当前位置:文档之家› Chemical Composition of the Intracluster Medium

Chemical Composition of the Intracluster Medium

Chemical Composition of the Intracluster Medium
Chemical Composition of the Intracluster Medium

a r

X

i

v

:a

s t

r o

-

p

h

/

3

1

5

5

7v

1

2

O

c

t

2

3

Carnegie Observatories Astrophysics Series,Vol.4:Origin and Evolution of the Elements ed.A.McWilliam and M.Rauch (Cambridge:Cambridge Univ.Press)Abstract Clusters of galaxies are massive enough to be considered representative samples of the Uni-verse,and to retain all of the heavy elements synthesized in their constituent stars.Since most of these metals reside in hot plasma,X-ray spectroscopy of clusters provides a unique and fundamental tool for studying chemical evolution.I review the current observational status of X-ray measurements of the chemical composition of the intracluster medium,and its interpretation in the context of the nature and history of star and galaxy formation pro-cesses in the Universe.I provide brief historical and cosmological contexts,an overview of results from the mature ASCA observatory database,and new results from the Chandra and XMM-Newton X-ray observatories.I conclude with a summary of important points and promising future directions in this rapidly growing ?eld.1.1Introduction 1.1.1Rich Clusters of Galaxies and their Cosmological Setting Rich clusters of galaxies,characterized optically as concentrations of hundreds (or even thousands)of galaxies within a region spanning several Mpc,are among the brightest

sources of X-rays in the sky,with luminosities of up to several 1045erg s ?1.The hot intr-acluster medium (ICM)?lling the space between galaxies has an average particle density n ICM ≈10?3cm ?3and an electron temperature ranging from 20to >100million K.In-terpreted as virial temperatures,these correspond to masses of ~(1?20)×1014M ⊙;rich clusters are believed to be the largest gravitationally bound structures in the Universe.They are also notable for their high fraction (typically ~75%)of member galaxies of early-type morphology,as compared to galaxy groups or the ?eld.Within the framework of large-scale structure theory,rich clusters arise from the largest ?uctuations in the initial random ?eld of density perturbations,and their demographics are sensitive diagnostics of the cosmological world model and the origin of structure (e.g.,Schuecker et al.2003).Rich galaxy clusters are rare and (including their dark matter content)account for less than 2%of the critical density,ρcrit ,characterizing a ?at Universe.

Embedded in the ICM of rich clusters—where 70%?80%of cluster metals reside—lies a uniquely accessible fossil record of heavy element creation.To the extent that the cluster galaxy stars where these metals were synthesized are representative,measurement of ICM chemical abundances provides constraints on nucleosynthesis—and,by extension,the

M.Loewenstein

Table1.1.Mass-to-Light Ratios and Mass Fractions

Parameter Universe Clusters

M.Loewenstein

(Mulchaey2000).Groups present their own unique interpretive challenges.They may not behave as closed boxes and evidently display a spread in their mass inventories,metallici-ties,and morphological mix of galaxies that re?ect the theoretically expected cosmic vari-ance in formation epoch and evolution(Davis,Mulchaey,&Mushotzky1999;Hwang et al. 1999).However,since extending consideration to the poorest groups encompasses most of the galaxies(and stars)in the Universe,it is crucial to study the chemical composition of the intragroup,as well as the intracluster,medium.

1.1.2Advantages of X-ray Wavelengths for Abundance Studies

From both scienti?c and practical perspectives,X-ray spectroscopy is uniquely well suited for studying the chemical composition of the Universe.Most of the metals in the Universe are believed to reside in the intergalactic medium;this is demonstrably true for rich galaxy clusters(e.g.,Finoguenov et al.2003).The concordance in mass breakdown between clusters and the Universe discussed above implies that,because of their deep potential wells, clusters,unlike most,if not all,galaxies,are“closed boxes”in the chemical evolution sense. Thus,modelers are provided with an unbiased and complete set of abundances that enables extraction of robust constraints on the stellar population responsible for metal enrichment.

For high temperatures,such as those found in the ICM,the shape of the thermal contin-uum emission yields a direct measurement of the electron temperature,and thus the ioniza-tion https://www.doczj.com/doc/c57400103.html,plications arising from depletion onto dust grains,optical depth effects,and uncertain ionization corrections are minimal or absent.The energies of K-shell(→n=1) and/or L-shell(→n=2)transitions for all of the abundant elements synthesized after the era of Big Bang nucleosynthesis lie at wavelengths accessible to modern X-ray astronomical telescopes and instruments.The strongest ICM emission lines arise from well-understood H-and He-like ions,and line strengths are immediately converted into elemental abundances via spectral?tting.Of course,the quality and usefulness of X-ray spectra are limited by the available sensitivity and spectral resolution.In the following sections,I detail how the rapid progression in the capabilities of X-ray spectroscopy drives the evolution of our un-derstanding of intracluster enrichment and its ultimate origin in primordial star formation in cluster galaxies.New puzzles are revealed with every insight emerging from subsequent generations of X-ray observatories,a situation that will surely continue with future missions.

1.2Earliest Results on Cluster Enrichment

The6.7keV He-like Fe Kαemission line is the most easily detectable feature in ICM X-ray spectra,because it arises from a high-oscillator strength transition in an abun-dant ion and lies in a relatively isolated wavelength region.It was?rst detected in the Ariel V spectrum of the Perseus cluster(Mitchell et al.1976),and OSO-8observations of the Perseus,Coma,and Virgo Clusters(Serlemitsos et al.1977).Spectroscopic analysis of ~30clusters(many observed with the HEAO-1A-2satellite)revealed the ubiquity of this feature at a strength generally indicating an ICM Fe abundance of one-third to one-half solar (Mushotzky1984).These early results demonstrated the origin of cluster X-ray emission as a thermal primordial plasma enriched by material processed in stars and ejected in galactic winds.Although not immediately realized,this provided the?rst indications of the prodi-gious magnitude of galactic out?ows,since the measured amount of ICM Fe was of the same order as the sum of the Fe in all of the stars in all of the cluster galaxies.

Prior to1993,Fe was the only element accurately measured in a large number of clusters,

M.Loewenstein

although some pioneering measurements of O,Mg,Si,and S features were obtained with the Solid State Spectrometer and Focal Plane Crystal Spectrometer aboard the Einstein X-ray Observatory(see Sarazin1988and references therein for these results,as well as a complete survey of the?eld prior to the the launch of the ROSAT and Advanced Satellite for Cosmology and Astrophysics(ASCA)X-ray observatories).Given the ambiguous origins of Fe,known to be synthesized in comparably large quantities by both Type Ia and Type II supernovae(henceforth,SNe Ia and SNe II)integrated over the history of the Milky Way,this represented a serious impediment to interpreting the data in terms of star formation history. Fortunately,the launch of ASCA provided the means to utilize the ICM as a repository of information on historical star formation and element creation.

1.3ICM Abundances from the ASCA Database

With the combination of modest imaging capability,good spectral resolution,and large collecting area over a broad X-ray bandpass realized by its four telescope/detector pairs,the ASCA X-ray Observatory ushered in a new era of X-ray spectroscopy of astrophys-ical plasmas and revolutionized cluster elemental abundance studies(Arnaud et al.1994; Bautz et al.1994;Fukazawa et al.1994).The clusters with accurate Fe abundance de-terminations cover a range of redshifts out to z≈0.5.This enabled the?rst investigation of the evolution of[Fe/H],as needed to understand the epoch and mechanism of enrich-ment(Mushotzky&Loewenstein1997).The?rst results on gradients in ICM metallicity and abundance ratios were obtained(see§1.5),and the?rst signi?cant sample ofα-element abundances were measured with ASCA.Well over400observations of galaxy clusters and groups were made over the1993–2000duration of the ASCA mission.Because the ASCA data archive is now complete,and a comparable database based on observations with the current generation of X-ray observatories is many years away,an assessment of ASCA ICM enrichment results is timely.

The ASCA Cluster Catalog(ACC)project(Horner et al.2004),initiated by K.Gendreau (NASA/GSFC),is the subject of the University of Maryland Ph.D.theses of D.Horner and W.Baumgartner,and includes contributions from R.Mushotzky,C.Scharf,and the au-thor.Its overarching goal is to perform uniform and semi-automated spectral analysis on the integrated X-ray emission from every target in the ASCA cluster observational database,uti-lizing the most current processing and calibration.ASCA observed434galaxy clusters and groups in564pointings.Among these,273clusters are deemed suitable for spectroscopy, superseding previous samples(e.g.,White2000)by more than a factor of2.

1.3.1Fe Abundance Trends

The Fe abundance shows a remarkable uniformity in rich clusters,with a distribu-tion that sharply peaks at~0.4solar(where solar Fe abundance is de?ned such that log (Fe/H)+12=7.5;Grevesse&Sauval1998).The Fe abundance tends to be higher in clus-ters with the highest central densities and shortest cooling times(see also Allen&Fabian 1998).It is unclear from these data alone whether this is an artifact of the presence of Fe gradients:since the X-ray emissivity is proportional to the gas density squared,X-ray spec-tra of more concentrated ICM are disproportionately weighted toward the more abundant central regions.There are also systematic trends with electron temperature,with Fe tending to be overabundant with respect to the average de?ned by the hottest clusters,for clusters with ICM temperatures2keV

M.Loewenstein

Fig.1.1.Average abundances with respect to the solar abundances of Grevesse&Sauval (1998)as a function of temperature.90%con?dence errors are shown.(From Baumgartner et al.2004.)

ASCA data revealed evidence for a lack of evolution in Fe abundance out to redshift0.4 (Mushotzky&Loewenstein1997;Rizza et al.1998;Matsumoto et al.2000,2001)and no evidence of a decline at higher redshift(Donahue et al.1999).XMM-Newton and Chan-dra measurements are further expanding the redshift range of precise cluster Fe abundance

M.Loewenstein

measurements(Jeltema et al.2001;Arnaud et al.2002;Maughan et al.2003;Tozzi et al. 2003).On average,rich cluster Fe abundances are invariant out to z≈0.8,and show no sign of decline out to z≈1.2.The epoch of cluster enrichment is yet to be identi?ed.Most of the star formation in the Universe occurred at z>1(Madau et al.1996;Lanzetta et al. 2002;Dickinson et al.2003),and fundamental plane considerations imply that most stars in clusters formed at z>2(van Dokkum et al.1998;J?rgensen et al.1999).Therefore,one expects synthesis of most cluster metals prior to the redshifts where they can presently be observed.However,it does not necessarily follow that the metals are in place in the ICM at such early epochs.As observations push back the enrichment era,scenarios where ICM metal injection from galaxies rapidly follows their synthesis during the early period of active star formation are favored over those with delayed metal release from galaxies,for example, via ongoing SN Ia-driven winds or stripping of enriched galaxy gas halo.

1.3.2Metallicities,Abundance Patterns,and their Interpretation

Although often blended,emission features from O,Ne,Mg,Si,S,Ar,Ca,Fe,and Ni were measured in ASCA spectra of individual clusters.However,most of these are not detectable for the vast majority of the273observed systems.In order to obtain abundances with small statistical uncertainties,and smooth over both instrumental and astrophysical systematic effects and biases,Baumgartner et al.(2004)undertook joint analyses of multiple observations grouped into“stacks”of13–47clusters(Baumgartner et al.2004)according to temperature(11keV-wide bins centered on temperatures from0.5–10.5keV)and metallicity (high-and low-abundance bins).Ultimately,the two abundance stacks were merged for each temperature,and mean Si,S,Ar,Ca,Fe,and Ni abundances proved robust and reliable.

