当前位置:文档之家› 超声波探伤方法和通用探伤技术(张志超)

超声波探伤方法和通用探伤技术(张志超)

超声波探伤方法和通用探伤技术(张志超)
超声波探伤方法和通用探伤技术(张志超)

目录

6 超声检测方法和通用检测技术 (01)

6.1 超声检测方法概述 (01)

6.2 仪器与探头的选择 (06)

6.3 耦合与补偿 (08)

6.4 仪器的调节 (11)

6.5 缺陷位置的测定 (16)

6.6缺陷大小的测定 (21)

6.7 缺陷自身高度的测定 (27)

6.8 影响缺陷定位、定量的主要因素 (31)

6.9 缺陷性质分析 (36)

6.10 非缺陷回波的判别 (43)

6.11 侧壁干涉 (48)

6.12 各向异向材料的超声检测技术 (50)

6.13 表面波检测 (55)

6.14 板波检测 (62)

复习思考题 (66)

第六章超声波检测方法和通用检测技术

脉冲反射法超声波检测方法虽然很多,各种方法的操作也不尽相同,但它们在探测条件、耦合与补偿、仪器的调节、缺陷的定位、定量、定性等方面却存在一些通用的技术问题。掌握这些通用技术对于发现缺陷并正确评价是很重要的。

脉冲反射法超声检测的基本步骤是:检测前的准备,仪器、探头、试块的选择,仪器调节与检测灵敏度确定,耦合补偿,扫查方式,缺陷的测定、记录和等级评定、仪器和探头系统复核等。

6.1 超声波检测方法概述

6.1.1 按原理分类

超声波检测方法按原理分类,可分为脉冲反射法、穿透法、共振法和TOFD法。

1.脉冲反射法

超声波探头发射脉冲波到被检试件内,根据反射波的情况来检测试件缺陷的方法,称为脉冲反射法。脉冲反射法包括缺陷回波法、底波高度法和多次底波法。

(1)缺陷回波法:根据仪器示波屏上显示的缺陷波形进行判断的方法,称为缺陷回波法。该方法是反射法的基本方法。

图6.1是缺陷回波检测法的基本原理,当试件完好时,超声波可顺利传播到达底面,检测图形中只有表示发射脉冲T及底面回波B两个信号,如图6.1(a)所示。

图6.1 缺陷回波法图6.2 底波高度法

若试件中存在缺陷,在检测图形中,底面回波前有表示缺陷的回波F如图6.1(b)所示。

(2)底波高度法:当试件的材质和厚度不变时,底面回波高度应是基本不变的。如果试件内存在缺陷,底面回波高度会下降甚至消失,如图6.2所示。

这种依据底面回波的高度变化判断试件缺陷情况的检测方法,称为底波高度法。

底波高度法的特点在于同样投影大小的缺陷可以得到同样的指示,而且不出现盲区,但是要求被探试件的探测面与底面平行,耦合条件一致。由于该方法检出缺陷定位定量不便,灵敏度较低,因此,实用中很少作为一种独立的检测方法,而经常作为一种辅助手段,配合缺陷回波法发现某些倾斜的和小而密集的缺陷,锻件探伤中常用:如由缺陷引起的底波降低量。

(3)多次底波法:当透入试件的超声波能量较大,而试件厚度较小时,超声波可在探测面与底面之间往复传播多次,示波屏上出现多次底波B1、B2、B3……。如果试件存在缺陷,则由于缺陷的反射以及散射而增加了声能的损耗,底面回波次数减少,同时也打乱了各次底面回波高度依次衰减的规律,并显示出缺陷回波,如图6.3所示。这种依据底面回波次数,

而判断试件有无缺陷的方法,即为多次底波法。

图6.3 多次底波法

(a)无缺陷 (b)小缺陷 (c)大缺陷

多次底波法主要用于厚度不大、形状简单、探测面与底面平行的试件检测,缺陷检出的灵敏度低于缺陷回波法。

2.穿透法

穿透法是依据脉冲波或连续波穿透试件之

后的能量变化来判断缺陷时情况的一种方法,如

图6.4所示。

穿透法常采用两个探头,一个作发射用,一

个作接收用,分别放置在试件的两侧进行探测,

图6.4(a)为无缺陷时的波形,图4.4(b)为有缺

陷时的波形。

图6.4 穿透法

3.共振法

若声波(频率可调的连续波)在被检工件内传播,当试件的厚度为超声波的半波长的整数倍时,将引起共振,仪器显示出共振频率,用相邻的两个共振频率之差,由以下公式算出试件厚度。

)

(22210--===m m f f c f c λ

δ (6.1) 式中 f 0——工件的固有频率;

f m 、f m-1——相邻两共振频率;

C ——被检试件的声速;

λ——波长;

δ——试件厚度。

当试件内存在缺陷或工件厚度发生变化时,将改变试件的共振频率。依据试件的共振特性,来判断缺陷情况和工件厚度变化情况的方法称为共振法。共振法常用于试件测厚。

通常常用的测厚仪为双晶直探头脉冲反射法,与A 型脉冲反射式超声波探伤仪原理相同。

TOFD是Time of Flight Diffraction 的第一个英文字母的缩写,中文简称衍射时差法。是上世纪七十年代由英国哈威尔无损检测中心根据超声波衍射现象首先提出来的,检测时使用一对或多对宽声束纵波斜探头,每对探头相对焊缝对称布置(一发一收),如图6.5所示。声束覆盖检测区域,遇到缺陷时产生反射波和衍射波。探头同时接收反射波和衍射波,通过测量衍射波传播时间,利用三角方程来确定出缺陷的尺寸和位置。

图6.5 TOFD法

6.1.2 按波形分类

根据检测采用的波形,可分为纵波法、横波法、表面波法、板波法、爬波法等。

1.纵波法

使用纵波进行检测的方法,称为纵波法。

⑴.纵波直探头

使用纵波直探头进行检测的方法,称为纵波直探头法。此法波束垂直入射至试件探测面,以不变的波型和方向透入试件,所以又称为垂直入射法,简称垂直法,如图6.6所示。

图6.6 垂直法图6.7 横波法

垂直法分为单晶探头反射法、双晶探头反射法和穿透法。常用的是单晶探头反射法。

垂直法主要用于铸造、锻压、轧材及其制品的检测,该法对与探测面平行的缺陷检出效果最佳。由于盲区和分辨力的限制,其中反射法只能发现试件内部离探测面一定距离以外的缺陷。

在同一介质中传播时,纵波速度大于其它波型的速度,穿透能力强,晶界反射或散射的敏感性较差,所以可探测工件的厚度是所有波型中最大的,而且可用于粗晶材料的检测。

由于垂直法检测时,波型和传播方向不变,所以缺陷定位比较方便。

⑵.纵波斜探头

使用纵波斜探头进行检测的方法,称为纵波斜探头法。

TOFD检测技术中使用的探头为纵波斜探头,工件中既有纵波也有横波。但是,纵波传播速度快,几乎是横波的两倍,最先到达接收探头,容易识别缺陷,以纵波波速计算缺陷深度,不会与横波信号混淆。

b.小角度纵波斜探头

小角度纵波斜探头常用来检测探头移动范围较小、检测范围较深的一些部件,如从螺栓端部检测螺栓,多层包扎设备的环焊缝等。

2.横波法

将纵波通过楔块、水等介质倾斜入射至试件探测面,利用波型转换得到横波进行检测的方法,称为横波法。由于透入试件的横波束与探测面成锐角,所以又称斜射法,如图 6.7所示。

此方法主要用于焊缝、管材的检测。其它试件检测时,则作为一种有效的辅助手段,用以发现垂直检测法不易发现的缺陷。

3.表面波法

使用表面波进行检测的方法,称为表面波法。这种方法主要用于表面光滑的试件。

表面波波长比横波波长还短,因此衰减也大于横波。同时。它仅沿表面传播,对于表面上的复层、油污、不光洁等,反应敏感,并被大量地衰减。利用此特点可以通过手沾油在声束传播方向上进行触摸并观察缺陷回波高度的变化,对缺陷定位。

4.板波法

使用板波进行检测的方法,称为板波法。主要用于薄板、薄壁管等形状简单的试件检测,板波充塞于整个试件,可以发现内部的和表面的缺陷。但是检出灵敏度除取决于仪器工作条件外,还取决于波的形式。

5.爬波法

爬波是指表面下纵波,它是当第一介质中的纵波入射角位于第一临界角附近时在第二介质中产生的表面下纵波。这时第二介质中除了表面下纵波外,还存在折射横波。这种表面下纵波不是纯粹的纵波,还存在有垂直方向的位移分量。

爬波对于检测表面比较粗糙的工件的表层缺陷,如铸钢件、有堆焊层的工件等,其灵敏度和分辨力均比表面波高。

6.1.3 按探头数目分类

1.单探头法

使用一个探头兼作发射和接收超声波的检测方法称为单探头法。单探头法操作方便,大多数缺陷可以检出,是目前最常用的一种方法。

单探头法检测,对于与波束轴线垂直的片状缺陷和立体型缺陷的检出效果最好。与波束轴线平行的片状缺陷难以检出。当缺陷与波束轴线倾斜时,则根据倾斜角度的大小,能够收到部分回波或者因反射波束全部反射在探头之外而无法检出。

2.双探头法

使用两个探头(一个发射,一个接收)进行检测的方法称为双探头法。主要用于发现单探头法难以检出的缺陷。

双探头法又可根据两个探头排列方式和工作方式进一步分为并列式、交叉式、V型串列式、K型串列式、串列式等。

(1)并列式:两个探头并列放置,检测时两者作同步同向移动。但直探头作并列放置时,通常是一个探头固定,另一个探头移动,以便发现与探测面倾斜的缺陷,如图6.8(a)所示。分割式探头的原理,就是将两个并列的探头组合在一起,具有较高的分辨能力和信噪比,适用于薄试件、近表面缺陷的检测。

图6.8 双探头的排列方式

(a)并列式(b)交叉式(c)V形式(d)K形式(e)串列式

(2)交叉式:两个探头轴线交叉,交叉点为要探测的部位,如图6.8(b)所示。此种检测方法可用来发现与探测面垂直的片状缺陷,在焊缝检测中,常用来发现横向缺陷。

(3)V型串列式:两探头相对放置在同一面上,一个探头发射的声波被缺陷反射,反射的回波刚好落在另一个探头的入射点上,如图 6.8(c)所示。此种检测方法主要用来发现与探测面平行的片状缺陷。

