等 2)离子交换作用:SAX, SCX,COOH、NH2等 3)物理吸附:Florsil、Alumina等 2、p H值对固相萃取的影响 pH值可以改变目标物/吸附剂的离子化或质子化程度。对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。而目标物的离子化程度则与pH值有关。如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH 值必须大于其pKa值两个单位才能保证其完全离子化。对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。

3、固相萃取操作步骤及注意事项 针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。 1)填料保留目标化合物 固相萃取操作一般有四步(见图1): ?活化---- 除去小柱的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸) ?上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。(注意流速不要过快,以1ml/min为宜,最大不超过5ml/m in) ?淋洗---- 最大程度除去干扰物。(建议此过程结束后把小柱完全抽干) ?洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。(注意流速不要过快,以1ml/min为宜)

信息技术应用能力提升作业

. 信息技术应用能力的收获 通过一段时间的信息技术的学习,我收获颇丰,现做总结如下: 一、制作PPT课件的水平有了一个实质的提升。原先我制作PPT 课件的水平很有限,信息技术课程中老师介绍的方法对我很有针对性,尤其是在PPT课件中插入音视频文件的方法,一下子让我的PPT 课件的功能变得更强大了。 二、学会具备了收集、甄别、整合、应用于学科相关的多媒体教学资源,加以优化教学环境的能力。在丰富多彩的多媒体教学环境下,学生能获得比以前更直观的学习材料和更明确的学习任务,提高了学生的课堂学习效率。 三、掌握了多媒体素材的收集方法、编辑文档的技巧、学会利用格式工厂处理声音的技巧、利用美图秀秀加工处理图片的能力和掌握了会声会影软件对声音图像动画简单的加工处理等等。 四、学会了应用科学信息技术制作微课,掌握了一师一优课的录制及剪辑等信息技术能力。 信息技术能力的提升与教师专业发展的作用 21世纪是电子时代,是信息技术的时代。新世纪教师的成长离不开教育信息技术,信息技术使老师面临着如何成长,如何应对新的问题。而教师的专业发展是指教师在整个专业生活中,通过终身专业训练,习得教育技能,实施专业自主,体现专业道德,逐步提高从教素质,成为教育专业工作者的专业成长过程。在新世纪信息技术

无孔不入的前提下,教师的专业发展化要与信息技术的应用紧密结合,教师要与时俱进,注重培养教师的信息素质化,提高运用信息技术进行教育教学的能力。 信息技术能力的提升在个人职业发展上发挥的作用,我认为有以下几个方面: 首先,信息技术促进教师专业知识更新,优化知识结构。在信息时代,教师的“案例研究”、“教育叙事”的产生、传播、共享已不再是传统工业时代的概念。网络时代迅速崛起的BBS、Blog、百科全书、网摘、教育网站、教室网联等,可以帮助教师通过各种方式的反思和交流进行知识更新。网络的交流平台,打破了时空的界限,突破了教师个人的小圈子,教师之间可以展开充分的交流,进行头脑风暴,创造出更多的智慧,从而促进教师的专业发展。 其次,信息技术促进教师专业技能的提高。信息技术整合应用于学科教学,教师要学会形成信息化教学能力,充分利用现代信息技术和信息资源,科学安排教学过程的各个环节和要素,为学习者提供良好的信息化学习条件,实现教学过程的最优化,达到提高教学效果的目的。 第三,信息技术促进教师专业态度养成和升华。信息技术应用得当能够显著提高教师工作、学习和研究的效率,大大减轻教师的劳动量和日常工作负担,提升教师劳动的创造性。在轻松、快乐、有成就感的氛围中,教师才会更加热爱自己的教师职业,进一步升华为终身追求的事业,努力达到至高的专业境界。