The results of the stacking analysis are summarized as follows(Fig.1.1).For rich clusters (kT>4keV),the ratio of Si to Fe is1.5?3times solar and displays an increasing trend with temperature.However,in contrast,the S-to-Fe ratio is solar or less(i.e.Si/S≈3times solar), and Ar and Ca are markedly subsolar with respect to Fe.The Ni-to-Fe ratio is3?4times solar in these systems.This con?rms and generalizes previous results(Mushotzky et al. 1996;Fukazawa et al.1998;Dupke&White2000a;Dupke&Arnaud2001).Intermediate-to-poor clusters(2keV

Baumgartner et al.(2004)compare these ratios with those in various other systems, including the Galactic thin(Fig.1.3)and thick disks,damped Lyαsystems,Lyman-break galaxies,and the Lyαforest.In general,the high Si/Fe is not out of line with other systems of comparable Fe/H inferred to undergo rapid and ef?cient conversion of gas into stars. However,the low ratios of Ca to Fe and S to Si,and the high ratio of Ni to Fe evidently are unique to the ICM:a clear analog among observed classes of systems to the population responsible for enriching the ICM is not evident.

M.Loewenstein

Fig.1.2.Si/Fe and S/Fe ratios vs.Fe/H ratio,expressed as the logarithm with respect to solar.(From Baumgartner et al.2004.)

Fig.1.3.Si/Fe and S/Fe ICM abundances vs.kT compared to those found in the Milky Way from Timmes,Woosley,&Weaver(1995).The range of Galactic Si/Fe is illustrated with the lower shaded rectangle,S/Fe with the upper,overlapping rectangle(Baumgartner et al. 2004).

M.Loewenstein

Fig.1.4.Decomposition into SNe Ia and SNe II,using standard yields and the observed Si/Fe and S/Fe ratios,expressed in terms of the fraction of Fe from SNe Ia.(From Baum-gartner et al.2004.)

1.4On the ICM Abundance Anomalies

Since bulges account for~90%of the stellar mass in clusters,it is straightforward to estimate ICM enrichment under standard assumptions.Consider a simple stellar pop-ulation with a local IMF(e.g.,Kroupa2001),assume that stars more massive than8M⊙explode as SNe II,that the rate of SN Ia explosions is as determined in nearby elliptical galaxies(0.16SNU,where1SNU≡1SN per1010solar blue luminosities per century; Cappellaro,Evans,&Turatto1999)and injected for a duration of1010yr,and utilize SNe II and SNe Ia(“W7”model)yields from Nomoto et al.(1997a,b)with the former averaged over a standard IMF extending to40M⊙as in Thielemann,Nomoto,&Hashimoto(1996). The fractions of Fe originating in SNe Ia separately inferred from the Si/Fe and S/Fe ratios are shown in Figure1.4,illustrating that no combination of standard SNe Ia and SNe II can explain the ICM abundance pattern.Baumgartner et al.(2004)demonstrate that this holds regardless of which published SN II yields are considered(see also Gibson,Loewenstein,& Mushotzky1997;Loewenstein2001).

In addition to ratios,it is instructive to consider the ICM mass in metals,normalized to the total starlight in cluster galaxies.Table1.2compares the mass-to-light ratios of the elements addressed in the stacking analysis,computed using the standard assumptions detailed above, with the observed averages in three ICM temperature regimes.The predicted SN II and SN Ia

M.Loewenstein

Table1.2.Metal Mass-to-Light Ratios

Predicted Observed SNe II SNe Ia SNe Ia SNe II kT>84

M.Loewenstein

Fig.1.5.Relative contributions to the enrichment of various elements in a typical clusters for a toy model including Population III hypernovae in addition to SNe Ia and SNe II in standard numbers with standard yields(Baumgartner et al.2004).

the ICM abundance anomalies,their existence demonstrates that there are nucleosynthetic channels—likely associated with very massive and/or very metal-poor stars—that result in relative enhancements of Si.Figure1.5shows the respective contributions of SNe Ia,SNe II, and hypernovae(Heger&Woosley2002)to each element in a toy model that reproduces a typical rich cluster ICM abundance pattern(Baumgartner et al.2004).

There are now possible signatures of Population III and hypernovae in the level and pat-tern of enrichment in low-metallicity Milky Way stars(Umeda&Nomoto2003),in the level and epoch of intergalactic medium enrichment as inferred from the Lyαforest(Songaila 2001),and in the reionization of the Universe(e.g.,Wyithe&Loeb2003).The number of hypernovae required in the ICM is reasonable in terms of the expected number of Population III progenitors(Loewenstein2001).

1.5Chandra and XMM-Newton Results on Abundance Gradients

ASCA data revealed clear evidence of central excesses of Fe in clusters with cooling ?ows and in clusters not involved in recent major mergers(Matsumoto et al.1996;Ezawa et al.1997;Ikebe et al.1997,1999;Xu et al.1997;Kikuchi et al.1999;Dupke&White 2000a,b),which are consistent with generally?at metallicity pro?les outside of the central ~2′(Tamura et al.1996;Irwin,Bregman,&Evrard1999;White2000).Limitations in ASCA imaging precluded resolving gradients in Fe or drawing robust conclusions on the

M.Loewenstein

spatial distribution ofα/Fe ratios,although there were indications thatαelements may not display the central excess(Finoguenov et al.2000;Fukazawa et al.2000;Allen et al.2001). BeppoSAX provided Fe pro?les with better spatial resolution,and De Grandi&Molendi (2001)attributed the central Fe excess to injection by SNe Ia associated with the stellar population in the central cluster galaxy.If this is the case,milder or absent central excesses in SN II-synthesizedαelements are expected,as claimed by Finoguenov et al.(2000).

These questions of gradients in abundance ratios are addressed through observations with the Chandra(Weisskopf et al.2002)and XMM-Newton(Jansen et al.2001)X-ray obser-vatories.The former represents a huge leap in broad-bandpass imaging,with an angular resolution~0.′′5,the latter in collecting area(a total of~5times that of ASCA,with an order of magnitude better angular resolution).New results demonstrate that the central Fe excess is concentrated to within100kpc of the cluster center(Iwasawa et al.2001;Kaastra et al.2001;Lewis,Stocke,&Buote2002;Smith et al.2002),that there may be a central metallicity inversion(Johnstone et al.2002;Sanders&Fabian2002;Schmidt,Fabian,& Sanders2002;Blanton,Sarazin,&McNamara2003;Dupke&White2003),and that abun-dance pro?les are generally very?at from~100kpc out to a signi?cant fraction of the virial radius(Schmidt,Allen,&Fabian2001;Tamura et al.2001).The apparent inversion may be an artifact of using an oversimpli?ed model in spectral?tting(Molendi&Gastaldello 2001).The question of the presence ofα/Fe gradients is not yet de?nitively settled(David et al.2001),although early results indicate a mix of abundances in the central regions that is closer to the SN Ia pattern than is globally the case(Tamura et al.2001;Ettori et al.2002).

1.6XMM-Newton RGS Measurements of CNO

The XMM-Newton Re?ection Grating Spectrometer provides high-spectral resolu-tion(E/?E ranges from200to800over the0.35–2.5keV RGS bandpass;den Herder et al.2003)spectroscopy in the wavelength region containing the strongest X-ray features of the elements carbon through sulfur.Since individual lines are more distinctly resolved than in previous studies using CCD spectra(where E/?E≈50),abundance determinations are much less sensitive to the assumed thermal emission model.C,N,and O lines are all widely accessible for the?rst time.These are unique probes of star formation and the era of ICM enrichment because of their distinctive nucleosynthetic origins.For an extended X-ray source such as a galaxy cluster,RGS spectra correspond to an emission-weighted average over the inner~1′(see Peterson et al.2003)—within the central galaxy(if there is one)for a nearby cluster;thus,caution must be exercised in applying the results to the source as a whole.

1.6.1Oxygen

The strong0.65keV OV III Lyαfeature is measured with XMM-Newton in clusters out to redshifts as high as0.3.The O/Fe ratio for the sample of cooling?ow clusters in Peterson et al.(2003)is shown in Figure1.6.[Note that Peterson et al.adopt the de?nition of solar abundances from Anders&Grevesse(1989),where log(Fe/H)+12=7.67and log(O/H)+12=8.93,~1.5and~1.7times higher than currently more commonly used “cosmic abundances”of Fe and O,respectively.]O/Fe is generally subsolar,and overlaps with the range measured in Galactic stars of comparable Fe/H(Reddy et al.2003).Low O abundances were previously reported in Abell1795(Tamura et al.2001a),Abell1835 (Peterson et al.2001),Sèrsic159-03(Kaastra et al.2001),Abell496(Tamura et al.2001b),

M.Loewenstein

Fig.1.6.O/Fe vs.Fe for cooling?ow clusters.(Adapted from Peterson et al.2003.) NGC5044,the central(elliptical)galaxy in the WP23group(Tamura et al.2003),and the elliptical galaxy NGC4636(Xu et al.2002),which resembles a group in X-rays.The Galactic O/Fe-Fe/H trend is thought to re?ect the delayed enrichment in Fe from SNe Ia relative to that of O from short-lived,massive SN II progenitors.In the intergalactic medium of clusters and groups,we may be seeing systematic variations in the relative stellar lock-up fractions of SN II and SN Ia products,relative retention of injected SN II and SN Ia material,or IMF.Low O/Si ratios in these systems were interpreted as a possible signature of enrichment by hypernovae associated with Population III(Loewenstein2001).Intriguingly, as shown in Figure1.7,Mg appears not be a good surrogate for O,as often assumed in studies of elliptical galaxies.

1.6.2Carbon and Nitrogen

The Lyαlines of the H-like ions of C and N are weak compared to O,and fall in a less sensitive and less well-calibrated wavelength region of the RGS.As a result,there presently are few measurements of C and N:C and N in A496and M87(Peterson et al. 2003)and N in the elliptical galaxies NGC4636(Xu et al.2002)and NGC5044(Tamura et al.2003).N is of particular interest,since its origin in intermediate-mass stars provides

M.Loewenstein

Fig.1.7.Mg/Fe and Mg/O vs.Fe for cooling?ow clusters.(From Peterson et al.2003.) crucial leverage in distinguishing the mass function of the enriching stellar population.In these objects C(when measured)and N are~solar,and C/O and N/O are~twice solar[solar as in Anders&Grevesse1989:loG(C/H)+12=8.56,log(N/H)+12=8.05].On a plot of N/O vs.O/H,these systems overlap with measurements in extragalactic H II regions(Pettini et al.2002),where the secondary production of N dominates,but do extend to somewhat higher N/O at the same O/H.

1.7XMM-Newton Observations of M87

Because of its brightness,M87in the Virgo cluster is among the most extensively X-ray spectroscopically studied extended extragalactic objects.Its proximity enables one to extract detailed plasma conditions and composition,and to evaluate and correct for sys-tematic effects.Previous work based on spectra from the Einstein(Canizares et al.1982; Stewart et al.1984;White et al.1991;Tsai1994a,b),ROSAT(Nulsen&Bohringer1995; Buote2001),and ASCA(Matsumoto et al.1996;Hwang et al.1997;Buote,Canizares, &Fabian1999;Finoguenov&Jones2000;Shibata et al.2001)observatories is rapidly becoming superseded by Chandra and XMM-Newton data.

The RGS results for M87show that,in the inner~10kpc,abundances of C,N,Ne,and Mg have best-?t values(relative to Anders&Grevesse1989)of0.7–1.0solar,with90% uncertainties of0.2–0.3,while Fe is0.77±0.04solar,and O0.49±0.04solar(Sakelliou et al.2002).With respect to the M87stellar abundances(Milone,Barbuy,&Schiavon2000), theαelements are apparently preferentially diluted with respect to Fe.