(4)K型串列式:两探头以相同的方向分别放置于试件的上下表面上。一个探头发射的声波被缺陷反射,反射的回波进入另一个探头,如图 6.8(d)所示。此种检测方法主要用来发现与探测面垂直的片状缺陷。

(5)串列式:两探头一前一后,以相同方向放置在同一表面上,一个探头发射的声波被缺陷反射的回波,经底面反射进入另一个探头,如图 6.8(e)所示。此种检测方法用来发现与探测面垂直的片状缺陷(如厚焊缝的中间未焊透、窄间隙焊缝的坡口面未熔合等)。

这种检测方法的特点是,不论缺陷是处在焊缝的上部、中部或根部,其缺陷声程始终相等,从而缺陷信号在荧光屏上的水平位置固定不变;且上、下表面存在盲区。两个探头在一个表面上沿相反的方向移动,用手工操作是困难的,需要设计专用的扫查装置。

3.多探头法

使用两个以上的探头成对地组合在一起进行检测的方法,称为多探头法。多探头法的应用,主要是通过增加声束来提高检测速度或发现各种取向的缺陷。通常与多通道仪器和自动扫描装置配合,如图6.9所示。

图6.9 多探头法

6.1.4 按探头接触方式分类

依据检测时探头与试件的接触方式,可以分为接触法与液浸法。

1.直接接触法

探头与试件探测面之间,涂有很薄的耦合剂层,因此可以看作为两者直接接触,这种检测方法称为直接接触法。

此方法操作方便,检测图形较简单,判断容易,检出缺陷灵敏度高,是实际检测中用得最多的方法。但是,直接接触法检测的试件,要求探测面光洁度较高。

2.液浸法

将探头和工件浸于液体中以液体作耦合剂进行检测的方法,称为液浸法。耦合剂可以是水,也可以是油。当以水为耦合剂时,称为水浸法。

液浸法检测,探头不直接接触试件,所以此方法适用于表面粗糙的试件,探头也不易磨损,耦合稳定,探测结果重复性好,便于实现自动化检测。

液浸法按检测方式不同又分为全浸没式和局部浸没式。

图6.10 液浸法

(1)全浸没式:被检试件全部浸没于液体之中,适用于体积不大,形状复杂的试件检测,如图6.10(a)所示。

(2)局部浸没式:把被检试件的一部分浸没在水中或被检试件与探头之间保持一定的水层而进行检测的方法,适用于大体积试件的检测。局部浸没法又分为喷液式、通水式和满溢式。

①喷液式:超声波通过以一定压力喷射至探测表面的如图6.10(b)所示。

②通水式:借助于一个专用的有进水、出水口的液罩,以使罩内经常保持一定容量的液体,这种方法称为通水式,如图6.10(c)。

③满溢式:满溢罩结构与通水式相似,但只有进水口,多余液体在罩的上部溢出,这种方法称为满溢式,如图6.10(d)所示。

根据探头与试件探测面之间液层的厚度,液浸法又可分为高液层法和低液层法。

6.2 仪器与探头的选择

探测条件的选择首先是指仪器和探头的选择。正确选择仪器和探头对于有效地发现缺陷,并对缺陷定位、定量和定性是至关重要的。实际检测中要根据工件结构形状、加工工艺和技术要求来选择仪器与探头。

6.2.1 检测仪的选择

超声波检测仪是超声波检测的主要设备。目前国内外检测仪种类繁多,性能各异,检测前应根据探测要求和现场条件来选择检测仪。一般根据以下情况来选择仪器:

(1)对于定位要求高的情况,应选择水平线性误差小的仪器。

(2)对于定量要求高的情况,应选择垂直线性好,衰减器精度高的仪器。

(3)对于大型零件的检测,应选择灵敏度余量高、信噪比高、功率大的仪器。

(4)为了有效地发现近表面缺陷和区分相邻缺陷,应选择盲区辨、分率力好的仪器。

(5)对于室外现场检测,应选择重量轻,荧光屏亮度好,抗干扰能力强的携带式仪器。 此外要求选择性能稳定、重复性好和可靠性好的仪器。

6.2.2 探头的选择

超声波检测中,超声波的发射和接收都是通过探头来实现的。探头的种类很多,结构型式也不一样。检测前应根据被检对象的形状、衰减和技术要求来选择探头。探头的选择包括探头的型式、频率、晶片尺寸和斜探头K 值的选择等。

1.探头型式的选择

常用的探头型式有纵波直探头、横波斜探头、纵波斜探头、表面波探头、双晶探头、聚焦探头等。一般根据工件的形状和可能出现缺陷的部位、方向等条件来选择探头的型式,使声束轴线尽量与缺陷垂直。

纵波直探头只能发射和接收纵波,波束轴线垂直于探测面,主要用于探测与探测面平行的缺陷,如锻件、钢板中的夹层、折叠等缺陷。

横波斜探头是通过波形转换来实现横波检测的。主要用于探测与探测面垂直或成一定角度的缺陷。如焊缝中的未焊透、夹渣、未溶合等缺陷。

常见的纵波斜探头有TOFD 探头和纵波小角度斜探头,纵波斜探头在工件中既有纵波也有横波,但由于纵波和横波的速度不同加以识别。主要用于探测与探测面垂直或成一定角度的缺陷。如焊缝中的裂纹、未溶合、未焊透、夹渣等缺陷。

表面波探头用于探测工件表面缺陷,双晶探头用于探测工件近表面缺陷。聚焦探头用于水浸探测管材或板材。

2.探头频率的选择

超声波检测频率在0.5~10 MHz 之间,选择范围大。一般选择频率时应考虑以下因素。

(1)由于波的绕射,使超声波检测灵敏度约为2

λ,因此提高频率,有利于发现更小的缺陷。

(2)频率高,脉冲宽度小,分辨力高,有利于区分相邻缺陷。

(3)由0arcsin1.22D

λ

θ=可知,频率高,波长短,则半扩散角小,声束指向性好,能量集中,有利于发现缺陷并对缺陷定位。 (4)由2

4D N λ

=可知,频率高,波长短,近场区长度大,对检测不利。 (5)由3432a C Fd f =可知,频率增加,衰减急剧增加。

由以上分析可知,频率的高低对检测有较大的影响。频率高,灵敏度和分辨力高,指向性好,对检测有利。但频率高,近场区长度大,衰减大,又对检测不利。实际检测中要全面分析考虑各方面的因素,合理选择频率。一般在保证检测灵敏度的前提下尽可能选用较低的频率。

对于晶粒较细的锻件、轧制件和焊接件等,一般选用较高的频率,常用2.5~5.0MHz。对晶粒较粗大的铸件、奥氏体钢等宜选用较低的频率,常用0.5~2.5MHz。如果频率过高,就会引起严重衰减,示波屏上出现林状回波,信噪比下降,甚至无法检测。

3.探头晶片尺寸的选择

探头圆晶片尺寸一般为φ10~φ30 mm,晶片大小对检测也有一定的影响,选择晶片尺寸时要考虑以下因素。

(1)由

0sin1.22

D

λ

θ=可知,晶片尺寸增加,半扩散角减少,波束指向性变好,超声波能量集中,对检测有利。

(2)由

2

4

D

N

λ

=可知,晶片尺寸增加,近场区长度迅速增加,对检测不利。

(3)晶片尺寸大,辐射的超声波能量大,探头未扩散区扫查范围大,远距离扫查范围相对变小,发现远距离缺陷能力增强。

以上分析说明晶片大小对声束指向性,近场区长度、近距离扫查范围和远距离缺陷检出能力有较大影响。实际检测中,检测面积范围大的工件时,为了提高检测效率宜选用大晶片探头。检测厚度大的工件时,为了有效地发现远距离的缺陷宜选用大晶片探头。检测小型工件时,为了提高缺陷定位宣精度宜选用小晶片探头。检测表面不太平整,曲率较大的工件时,为了减少耦合损失宜选用小晶片探头。

4.横波斜探头K值的选择

在横波检测中,探头的K值对检测灵敏度、声束轴线的方向,一次波的声程(入射点至底面反射点的距离)有较大的影响。由图1.39可知,对于用有机玻璃斜探头检测钢制工件,βs=40°(K=0.84)左右时,声压往复透射率最高,即检测灵敏度最高。由K=tgβs可知,K 值大,βs大,一次波的声程大。因此在实际检测中,当工件厚度较小时,应选用较大的K 值,以便增加一次波的声程,避免近场区检测。当工件厚度较大时,应选用较小的K值,以减少声程过大引起的衰减,便于发现深度较大处的缺陷。在焊缝检测中,还要保证主声束能扫查整个焊缝截面。对于单面焊根部未焊透,还要考虑端角反射问题,应使K=0.7~1.5,因为K<0.7或K>1.5,端角反射率很低,容易引起漏检。

6.3 耦合与补偿

6.3.1 耦合剂

超声耦合是指超声波在探测面上的声强透射率。声强透射率高,超声耦合好。

为了提高耦合效果,在探头与工件表面之间施加的一层透声介质称为耦合剂。耦合剂的作用在于排除探头与工件表面之间的空气,使超声波能有效地传入工件,达到检测的目的。此外耦合剂还有减少摩擦的作用。一般耦合剂应满足以下要求:

(1)能润湿工件和探头表面,流动性、粘度和附着力适当,不难清洗。

(2)声阻抗高,透声性能好。

(3)来源广,价格便宜。

(4)对工件无腐蚀,对人体无害,不污染环境。

(5)性能稳定,不易变质,能长期保存。

超声波检测中常用耦合剂有机油、变压器油、甘油、水、水玻璃等。它们的声阻抗Z 如下:

耦合剂 机油 水 水玻璃 甘油

Z 3106 kg/m 2 2s 1.28 1.5 2.17 2.43

由此可见,甘油声阻抗高,耦合性能好,常用于一些重要工件的精确检测,但价格较贵,对工件有腐蚀作用。水玻璃的声阻抗较高,常用于表面粗糙的工件检测,但清洗不太方便,且对工件有腐蚀作用。水的来源广,价格低,常用于水浸检测,但使工件生锈。机油和变压器油粘度、流动性、附着力适当,对工件无腐蚀、价格也不贵,因此是目前应用最广的耦合剂。