固相萃取技术

在2003版的“食品卫生检测方法”标准系列中,有一个较大的改动就是很多项目,尤其是农药项目的前处理普遍使用了固相萃取技术(详见表1 )。现针对这一技术的原理、使用和误区进行探讨。 一.固相萃取技术简介 固相萃取(Solid Phase Extraction,简称SPE)技术,发展于上世纪70年代,由于其具有高效、可靠、消耗试剂少等优点,在许多领域取代了传统的液-液萃取而成为样品前处理的有效手段。 一些传统的介绍SPE的书籍将其归于一个液相色谱的原理,这其实是引起使用不当的主要源由之一。把SPE小柱看作一根液相色谱柱,不如把它看成单纯的萃取剂更合适,因为:液相色谱的重点在于分离,而SPE的重点在于萃取。 固相萃取技术在样品处理中的作用分两种:一是净化,二是富集,这两种作用可能同时存在。 固体萃取和液-液萃取相比,其长处在于方便和消耗试剂少,短处在于批次间的重复性难以保证。出现这种情况的原因在于:液体试剂的重复性好,只要其纯度可靠,不同年代的产品的物理化学性质都是可靠的。而固体萃取剂就算保证了纯度外,还存在着颗粒度的差异,外形的差异等液体试剂不存在的且难以衡量的因素,不同年代不同批号的萃取性质可能会有较大的区别。 从理论上和厂家宣传来看,固相萃取应该在色谱分析的前处理上得到很好的应用:有机溶剂用得很少,可批量处理样品,既可富集,又能除杂质,给人印象是前处理的革命性进步。然而现实情况,起码在国内,虽然推广了多年,实际应用还是相当有限。 SPE应用得不广,与我们的使用方式和期望有关,也与它本身的局限有关。对于供应商来说,从经济利益出发,向来都是忽略固相萃取的局限与不足。固相萃取可以作为前处理手段的一个很好补充,但是在使用时,一定要清醒知道到它的优点和缺点,注意因地制宜,扬长避短。 二、固相萃取的应用优势 在什么项目的前处理适合使用固相萃取技术,即用固相萃取会比普通的溶剂萃取更理想,个人认为有以下几种情况: (一)水中有机物的前处理。 此类常规处理基本上是用与水不相溶的有机溶剂振荡萃取,用固相萃取的优势在于 (1)可以定量地重复前处理过程。 溶剂振荡的操作一般只能要求到控制时间的程度,却无法控制振荡频率,强度,动作,我们

信息技术应用能力持续提升行动计划

信息技术应用能力持续提升行动计划信息技术应用能力持续提升行动计划XX年的1月6日至10日,我有幸在省奥体中心参加了湖北省中小学教师信息技术运用能力提升工程校长集中培训班第二期的培训,通过这几天的培训,自己了解了精神,更新了观念,开阔了视野,提高了认识,感觉责任更重了。 短暂的五天培训让我收获颇丰,这五天时间,先后聆听了张才生等专家有关教师信息技术运用能力提升工程的讲座,围绕教师信息技术运用能力提升工程项目的实施,通过几位专家深入浅出、生动形象的讲解,使我比较全面地学习了有关创新教学与教师专业发展,全国中小学教师信息技术运用能力提升工程标准及实施方案,教育信息化规划的内容、方法和策略,区域信息化套餐课程建设,信息技术下的校本研修,远程培训的质量管理,培训管理中的信息技术应用,项目管理与方案设计等内容;初步了解和学习了有关“翻转课堂”、“微视频”、“可汗学院”等一些世界顶级的教育模式,以及国内对这种教育模式的尝试应用和取得的一些效果;了解了目前世界或是国内在教学上应用的一些先进信息技术。 通过培训,自己受益匪浅。知道了七大教育技术的趋势:3D打印、大规模开放课程、大数据、电子教科书、游戏化、翻转课堂、移动学习,明白了什么是教育信息化新名词:

云计算、教育云、泛在学习、移动学习、碎片学习、可汗学习、翻转课堂、微课、慕课(moocs)、网易课程等等。“三通两平台”:宽带网络校校通、优质资源班班通、网络学习空间人人通、建设数字教育资源公共服务平台、建立教育管理基础数据库和信息系统。 培训其间,我们实地参观华中师范大学国家数字化学习工程技术研究中心。该中心是目前国内唯一一个教育信息化领域的国科研机构,近距离的感受了科学技术的发展和信息技术在教育教学中的应用,,讲解员的演示、操作、介绍,直观、真实、神奇。双电子白板设备、手持终端机、三维立体工具、物理、化学仿真演示、地理学科实验、音乐学科的操作、全空间数字化监控系统、未来智慧教室的参观,一个个高端的数字仪器、设备让我们目不暇接、大开眼界,相信在不久的将来,这些教育教学辅助设备将会走进学校,让孩子们都能享受优质教育资源,享受信息技术的方便、快捷。 通过学习,我感受到了信息技术对教育发展具有革命性影响,必须予以高度重视。党中央把教育信息化纳入国家信息化发展整体战略,超前部署教育信息网络。加强优质教育资源开发与应用,强化信息技术应用,提高教师应用信息技术水平。构建国家教育管理信息系统,搭建国家教育管理公共服务平台。这些规划高瞻远瞩,具有划时代的意义。 通过学习,我明白了教育信息化是指在教育领域(教育

固相萃取SPE技术

固相萃取SPE技术 一、固相萃取概念及基本原理: 固相萃取(Solid Phase Extraction,简称SPE)是从八十年代中期开始发展起来的一项样品前处理技术。由液固萃取和液相色谱技术相结合发展而来。主要通过固相填料对样品组分的择性吸咐及解吸过程,实现对样品的分离,纯化和富集。主要目的在于降低样品基质干扰,提高检测灵敏度。 固相萃取的基本原理和方法:SPE 技术基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离、纯化,是一种包括液相和固相的物理萃取过程;也可以将其近似的看作一种简单的色谱过程。固相萃取(SPE)是利用选择性吸附与选择性洗脱的液相色谱法分离原理。较常用的方法是使液体样品通过一吸附剂,保留其中被测物质,再选用适当强度溶剂冲去杂质,然后用少量良溶剂洗脱被测物质,从而达到快速分离净化与浓缩的目的。也可选择性吸附干扰杂质,而让被测物质流出;或同时吸附杂质和被测物质,再使用合适的溶剂选择性洗脱被测物质。 二、固相萃取方法的优点 相对于传统的液液萃取法和蛋白沉淀法,固相萃取具有无可比拟的优势: 1.无需特殊装置和材料,操作简单 2.集样品富集及净化与一身,提高检测灵敏度的最佳方法 3.比液液萃取更快,节省溶剂 4.可自动化批量处理 5.重现性好 三、固相萃取的分类 固相萃取填料按保留机理分为: 正相:Silica,NH2,CN,Diol,Florisil,Alumina 反相:C18,C8,Ph,C4,NH2,CN,PEP,PS等 离子交换:SCX,SAX,COOH,NH2等 混合型:PCX,PAX,C8/SCX等 按填料类型共分为4类: 1.键合硅胶:C18(封端),C18-N(未 端),C8,CN,NH2,PSA,SAX,COOH,PRS,SCX,Silica,Diol。 在SPE中最常用的吸附剂是硅胶或键合相的硅胶即在硅胶表面的硅醇基团上键合不同的官能团。其pH适用范围2-8。键合硅胶基质的填料种类较多,具有多选择性的优点。 2.高分子聚合物:PEP,PAX,PCX,PS,HXN。 3.吸附型填料:Florisil(硅酸镁),PestiCarb(石墨化碳),氧化铝(Alumina-N中性,Alumina-A 酸性,Alumina-B 碱性)。 4.混合型及专用柱系列:PestiCarb/NH2,SUL-5(磺胺专用柱),HXN(磺酰脲除草剂专用柱),DNPH-Silica(空气中醛酮类化合物检测专用柱) 三、固相萃取装置及基本操作步骤 关于固相萃取小柱: 常见的固相萃取柱分为三部分:医用聚丙烯柱管,多孔聚丙烯筛板(20μm)和 填料(多为40-60μm,80-100μm)。常用规格:100mg/1ml,200mg/3ml,500mg/3ml,1g/6ml等。以100mg/1ml为例,其中100mg为填料的质量,1ml是空柱管的体积。一次性使用:为避免交叉污染,保证检测可靠性,SPE柱通常是一次性使用的。针对填料保留机理的不同(填料保留

相关主题
文本预览
相关文档 最新文档