Gastaldello&Molendi(2002)derive detailed abundance distributions from analysis of XMM-Newton EPIC-MOS CCD data,obtaining O,Ne,Mg,Si,Ar,Ca,Fe,and Ni in10 radial bins extending to14′.The MOS results are generally consistent with the RGS and indicate negative gradients on arcminute scales in all of the elements,with the possible exception of Ne.Gradients inα/Fe ratios are modest.Ratios with respect to Fe vary among theαelements:O/Fe,Ne/Fe,Mg/Fe,and S/Fe are subsolar;Si/Fe,Ar/Fe,and Ca/Fe are slightly supersolar.Ni/Fe increases from~1.5solar in the center to~2.5solar at50kpc.

M.Loewenstein

Not surprisingly,Gastaldello&Molendi?nd that no unique combination of published SN Ia (either de?agration or delayed detonation models)and SN II yields is consistent with the full abundance pattern at any radius.Moreover,the combination of SN subtypes that provides the best?t varies with radius(i.e.delayed detonation models provide a better?t in the center, W7further out where Ni/Fe is greater).

Finoguenov et al.(2002)utilize a cruder spatial division,thus obtaining higher precision for individual abundances(this is enhanced by their inclusion of XMM-Newton EPIC-PN CCD data).They propose explaining the observed abundance pattern and its radial varia-tion with(1)a radially increasing SN II/SN Ia ratio,(2)high Si and S yields from SNe Ia (favoring delayed detonation models)and an ad hoc reduction in SN II S yields,and(3) a radial variation in SN Ia yields(corresponding to delayed detonation models with differ-ent de?agration-to-detonation transition densities).As they note,de?agration models must also play a role to account for the high Ni/Fe ratio found in other clusters.Whether such a complex model can coherently explain cluster abundance patterns in general is unclear. Matsushita,Finoguenov,&Bohringer(2003)follow this up with more sophisticated ther-mal modeling,and an analysis that includes individual line ratios,and they reach conclusions that are qualitatively similar in terms of the outwardly increasing importance of SNe II,the diversity of SNe Ia,and the yields of Si and S.

It is important to keep in mind that these new results are for the central~70kpc—still well within the in?uence of the M87galaxy.The larger-scale cluster plasma(as studied in the ACC project discussed above)is not as profoundly affected by SNe Ia,and,indeed,there are indications of a transition to a more cluster-like abundance pattern at large radii in M87 (Finoguenov et al.2002).In fact,the narrowing redshift window when the Fe in clusters must be synthesized and mixed into the ICM,as inferred from the lack of Fe abundance evolution,is becoming comparable to the time delay characteristic of many models of SN Ia explosions.

1.8Concluding Remarks

The era of high-precision X-ray spectroscopy has arrived.Accurate and robust measurements can now be made of abundances and their variation in space and time,for a wide variety of elements in intracluster and intragroup media.This enables astronomers to utilize the ICM,where metals synthesized in cluster galaxy stars over the age of the Universe accumulated,as a laboratory for testing theories of the environmental dependence and impact of star formation.

1.8.1Mean ICM Metallicities and Redshift Dependence

There are now hundreds of measurements,out to redshifts greater than1,of Fe abundances and many tens of measurements(or signi?cant upper limits)of Si,S,Ar,Ca,and Ni.The distribution function of Fe abundance outside of the central regions in rich clusters is sharply peaked around~0.4solar,and shows no evidence of a decline with increasing redshift out to z≈1.With the average Fe yield per current mass of stars~3times solar,a prodigious rapid enrichment is implied:a time average of~0.1M⊙yr?1of Fe per(present-day)L?galaxy integrated over2Gyr.This is equivalent to the nucleosynthetic yield of~1 SN II yr?1per L?galaxy,corresponding to~100M⊙yr?1per L?galaxy forming stars with a Salpeter IMF,or~20SNU of SNe Ia!As a point of reference,note that the mean star formation rate in the Universe at high redshift,normalized to the cluster light,is~0.02

M.Loewenstein

M⊙yr?1per L?galaxy.So,despite a stellar fraction consistent with the universal average, several times the amount of metals that might be expected was synthesized in clusters.It is intriguing that Lyman-break galaxies were enriched to similar levels on a comparably brief time interval.In the extreme overdense regions that represent clusters of galaxies, the primordial IMF was skewed toward high masses,or an additional separate primordial population of massive stars was present.Clusters are thus strong candidates for the source of the missing metals at z≈3(Finoguenov et al.2003),even though only about5%of the total universal baryon content resides in clusters.

1.8.2Abundance Gradients

Centrally concentrated(<100kpc)excesses in Fe are common,and evidently ex-clusively occur in those clusters that can be characterized either as cooling?ow clusters,as clusters with a massive central galaxy,or as clusters without recent major merging activity. An explanation of this phenomenon awaits additional Chandra and XMM-Newton results on the radial distribution ofαelements.Early indications are that SNe Ia play a more impor-tant role at the location of central cluster galaxies,although other giant elliptical galaxies evidently did not retain such large masses of interstellar Fe.Metallicity gradients evidently are mild or absent beyond these central regions.

1.8.3Abundance Patterns

There is more Si,Fe,and Ni than one might expect based on the observed stellar population.The relative abundances of elements measured in the ICM show clear depar-tures from solar ratios and the abundance pattern in the Galactic disk and other well-studied galactic and protogalactic systems.The ICM abundance pattern shows systematic variations with ICM temperature(i.e.cluster gravitational potential well depth).These variations are apparent even in the relative abundances,which are not generally in solar ratios,among dif-ferentαelements(O,Mg,Si,S,Ar,and Ca).Contribution from an additional,primordial source of metals may be required to?nally explain these anomalies.The ICM Ni/Fe ratio is 2?4times solar,higher than in any other known class of object where this ratio is measured. Since both Fe and Ni are ef?ciently synthesized in SNe Ia,and given the importance of SNe Ia as fundamental probes of the cosmological world model,the origin of the Ni excess is clearly worthy of further investigation.

1.8.4The Future

As the Chandra and XMM-Newton cluster databases mature,one can expect many more measurements of abundance gradients(ofαelements,as well as Fe),tight constraints on the evolution of Si and O abundances out to z>0.4and Fe out to z>1,and additional accurate measurements of C and N.ASTRO-E2,scheduled for launch in2005,will provide true spatially resolved,high-resolution X-ray spectroscopy,which will yield cleaner mea-surements of N,O,Mg,and Ne,and their gradients.

Acknowledgements.I would like to acknowledge the organizers for their kind invitation to participate in this meeting,and for all of their efforts in assembling the conference and these proceedings.My gratitude extends to Richard Mushotzky and Wayne Baumgartner for their assistance in preparing this review.

M.Loewenstein

References

Allen,S.W.,&Fabian,A.C.1998,MNRAS,297,L63

Allen,S.W.,Fabian,A.C.,Johnstone,R.M.,Arnaud,K.A.,&Nulsen,P.E.J.2001,MNRAS,322,589 Anders,E.,&Grevesse,N.1989,Geochim.Cosmochim.Acta,53,197

Arnaud,K.A.1994,ApJ,436,L67

Arnaud,M.,et al.2002,A&A,390,27

Bahcall,N.A.,&Comerford,J.M.2002,ApJ,565,L5

Baumgartner,W.H.,Loewenstein,M.,Horner,D.J.,&Mushotzky,R.F.2004,ApJ,submitted

Bautz,M.W.,Mushotzky,R.,Fabian,A.C.,Yamashita,K.,Gendreau,K.C.,Arnaud,K.A.,Crew,G.B.,& Tawara,Y.1994,PASJ,46,L131

Bell,E.F.,McIntosh,D.H.,Katz,N.,&Weinberg,M.D.2003,ApJ,585,L117

Blanton,E.L.,Sarazin,C.L.,&McNamara,B.R.2003,ApJ,585,227

Buote,D.A.2001,ApJ,548,652

Buote,D.A.,Canizares,C.R.,&Fabian,A.C.1999,MNRAS,310,483

Canizares,C.R.,Clark,G.W.,Jernigan,J.G.,&Markert,T.H.1982,ApJ,262,33

Cappellaro,E.,Evans,R.,&Turatto,M.1999,A&A,351,459

Davé,R.,et al.2001,ApJ,552,473

David,L.P.,Nulsen,P.E.J.,McNamara,B.R.,Forman,W.,Jones,C.,Ponman,T.,Robertson,B.,&Wise,M. 2001,ApJ,557,546

Davis,D.S.,Mulchaey,J.S.,&Mushotzky,R.F.1999,ApJ,511,34

De Grandi,S.,&Molendi,S.2001,ApJ,551,153

den Herder,J.-W.,et al.2003,SPIE,4851,196

Dickinson,M.,Papovich,C.,Ferguson,H.C.,&Budavàri,T.2003,ApJ,587,25

Donahue,M.,V oit,G.M.,Scharf,C.A.,Gioia,I.M.,Mullis,C.R.,Hughes,J.P.,&Stocke,J.T.1999,ApJ,527, 525

Dupke,R.A.,&Arnaud,K.A.2001,ApJ,548,141

Dupke,R.A.,&White,R.E.III2000a,ApJ,528,139

——.2000b,ApJ,537,123

——.2003,ApJ,583,L13

Ettori S.,&Fabian A.C.1999,MNRAS,305,834

Ettori S.,Fabian A.C.,Allen,S.W.,&Johnstone,R.M.2002,MNRAS,305,834

Evrard,A.E.1997,MNRAS,292,289

Ezawa,H,Fukazawa,Y.,Makishima,K.,Ohashi,T.,Takahara,F,Xu,H.,&Yamasaki,N.Y.1997,ApJ,490,L33 Finoguenov,A.,Burkert,A.,&Bohringer,H.2003,ApJ,594,136

Finoguenov,A.,David,L.P.,&Ponman,T.J.2000,ApJ,544,188

Finoguenov,A.,&Jones,C.2000,ApJ,539,603

Finoguenov,A.,Matsushita,K.,Bohringer,H.,Ikebe,Y.,&Arnaud,M.2002,A&A,381,21

Fukazawa,Y.,et al.1998,PASJ,50,187

Fukazawa,Y.,Makishima,K.,Tamura,T.,Nakazawa,K.,Ezawa,H.,Ikebe,Y.,Kikuchi,K.,&Ohashi,T.2000, MNRAS,313,21

Fukazawa,Y.,Ohashi,T.,Fabian,A.C.,Canizares,C.R.,Ikebe,Y.,Makishima,K.,Mushotzky,R.F.,& Yamashita,K.1994,PASJ,46,L55

Fukugita,M.,Hogan,C.J.,&Peebles,P.J.E.1998,ApJ,312,518

Gastaldello,F.,&Molendi,S.2002,ApJ,572,160

Gibson,B.K.,Loewenstein,M.,&Mushotzky,R.F.1997,MNRAS,290,623

Girardi,M.,Manzato,P.,Mezzetti,M.,Giuricin,G.,&Limboz,F.2002,ApJ,569,720

Grevesse,N.,&Sauval,A.J.1998,Space Science Reviews,85,161

Heger,A.,&Woosley,S.E.2002,ApJ,567,532

Horner,D.J.,et al.2004,ApJS,submitted

Hwang,U.,Mushotzky,R.F.,Burns,J.O.,Fukazawa,Y.,&White,R.A.1999,ApJ,516,604

Hwang,U.,Mushotzky,R.F.,Loewenstein,M.,Markert,T.H.,Fukazawa,Y.,&Matsumoto,H.1997,ApJ,476, 560