此外,近年来化学浆糊也常用来作耦合剂,耦合效果比较好。

6.3.2 影响声耦合的主要因素

影响声耦合的主要因素有:耦合层的厚度,耦合剂的声阻抗,工件表面粗糙度和工件表面形状。

1.耦合层厚度的影响

如图6.11所示,耦合层厚度对耦合有较大的影响。当耦合层厚度为

4λ的奇数倍时,透声效果差,耦合不好,反射回波低。当耦合层厚度为

2

λ的整数倍或很薄时,透声效果好,反射回波高。

图6.11 耦合层厚度d 对耦合的影响 图6.12 表面光洁度对耦合的影响

2.表面粗糙度的影响

由图6.12可知,工件表面粗糙度对声耦合有明显的影响。对于同一耦合剂,表面粗糙度高,耦合效果差,反射回波低。声阻抗低的耦合剂,随粗糙度的变差,耦合效果降低得更快。但粗糙度也不必太低,因为粗糙度太低,耦合效果无明显增加,而且使探头因吸附力大而移动困难。

一般要求工件表面粗糙度R a 不高于6.3μm 。

3.耦合剂声阻抗的影响

由图4.11还可以看出,耦合剂的声阻抗对耦合效果也有较大的影响。对于同一探测面,耦合剂声阻抗大,耦合效果好,反射回波高,例如表面粗糙度R Z =100μm 时 ,Z =⒉4的甘油耦合回波比Z =⒈5的水耦合回波高6~7 dB 。

⒋工件表面形状的影响

工件表面形状不同,耦合效果不一样,其中平面耦合效果最好,凸曲面次之,凹曲面最

差。因为常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低。特别是凹曲面,探头中心不接触,因此耦合效果更差。

不同曲率半径的耦合效果也不相同,曲率半径大,耦合效果好。

6.3.3 表面耦合损耗的测定和补偿

在实际检测中,当调节检测灵敏度用的试块与工件表面粗糙度、曲率半径不同时,往往由于工件耦合损耗大而使检测灵敏度降低。为了弥补耦合损耗,必须增大仪器的输出来进行补偿。

1.耦合损耗的测定

为了恰当地补偿耦合损耗,应首先测定工件与试块表面耦合损耗的分贝差。

一般的测定耦合损耗差的方法为:在表面耦合状态不同,其他条件(如材质、反射体、探头和仪器等)相同的工件和试块上测定二者回波或穿透波高分贝差。

下面以横波斜探头为例来说一、二次波检测时耦合损耗的测定方法。一次波检测又称直射法,二次波检测又称一次反射法。一、二次波对应的水平距离为一倍跨距,常用1S表示。

图6.13 耦合损耗dB差值的测定

(a)对比试块(b)待测试块

首先制作两块材质与工件相同、表面状态不同的试块。一块为对比试块、粗糙度同试块,另一块为待测试块,表面状态同工件。分别在两试块同深度处加工相同的长横孔反射体,然后将探头分别置于两试块上,如图6.13所示,测出二者长横孔回波高度的ΔdB差,此ΔdB 即为二者耦合损耗差。

以上是一次波检测时耦合损耗差的测定法。当用二次波检测时,常用一发一收的双探头穿透法测定。

当工件与试块厚度、底面状态相同时,只需在同样探测条件下用穿透法测定二者反射波高的ΔdB即可。

当工件厚度小于试块厚度时,如图6.14所示。图中R1、R2分别为工件上一倍跨距离(1S)和两倍跨距(2S)测试点的底面反射波高,R为试块上一倍跨距(1S)测试点底面反射波高,在R1、R2两波峰之间连一直线,则用[衰减器]测得的R、R2连线高度差ΔdB即为二者的表面耦合差补偿量。

当工件厚度大于试块时,如图6.15所示。图中R1、R2分别为试块上1S和2S测试点上的底面反射波高,R为工件1S测试点上底面反射波高,则R1R2连线与R的高度差即为二者的耦合差补偿量。

2.补偿方法

设测得的工件与试块表面耦合差补偿是ΔdB。具体补偿方法如下:

图6.14 穿透法测耦合差(工件厚小于试块)

图6.15 穿透法测耦合差(工件厚大于试块)

先用“衰减器”衰减ΔdB,将探头置于试块上调好检测灵敏度,然后再用“衰减器”增益ΔdB即减少ΔdB衰减量),这时耦合损耗恰好得到补偿,试块和工件上相同反射体回波高度相同。

6.4 检测仪的调节

在实际检测中,为了在确定的探测范围内发现规定大小的缺陷,并对缺陷定位和定量,就必须在探测前调节好仪器的扫描速度和灵敏度。

6.4.1 扫描速度的调节

仪器示波屏上时基扫描线的水平刻度值τ与实际声程x(单程)的比例关系,即τ∶x=1∶n称为扫描速度或时基扫描线比例。它类似于地图比例尺,如扫描速度1∶2表示仪器示波屏上水平刻度1 mm表示实际声程2 mm。

检测前应根据探测范围来调节扫描速度,以便在规定的范围内发现缺陷并对缺陷定位。

调节扫描速度的一般方法是根据探测范围利用已知尺寸的试块或工件上的两次不同反射波的前沿分别对准相应的水平刻度值来实现。不能利用一次反射波和始波来调节,因为始波与一次反射波的距离包括超声波通过保护膜、耦合剂(直探头)或有机玻璃斜楔(斜探头)的时间,这样调节扫描速度误差大。

下面分别介绍纵波、横波、表面波检测时扫描速度的调节方法。

1.纵波扫描速度的调节

纵波检测一般按纵波声程来调节扫描速度。具体调节方法是:将纵波探头对准厚度适当的平底面或曲底面,使两次不同的底波分别对准相应的水平刻度值。

例如探测厚度为400 mm工件,扫描速度为1∶4,现得用IIW试块来调节。将探头对准试块上厚为100 mm的底面,调节仪器上“深度微调”、“脉冲移位”等旋钮,使底波B2、B4分别对准水平刻度50、100,这时扫描线水平刻度值与实际声程的比例正好为1∶4,如图6.16(a)。

图6.16 纵波、表面波扫描速度的调节图6.17 横波检测缺陷位置的确定

2.表面波扫描速度的调节

表面波检测一般也是按声程调节扫描速度,具体调节方法基本上与纵波相同。只是表面波不能在同一反射体上形成多次反射。调节时要利用两个不同的反射体形成的两次反射波分别对准相应的水平刻度值来调节。如图6.16(b),探头置于图示位置,调节仪器使棱边A、B的反射波A波和B波分别对准水平刻度值40、65这时表面波扫描速度为1∶1。

3.横波扫描速度的调节

如图6.17所示,横波检测时,缺陷位置可由折射角β和声程x来确定,也可由缺陷的水平距离l和深度d来确定。

一般横波扫描速度的调节方法有三种:声程调节法、水平调节法和深度调节法。

(1)声程调节法:声程调节法是使示波屏上的水平刻度值τ与横波声程x成比例,即τ∶x=1∶n。这时仪器示波屏上直接显示横波声程。

按声程调节横波扫描速度可在IIW、CSK-I A、IIW2、半圆试块以及其它试块或工件上进行。

①利用IIW试块调节:IIW试快R100圆心处未切槽,因此横波不能在R100圆弧面上形成多次反射,这样也就不能直接利用R100来调节横波扫描速度。但IIW试块上有91 mm尺寸,钢中纵波声程91 mm相当于横波声程50 mm的时间。因此利用91 mm可以调节横波扫描速度。

下面以横波1∶1例为说明之。如图6.18所示,先将直探头对准91 mm底面,调节仪器使底波B1、B2分别对准水平刻度50、100这时扫描线与横波声程的比例正好为1∶1。然后换上横波探头,并使探头入射点对准R100圆心,调“脉冲移位”使R100圆弧面回波B1对准水平刻度100,这时零位才算校准。即这时水平刻度“0”对应于斜探头的入射点,始波的前沿位于“0”的左侧。

以上调节方法比较麻烦,针对这一情况,我国的CSK-IA试块在R100圆弧处增加了一个R50的同心圆弧面,这样就可以将横波探头直接对准R50和R100圆弧面,使回波B(R50)对50,B2,(R100)对100,于是横波扫描速度1∶1和“0”点同时调好校准。

6.18 用IIW试块按声程调横波扫描速度

②利用IIW2和半圆试块调节:当利用IIW2和半圆试块调横波扫描速度时,要注意它们的反射特点。探头对准IIW2试块R25圆弧面时,各反射疲的间距为25、75、75……,对准R50圆弧面时,各反射波间距为50、75、75……。探头对准R50半圆试块(中心为切槽)的圆弧面,各反射波的间距离为50、100、100……。

下面说明横波1∶1扫描速度的调整方法。

利用IIW2试块调:探头对准R25圆弧面,调节仪器使B1、B2分别对准水平刻度25、100即可,如图6.19(a)。

图6.19 用IIW2和半圆式块按声程调扫描速度

(a)IIW2试块(b)半圆试块

利用R 50半圆试块调:探头对准R 50圆弧面,调节仪器使B 1、B 2分别对准水平刻度0、100,然后调“脉冲移位”使B 1对准50即可,如图6.19(b )。

(2)水平调节法:水平调节法是指示波屏上水平刻度值τ与反射体的水平距离l 成比例,即τ∶l =1∶n 。这时示波屏水平刻度值直接显示反射体的水平投影距离(简称水平距离),多用于薄板工件焊缝横波检测。

按水平距离调节横波扫描速度可在CSK-IA 试块、半圆试块、横孔试块上进行。

①利用CSK-IA 试块调节:先计算R 50、R 100对应的水平距离l 1、l 2:

121

2l l l ?????==?? (6.2)

式中 K ——斜探头的K 值(实测值)。

然后将探头对准R 50、R 100,调节仪器使B 1、B 2分别对准水平刻度l 1、l 2。当K =1.0时,l 1=35 mm ,l 2=70 mm ,若使B 1-35,B 2-70,则水平距离扫描速度为1:1。

②利用R 50半圆试块调节:先计算B 1、B 2对应的水平距离l 1、l 2:

1212l l l ?=????=??

(6.3) 然后将探头对准R 50圆弧,调节仪器使B 1、B 2分别对准水平刻度值l 1、l 2当K =1.0时,l 1=35 mm ,l 2=105 mm 。先使B 1、B 2分别对准0、70,再调“脉冲移位”使B 1-35,则水平距离扫描速度为1∶1。

③利用横孔试块调节:以CSK-ⅢA 试块为例说明之。

设探头的K =1.5,并计算深度为20、60的φ136对应的水平距离l 1、l 2:

1122 1.520301.56090

l Kd l Kd ==?===?= 调节仪器使深度为20、60的φ136的回波H 1、H 2分别对准水平刻度30、90,这时水平距离扫描速度1∶1就调好了。需要指出的是,这里H 1、H 2不是同时出现的,当H 1对准30时,H 2不一定正也对准90、因此往往要反复调试,直至H 1对准30,H 2正好对准90。

(3)深度调节法:深度调节法是使示波屏上的水平刻度值τ与反射体深度d 成比例,即τ:d=1:n ,这时示波屏水平刻度值直接显示深度距离。常用于较厚工件焊缝的横波检测。

按深度调节横波扫描速度可在CSK-IA 试块、半圆试块和横孔试块等试块上调节。 ①利用CSK-IA 试块调节:先计算R 50、R 100圆弧反射波B 1、B 2对应的深d 1、d 2:

1

222121100

150d K R d K R d =+=+=

(6.4) 然后调节仪器使B 1、B 2分别对准水平刻度值d 1、d 2。当K =2.0时,d 1=22. 4 mm 、d 2=44.8 mm ,调节仪器使B 1、B 2分别对准水平刻度22.4、44.8,则深度1∶1就调好了。

②利用R 50半圆试块调节:先计算半圆试块B 1、B 2对应的深度d 1、d 2:

1213d d d ?=????=??

(6.5) 然后调节仪器使B 1、B 2分别对准水平刻度值d 1、d 2即可,这时深度1∶1调好。

③利用横孔试块调节:探头分别对准深度d 1=40,d 2=80的CSK-IA 试块上的136横孔,调节仪器使d 1、d 2对应的υ136回波H 1、H 2分别对准水平刻度40、80,这时深度1:1就调好了。这里同样要注意反复调试,使H 1对准40时的H 2正好对准80。

6.4.2 检测灵敏度的调节

检测灵敏度是指在确定的声程范围内发现规定大小缺陷的能力,一般根据产品技术要求或有关标准确定。可通过调节仪器上的[增益]、[衰减器]、[发射强度]等灵敏度旋钮来实现。

调整检测灵敏度的目的在于发现工件中规定大小的缺陷,并对缺陷定量。检测灵敏度太高或太低都对检测不利。灵敏度太高,示波屏上杂波多,判伤困难。灵敏度太低,容易引起漏检。

实际检测中,在粗探时为了提高扫查速度而又不致引起漏检,常常将检测灵敏度适当提高,这种在检测灵敏度的基础上适当提高后的灵敏度叫做搜索灵敏度或扫查灵敏度。

调整检测灵敏度的常用方法有试块调整法的工件底波调整法两种。

1.试块调整法

根据工件对灵敏度的要求选择相应的试块,将探头对准试块上的人工缺陷,调整仪器上的有关灵敏度旋钮,使示波屏上人工缺陷的最高反射回波达基准波高,这时灵敏度就调好了。

例如,压力容器用钢板是利用Φ5平底孔来调整灵敏度的。具体方法是:探头对准Φ5平底孔,[衰减器]保留一定的衰减余量,[抑制]至“0”,调[增益]使Φ5平底孔最高回波达示波屏满幅度50%,这时灵敏度就调好了。

又如,超声波检测厚度为100 mm 的锻件,检测灵敏度要求是:不允许存在Φ2平底孔当量大小的缺陷。检测灵敏度的调整方法是:先加工一块材质、表面光洁度、声程与工件相同的Φ2平底孔试块,将探头对准Φ2平底孔,仪器保留一定的衰减余量,[抑制]至“0”调

[增益]使Φ2平底孔的最高回波达80%或60%高,这时检测灵敏度就调好了。

2.工件底波调整法

利用试块调整灵敏度,操作简单方便,但需要加工不同声程不同当量尺寸的试块,成本高,携带不便。同时还要考虑工件与试块因耦合和衰减不同进行补偿。如果利用工件底波来调整检测灵敏度,那么既不要加工任何试块,又不需要进行补偿。

利用工件底波调整检测灵敏度是根据工件底面回波与同深度的人工缺陷(如平底孔)回波分贝差为定值,这个定值可以由下述理论公式计算出来。

2

220lg 20lg (3)πB f f

P x x N P D λ?==≥ (6.6) 式中 x ——工件厚度;

D f ——要求探出的最小平底孔尺寸。

利用底波调整检测灵敏度时,将探头准工件底面,仪器保留足够的衰减余量,一般大于Δ+(6~10)dB (考虑搜索灵敏度),[抑制]至“0”,调[增益]使底波B 1最高达基准高(如80%),然后用[衰减器]增益ΔdB (即衰减余量减少ΔdB ),这时检测灵敏度就调好了。

由于理论公式只适用于x ≥3N 的情况,因此利用工件底波调灵敏度的方法也只能用于厚度尺寸x ≥3N 的工件,同时要求工件具有平行底面或圆柱曲底面,且底面光洁干净。当底面

粗糙或有水油时,将使底面反射率降低,底波下降,这样调整的灵敏度将会偏高。

例如,用2.5p202(2.5 MHz φ20 mm 直探头)检测厚度x =400 mm 的饼形钢制工件,钢中c L =5 900 m/s,检测灵敏度为400/Φ2平底孔(在400 mm 处发现Φ2平底孔缺陷)。

利用工件底波调整灵敏度的方法如下。

①计算:利用理论计算公式算出400 mm 处大底度与Φ2平底孔回波的分贝差Δ为

B 222

220lg 20lg π2 2.3640020lg 43.544(dB)3.142f P x P D φλ?==??==≈? 分贝差Δ也可由纵波平底孔AVG 曲线得到,如图2—17中MN 对应的分贝差Δ=44 dB 。 ②调整:将探头对准工件大平底面,[衰减器]衰减50 dB ,调[增益]使底波B 1达80%,然后使[衰减器]的衰减量减少44 dB ,即[衰减器]保留6 dB ,这时Φ2灵敏度就调好了,也就是说这时400 nm 处的平底孔回波正好达基准高(即400 mm 处Φ2回波高为6 dB )。如果粗探时为了便于发现缺陷,可采用使[衰减器]再去6 dB 的搜索灵敏度来进行扫查。但当发现缺陷以后对缺陷定量时,衰减器应打回到6 dB 。

利用试块和底波调整检测灵敏度的方法应用条件不同。利用底波调整灵敏度的方法主要用于具有平底面或曲底面大型工件的检测,如锻件检测。利用试块调整灵敏度的方法主要用于无底波和厚度尺寸小于3N 的工件检测。如焊缝检测、钢板检测、钢管检测等。

此外,还可以利用工件某些特殊的固有信号来调整检测灵敏度,例如在螺栓检测中常利用螺纹波来调整检测灵敏度,在汽轮机叶轮键槽径向裂纹检测中常利用键槽圆角反射的键槽波来调整检测灵敏度。

6.5 缺陷位置的测定

超声波检测中缺陷位置的测定是确定缺陷在工件中的位置,简称定位。一般可根据示波屏上缺陷波的水平刻度值与扫描速度来对缺陷定位。

6.5.1 纵波(直探头)检测时缺陷定位

仪器按1∶n 调节纵波扫描速度,缺陷波前沿所对的水平刻度值为τf 、测缺陷至探头的距隔x f 为:

x f =n τf (6.7) 若探头波束轴线不偏离,则缺陷正位于探头中心轴线上。

例如用纵波直探头检测某工件,仪器按1∶2调节纵波扫描速度,检测中示波屏上水平刻度值70处出现一缺陷波,那么此缺陷至探头的距离x f :

x f =n τf =2370=140(mm )

6.5.2 表面波检测时缺陷定位

表面波检测时,缺陷位置的确定方法基本同纵波。只是缺陷位于工件表面,并正对探头中心轴线。

例如表面波检测某工件,仪器按1∶1调节表面波扫描速度,检测中在示波屏水平刻度60处出现一缺陷波,则此缺陷至探头前沿距离x f 为:

x f =n τf =1360=60(mm )

6.5.3横波检测平面时缺陷定位

横波斜探头检测平面时,波束轴线在探测面处发生折射,工件中缺陷的位置由探头的折射角和声程确定或由缺陷的水平和垂直方向的投影来确定。由于横波速度可按声程、水平、深度来调节,因此缺陷定位的方法也不一样。下面分别加以介绍。

1.按声程调节扫描速度时

仪器按声程1∶n 调节横波扫描速度,缺陷波水平刻度为τf 。

一次波检测时,如图4.19(a ),缺陷至入射点的声程x f =n τf ,如果忽略横线孔直径,则缺陷在工件中的水平距离l f 和深度d f 为:

f f f f f f

sin sin cos cos l x n d x n βτββτβ==??==? (6.8)

图6.20 横波检测缺陷定位

(a )一次波 (b )二次波

二次波检测时,如图6.20(b )缺陷至入射点的声程x f =n τf ,则缺陷在工件中的水平距离l f 和深度d f 为

f f f f f f

sin sin 2cos 2cos l x n d T x T n βτββτβ==??=-=-? (6.9) 式中 T ——工件厚度;

β——探头横波折射角。

2.按水平调节扫描速度时

仪器按水平距离1∶n 调节横波扫描速度,缺陷波的水平刻度值为τf ,采用K 值探头检测。

一次波检测时,缺陷在工件中的水平距离l f 和深度d f 为:

f f f f f l n l n d K K

ττ=???==?? (6.10) 二次波检测时,缺陷波在工件中的水平距离l f 和深度d f 为。

f f f f f 22l n l n d T T K K

ττ=???=-=-?? (6.11) 例如用K 2横波斜探头检测厚度T =150 mm 的钢板焊缝,仪器按水平1∶1调节横波扫描速度,检测中在水平刻度τf =45处出现一缺陷波,求此缺陷的位置。

由于KT =2315=30,2KT =60,KT <τf =45<2KT ,因此可以判定此缺陷是二次波发现的。那么缺陷在工件中的水平距离l f 和深度d f 为:

f f f f 14545(mm)

4522157.5(mm)2

l n l d T K τ==?==-=?-= 3.按深度调节扫描速度时

仪器按深度1∶n 调节横波扫描速度,缺陷波的水平刻度值为τf ,采用K 值探头检测。一次波检测时,缺陷在工件中的水平距离l f 和深度d f 为:

f f f0f

l Kn d n ττ=??=? (6.12) 二次波检测时,缺陷在工件中的水平距离l f 和深度d f 为:

f f f

f n T d Kn l ττ-==2 (6.13)

例如用K 1.5横波斜探头检测厚度T =300 mm 的钢板焊缝,仪器按深度1∶1调节横波扫描速度,检测中在水平刻度τ=40处出现一缺陷波发,求此缺陷位置。

由于T <τf <2T ,因此可以判定此缺陷是二次波发现的。缺陷在工件中的水平距离l f 和深度d f 为:

l f =Kn τf =1.531340=60(mm)

d f =2T -n τf =2330-1340=20(mm)

6.5.4 横波周向探测圆柱曲面时缺陷定位

前面讨论的是横波检测中探测面为平面时的缺陷定位问题。当横波探测圆柱面时,若沿轴向探测,缺陷定位与平面相同;若沿周向探测,缺陷定位则与平面不同。下面分外圆和内壁探测两种情况加以讨论。

1.外圆周向探测 如图6.21所示,外圆周向探测圆柱曲面时,缺陷的位置由深度H 和弧长L 来确定,显然H 、 L 与平板工件中缺陷的深度d 和水平距离l 是有较大差别的。

图6.21中:

AC =d (平面工件中缺陷深度)

BC =d tg β=Kd =l (平板工件中缺陷水平距离)

AO =R ,CO =R-d

-1

tg ,tg BC Kd Kd OC R d R d BO θθ===--=

图6.21 外圆周向探测定位法

从而可得:

-1tg 180180H OD OB R R R Kd L R d πθπ?=-=-??==?-?