Ikebe,Y.,et al.1997,ApJ,481,660

Ikebe,Y.,Makishima,K.,Fukazawa,Y.,Tamura,T.,Xu,H.,Ohashi,T.,&Matsushita,K.1999,ApJ,525,58 Irwin,J.A.,Bregman,J.N.,&Evrard,A.E.1999,ApJ,519,518

M.Loewenstein

Iwasawa,K.,Fabian,A.C.,Allen,S.W.,&Ettori,S.2001,MNRAS,328,L5

Jansen,F.,et al.2001,A&A,365,L1

Jeltema,T.E.,Canizares,C.R.,Bautz,M.W.,Malm,M.R.,Donahue,M.,&Garmire,G.2001,ApJ,562,124 Johnstone,R.M.,Allen,S.W.,Fabian,A.C.,&Sanders,J.S.2002,MNRAS,336,299

J?rgensen,I.,Franx,M.,Hjorth,J.,&van Dokkum,P.G.1999,MNRAS,308,833

Kaastra,J.S.,Ferrigno,C.,Tamura,T.,Paerels,F.B.S.,Peterson,J.R.,&Mittaz,J.P.D.2001,A&A,365,L99 Kikuchi,K.,Furusho,T.,Ezawa,H.,Yamasaki,N.Y.,Ohashi,T.,Fukazawa,Y.,&Ikebe,Y.1999,PASJ,51,301 Kroupa,P.2001,MNRAS,322,231

Lanzetta,K.M.,Yahata,N.,Pascarelle,S.,Chen,H.-W.,&Fernández-Soto,A.2002,ApJ,570,492

Lewis,A.D.,Stocke,J.T.,&Buote,D.A.2002,ApJ,573,L13

Lin,Y.-T.,Mohr,J.J.,&Stanford,S.A.2003,ApJ,591,749

Loewenstein,M.2001,ApJ,557,573

Loewenstein,M.,&Mushotzky,R.F.1996,ApJ,466,695

Madau,P.,Ferguson,H.C.,Dickinson,M.E.,Giavalisco,M.,Steidel,C.C.,&Fruchter,A.1996,MNRAS,283, 1388

Madau,P.,&Pozzetti,L.2000,MNRAS,312,L9

Matsumoto,H.,Koyama,K.,Awaki,H.,Tomida,H.,Tsuru,T.,Mushotzky,R.,&Hatsukade,I.1996,PASJ,48, 201

Matsumoto,H.,Pierre,M.,Tsuru,T.G.,&Davis,D.2001,A&A,374,28

Matsumoto,H.,Tsuru,T.G.,Fukazawa,Y.,Hattori,M.,&Davis,D.2000,PASJ,52,153

Matsushita,K.,Finoguenov,A.,&Bohringer,H.2003,A&A,401,443

Maughan,B.J.,Jones,L.R.,Ebeling,H.,Perlman,E.,Rosati,P.,Frye,C.,&Mullis,C.R.2003,ApJ,587,589 Milone,A.,Barbuy,B.,&Schiavon,R.P.2000,AJ,120,131

Mitchell,R.J.,Culhane,J.L.,Davison,P.J.,&Ives,J.C.1976,MNRAS,175,29p.

Mohr,J.J.,Mathiesen,B.,&Evrard,A.E.1999,ApJ,517,627

Molendi,S.,&Gastaldello,F.2001,A&A,375,L14

Mulchaey,J.S.2000,ARA&A,38,289

Mushotzky,R.F.1984,Phys.Scripta T7,157

Mushotzky,R.F.,&Loewenstein,M.1997,ApJ,481,L63

Mushotzky,R.,Loewenstein,M.,Arnaud,K.A.,Tamura,T.,Fukazawa,Y.,Matsushita,K.,Kikuchi,K., Hatsukade,I.1996,ApJ,466,686

Nomoto,K.,Hashimoto,M.,Tsujimoto,T.,Thielemann,F.-K.,Kishimoto,N.,Kubo,Y.,&Nakasato,N.1997a, Nuclear Physics A,616,79

Nomoto,K.,Iwamoto,K.,Nakasato,N.,Thielemann,F.-K.,Brachwitz,F.,Tsujimoto,T.,Kubo,Y.,&Kishimoto, N.1997b,Nuclear Physics A,621,467

Nulsen,P.E.J.,&Bohringer,H.1995,MNRAS,274,1093

Peterson,J.R.,et al.2001,A&A,365,L104

Peterson,J.R.,Kahn,S.M.,Paerels,F.B.S.,Kaastra,J.S.,Tamura,T.,Bleeker,J.A.M.,Ferrigno,C.,& Jernigan,J.G.2003,ApJ,590,207

Pettini,M.,Ellison,S.L.,Bergeron,J.,&Petitjean,P.2002,A&A,391,21

Reddy,B.E.,Tomkin,J.,Lambert,D.L.,&Allende Prieto,C.2003,MNRAS,340,304

Rizza,E.,Burns,J.O.,Ledlow,M.J.,Owen,F.N.,V oges,W.,&Bliton,M.1998,MNRAS,301,328 Sakelliou,I.,et al.2002,A&A,391,903

Sanders,J.S.,&Fabian,A.C.2002,MNRAS,331,273

Sarazin,C.L.1988,X-ray Emission from Clusters of Galaxies(Cambridge:Cambridge Univ.Press) Schmidt,R.W.,Allen,S.W.,&Fabian,A.C.2001,MNRAS,327,1057

Schmidt,R.W.,Fabian,A.C.,&Sanders,J.S.2002,MNRAS,337,71

Schuecker,P.,Bohringer,H.,Collins,C.A.,&Guzzo,L.2003,A&A,398,867

Serlemitsos,P.J.,Smith,B.W.,Boldt,E.A.,Holt,S.S.,&Swank,J.H.1977,ApJ,211,L63.

Shibata,R.,Matsushita,K.,Yamasaki,N.Y.,Ohashi,T.,Ishida,M.,Kikuchi,K.,Bohringer,H.,&Matsumoto,H. 2001,ApJ,549,228

Smith,D.A.,Wilson,A.S.,Arnaud,K.A.,Terashima,Y.,&Young,A.J.2002,ApJ,565,195

Songaila,A.2001,ApJ,561,L153(erratum:2002,568,L139)

Spergel,D.N.,et al.2003,ApJS,148,175

Stewart,G.C.,Fabian,A.C.,Nulsen,P.E.J.,&Canizares,C.R.1984,ApJ,278,536

Tamura,T.,et al.1996,PASJ,48,671

——.2001b,A&A,365,L87

M.Loewenstein

Tamura,T.,Bleeker,J.A.M.,Kaastra,J.S.,Ferrigno,C.,&Molendi,S.2001a,A&A,379,107

Tamura,T.,Kaastra,J.S.,Makishima,K.,&Takahashi,I.2003,A&A,399,497

Thielemann,F.-K.,Nomoto,K.,&Hashimoto,M.1996,ApJ,460,408

Timmes,F.X.,Woosley,S.E.,&Weaver,T.A.1995,ApJS,98,617

Tozzi,P.,Rosati,P.,Ettori,S.,Borgani,S.,Mainieri,V.,&Norman,C.2003,ApJ,593,705

Tsai,J.C.1994a,ApJ,423,143

——.1994b,ApJ,429,119

Umeda,H.,&Nomoto,K.2003,Nature,422,871

van Dokkum,P.G.,Franx,M.,Kelson,D.D.,&Illingworth,G.D.1998,ApJ,504,L17

Weisskopf,M.C.,Brinkman,B.,Canizares,C.,Garmire,G.,Murray,S.,&Van Speybroeck,L.P.2002,PASP, 114,1

White,D.A.2000,MNRAS,312,663

White,D.A.,Fabian,A.C.,Johnstone,R.M.,Mushotzky,R.F.,&Arnaud,K.A.1991,MNRAS,312,663 White,S.D.M.,Navarro,J.F.,Evrard,A.E.,&Frenk,C.S.1993,Nature,366,429

Woosley,S.E.,&Weaver,T.A.1995,ApJS,101,181

Wyithe,S.,&Loeb,A.2003,ApJ,588,L69

Xu,H.,et al.2002,ApJ,579,600

Xu,H.,Ezawa,H.,Fukazawa,Y.,Kikuchi,K.,Makishima,K.,Ohashi,T.,&Tamura,T.1997,PASJ,49,9

尊重的素材

尊重的素材(为人处世) 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺术,也是仁爱的情操。—刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚 尊重别人,才能让人尊敬。———笛卡尔 谁自尊,谁就会得到尊重。———巴尔扎克 人应尊敬他自己,并应自视能配得上最高尚的东西。———黑格尔 对人不尊敬,首先就是对自己的不尊敬。———惠特曼

每当人们不尊重我们时,我们总被深深激怒。然而在内心深处,没有一个人十分尊重自己。———马克·吐温 忍辱偷生的人,绝不会受人尊重。———高乃依 敬人者,人恒敬之。———《孟子》 人必自敬,然后人敬之;人必自侮,然后人侮之。———扬雄 不知自爱反是自害。———郑善夫 仁者必敬人。———《荀子》 君子贵人而贱己,先人而后己。———《礼记》 尊严是人类灵魂中不可糟蹋的东西。———古斯曼 对一个人的尊重要达到他所希望的程度,那是困难的。———沃夫格纳 经典素材 1元和200元 (尊重劳动成果) 香港大富豪李嘉诚在下车时不慎将一元钱掉入车下,随即屈身去拾,旁边一服务生看到了,上前帮他拾起了一元钱。李嘉诚收起一元钱后,给了服务生200元酬金。 这里面其实包含了钱以外的价值观念。李嘉诚虽然巨富,但生活俭朴,从不挥霍浪费。他深知亿万资产,都是一元一元挣来的。钱币在他眼中已抽象为一种劳动,而劳动已成为他最重要的生存方式,他的所有财富,都是靠每天20小时以上的劳动堆积起来的。200元酬金,实际上是对劳动的尊重和报答,是不能用金钱衡量的。 富兰克林借书解怨 (尊重别人赢得朋友)

那一刻我感受到了幸福_初中作文

那一刻我感受到了幸福 本文是关于初中作文的那一刻我感受到了幸福,感谢您的阅读! 每个人民的心中都有一粒幸福的种子,当它拥有了雨水的滋润和阳光的沐浴,它就会绽放出最美丽的姿态。那一刻,我们都能够闻到幸福的芬芳,我们都能够感受到幸福的存在。 在寒假期间,我偶然在授索电视频道,发现(百家讲坛)栏目中大学教授正在解密幸福,顿然引起我的好奇心,我放下了手中的遥控器,静静地坐在电视前,注视着频道上的每一个字,甚至用笔急速记在了笔记本上。我还记得,那位大学教授讲到了一个故事:一位母亲被公司升职到外国工作,这位母亲虽然十分高兴,但却又十分无奈,因为她的儿子马上要面临中考了,她不能撇下儿子迎接中考的挑战,于是她决定拒绝这了份高薪的工作,当有人问她为什么放弃这么好的机会时,她却毫无遗憾地说,纵然我能给予儿子最贵的礼物,优异的生活环境,但我却无当给予他关键时刻的那份呵护与关爱,或许以后的一切会证明我的选择是正确的。听完这样一段故事,我心中有种说不出的感觉,刹那间,我仿拂感觉那身边正在包饺子的妈妈,屋里正在睡觉的爸爸,桌前正在看小说的妹妹给我带来了一种温馨,幸福感觉。正如教授所说的那种解密幸福。就要选择一个明确的目标,确定自已追求的是什么,或许那时我还不能完全诠释幸福。 当幸福悄悄向我走来时,我已慢慢明白,懂得珍惜了。 那一天的那一刻对我来说太重要了,原本以为出差在外的父母早已忘了我的生日,只有妹妹整日算着日子。我在耳边唠叨个不停,没想到当日我失落地回到家中时,以为心中并不在乎生日,可是眼前的一切,让我心中涌现的喜悦,脸上露出的微笑证明我是在乎的。

爸爸唱的英文生日快乐歌虽然不是很动听,但爸爸对我的那份爱我听得很清楚,妈妈为我做的长寿面,我细细的品尝,吃出了爱的味道。妹妹急忙让我许下三个愿望,嘴里不停的唠叨:我知道你的三个愿望是什么?我问:为什么呀!我们是一家人,心连心呀!她高兴的说。 那一刻我才真正解开幸福的密码,感受到了真正的幸福,以前我无法理解幸福,即使身边有够多的幸福也不懂得欣赏,不懂得珍惜,只想拥有更好更贵的,其实幸福比物质更珍贵。 那一刻的幸福就是爱的升华,许多时候能让我们感悟幸福不是名利,物质。而是在血管里涌动着的,漫过心底的爱。 也许每一个人生的那一刻,就是我们幸运的降临在一个温馨的家庭中,而不是降临在孤独的角落里。 家的感觉就是幸福的感觉,幸福一直都存在于我们的身边!