由(4.14)式算出用K 1.0探头外圆周向探测φ 2 3883148(外径3壁厚)圆柱曲面时不同d 值所对应的H 和L 列于表4.1。

表6.1 外圆周向探测定位修正表K 1.0

从表6.1可以看出,当探头从圆柱曲面外壁作周向探测时,弧长L 总比水平距离l 值大,

但深度H 却总比d 值小,而且差值随d 值增加而增大。

2.内壁周向探测 如图6.22所示,内壁周向探测圆柱曲面时,缺陷的位置由深度h 和孤长l 来确定,这里的h 和l 与平板工件中缺陷深度d 和水平距离l 是有较大差别的。

图6.22中:

AC =d (平板工件中缺陷的深度)

BC =d tg β=Kd =l (平板工件中缺陷的水平距离)

AO =r ,CO =r +d -1

tg =,tg BC Kd Kd OC r d r d BO θθ==++=

图6.22 内壁周向探测

从而可得:

-1tg 180180h OB OD r r r Kd l r d πθπ?=-=??==?+?

(6.15) 由(4.15)式算出用K 1.0探头内壁周向探测φ2 3883148圆柱曲面时,不同d 值所对应的K 和 l 值列于表6.2。

实验一 超声波探伤仪的使用及其性能测试

武汉大学实验报告 超声波探伤仪的使用及其性能测试 院系名称:动力与机械学院 专业名称:材料类

实验一超声波探伤仪的使用及其性能测试 一、实验目的 1、熟悉脉冲反射式超声波探伤仪的使用方法。 2、掌握超声波探伤仪主要性能及探头主要综合性能的测试方法。 二、实验原理 1、超声探伤仪简介 目前在实际探伤中,广泛应用的是A型脉冲反射式超声波探伤仪。这种仪器荧光屏横坐标表示超声波在工作中的传播时间(或传播距离),纵坐标表示反射回波波高。根据荧光屏上缺陷波的位置和高度可以判定缺陷的位置和大小。 A型脉冲反射式超声波探伤仪由同步电路、发射电路、接受放大电路、扫描电路(又称时基电路),显示电路和电源电路等部分组成。其工作原理如图1所示。 图1 A型脉冲反射式超声波探伤仪的电路方型图 仪器的工作过程为:电路接通以后,同步电路产生脉冲信号,同时触发发射电路、扫描电路。发射电路被触发以后高频脉冲作用于探头,通过探头的逆电压效应将信号转换为声信号,发射超声波。超声波在传播过程中遇到异质界面(缺陷或底面)反射回来被探头接受。通过探头的正压电效应将声信号转换为电信号送至放大电路被放大检波,然后加到荧光屏垂直偏转板上,形成重叠的缺陷波F 和底波D。扫描电路被触发以后产生锯齿波,加到荧光屏水平偏转板上,形成一条扫描亮线,将缺陷波F和底波D按时间展开完整的显示在荧光屏上。

脉冲反射式超声波探伤仪具有以下特点 (1)、以荧光屏横坐标表示传播距离,以纵坐标表示回波高度。 (2)、可做单探头或双探头探伤。 (3)、在声束覆盖区,可以同时显示不同声程上的多个缺陷。 (4)、适应性较广,可以不同探头进行纵波、横波、表面波、板波等多种波型探伤。 (5)、只能以回波高度来表示反射量,因此缺陷量值显示不直观,结果判断受人为因素影响较多。 2、仪器各旋钮的调节 (1)、扫描基线的显示与调节 【电源开关】-置“开”时,仪器电源接通,面板上电压指示红区,约1分钟后,荧光屏上显示扫描基线。 【辉度】-调节扫描基线的明亮程度。 【聚焦】与【辅助聚焦】-调节扫描基线的清晰程度。 【垂直】-调节扫描基线在垂直方向的位置。 【水平】-调节扫描基线在水平的位置,可以在不改变扫面比例的情况下使整个时间轴左右移动。此旋钮与调节探测范围的【粗调】、【微调】配合,用于直探头和斜探头扫描比例的调整。 CTS-22型仪器的【脉冲位移】具有一般仪器的“水平位移”功能。 CTS-22型仪器的【辅助聚焦】、【辅助聚焦】、【垂直】、【水平】旋钮为内调式,出厂时已调好,使用时一般不必再调,如需调节则打开仪器上盖板按说明书调节好。 (2)、工作方式的选择 单探头-一只探头兼作发射和接收。 双探头-一只探头发射,另一只探头接收。 (3)、探测范围的调节 【粗调】或【深度范围】-根据工件厚度粗调探测范围。 【微调】-微调探测范围,微调与【脉冲移位】(CTS-22)配合使用,可按一定比例调节扫描基线。

超声波检测笔试试题(含答案)

超声波检测笔试试题(含答案)

笔试考卷 单位:姓名: 评分:日期: 一是非判断题(在每题后面括号内打“X”号表示“错误”,画“○”表示正确) (共20题,每题1.5分,共30分) 1.质点完成五次全振动所需要的时间,可以使超声波在介质中传播五个波长的距离(0) 2.超声波检测时要求声束方向与缺陷取向垂直为宜(0) 3.表面波、兰姆波是不能在液体内传播的(0) 4.纵波从第一介质倾斜入射到第二介质中产生的折射横波其折射角达到90°时的纵波入射角称为第一临界角(X) 5.吸收衰减和散射衰减是材料对超声能量衰减的主要原因(0) 6.我国商品化斜探头标称的角度是表示声轴线在任何材料中的折射角(X) 7.超声波探头的近场长度近似与晶片直径成正比,与波长成反比(0) 8.根据公式:C=λ·f 可知声速C与频率f成正比,同一波型的超声波在同一材料中传播时高频的声波传播速度比低频大(X) 9.一台垂直线性理想的超声波检测仪,在线性范围内其回波高度与探头接收到的声压成正比例(0) 10.在人工反射体平底孔、矩形槽、横孔、V形槽中,回波声压只与声程有关而与探头折射角度无关的是横孔(0) 11.用sinθ=1.22λ/D公式计算的指向角是声束边缘声压P1与声束中心声压P0之比等于0%时的指向角(0) 12.水平线性、垂直线性、动态范围属于超声波探头的性能指标(X) 13.入射点、近场长度、扩散角属于超声波检测仪的性能指标(X) 14.在超声波检测中,如果使用的探测频率过低,在探测粗晶材料时会出现林状回波(X) 15.钢板探伤中,当同时存在底波和伤波时,说明钢板中存在小于声场直径的缺陷(0)

数字式超声波探伤仪操作规程

编号:CZ-GC-08941 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 数字式超声波探伤仪操作规程Operating procedures for digital ultrasonic flaw detector

数字式超声波探伤仪操作规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程 在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重 的会危及生命安全,造成终身无法弥补遗憾。 一、用途 本机能够快速便捷、无损伤、精确地进行工件内部的裂纹、夹杂、气孔等多种缺陷的检测、定位、评估和诊断。 二、检测目的 通过对工件内部的裂纹、夹杂、气孔等多种缺陷的检测、定位、评估和诊断,为产品质量作保证。 三、操作方法 1、开机 将探伤仪顶部的电池开关置于“ON”,然后按键开机。仪器屏幕上显示开机自检信息。自检结束后,仪器自动进入探伤界面。 在开机状态下,按键可以实现仪器关机。 仪器关机时会自动进行探伤参数的保存操作(存储于默认的系统文件中,该文件用户无法访问),关机进行过程中,请不要按键

操作,也不要立即切断电源,以防止破坏系统文件。如果由于某种原因破坏了系统文件,可以通过“恢复出厂设置”功能来修复。仪器关机后,所调试和设置的探伤参数不会丢失,下次开机后会利用默认的系统文件将仪器参数自动恢复。 如果长时间不再使用探伤仪,请将探伤仪顶部的电池开关置于“OFF”,以保护仪器和锂电池组。 自动关机:当电池电压太低时,屏幕上的电池图标会闪烁显示,然后探伤仪会自动关机断电。 2、连接探头 使用本探伤仪进行探伤工作前,需要连接上合适的探头和探头线,仪器的探头线应该是接头为Q9的75Ω同轴电缆。 仪器顶部有两个Q9插座,为探头线连接插座。使用单探头(单晶直探头或单晶斜探头)时,探头线可以连接到仪器顶部任何一个探头插座上;使用双晶探头探头(一个晶片发射、另一个晶片接收)或穿透探头(两个探头,一个探头发射,另一个探头接收)时,要把发射的探头线连接到发射探头插座(有标识),接收的探头线连

无损探伤常见问题汇总

无损探伤常见问题汇总 资料整理:无损检测资源网 沧州市欧谱检测仪器有限公司

物理探伤就是不产生化学变化的情况下进行无损探伤。 一、什么是无损探伤? 答:无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。 二、常用的探伤方法有哪些? 答:常用的无损探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。 三、试述磁粉探伤的原理? 答:它的基本原理是:当工件磁化时,若工件表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。 四、试述磁粉探伤的种类? 1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法和旋转磁化法。 2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流磁化法。 3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。 五、磁粉探伤的缺陷有哪些? 答:磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,无损检测资源网可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。 六、缺陷磁痕可分为几类? 答:1、各种工艺性质缺陷的磁痕; 2、材料夹渣带来的发纹磁痕; 3、夹渣、气孔带来的点状磁痕。

七、试述产生漏磁的原因? 答:由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B=μH来分析,在工件的单位面积上穿过B根磁线,而在缺陷区域的单位面积上不能容许B根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。 八、试述产生漏磁的影响因素? 答:1、缺陷的磁导率:缺陷的磁导率越小、则漏磁越强。 2、磁化磁场强度(磁化力)大小:磁化力越大、漏磁越强。 3、被检工件的形状和尺寸、缺陷的形状大小、埋藏深度等:当其他条件相同时,埋藏在表面下深度相同的气孔产生的漏磁要比横向裂纹所产生的漏磁要小。 九、某些零件在磁粉探伤后为什么要退磁? 答:某些转动部件的剩磁将会吸引铁屑而使部件在转动中产生摩擦损坏,如轴类轴承等。某些零件的剩磁将会使附近的仪表指示失常。因此某些零件在磁粉探伤后为什么要退磁处理。 十、超声波探伤的基本原理是什么? 答:超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在萤光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。 十一、超声波探伤与X射线探伤相比较有何优的缺点? 答:超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点;缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性;超声波探伤适合于厚度较大的零件检验。 十二、超声波探伤的主要特性有哪些? 答:1、超声波在介质中传播时,在不同质界面上具有反射的特性,如

超声波检测技术

超声工业测量技术 在非电量电测技术中,许多非电量可以通过电学方法加以测定,同样,许多非声量也可通过声学方法来加以测定,这就是所谓超声工业测量技术。非电量的电测主要是通过一些元件的电阻、电容或电感等量来进行的。在超声工业测量技术中,非声量的测定也往往是通过某些媒质声学特性(主要是声速、声衰减和声阻抗率等)的测量来进行的。 超声工业测量技术中应用最广的是媒质的声速这一物理量。 第一,媒质的声速与媒质 的许多特性有直接或间接的关系。有些关系非常简单直接,已有精确的理论公式,例如,在测定声速和密度后,就可求出媒质的弹性模量。有些关系比较间接而且复杂,但在特定的条件下,仍可以建立一些半理论或纯经验的关系式,例如,媒质的成分,混合物的比例,溶液的浓度,聚合物的转化率,某些液体产品的比重,某些材料的强度等等,都可与声速建立一定的关系,利用这些关系,就熊通过测量声速来测定这些媒质的非声特性。上述原则是声速分析仪的基本原理。 第二,媒质的声速与媒质所处的状态也有相互关系。例如,媒质的温度、压强和流速等状态参量的变化都会引起相应的声速的变化。如声学温度计、超声波风速仪和超声流量计就是用这一类关系来测量温度或流量的。 第三,其他应用,例如在声速c已经测知的媒质中,可以利用声波传播距离L和传播时间t 的关系L=ct,或利用波长λ和频率f(或周期T)之间的关系c=fλ=λ/T,进行超声测距的应用。如超声液位计和超声测厚计就是这一方面的典型应用技术。 声阻抗率方法也是一种较常用于媒质特性分析的技术。在这种技术中,所测定的声学 量是换能器对媒质的辐射阻抗率。如果换能器在媒质中所激起的是平面纵波行波,则辐射阻抗率就是声阻率ρc。当两种媒质的声速c几乎相同,但密度ρ有很大不同时,往往就可根据ρc的测量来加以区别。在同时测得声速的情况下,也可用这种方法来测量液体的密 度p或弹性模量ρc2等。如果换能器在液体媒质中激起的是切变行波,其声阻抗率将与 成正比,η是液体的粘性,这就是超声粘度计的原理。如果换能器是在流体中作弯曲振动的,则其辐射声抗率将与流体的密度p有关,因而使换能器的共振频率随p而变化,这也是一种可以精确测定液体密度的原理。 遇到需要采用声学方法来测定一个非声量的情况时,在声速、衰减和阻抗这三种技术途径中,应按什么准则来决定取舍呢?第一是看要测的非声量究竟与那一个声学量的关系比较明显。这就是说,相应于同样大小的非声量的变化,如果某一声学量能够有最大的变化,这一声学量就比较值得考虑。第二,应该考虑到声速、衰减和声阻抗率都是随很多因素变化的,除待测的那种非声量外,其他媒质特性或媒质状态的变化往往也会引起声学量的变化,对于须测的非声量来说,这些其他因素引起的变化就是一种干扰。因此,选用某种声学量的途径时,应注意干扰因素要尽可能少,干扰影响要尽可能小,或可采用切实可行的补偿措施来避免这些干扰。第三,挑选技术途径时必须注意满足现场的使用、安装和维护等条件并应达到要求的精度,在这一前提下还应力求稳定耐久和方便可靠,才能有较高的实用价值。上述准则只是一些原则性的意见,还应根据具体情况作具体的考虑。 声发射检测技术 材料或结构受外力或内力作用产生形变或断裂 ,以弹性波的形式释放出应变能的现象称为声发射。各种材料声发射的弹性波的频率范围很宽 ,从次声频、声频到超声频 ,因此 ,

超声波探伤方法原理及应用

超声波探伤方法原理及应用 【摘要】根据笔者多年的工作经验与实践,着重阐述超声波探伤在建筑钢结构中检测焊缝内部缺陷的应用进行了分析探讨。 【关键词】建筑钢结构;无损检测;钢结构焊缝;超声波探伤 1.建筑钢结构焊缝类型及焊缝内部缺陷 1.1焊缝类型及剖口型式 建筑钢结构体系主要有两种:门式钢架体系和网架空间结构体系,其中以门式钢架体系居多。其焊缝类型主要有对接焊缝和T型焊缝两种。对接焊缝是指将两母材置于同一平面内(或曲面内)使其边缘对齐,沿边缘直线(或曲线)进行焊接的焊缝:T型焊缝是指两母材成T字形焊接在一起的焊缝。为了保证焊缝部位两母材在施焊后能完全熔合,焊接前应根据焊接工艺要求在接头处开出适当的坡口,钢结构焊缝常见的坡口形式主要有c型(薄板对接)、V型(中厚板对接)、X 型(厚板对接)、单V型(T型连接)和K型(T型连接)等。 1.2常见内部缺陷 由于在焊接过程中受焊接工艺、环境条件等因素的影响,钢结构焊缝不可避免地会产生内部缺陷。常见的内部缺陷有气孔、夹渣、未焊透、未熔合和裂纹等。在缺陷性质上,单个气孔、点状夹渣属一般缺陷,对焊缝整体强度影响较小;群状气孔或不规则状夹渣、未焊透、未熔合、裂纹属严重缺陷,会严重降低焊缝整体强度等性能。 2.超声波探伤方法原理及分类 超声波探伤是利用超声波经过不同的介质产生反射的特性。超声波通过构件检测表面的耦合剂进入构件,在构件中传播,碰到缺陷或构件底面就会反射回至探头,根据反射波在超声波探伤仪荧光屏中的位置及波幅高度就可计算出其位置及大小。根据波形显示的不同,超声波探伤仪分为A型、B型、C型,常见的是A型脉冲反射式探伤仪。 3.超声波探伤在建筑钢结构中的应用 3.1超声波探伤的主要要求 3.1.1探伤人员的要求 探伤人员必须取得相应检测方法的等级资格证书,3级为最高,2级次之,1级为最低。 3.1.2探测面的选择 根据构件的形状、焊接工艺、可能产生的缺陷部位、缺陷的延展方向及焊缝要求的经验等级等来选取探测面。 3.1.3探头频率及角度(K值或折射角β)的选择 探头频率高,衰减大,穿透力差,不宜用于厚板构件焊缝的检测。但频率高,分辨率高,因此在穿透能力允许下,频率选得愈高愈好。一般选用2-5MHz探头,推荐使用2-2.5MHz探头。探头角度一般根据材料厚度、焊缝坡口型式及预计主要缺陷种类来选择,由于建筑钢结构的板材厚度一般不大,推荐使用K2.0(β600)或K2.5(β700)。 3.1.4耦合剂的选择 必须具有良好的透声性和适宜的流动性,对材料和人体无害,且价廉易取,建议使用洗洁精。

超声波探伤仪的知识问答

超声波探伤仪的知识问答 1、超声波探伤的基本原理是什么? 答:超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。 目前便携式的脉冲反射式超声波探伤仪大部分是A扫描方式的,所谓A扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射(见图1 ),反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。 2、超声波探伤的主要特性有哪些? 答:(1)超声波在介质中传播时,在不同质界面上具有反射的特性,如遇到缺陷,缺陷的尺寸等于或大于超声波波长时,则超声波在

缺陷上反射回来,探伤仪可将反射波显示出来;如缺陷的尺寸甚至小于波长时,声波将绕过射线而不能反射; (2)波声的方向性好,频率越高,方向性越好,以很窄的波束向介质中辐射,易于确定缺陷的位置。 (3)超声波的传播能量大,如频率为1MHZ(100赫兹)的超生波所传播的能量,相当于振幅相同而频率为1000HZ(赫兹)的声波的100万倍。 3、超声波探伤选择探头K值有哪三条原则? 答:(1)声束扫查到整个焊缝截面; (2)声束尽量垂直于主要缺陷; (3)有足够的灵敏度。 4、什么是无损探伤/无损检测? 答:(1)无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。 (2)无损检测:Nondestructive Testing(缩写 NDT) 5、常用的探伤方法有哪些? 答:无损检测方法很多据美国国家宇航局调研分析,认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种:(1)常规无损检测方法有: -超声检测 Ultrasonic Testing(缩写 UT); -射线检测 Radiographic Testing(缩写 RT); -磁粉检测 Magnetic particle Testing(缩写 MT);

超声波检测技术及应用

超声波检测技术及应用 刘赣 (青岛滨海学院,山东省青岛市经济开发区266000) 摘要:无损检测(nondestructive test)简称NDT。无损检测就是不破坏和不损伤受检物体,对它的性能、质量、有无内部缺陷进行检测的一种技术。本文主要讲的是超声波检测(UT)的工作原理以及在现在工业中的应用和发展。 关键词:超声波检测;纵波;工业应用;无损检测 1.超声波检测介绍 1.1超声波的发展史 声学作为物理学的一个分支, 是研究声波的发生、传播、接收和效应的一门科学。在1940 年以前只有单晶压电材料, 使得超声波未能得到广泛应用。20 世纪70 年代, 人们又研制出了PLZT 透明压电陶瓷, 压电材料的发展大大地促进了超声波领域的发展。声波的全部频率为10- 4Hz~1014Hz, 通常把频率为2×104Hz~2×109Hz 的声波称为超声波。超声波作为声波的一部分, 遵循声波传播的基本定律, 1.2超声波的性质 1)超声波在液体介质中传播时,达到一定程度的声功率就可在液体中的物体界面上产生强烈的冲击(基于“空化现象”)。从而引出了“功率超声应用技术“例如“超声波清洗”、“超声波钻孔”、“超声波去毛刺”(统称“超声波加工”)等。2)超声波具有良好的指向性 3)超声波只能在弹性介质中传播,不能再真空中传播。一般检测中通常把空气介质作为真空处理,所以认为超声波也不能通过空气进行传播。 4)超声波可以在异质界面透射、反射、折射和波型转化。 5)超声波具有可穿透物质和在物质中衰减的特性。 6)利用强功率超声波的振动作用,还可用于例如塑料等材料的“超声波焊接”。 1.2超声波的产生与接收 超声波的产生和接收是利用超声波探头中压电晶体片的压电效应来说实现的。由超声波探伤仪产生的电振荡,以高频电压形式加载于探头中压电晶体片的两面电极上时,由于逆压电效应的结果,压电晶体片会在厚度方向上产生持续的伸缩变形,形成了机械振动。弱压电晶体片与焊件表面有良好的耦合时,机械振动就以超声波形式传播进入被检工件,这就是超声波的产生。反之,当压电晶体片收到超声波作用而发生伸缩变形时,正压电效应的结果会使压电晶体片两面产生不同极性的电荷,形成超声频率的高频电压,以回波电信号的形势经探伤仪显示,这就是超声波的接收。 1.3超声波无损检测的原理 超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种