初中语文古文赏析曹操《短歌行》赏析(林庚)

教育资料 《短歌行》 《短歌行》赏析(林庚) 曹操这一首《短歌行》是建安时代杰出的名作,它代表着人生的两面,一方面是人生的忧患,一方面是人生的欢乐。而所谓两面也就是人生的全面。整个的人生中自然含有一个生活的态度,这就具体地表现在成为《楚辞》与《诗经》传统的产儿。它一方面不失为《楚辞》中永恒的追求,一方面不失为一个平实的生活表现,因而也就为建安诗坛铺平了道路。 这首诗从“对酒当歌,人生几何”到“但为君故,沉吟至今”,充分表现着《楚辞》里的哀怨。一方面是人生的无常,一方面是永恒的渴望。而“呦呦鹿鸣”以下四句却是尽情的欢乐。你不晓得何以由哀怨这一端忽然会走到欢乐那一端去,转折得天衣无缝,仿佛本来就该是这么一回事似的。这才是真正的人生的感受。这一段如是,下一段也如是。“明明如月,何时可掇?忧从中来,不可断绝。越陌度阡,枉用相存。契阔谈宴,心念旧恩。月明星稀,乌鹊南飞。绕树三匝,何枝可依。”缠绵的情调,把你又带回更深的哀怨中去。但“山不厌高,海不厌深”,终于走入“周公吐哺,天下归心”的结论。上下两段是一个章法,但是你并不觉得重复,你只觉得卷在悲哀与欢乐的旋涡中,不知道什么时候悲哀没有了,变成欢乐,也不知道什么时候欢乐没有了,又变成悲哀,这岂不是一个整个的人生吗?把整个的人生表现在一个刹那的感觉上,又都归于一个最实在的生活上。“我有嘉宾,鼓瑟吹笙”,不正是当时的情景吗?“周公吐哺,天下归心”,不正是当时的信心吗? “青青子衿”到“鼓瑟吹笙”两段连贯之妙,古今无二。《诗经》中现成的句法一变而有了《楚辞》的精神,全在“沉吟至今”的点窜,那是“青青子衿”的更深的解释,《诗经》与《楚辞》因此才有了更深的默契,从《楚辞》又回到《诗经》,这样与《鹿鸣》之诗乃打成一片,这是一个完满的行程,也便是人生旅程的意义。“月明星稀”何以会变成“山不厌高,海不厌深”?几乎更不可解。莫非由于“明月出天山”,“海上生明月”吗?古辞说:“枯桑知天风,海水知天寒”,枯桑何以知天风,因为它高;海水何以知天寒,因为它深。唐人诗“一叶落知天下秋”,我们对于宇宙万有正应该有一个“知”字。然则既然是山,岂可不高?既然是海,岂可不深呢?“并刀如水,吴盐胜雪”,既是刀,就应该雪亮;既是盐,就应该雪白,那么就不必问山与海了。 山海之情,成为漫漫旅程的归宿,这不但是乌鹊南飞,且成为人生的思慕。山既尽其高,海既尽其深。人在其中乃有一颗赤子的心。孟子主尽性,因此养成他浩然之气。天下所以归心,我们乃不觉得是一个夸张。 .

关于我的幸福作文八篇汇总

关于我的幸福作文八篇汇总 幸福在每个人的心中都不一样。在饥饿者的心中,幸福就是一碗香喷喷的米饭;在果农的心中,幸福就是望着果实慢慢成熟;在旅行者的心中,幸福就是游遍世界上的好山好水。而在我的心中,幸福就是每天快快乐乐,无忧无虑;幸福就是朋友之间互相帮助,互相关心;幸福就是在我生病时,母亲彻夜细心的照顾我。 幸福在世间上的每个角落都可以发现,只是需要你用心去感受而已。 记得有一次,我早上出门走得太匆忙了,忘记带昨天晚上准备好的钢笔。老师说了:“今天有写字课,必须要用钢笔写字,不能用水笔。”我只好到学校向同学借了。当我来到学校向我同桌借时,他却说:“我已经借别人了,你向别人借吧!”我又向后面的同学借,可他们总是找各种借口说:“我只带了一枝。”问了三四个人,都没有借到,而且还碰了一鼻子灰。正当我急的像热锅上的蚂蚁团团转时,她递给了我一枝钢笔,微笑的对我说:“拿去用吧!”我顿时感到自己是多么幸福!在我最困难的时候,当别人都不愿意帮助我的时候,她向我伸出了援手。 幸福也是无时无刻都在身旁。 当我生病的时候,高烧持续不退时,是妈妈在旁边细心

的照顾我,喂我吃药,甚至一夜寸步不离的守在我的床边,直到我苏醒。当我看见妈妈的眼睛布满血丝时,我的眼眶在不知不觉地湿润了。这时我便明白我有一个最疼爱我的妈妈,我是幸福的! 幸福就是如此简单!不过,我们还是要珍惜眼前的幸福,还要给别人带来幸福,留心观察幸福。不要等幸福悄悄溜走了才发现,那就真的是后悔莫及了! 这就是我拥有的幸福,你呢? 悠扬的琴声从房间里飘出来,原来这是我在弹钢琴。优美的旋律加上我很强的音乐表现力让一旁姥爷听得如醉如痴。姥爷说我是幸福的,读了《建设幸福中国》我更加体会到了这一点。 儿时的姥爷很喜欢读书,但当时家里穷,据姥爷讲那时上学可不像现在。有点三天打鱼两天晒网,等地里农活忙了太姥爷就说:“别去念书了,干地里的活吧。”干活时都是牛马拉车,也没机器,效率特别低。还要给牲口拔草,喂草,拾柴火,看书都是抽空看。等农闲时才能背书包去学校,衣服更是老大穿了,打补丁老二再接着穿,只有盼到过年时才有能换上件粗布的新衣服。写字都是用石板,用一次擦一次,那时还没有电灯,爱学习的姥爷在昏暗的煤油灯下经常被灯火不是烧了眉毛就是燎了头发。没有电灯更没有电视,没有电视更没有见过钢琴,只知道钢琴是贵族家用的。

高中语文文言文曹操《短歌行(对酒当歌)》原文、翻译、赏析

曹操《短歌行【对酒当歌】》原文、翻译、赏析译文 原文 面对美酒应该高歌,人生短促日月如梭。对酒当歌,人生几何? 好比晨露转瞬即逝,失去的时日实在太多!譬如朝露,去日苦多。 席上歌声激昂慷慨,忧郁长久填满心窝。慨当以慷,忧思难忘。 靠什么来排解忧闷?唯有狂饮方可解脱。何以解忧?唯有杜康。 那穿着青领(周代学士的服装)的学子哟,你们令我朝夕思慕。青青子衿,悠悠我心。 正是因为你们的缘故,我一直低唱着《子衿》歌。但为君故,沉吟至今。 阳光下鹿群呦呦欢鸣,悠然自得啃食在绿坡。呦呦鹿鸣,食野之苹。 一旦四方贤才光临舍下,我将奏瑟吹笙宴请宾客。我有嘉宾,鼓瑟吹笙。 当空悬挂的皓月哟,你运转着,永不停止;明明如月,何时可掇? 我久蓄于怀的忧愤哟,突然喷涌而出汇成长河。忧从中来,不可断绝。 远方宾客踏着田间小路,一个个屈驾前来探望我。越陌度阡,枉用相存。 彼此久别重逢谈心宴饮,争着将往日的情谊诉说。契阔谈讌,心念旧恩。 明月升起,星星闪烁,一群寻巢乌鹊向南飞去。月明星稀,乌鹊南飞。 绕树飞了三周却没敛绕树三匝,何枝

翅,哪里才有它们栖身之 所? 可依? 高山不辞土石才见巍 峨,大海不弃涓流才见壮阔。(比喻用人要“唯才是举”,多多益善。)山不厌高,水不厌深。 只有像周公那样礼待贤 才(周公见到贤才,吐出口 中正在咀嚼的食物,马上接 待。《史记》载周公自谓: “一沐三握发,一饭三吐哺, 犹恐失天下之贤。”),才 能使天下人心都归向我。 周公吐哺,天 赏析 曹操是汉末杰出的政治家、军事家和文学家,他雅好诗章,好作乐府歌辞,今存诗22首,全是乐府诗。曹操的乐府诗多描写他本人的政治主张和统一天下的雄心壮志。如他的《短歌行》,充分表达了诗人求贤若渴以及统一天下的壮志。 《短歌行》是政治性很强的诗作,主要是为曹操当时所实行的政治路线和政策策略服务的,但是作者将政治内容和意义完全熔铸在浓郁的抒情意境之中,全诗充分发挥了诗歌创作的特长,准确而巧妙地运用了比兴手法,寓理于情,以情感人。诗歌无论在思想内容还是在艺术上都取得了极高的成就,语言质朴,立意深远,气势充沛。这首带有建安时代"志深比长""梗概多气"的时代特色的《短歌行》,读后不觉思接千载,荡气回肠,受到强烈的感染。 对酒当歌,人生几何? 譬如朝露,去日苦多。 慨当以慷,幽思难忘。 何以解忧,唯有杜康。 青青子衿,悠悠我心。 但为君故,沈吟至今。 呦呦鹿鸣,食野之苹。 我有嘉宾,鼓瑟吹笙。 明明如月,何时可掇? 忧从中来,不可断绝。 越陌度阡,枉用相存。 契阔谈,心念旧恩。 月明星稀,乌鹊南飞, 绕树三匝,何枝可依? 山不厌高,海不厌深, 周公吐哺,天下归心。 《短歌行》是汉乐府的旧题,属于《相和歌?平调曲》。这就是说它本来是一个乐曲的名称,这种乐曲怎么唱法,现在当然是不知道了。但乐府《相和歌?平调曲》中除了《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗“长歌正激烈”,魏文帝曹丕《燕歌行》“短歌微吟不能长”和晋代傅玄《艳歌行》“咄来长歌续短歌”等句,认为“长歌”、“短

外国文学名著鉴赏期末论文

外国文学名著鉴赏期末论文院—系:数学学院 科目:外国文学名著鉴赏(期末论文)班级: 08级数学与应用数学A班 姓名:沈铁 学号: 200805050149 上课时段:周五晚十、十一节课