焊缝探伤超声波探头的选择方案参考

焊缝探伤超声波探头的选择方案参考 编号被测工件厚度选择探头和斜率选择探头和斜率 14—5mm6×6 K3 不锈钢:1.25MHz 铸铁:0.5—2.5 MHz 普通钢:5MHz 26—8mm8×8 K3 39—10mm9×9 K3 411—12mm9×9 K2.5 513—16 mm9×9 K2 617—25 mm13×13 K2 726—30 mm13×13 K2.5 831—46 mm13×13 K1.5 947—120 mm13×13( K2—K1) 10121—400 mm18×18 ( K2—K1) 20×20 ( K2—K1) 超声波探伤在无损检测焊接质量中的作用 焊缝检验方法: 1,外观检查. 2,致密性试验和水压强度试验. 3,焊缝射线照相. 4,超声波探伤. 5,磁力探伤. 6,渗透探伤.关于返修规定:具体情况具体对待,总之要力争减少返修次数在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。 无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。 那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20千赫兹高的声波叫超声波。用于探伤的超声波,频率为0.4-25兆赫兹,其中用得最多的是1-5兆赫兹。利用声音来检测物体的好坏,这种方法早已被人们所采用。例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。由于超声波探伤具有探测距离大,探伤装置体积小,重量轻,便于携带到现场探伤,检测速度快,而且探伤中只消耗耦合剂和磨损探头,总的检测费用较低等特点,目前建筑业市场主要采用此种方法进行检测。

无损探伤原理、无损检测原理、常用方法、相关问题(20101119094353)

无损探伤原理、无损检测原理、常用方法、相关问题 什么是无损探伤? 答:无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。 二、常用的探伤方法有哪些? 答:常用的无损探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。 三、试述磁粉探伤的原理? 答:它的基本原理是:当工件磁化时,若工件表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。 四、试述磁粉探伤的种类? 1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法和旋转磁化法。 2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流磁化法。 3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。 五、磁粉探伤的缺陷有哪些? 答:磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。 六、缺陷磁痕可分为几类? 答:1、各种工艺性质缺陷的磁痕; 2、材料夹渣带来的发纹磁痕; 3、夹渣、气孔带来的点状磁痕。 七、试述产生漏磁的原因? 答:由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B =μH来分析,在工件的单位面积上穿过B根磁线,而在缺陷区域的单位面积上不能容许B 根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。 八、试述产生漏磁的影响因素? 答:1、缺陷的磁导率:缺陷的磁导率越小、则漏磁越强。 2、磁化磁场强度(磁化力)大小:磁化力越大、漏磁越强。 3、被检工件的形状和尺寸、缺陷的形状大小、埋藏深度等:当其他条件相同时,埋藏在表面下深度相同的气孔产生的漏磁要比横向裂纹所产生的漏磁要小。 九、某些零件在磁粉探伤后为什么要退磁? 答:某些转动部件的剩磁将会吸引铁屑而使部件在转动中产生摩擦损坏,如轴类轴承等。某

超声波探伤仪使用方法

超声波探伤仪使用说明 超声波探伤仪是一种便携式工业无损探伤仪器,它能够快速便捷、无损伤、精确地进行工件内部多种缺陷(裂 纹、夹杂、气孔等)的检测、定位、评估和诊断。既可以用于实验室,也可以用于工程现场。本仪器能够广 泛地应用在制造业、钢铁冶金业、金属加工业、化工业等需要缺陷检测和质量控制的领域,也广泛应用于航 空航天、铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。它是无损检测行业的必备仪器。 超声波在被测材料中传播时,可根据材料的缺陷所显示的声学性质对超声波传播的影响来探测其缺陷。 根据此原理,利用超声波可以测量各种金属、非金属、复合材料等介质内的裂缝、气孔、夹杂等缺陷信息。 图1.1 超声探伤基本工作原理 1.1 本说明书的使用 在第一次操作TUD210 之前,有必要阅读本说明书的第1、2、3、4 章。这几章说明是仪器操作的必要准 备,将描述所有按键和屏幕显示,解释操作原理。 按照指引操作,就可以避免因错误操作仪器而导致误差或故障,并可以对仪器的全部功能有一个清晰的 概念。 1.1.1 版面安排与表达方式约定 为了方便使用本说明书,所有的操作步骤、注意事项等都是以相同的方式安排版面。这有助于迅速找到 每条独立的信息。说明书目录结构到目录第四层,第四层往下的项目以黑体标题示出。 注意和说明标志 注意:注意标志指出操作中可能影响结果准确性的特性和特殊方面。 说明:注释可以包括参阅其它章节或某个功能的特别介绍。

项目列表 项目列表表现为下列形式 项目A 项目B 时代集团公司 6 … 操作步骤 操作步骤表示方法如下面例子 ? 通过左右键选择基础功能组,再用上下键选择声程功能菜单,然后用键调节相关参数。 ? 利用确认键来切换粗细调节方式。 1.2 标准配置及可选件 1.2.1 标准配置 表1.1 标准配置清单 名称数量 主机1 台 锂离子电池1 组(每组 4 只) 3A/9V 电源适配器1 只 LEMO 探头连接电缆两条 产品包装箱1 个 使用说明书1 本 直探头Φ20 2.5MHz (一支) 斜探头8×9K2 5MHz(一支) 耦合剂1 瓶 1.2.2 可选件 表1.2 可选件清单 名称数量 串行通讯电缆1 条(9 针)

数字式超声波探伤仪使用操作规程

数字式超声波探伤仪使用操作规程 本标准从2013年12月31日开始执行 1、简介 TS-V9系列超声波探伤仪是一款便携式、全数字式超声波探伤仪,能够快速、无损伤、精确地进行工件内部多种缺陷(焊接、裂纹、夹杂、气孔等)的检测、定位和评估。既可以用于实验室,也可以用于工程现场。本仪器能够广泛地应用在制造业、钢铁冶金业、金属加工业、化工业等需要缺陷检测和质量控制的领域,也广泛应用于航空航天、铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。 1.1安全提示 1) 本仪器为工业超声波无损探伤设备,不可以用于医疗检测; 2) 使用本仪器的人员必须具备专业无损检测知识,以保证安全操作; 3) 本仪器必须在仪器允许的环境条件下使用,尤其不可在强磁场、强腐蚀的环境下使用; 4) 在使用过程中请按照本规程的介绍正确使用,保证安全操作,; 1.2 功能 1. 发射脉冲 脉冲幅度和宽度可调,使探头工作在最佳状态。 阻抗匹配可选,满足灵敏度及分辨率的不同工作要求。 四种工作方式:直探头,斜探头,双晶,透射探伤。 2. 放大接收 实时采样:高速ADC,充分显示波形细节。 检波方式:全波、正半波、负半波、射频。 闸门:双闸门读数,支持时间闸门与声程闸门。 增益:0-110dB多级步距可调。可分别调节基本增益、扫查增益、表面补偿,方便探伤设置。支持增益锁定,支持自动增益。 3.报警类型 闸门进波、闸门失波、曲线进波、曲线失波4种类型可选 4. 数据存储 设有存储快捷键,便于操作。可存储10-100个探伤通道;100-1000个波形存储;10-20段5分钟录像、可快速另存、调用、回放与删除。 5. 探伤功能 波峰记忆:实时检索缺陷最高波,记录缺陷最大值 回波包络:对缺陷回波进行波峰轨迹描绘,辅助对缺陷定性判断。 裂纹测深:利用端点衍射波自动测量、计算裂纹深度。 孔径:在直探头锻件探伤工作中,对缺陷的大小进行自动计算即Ф值自动计算功能。 DAC、AVG:直/斜探头锻件探伤找准缺陷最高波自动计算Φ值,可分段制作。 动态记录:快捷检测实时动态记录波形,存储、回放。 缺陷定位:水平值L、深度值H、声程值S。 缺陷定量:根据设定基准灵活显示。 缺陷定性:通过包络波形,人工经验判断。 曲面修正:曲面工件探伤,修正曲率换算。 .

超声波探伤常见缺陷波形特征

分析超声波探伤仪常见八大缺陷的波形特征 疏松 锻件中的疏松,在低灵敏度时伤波很低或无伤波,提高灵敏度后才呈现典型的疏松波形,中心疏松多出现心部,一般疏松出现始波与底波之间。疏松对底波有一定影响但影响不大,随着灵敏度提高,底波次数有明显增加。铸件中的疏松对声波有显著的吸收和散射作用,常使底波显著减少,甚至使底波消失,严重的疏松既无底波又无伤波,探头移动时会出现波峰很低的蠕动波形。 白点 缺陷波为林状波,波峰清晰,尖锐有力,伤波出现位置与缺陷分布相对应,探头移动时伤波切换,变化不快,降低超声波探伤灵敏度时,伤波下降较底波慢。白点对底波反射次数影响较大,底波1~2 次甚至消失。提高灵敏度时,底波次数无明显增加。圆周各处探伤波形均相类似。纵向探伤时,伤波不会延续到锻坯的端头。 内裂纹 1、横向内裂纹轴类工件中的横向内裂纹直探头探伤,声速平行于裂纹时,探伤仪既无底波又无伤波,提高灵敏度后出现一系列小伤波,当探头从裂纹处移开,则底波多次反射恢复正常。斜探头轴向移动探伤和直探头纵向贯穿入射,都出现典型的裂纹波形即波形反射强烈,波底较宽,波峰分枝,成束状。斜探头移向裂纹时伤波向始波移动,反之,向远离始波方向 移动。 2、中心锻造裂纹伤波为心部的强脉冲,圆周方向移动探头时伤波幅度变化较大,时强时

弱,底波次数很少或者底波消失。 3、纵向内裂纹轴类锻件中的纵向内裂,直探头圆周探伤,声束平行于裂纹时,既无底波 也无伤波,当探头转动90°时反射波最强,呈现裂纹波形,有时会出现裂纹的二次反射,一般无底波。底波与伤波出现特殊的变化规律 缩孔 伤波反射强烈,波底宽大,成束状,在主伤波附近常伴有小伤波,对底波影响严重,常使底波消失,圆周各处伤波基本类似,缩孔常出现在冒口端或热节处。 缩孔残余 伤波幅度强,出现在工件心部,沿轴向探伤时伤波具有连续性,由于缩孔锻造变形,圆周各处伤波幅度差别较大,缺陷使底波严重衰减,甚至消失。 夹杂物 1、单个夹渣单个夹渣伤波为单一脉冲或伴有小伤波的单个脉冲,波峰园钝不清晰,伤波幅度虽高,但对底波及其反射次数影响不大。 2、分散性夹杂物分散性夹杂物,伤波为多个,有时呈现林状波,但波顶园钝不清晰,波形分枝,伤波较高,但对底波及底波多次反射次数影响较小。移动探头时,伤波变化比白点为快。 偏析 1、锭型偏析锭型偏析在通常探伤灵敏度常常无伤波,提高灵敏度后才有环状分布的伤波出现,它对底波反射次数无明显影响,随着探伤灵敏度提高,底波次数明显增加。 2、点状偏析点状偏析的声学反射特性较好,波形界于草状之间,伤波出现

平板对接焊缝的超声波探伤方法

第四章 焊缝超声波探伤 第二节 平板对接焊缝的超声波探伤方法 由于焊缝有增强量、表面凹凸不平,以及焊缝中危险性缺陷(裂缝、未焊透)大多垂直于板面,所以,对接焊缝超声波探伤基本方法一般都利用斜探头在焊缝两侧与钢板直接接触后 所产生的折射横波进行探测,见图4–4所示。 一、探测面的修整 为保证整个焊缝截面都被超声波束扫查到,探头必须在探测面上左 右、前后移动,为此,通常要对探测面进行修整。探测面上的焊接飞溅、氧化皮、锈蚀等应清理掉。清理的方 法可用铲刀、钢丝刷、砂轮等使钢板露出金属光泽。 探测面的修整宽度按GB11345–89标准规定: a. 用一次(直射)波法扫查,则焊缝两测的修整宽度(探头移动区)应大于0.75P : P=2TK (4–1) 式中:T 为母材厚度;K 为斜探头折射角的正切(K=tg β)。 b. 用一次反射波法,在焊缝两面两侧扫查,故修整宽度大于1.25P : 二、耦合剂的选用 为使超声波能顺利传入工件,在探伤前必须在探测面上涂上耦合剂,常用的耦合剂有机油、化学浆糊、水、甘油等。 耦合剂的选用应考虑: ① 工件表面光洁度和倾斜角度 ② 探测频率 ③ 耦合剂的声透性能 ④ 保存和使用的方便性 ⑤ 经济性和安全等 各种耦合剂在工件表面光洁度较高时,其声透性能一般相差不大,当工件表面光洁度较差时,选用声阻抗较大的耦合剂,如甘油,可获得较好的声透性能。 三、探头的选择 探头选择主要指探头角度和频率的选择 1. 探头角度的选择 对于钢质材料,为保证纯横波探测,探头的入射角应在第一临界角(27.5°)和第二临界角(57°)之间,即27.5°<α<57°。国内过去使用的探头均以入射角标称,如、30°、40°、45°、50°、55°等。近年来,考虑到为使缺陷定位计算方便,故均改用K 值探头(K=tg β)如K=0.8、K=1、K=1.5、K=2、K=2.5、K=3等。国外则普遍用折射角标称,如β=35°、β=45°、β=60°、β=70°、β=80°等。 为保证整个焊缝截面为声束覆盖,当用一次波和二次波探测时,探头的K 值尚须满足下式(见图4–5): K ≥ T b a l ++ (4– 2) 图4–4 焊缝探伤一般方法

超声波探伤仪操作规程

超声波探伤仪操作规程 一.设备开机前的要求: 1.操作者必须持有无损检测技术的资格证书相关资质。应熟悉仪器原理,结构和功能。 掌握正确的操作方法,经考试合格后方可操作。 2.工作前检查仪器各个部位是否完好,电缆绝缘是否良好。 二.接通电源和开机后操作要求 按下电源按钮,直到电源指示灯亮。 三.设备状态检查及自检操作要求 仪器进行自检,自检通过后进入开机动态界面,方可使用。 四.进行正常运行时的具体操作规定 1.进行常规功能状态的调节,包括通道的选择,闸门的调节,波峰记忆、增益调节(db 调节)检测范围调节、零点调节、脉冲位移调节、声速调节、抑制调节。 2.仪器的校准。直探头纵波入射零点校准,斜探头横波入射零点校准,斜探头“K” 值测量。 3.关机后必须停5秒以上的时间后,方可再次开机,切勿反复开关电源开关。

4.清洗干净被检测零件表面油脂及其他污物,在被检测表面上涂上耦合剂,再进行探 伤。 5.连接通讯电缆和打印电缆时,必须在关机的状态下操作。 6.键操作时,不宜用力过猛,不宜用占有油污和泥水的手操作仪器键盘,以免影响键 盘的使用寿命。 7.屏幕上的电源指示灯闪烁时,及时关机,对电池进行充电具体步骤,关掉探伤仪主 机电源,将充电器与主机充电插头接好。接入交流电,充电电源和充电指示灯同时点亮,下方电量指示灯顺序渐亮。充电时间大约为5个半小时到6个小时。电池充满电后充电器自动停止充电,仅电源红灯亮,其余灯灭(开启过程中不要开启探伤仪电源)。 五.工作结束后,设备的操作要求 工作完后,关闭电源关机 六.设备使用完毕后操作要求 1. 进行表面清洁,然后将探伤仪放置于工房内干燥通风的地方。 2. 不可将设备置于高温、潮湿和有腐蚀气体的地方。 3. 准确、及时的填写设备运转记录,并记录使用过程中设备运转情况。

超声波探伤仪操作步骤精编版

超声波探伤仪操作步骤公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

步骤一:校准(显示区只显示A扫图像) (1)声速校准(可同时计算出楔块延时和前沿距离) 1 、直探头(以厚度校准为例) ①范围:根据工件的厚度确定。将一起检测范围调节到大于工件厚度的2倍。 ②声速:5950m/s。 ③探头角度:0度。 ④增益:调节选择适当的增益。 ⑤输入参考点1和参考点2的值。(如下图,参考点1的值为100,参考点2 的值为200) ⑥移动闸门A,套住第一次底波,按压校准键,则回波1已校准。 ⑦移动闸门A,套住第二次底波,按压校准键,则回波2已校准。 (计算公式:v=(s2?s1) t ) 同时可计算出楔块延时:t delay=s2 v ?2(s2?s1) v 2、斜探头(以半径校准为例) ①范围:根据工件的厚度确定。如上图,将扫描范围调节到大于100mm。 ②声速:5950m/s。(是否按横波和纵波) ③探头角度:先输入角度参考值,稍后在校正,角度在这里没有影响。 ④增益:调节选择适当的增益。 ⑤移动探头,找到R100圆弧面的最高反射波,输入参考点1和参考点2的 值。(如上图,参考点1的值为50,参考点2的值为100)。平移探头到试块带R50圆弧面的一侧,使得R50圆弧面的反射波具有一定高度。移动闸门A,选中R50圆弧面回波,按压校准键,则回波1已校准。移动闸门A,选中R100圆弧面回波,按压校准键,则回波2已校准。

(计算公式:v = (s 2?s 1)t ) 同时可计算出楔块延时:t delay =s 2v ?2 (s 2?s 1)v 找到R100圆弧面的最高反射波,则前沿距离x=100-L 。 (2)斜探头角度(K 值)校准 现在范围已调整好,声速及楔块延时已校准。 ① 进入K 值校准菜单 ② 输入孔深:(如下图,30mm ) ③ 输入孔径:(如下图,50mm ) ④ 增益:调节选择适当的增益。 ⑤ 移动探头,找到50mm 圆孔最高反射波。 ⑥ 输入试块上入射点与试块上对齐的K 值,按校准键确认。 (孔深d、孔径D,角度θ=arccos d s +D 2?,K =tanθ) (3)编码器校准 ① 将编码器移动到标记点A ,记下该数值(手工记录位置),按键参考点1,编码器记录相应数值。 ② 再将编码器移动到第二个标记点B ,并记下经过的距离m=B-A 。按键参考点2,发射了x 个脉冲。 ② 输入距离m (单位为mm ),选择校准确认。 (校准结果为x m 个脉冲/mm ) 步骤二:DAC 曲线的制作(手动制作,显示区只显示A 扫图像) 制作距离-波幅曲线的测试点最少要选择两个或两个以上,最多有十个测试点可供选择。(暂时不考虑曲线拟合,直接把相应点连接)

超声波检测方案

40万吨/年航煤加氢精制装置 无损检测工程 超声波检测方案 编制: 审核: 批准: 吉林亚新工程检测有限责任公司 2010年9月

目录 1 编制依据...................................................................................... - 3 -2工艺编制人员资质的审查 .......................................................... - 3 -3使用设备和仪器的审查 .............................................................. - 3 -4使用材料的审查 .......................................................................... - 3 -5方案的确认 .................................................................................. - 3 -6环境的影响 .................................................................................. - 4 -7检测人员....................................................................................... - 4 -8仪器、探头和试块 ...................................................................... - 4 - 9 检测准备...................................................................................... - 5 - 10 压力容器钢板超声检测 ........................................................... - 5 - 11 压力容器锻件超声检测 ........................................................... - 8 -12钢制压力容器焊缝超声检测 .................................................. - 12 -13原始记录 .................................................................................. - 17 - 14 报告发放与存档 ..................................................................... - 17 - 15 HSE总则………………………………………………………错误! 未定义书签。 16 HSE声明………………………………………………………错误! 未定义书签。 17 HSE目的………………………………………………………错误! 未定义书签。 18 HSE适用范围…………………………………………………错误! 未定义书签。

相关主题
文本预览
相关文档 最新文档