奋斗了,才有出路 ——读《鲁宾逊漂游记》有感小说《鲁宾逊漂游记》一直深受人们的喜爱。读完这篇小说,使我对人生应该有自己的一个奋斗历程而受益匪浅。当一个人已经处于绝境的时候,还能够满怀信心的去面对和挑战生活,实在是一种可贵的精神。他使我认识到,人无论何时何地,不管遇到多大的困难,都不能被困难所吓倒,我们要勇敢的面对困难,克服困难,始终保持一种积极向上、乐观的心态去面对。在当今社会只有努力去奋斗,才会有自己的出路! 其实现在的很多人都是那些遇到困难就退缩,不敢勇敢的去面对它。不仅如此,现在很多人都是独生子女,很多家长视子女为掌上明珠,不要说是冒险了,就连小小的家务活也不让孩子做,天天总是说:“我的小宝贝啊,你读好书就行了,其它的爸爸妈妈做就可以了。”读书固然重要,但生活中的小事也不能忽略。想一想,在荒无人烟的孤岛上,如果你连家务活都不会做,你能在那里生存吗?读完这部著作后,我不禁反问自己:“如果我像书中的鲁宾逊那样在大海遭到风暴,我能向他那样与风暴搏斗,最后逃离荒岛得救吗?恐怕我早已经被大海所淹没;如果我漂流到孤岛,能活几天?我又能干些什么?我会劈柴吗?会打猎做饭吗?我连洗洗自己的衣服还笨手笨脚的。”我们应该学习鲁宾逊这种不怕困难的精神,无论何时何地都有坚持地活下去,哪怕只有一线希望也要坚持到底,决不能放弃!我们要像鲁宾

逊那样有志气、有毅力、爱劳动,凭自己的双手创造财富,创造奇迹,取得最后的胜利。这样的例子在我们的生活中屡见不鲜。 《史记》的作者司马迁含冤入狱,可它依然在狱中完成《史记》一书,他之所以能完成此书,靠的也是他心中那顽强的毅力,永不放弃的不断努力的精神。著名作家爱迪生从小就生活在一个贫困的家庭中,可是他从小就表现出了科学方面的天赋。长大后爱迪生着力于电灯的发明与研究,他经过了九百多次的失败,可它依然没有放弃,不断努力,最后终于在第一千次实验中取得了成功。 鲁宾逊在岛上生活了二十八年,他面对了各种各样的困难和挫折,克服了许多常人无法想象的困难,自己动手,丰衣足食,以惊人的毅力,顽强的活了下来。他自从大船失事后,找了一些木材,在岛上盖了一间房屋,为防止野兽,还在房子周围打了木桩,来到荒岛,面对着的首要的就是吃的问题,船上的东西吃完以后,鲁宾逊开始打猎,有时可能会饿肚子,一是他决定播种,几年后他终于可以吃到自己的劳动成果,其实学习也是这样,也有这样一个循序渐进的过程,现在的社会,竞争无处不在,我们要懂得只有付出才会有收获,要勇于付出,在战胜困难的同时不断取得好成绩。要知道只有付出,才会有收获。鲁宾逊在失败后总结教训,终于成果;磨粮食没有石磨,他就用木头代替;没有筛子,就用围巾。鲁宾逊在荒岛上解决了自己的生存难题,面对人生挫折,鲁宾逊的所作所为充分显示了他坚毅的性格和顽强的精神。同样我们在学习上也可以做一些创新,养成一种创新精神,把鲁宾逊在荒岛,不畏艰险,不怕失败挫折,艰苦奋斗的精

小学生作文《感悟幸福》范文五篇汇总

小学生作文《感悟幸福》范文五篇 小草说,幸福就是大地增添一份绿意;阳光说,幸福就是撒向人间的温暖;甘露说,幸福就是滋润每一个生命。下面是为大家带来的有关幸福650字优秀范文,希望大家喜欢。 感悟幸福650字1 生活就像一部壮丽的交响曲,它是由一篇一篇的乐章组成的,有喜、有怒、有哀、有乐。每一个人都有自己丰富多彩的生活,我也有自己的生活。我原本以为,吃可口的牛排,打电脑游戏,和朋友开心玩乐就是幸福。可是,我错了,幸福并不仅仅如此。 记得有一次,我放学回到家里放下书包就拿起一包饼干来吃。吃着吃着,突然我觉得牙齿痛了起来,而且越来越痛,痛得我连饼干也咬不动了。我放下饼干,连忙去拿了一面镜子来看。原来这又是那一颗虫牙在“作怪”。“哎哟哟,哎哟哟,痛死我了……”我不停地说着。渐渐地,那牙疼得越来越厉害,疼得我坐立不安,直打滚。后来在妈妈的陪伴下去了医院,治好了那颗虫牙。跨出医院大门时,我觉得心情出奇的好,天空格外的蓝,路边的樟树特别的绿,看什么都顺眼,才猛然一悟,幸福是简单而平凡的,身体健康就是一种幸福! 这学期我发现我的英语退步了,我决定要把这门功课学好,于是,我每天回

家做完作业后,都抽出半小时时间复习英语,在课上也听得特别认真,一遇到不懂的题目主动请教老师。经过一段时间的努力,终于,在上次考试的时候,我考了97分。妈妈表扬了我,我心里美滋滋的。我明白了经过自己的努力享受到成功的喜悦,这也是一种幸福。 …… 每个人都无一例外的渴望幸福。不同的人有不同的感受,其实,幸福就是那种能在平凡中寻找欢乐、能在困境中找到自信的一种心境。同学们,幸福其实很简单,就在我们的身边,触手可及。用心去认真地品味吧,它一直未曾离开我们身边! 感悟幸福650字2 有的人认为幸福就是腰缠万贯,有的人认为幸福就是找到意中人,“采菊东篱下,悠然见南山”是陶渊明对邪恶幸福,“从明天起做一个幸福人,喂马、劈柴、周游世界。从明天起,关心蔬菜和粮食,我有一所房子,面朝大海,春暖花开。”这是海子的幸福。一千种人就有一千种对幸福的理解。 我对幸福的理解就是幸福使简单而平凡的,是无处不在的! 我的牙疼得奇怪而顽强不是这颗牙疼就是那颗牙疼;不是吃冷的疼就是吃热

曹操《短歌行》其二翻译及赏析

曹操《短歌行》其二翻译及赏析 引导语:曹操(155—220),字孟德,小名阿瞒,《短歌行 二首》 是曹操以乐府古题创作的两首诗, 第一首诗表达了作者求贤若渴的心 态,第二首诗主要是曹操向内外臣僚及天下表明心迹。 短歌行 其二 曹操 周西伯昌,怀此圣德。 三分天下,而有其二。 修奉贡献,臣节不隆。 崇侯谗之,是以拘系。 后见赦原,赐之斧钺,得使征伐。 为仲尼所称,达及德行, 犹奉事殷,论叙其美。 齐桓之功,为霸之首。 九合诸侯,一匡天下。 一匡天下,不以兵车。 正而不谲,其德传称。 孔子所叹,并称夷吾,民受其恩。 赐与庙胙,命无下拜。 小白不敢尔,天威在颜咫尺。 晋文亦霸,躬奉天王。 受赐圭瓒,钜鬯彤弓, 卢弓矢千,虎贲三百人。 威服诸侯,师之所尊。 八方闻之,名亚齐桓。 翻译 姬昌受封为西伯,具有神智和美德。殷朝土地为三份,他有其中两分。 整治贡品来进奉,不失臣子的职责。只因为崇侯进谗言,而受冤拘禁。 后因为送礼而赦免, 受赐斧钺征伐的权利。 他被孔丘称赞, 品德高尚地位显。 始终臣服殷朝帝王,美名后世流传遍。齐桓公拥周建立功业,存亡继绝为霸 首。

聚合诸侯捍卫中原,匡正天下功业千秋。号令诸侯以匡周室,主要靠的不是 武力。 行为磊落不欺诈,美德流传于身后。孔子赞美齐桓公,也称赞管仲。 百姓深受恩惠,天子赐肉与桓公,命其无拜来接受。桓公称小白不敢,天子 威严就在咫尺前。 晋文公继承来称霸,亲身尊奉周天王。周天子赏赐丰厚,仪式隆重。 接受玉器和美酒,弓矢武士三百名。晋文公声望镇诸侯,从其风者受尊重。 威名八方全传遍,名声仅次于齐桓公。佯称周王巡狩,招其天子到河阳,因 此大众议论纷纷。 赏析 《短歌行》 (“周西伯昌”)主要是曹操向内外臣僚及天下表明心 迹,当他翦灭群凶之际,功高震主之时,正所谓“君子终日乾乾,夕惕若 厉”者,但东吴孙权却瞅准时机竟上表大说天命而称臣,意在促曹操代汉 而使其失去“挟天子以令诸侯”之号召, 故曹操机敏地认识到“ 是儿欲据吾著炉上郁!”故曹操运筹谋略而赋此《短歌行 ·周西伯 昌》。 西伯姬昌在纣朝三分天下有其二的大好形势下, 犹能奉事殷纣, 故孔子盛称 “周之德, 其可谓至德也已矣。 ”但纣王亲信崇侯虎仍不免在纣王前 还要谗毁文王,并拘系于羑里。曹操举此史实,意在表明自己正在克心效法先圣 西伯姬昌,并肯定他的所作所为,谨慎惕惧,向来无愧于献帝之所赏。 并大谈西伯姬昌、齐桓公、晋文公皆曾受命“专使征伐”。而当 今天下时势与当年的西伯、齐桓、晋文之际颇相类似,天子如命他“专使 征伐”以讨不臣,乃英明之举。但他亦效西伯之德,重齐桓之功,戒晋文 之诈。然故作谦恭之辞耳,又谁知岂无更讨封赏之意乎 ?不然建安十八年(公元 213 年)五月献帝下诏曰《册魏公九锡文》,其文曰“朕闻先王并建明德, 胙之以土,分之以民,崇其宠章,备其礼物,所以藩卫王室、左右厥世也。其在 周成,管、蔡不静,惩难念功,乃使邵康公赐齐太公履,东至于海,西至于河, 南至于穆陵,北至于无棣,五侯九伯,实得征之。 世祚太师,以表东海。爰及襄王,亦有楚人不供王职,又命晋文登为侯伯, 锡以二辂、虎贲、斧钺、禾巨 鬯、弓矢,大启南阳,世作盟主。故周室之不坏, 系二国是赖。”又“今以冀州之河东、河内、魏郡、赵国、中山、常 山,巨鹿、安平、甘陵、平原凡十郡,封君为魏公。锡君玄土,苴以白茅,爰契 尔龟。”又“加君九锡,其敬听朕命。” 观汉献帝下诏《册魏公九锡文》全篇,尽叙其功,以为其功高于伊、周,而 其奖却低于齐、晋,故赐爵赐土,又加九锡,奖励空前。但曹操被奖愈高,心内 愈忧。故曹操在曾早在五十六岁写的《让县自明本志令》中谓“或者人见 孤强盛, 又性不信天命之事, 恐私心相评, 言有不逊之志, 妄相忖度, 每用耿耿。

2008年浙师大《外国文学名著鉴赏》期末考试答案

(一)文学常识 一、古希腊罗马 1.(1)宙斯(罗马神话称为朱庇特),希腊神话中最高的天神,掌管雷电云雨,是人和神的主宰。 (2)阿波罗,希腊神话中宙斯的儿子,主管光明、青春、音乐、诗歌等,常以手持弓箭的少年形象出现。 (3)雅典那,希腊神话中的智慧女神,雅典城邦的保护神。 (4)潘多拉,希腊神话中的第一个女人,貌美性诈。私自打开了宙斯送她的一只盒子,里面装的疾病、疯狂、罪恶、嫉妒等祸患,一齐飞出,只有希望留在盒底,人间因此充满灾难。“潘多拉的盒子”成为“祸灾的来源”的同义语。 (5)普罗米修斯,希腊神话中造福人间的神。盗取天火带到人间,并传授给人类多种手艺,触怒宙斯,被锁在高加索山崖,受神鹰啄食,是一个反抗强暴、不惜为人类牺牲一切的英雄。 (6)斯芬克司,希腊神话中的狮身女怪。常叫过路行人猜谜,猜不出即将行人杀害;后因谜底被俄底浦斯道破,即自杀。后常喻“谜”一样的人物。与埃及狮身人面像同名。 2.荷马,古希腊盲诗人。主要作品有《伊利亚特》和《奥德赛》,被称为荷马史诗。《伊利亚特》叙述十年特洛伊战争。《奥德赛》写特洛伊战争结束后,希腊英雄奥德赛历险回乡的故事。马克思称赞它“显示出永久的魅力”。 3.埃斯库罗斯,古希腊悲剧之父,代表作《被缚的普罗米修斯》。6.阿里斯托芬,古希腊“喜剧之父”代表作《阿卡奈人》。 4.索福克勒斯,古希腊重要悲剧作家,代表作《俄狄浦斯王》。5.欧里庇得斯,古希腊重要悲剧作家,代表作《美狄亚》。 二、中世纪文学 但丁,意大利人,伟大诗人,文艺复兴的先驱。恩格斯称他是“中世纪的最后一位诗人,同时又是新时代的最初一位诗人”。主要作品有叙事长诗《神曲》,由地狱、炼狱、天堂三部分组成。《神曲》以幻想形式,写但丁迷路,被人导引神游三界。在地狱中见到贪官污吏等受着惩罚,在净界中见到贪色贪财等较轻罪人,在天堂里见到殉道者等高贵的灵魂。 三、文艺复兴时期 1.薄迦丘意大利人短篇小说家,著有《十日谈》拉伯雷,法国人,著《巨人传》塞万提斯,西班牙人,著《堂?吉诃德》。 2.莎士比亚,16-17世纪文艺复兴时期英国伟大的剧作家和诗人,主要作品有四大悲剧——《哈姆雷特》、《奥赛罗》《麦克白》、《李尔王》,另有悲剧《罗密欧与朱丽叶》等,喜剧有《威尼斯商人》《第十二夜》《皆大欢喜》等,历史剧有《理查二世》、《亨利四世》等。马克思称之为“人类最伟大的戏剧天才”。 四、17世纪古典主义 9.笛福,17-18世纪英国著名小说家,被誉为“英国和欧洲小说之父”,主要作品《鲁滨逊漂流记》,是英国第一部现实主义长篇小说。10.弥尔顿,17世纪英国诗人,代表作:长诗《失乐园》,《失乐园》,表现了资产阶级清教徒的革命理想和英雄气概。 25.拉伯雷,16世纪法国作家,代表作:长篇小说《巨人传》。 26.莫里哀,法国17世纪古典主义文学最重要的作家,法国古典主义喜剧的创建者,主要作品为《伪君子》《悭吝人》(主人公叫阿巴公)等喜剧。 五、18世纪启蒙运动 1)歌德,德国文学最高成就的代表者。主要作品有书信体小说《少年维特之烦恼》,诗剧《浮士德》。 11.斯威夫特,18世纪英国作家,代表作:《格列佛游记》,以荒诞的情节讽刺了英国现实。 12.亨利·菲尔丁,18世纪英国作家,代表作:《汤姆·琼斯》。 六、19世纪浪漫主义 (1拜伦, 19世纪初期英国伟大的浪漫主义诗人,代表作为诗体小说《唐璜》通过青年贵族唐璜的种种经历,抨击欧洲反动的封建势力。《恰尔德。哈洛尔游记》 (2雨果,伟大作家,欧洲19世纪浪漫主义文学最卓越的代表。主要作品有长篇小说《巴黎圣母院》、《悲惨世界》、《笑面人》、《九三年》等。《悲惨世界》写的是失业短工冉阿让因偷吃一片面包被抓进监狱,后改名换姓,当上企业主和市长,但终不能摆脱迫害的故事。《巴黎圣母院》 弃儿伽西莫多,在一个偶然的场合被副主教克洛德.孚罗洛收养为义子,长大后有让他当上了巴黎圣母院的敲钟人。他虽然十分丑陋而且有多种残疾,心灵却异常高尚纯洁。 长年流浪街头的波希米亚姑娘拉.爱斯梅拉达,能歌善舞,天真貌美而心地淳厚。青年贫诗人尔比埃尔.甘果瓦偶然同她相遇,并在一个更偶然的场合成了她名义上的丈夫。很有名望的副教主本来一向专心于"圣职",忽然有一天欣赏到波希米亚姑娘的歌舞,忧千方百计要把她据为己有,对她进行了种种威胁甚至陷害,同时还为此不惜玩弄卑鄙手段,去欺骗利用他的义子伽西莫多和学生甘果瓦。眼看无论如何也实现不了占有爱斯梅拉达的罪恶企图,最后竟亲手把那可爱的少女送上了绞刑架。 另一方面,伽西莫多私下也爱慕着波希米亚姑娘。她遭到陷害,被伽西莫多巧计救出,在圣母院一间密室里避难,敲钟人用十分纯朴和真诚的感情去安慰她,保护她。当她再次处于危急中时,敲钟人为了援助她,表现出非凡的英勇和机智。而当他无意中发现自己的"义父"和"恩人"远望着高挂在绞刑架上的波希米亚姑娘而发出恶魔般的狞笑时,伽西莫多立即对那个伪善者下了最后的判决,亲手把克洛德.孚罗洛从高耸入云的钟塔上推下,使他摔的粉身碎骨。 (3司汤达,批判现实主义作家。代表作《红与黑》,写的是不满封建制度的平民青年于连,千方百计向上爬,最终被送上断头台的故事。“红”是将军服色,指“入军界”的道路;“黑”是主教服色,指当神父、主教的道路。 14.雪莱,19世纪积极浪漫主义诗人,欧洲文学史上最早歌颂空想社会主义的诗人之一,主要作品为诗剧《解放了的普罗米修斯》,抒情诗《西风颂》等。 15.托马斯·哈代,19世纪英国作家,代表作:长篇小说《德伯家的苔丝》。 16.萨克雷,19世纪英国作家,代表作:《名利场》 17.盖斯凯尔夫人,19世纪英国作家,代表作:《玛丽·巴顿》。 18.夏洛蒂?勃朗特,19世纪英国女作家,代表作:长篇小说《简?爱》19艾米丽?勃朗特,19世纪英国女作家,夏洛蒂?勃朗特之妹,代表作:长篇小说《呼啸山庄》。 20.狄更斯,19世纪英国批判现实主义文学的重要代表,主要作品为长篇小说《大卫?科波菲尔》、《艰难时世》《双城记》《雾都孤儿》。21.柯南道尔,19世纪英国著名侦探小说家,代表作品侦探小说集《福尔摩斯探案》是世界上最著名的侦探小说。 七、19世纪现实主义 1、巴尔扎克,19世纪上半叶法国和欧洲批判现实主义文学的杰出代表。主要作品有《人间喜剧》,包括《高老头》、《欧也妮·葛朗台》、《贝姨》、《邦斯舅舅》等。《人间喜剧》是世界文学中规模最宏伟的创作之一,也是人类思维劳动最辉煌的成果之一。马克思称其“提供了一部法国社会特别是巴黎上流社会的卓越的现实主义历史”。

关于以幸福为话题的作文800字记叙文5篇

关于以幸福为话题的作文800字记叙文5篇 ----WORD文档,下载后可编辑修改---- 下面是作者为各位家长学生收集整理的作文(日记、观后感等)范本,欢迎借鉴参考阅读,您的努力学习和创新是为了更美好的未来,欢迎下载! 以幸福为话题的作文800字记叙文1: 那是我生病后的第三天,妈妈从早上五点就起来为我准备早点。她蹑手蹑脚地走着“针步”,下楼煮早点,“啪”的一声,妈妈打开了煤气。在拿肉丝,打鸡蛋的她全然不知我正躲在楼梯口“监视”着她的一举一动。不一会儿,蛋炒好了。 她开始切肉丝,一不小心,妈妈的手指切破皮了,鲜血正一滴一滴地流下来,为了不影响我的睡眠,她把手指放在嘴里吸了一下,坚持把剩下的肉丝切完。 此时的我,心中犹如打翻了五味瓶,眼里的泪像断了线的珍珠般掉了下来,我再也忍不住了,一个劲地冲到妈妈面前,她赶紧把手背了过去,生怕让我知道了什么。 她吃惊地问我:“妈妈太吵了,吵到你了?”“不,不,没有”她见我这么早起来就让我再回去补个觉。我关心地问:“妈,你的手没事吧?”她吱唔着说:“没事,擦破点皮,不碍事!”我仔细地帮她清洗了伤口,贴了一片创可贴。 吃饭时,妈妈一直地往我碗里夹肉,“孩子,病刚好,多吃点!”可是我见她始终都没吃一块肉。我也夹了两块放在她的碗里。“儿子懂事了,你自己快点吃吧!补身体要紧!”我冲她点点头笑了笑,“嗯。” 这就是幸福,一份简简单单的幸福!我祈祷这幸福能伴我成长。 以幸福为话题的作文800字记叙文2: 在我眼中,成长就是记录我们长大过程中一点一滴的小事情的,而幸福就在这点点滴滴中。 在我的成长记忆中,永不磨灭的是2017年11月的一天。妈妈要去云南,妈妈早上四点半要到指定地点集合,这么早,妈妈要两三点就起来,可是最近我咳嗽比较严重,所以天天给我煮萝卜汤喝。 “叮铃铃,叮铃铃”闹钟叫了起来,把我从睡梦中吵醒,一醒来,去找妈妈,

外国名著赏析论文

题目:浅析从简爱到女性的尊严和爱 学院工商学院 专业新闻学3 学号 姓名闫万里 学科外国文学名着赏析 [摘要] 十九世纪中期,英国伟大的女性存在主义先驱,着名作家夏洛蒂勃朗特创作出了她的代表作--《简爱》,当时轰动了整个文坛,它是一部具有浓厚浪漫主义色彩的现实主义小说,被认为是作者"诗意的生平"的写照。它在问世后的一百多年里,它始终保持着历史不败的艺术感染力。直到现在它的影响还继续存在。在作品的序幕、发展、高潮和结尾中,女主人公的叛逆、自由、平等、自尊、纯洁的个性都是各个重点章节的主旨,而这些主旨则在女主人公的爱情观中被展露的淋漓尽致,它们如同乌云上方的星汉,灼灼闪耀着光芒,照亮着后来的女性者们追求爱情的道路。? [关键词] 自尊个性独特新女性主义自由独立平等 《简爱》是一部带有自转色彩的长篇小说,它阐释了这样一个主题:人的价值=尊严+爱。从小就成长在一个充满暴力的环境中的简爱,经历了同龄人没有的遭遇。她要面对的是舅妈的毫无人性的虐待,表兄的凶暴专横和表姐的傲慢冷漠,尽管她尽力想“竭力赢得别人的好感”,但是事实告诉她这都是白费力气的,因此她发出了“不公平啊!--不公平!”的近乎绝望的呼喊。不公平的生长环境,使得简爱从小就向往平等、自由和爱,这些愿望在她后来的成长过程中表现无疑,

譬如在她的爱情观中的种种体现。? 1.桑菲尔德府? 谭波儿小姐因为出嫁,离开了洛伍德学校,同时也离开了简爱,这使简爱感觉到了“一种稳定的感觉,一切使我觉得洛伍德学校有点像我家的联想,全都随着她消失了”,她意识到:真正的世界是广阔的,一个充满希望和忧虑、激动和兴奋的变化纷呈的天地,正等待着敢于闯入、甘冒风险寻求人生真谛的人们。意识形态的转变促使着简爱走向更广阔的社会,接受社会的挑战,尽管她才只有十八岁。于是,简爱来到了桑菲尔德府,当了一名在当时地位不高的家庭教师。?桑菲尔德府使简爱感受到“这儿有想象中的完美无缺的家庭安乐气氛”,事实证明了她的预感的正确性,。从和简爱相见、相识到相爱的过程当中,简爱的那种叛逆精神、自强自尊的品质深深地征服了罗切斯特,而罗切斯特的优雅风度和渊博知识同样也征服了简爱。最初开始,简爱一直以为罗切斯特会娶高贵漂亮的英格拉姆为妻,她在和罗切斯特谈到婚姻时,曾经义正言辞的对罗切斯特说:“你以为因为我穷,低微,不美,矮小,就没有灵魂了吗?你想错了!我跟你一样有灵魂—也同样有一颗心!我现在不是凭着肉体凡胎跟你说话,而是我的心灵在和你的心灵说话,就好像我们都已经离开人世,两人平等地站在上帝面前—因为我们本来就是平等的。”这充分表现出简爱的叛逆,她这种维护妇女独立人格、主张婚姻独立自主以及男女平等的主张可以看成是他对整个人类社会自由平等的向往追求,罗切斯特正是爱上了她这样的独特个性,同时他也同样重复道:我们本来就是平等的。罗切斯特自始自终爱的是简爱的心灵—有着意志的力量,美德和纯洁的心灵,正是基于如此,简爱才真正的爱着罗切斯特。因为爱情是来不得半点虚假的,一方为另一方付出了真情的爱,假如得到对方的是虚情假意,那么这份爱

尊重议论文

谈如何尊重人尊重他人,我们赢得友谊;尊重他人,我们收获真诚;尊重他人,我们自己也 获得尊重;相互尊重,我们的社会才会更加和谐. ——题记 尊重是对他人的肯定,是对对方的友好与宽容。它是友谊的润滑剂,它是和谐的调节器, 它是我们须臾不可脱离的清新空气。“主席敬酒,岂敢岂敢?”“尊老敬贤,应该应该!”共和 国领袖对自己老师虚怀若谷,这是尊重;面对许光平女士,共和国总理大方的叫了一 声“婶婶”,这种和蔼可亲也是尊重。 尊重不仅会让人心情愉悦呼吸平顺,还可以改变陌生或尖锐的关系,廉颇和蔺相如便是 如此。将相和故事千古流芳:廉颇对蔺相如不满,处处使难,但蔺相如心怀大局,对廉颇相 当的尊重,最后也赢得了廉颇的真诚心,两人结为好友,共辅赵王,令强秦拿赵国一点办法 也没有。蔺相如与廉颇的互相尊重,令得将相和的故事千百年令无数后人膜拜。 现在,给大家举几个例子。在美国,一个颇有名望的富商在散步 时,遇到一个瘦弱的摆地摊卖旧书的年轻人,他缩着身子在寒风中啃着发霉的面包。富 商怜悯地将8美元塞到年轻人手中,头也不回地走了。没走多远,富商忽又返回,从地摊上 捡了两本旧书,并说:“对不起,我忘了取书。其实,您和我一样也是商人!”两年后,富商 应邀参加一个慈善募捐会时,一位年轻书商紧握着他的手,感激地说:“我一直以为我这一生 只有摆摊乞讨的命运,直到你亲口对我说,我和你一样都是商人,这才使我树立了自尊和自 信,从而创造了今天的业绩??”不难想像,没有那一 句尊重鼓励的话,这位富商当初即使给年轻人再多钱,年轻人也断不会出现人生的巨变, 这就是尊重的力量啊 可见尊重的量是多吗大。大家是不是觉得一个故事不精彩,不够明确尊重的力量,那再 来看下一个故事吧! 一家国际知名的大企业,在中国进行招聘,招聘的职位是该公司在中国的首席代表。经 过了异常激烈的竞争后,有五名年轻人,从几千名应聘者中脱颖而出。最后的胜出者,将是 这五个人中的一位。最后的考试是一场面试,考官们都 作文话题素材之为人处世篇:尊重 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺 术,也是仁爱的情操。———刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚

最新整理高中关于幸福的议论文800字范文3篇

最新整理高中关于幸福的议论文800字范文3篇 范文一 什么是幸福?当我把一个棒棒糖递给六岁的邻居小妹妹时,她满足的笑容告诉我,这是她的幸福。当我轻轻地走过妹妹的写字台时,我瞥见埋在桌上的妹妹的僵硬的表情。我笑笑,走近,她抬头,水汪汪的眼睛望着我,似乎带着某种渴求。我说:出去玩吧!她笑了,蹦蹦跳跳地跑了出去。我诧异,这么真诚的笑。玩耍是她的幸福。 暑假到了,马上面临实习的哥哥回来了。可没过几天,就不见人影了,好容易盼他回来,暑假也结束了。他说他去了内蒙的好多地方。我关切的问他累吗?他说:累啊!随后又骄傲地说:“可是我学会了许多东西,我相信那对我以后的人生路是有帮助的。”我笑,大声地喊:哥,你是我的榜样。在他看来,他的暑假是充实的,他是幸福的! 夜幕降临,繁星点点。隔着一层帘,我看见常年劳作的父亲坐在那里,默默地吸着一支烟。灯光打在他的脸上,我看不清他的表情,只有那斑白的鬓角依稀可见。父亲真的老了,每天早出晚归来支撑这个家,他一定很累了。眼泪盈满了眼眶,最后还是不争气的流了下来……“咳、、咳、、”一阵剧烈的咳嗽声传来。我擦干眼泪,走到父亲旁边,父亲把那支烟熄灭,慈祥的笑笑,说:爸爸老了,不中用了。我说:没有啊!父女两开怀的笑了,笑声混着一个个烟圈飘向远方……我问父亲:爸,这么多年付出,这么多年劳作,你幸福吗?他坚定地告诉我,幸福!他说:“只要你们开开心心快快乐乐地成长,我做的一切都值得。”他又说:“霞,好好读书,爸爸赚钱供你上大学,我还没老呢,至少还能干XX年,20年……然后是一片寂静,我和父亲看着远方,那里有希望。 年迈的姥姥是家里的大长辈,他常常念叨:平安就是福。那也许是经历了人生的酸甜苦辣后的感悟吧!每逢新春,一大家人在姥姥家围着看电视时,那应该是她的幸福吧! 幸福是什么?它不是你一个人拥有一座豪宅,它是一家人在并不宽敞的屋子里谈笑风生。它不是你一个人有拥山珍海味,它是一家人和和乐乐的吃一些普通

短歌行赏析介绍

短歌行赏析介绍 说道曹操, 大家一定就联想到三国那些烽火狼烟岁月吧。 但是曹操其实也是 一位文学 大家,今天就来分享《短歌行 》赏析。 《短歌行》短歌行》是汉乐府旧题,属于《相和歌辞·平调曲》。这就是说 它本来是一个乐曲名称。最初古辞已经失传。乐府里收集同名诗有 24 首,最早 是曹操这首。 这种乐曲怎么唱法, 现在当然是不知道。 但乐府 《相和歌·平调曲》 中除《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗 “长歌正激烈”, 魏文帝曹丕 《燕歌行》 “短歌微吟不能长”和晋代傅玄 《艳 歌行》 “咄来长歌续短歌”等句, 认为“长歌”、 “短歌”是指“歌声有长短”。 我们现在也就只能根据这一点点材料来理解《短歌行》音乐特点。《短歌行》这 个乐曲,原来当然也有相应歌辞,就是“乐府古辞”,但这古辞已经失传。现在 所能见到最早《短歌行》就是曹操所作拟乐府《短歌行》。所谓“拟乐府”就是 运用乐府旧曲来补作新词,曹操传世《短歌行》共有两首,这里要介绍是其中第 一首。 这首《短歌行》主题非常明确,就是作者希望有大量人才来为自己所用。曹 操在其政治活动中,为扩大他在庶族地主中统治基础,打击反动世袭豪强势力, 曾大力强调“唯才是举”,为此而先后发布“求贤令”、“举士令”、“求逸才 令”等;而《短歌行》实际上就是一曲“求贤歌”、又正因为运用诗歌 形式,含有丰富抒情成分,所以就能起到独特感染作用,有力地宣传他所坚 持主张,配合他所颁发政令。 《短歌行》原来有“六解”(即六个乐段),按照诗意分为四节来读。 “对酒当歌,人生几何?譬如朝露,去日苦多。慨当以慷,忧思难忘。何以 解忧,唯有杜康。” 在这八句中,作者强调他非常发愁,愁得不得。那么愁是什么呢?原来他是 苦于得不到众多“贤才”来同他合作, 一道抓紧时间建功立业。 试想连曹操这样 位高权重人居然在那里为“求贤”而发愁, 那该有多大宣传作用。 假如庶族地主 中真有“贤才”话, 看这些话就不能不大受感动和鼓舞。 他们正苦于找不到出路

外国文学名著赏析

外国文学名著赏析 ——对《哈姆雷特》与《堂吉诃德》人物形象及其现实意义的 分析 班级:学号:姓名: 摘要:《哈姆雷特》和《堂吉诃德》是文艺复兴时期涌现出来的一批比较先进的文学作品,通过对两部文学作品的阅读,我们不难发现两部作品所展现出来的人物形象都反映出了当时不同的社会现实,而且两部文学作品都表现出了浓厚的人文主义色彩,并且在当时也带来了不同的社会作用。堂吉诃德是塞万提斯塑造的一个为了打击骑士文学的文学形象,作者通过对堂吉诃德的描写,生动的说明了骑士文学给世人带来的负面影响,从而给骑士文学以致命的打击。莎士比亚笔下的哈姆雷特则是一个孤独的人文主义者,他以失败告终,哈姆雷特的失败向人们揭示了人文主义时代的悲剧。 Abstract: Hamlet a nd Don Quixote were the advanced literary in the Renaissance Period .After read the two novels, it is not difficult to find that different characters in these novels reflected different social problems. And they all expressed the ideas of humanism. These two images also brought different social functions at that time .Don Quixote is one of which Cervantes’s molds in order to attack the knight literature .According to the description of Don Quixote, vivid explain ed that knight literature brought a serious of bad influence to the human beings, thus gives the knight literature by the fatal attack. Hamlet is a lonely humanism, he is end in failure .His failure has indicated the tragedy which in the Humanism Era. 关键词:人文主义、哈姆雷特、人物形象、艺术特色、堂吉诃德、现实意义、悲剧 Key words:humanism; Hamlet; characters; art features; Don Quixote; realistic significance; tragedy 前言: 莎士比亚和塞万提斯都是文艺复兴时期伟大的戏剧家,作为戏剧艺术的大师,他们的作品都达到了世界文学的巅峰。《哈姆雷特》是莎士比亚最著名的悲剧之一,代表了莎士比亚的艺术成就,剧中莎士比亚塑造的著名人物哈姆雷特也被列入了世界文学的艺术画廊。塞万提斯是文艺复兴时期西班牙伟大的作家,在他创作的作品中,以《堂吉诃德》最为著名,影响也最大,是文艺

相关主题
文本预览
相关文档 最新文档