当前位置:文档之家› 医学免疫学 简答题

医学免疫学 简答题

1.简述T及B淋巴细胞执行特异性免疫的原理。
T细胞和B细胞执行特异性免疫,首先需要被抗原性物质活化,而不同的抗原性物质如病原体成分具有不同的抗原性。一个T或B细胞只表达一种TCR或BCR,只能特异性地识别并结合一种Ag分子,所以,T及B细胞对抗原的识别具有严格的特异性,而在T及B细胞的整个群体中,则能识别各种各样的抗原分子。由于T及B细胞识别抗原的特异性,决定其执行的免疫应答的特异性。
2.淋巴细胞再循环的方式及作用。
全身的淋巴细胞与淋巴结内的淋巴细胞不断进行动态更换。淋巴细胞经淋巴循环及血液循环,运行并分布于全身各处淋巴器官及淋巴组织中,经淋巴循环,经胸导管进入上腔静脉,再进入血液循环。血液循环中的淋巴细胞及各类免疫细胞在毛细血管后微静脉处穿过高壁内皮细胞进入淋巴循环。从而达到淋巴循环和血液循环的互相沟通。
淋巴细胞的再循环,使淋巴细胞能在体内各淋巴组织及器官处合理分布,能动员淋巴细胞至病原体侵入处,并将抗原活化的淋巴细胞引流入局部淋巴组织及器官,各类免疫细胞在此协同作用,发挥免疫效应。
1.简述抗体与免疫球蛋白的区别和联系。
(1) 区别:见概念。
(2) 联系:抗体都是免疫球蛋白而免疫球蛋白不一定都是抗体。原因是:抗体是由浆细胞产生,且能与相应抗原特异性结合发挥免疫功能的球蛋白;而免疫球蛋白是具有抗体活性或化学结构与抗体相似的球蛋白,如骨髓瘤患者血清中异常增高的骨髓瘤蛋白,是由浆细胞瘤产生,其结构与抗体相似,但无免疫功能。因此,免疫球蛋白可看做是化学结构上的概念,抗体则是生物学功能上的概念。
2.试述免疫球蛋白的主要生物学功能。
(1) 与抗原发生特异性结合 :主要由Ig的V区特别是HVR的空间结构决定的。在体内表现为抗细菌、抗病毒、抗毒素等生理学效应;在体外可出现抗原抗体反应。
(2)激活补体:IgG(IgG1、IgG2和IgG3)、IgM类抗体与抗原结合后,可经经典途径激活补体;聚合的IgA、IgG4可经旁路途径激活补体。
(3)与细胞表面的Fc 受体结合:Ig经Fc段与各种细胞表面的Fc受体结合,发挥调理吞噬、粘附、ADCC及超敏反应作用。
 (4)穿过胎盘:IgG可穿过胎盘进入胎儿体内。
 (5)免疫调节:抗体对免疫应答具有正、负两方面的调节作用。
3.简述免疫球蛋白的结构、功能区及其功能。
(1)Ig的基本结构:Ig单体是由两条相同的重链和两条相同的轻链借链间二硫键连接组成的四肽链结构。在重链近N端的1/4区域内氨基酸多变,为重链可变区(VH),

其余部分为恒定区(CH);在轻链近N端的1/2区域内氨基酸多变,为轻链可变区(VL),其余1/2区域为恒定区(CL)。VH与VL内还有高变区。
(2)免疫球蛋白的肽链功能区:Ig的重链与轻链通过链内二硫键将肽链折叠,形成若干个球状结构,这些肽环与免疫球蛋白的某些生物学功能有关,称为功能区。IgG、JgA、JgD的H链有四个功能区,分别为VH、CH1、CH2、CH3;IgM、IgE的 H 链有五个功能区,多一个CH4区。L链有二个功能区,分别为VL和CL。VL与VH是与相应抗原特异性结合的部位,CL与CH1上具有同种异型的遗传标志,IgG的CH2、IgM的CH3具有补体C1q的结合部位,IgG的CH3可与某些细胞表面的Fc受体结合,IgE的CH2和CH3可与肥大细胞和嗜碱性粒细胞的IgE Fc受体结合。
4.简述单克隆抗体技术的基本原理。
1975年,K?hler和Milstein 首创了B淋巴细胞杂交瘤细胞和单克隆抗体技术。其基本原理是:使小鼠免疫脾细胞与小鼠骨髓瘤细胞融合,形成杂交瘤细胞,每一个杂交瘤是用一个B细胞融合而产生的克隆。这种细胞既保持了骨髓瘤细胞大量无限增殖的特性,又继承了免疫B细胞合成分泌特异性抗体的能力。将这种融合成功的杂交瘤细胞株体外扩增或接种于小鼠腹腔内,则可从上清液或腹水中获得单克隆抗体。用这种方法制备的抗体具有结构高度均一,特异性强,无交叉反应等特点。
1. 简述补体系统的概念及其组成。
(1)概念:见名词解释1。
 (2)补体系统由30多种成分构成,按其生物学功能分为三类:
a.固有成分:存在于体液中、参与活化级联反应的补体成分,包括C1~C9、MBL、B因子、D因子。
b.补体调节蛋白:以可溶性或膜结合形式存在。包括备解素、C1抑制物、I因子、C4结合蛋白、H因子、S蛋白、Sp40/40、促衰变因子、膜辅助因子等。
 c.补体受体:包括CR1~CR5、C3aR、C4aR、CaR等。
 
2.比较三条补体激活途径的异同。
三条途径的区别见下表:
区别点 经典途径 旁路途径 MBL途径
激活物 IgG1~3或IgM
与Ag复合物 脂多糖、酵母多糖、
凝聚的IgA和IgG4 MBL
参与成分 C1~C9 C3,C5~C9, B、
P、D因子 同经典途径
C3转化酶 C4b2b C3bBb 同经典途径
C3转化酶 C4b2b3b C3bnBb 同经典途径
所需离子 Ca2+ Mg2+ Mg2+ 同经典途径
作用 参与特异性免疫在感染后期发作用 参与非特性免疫,在
感染后期发挥作用 同经典途径
 相同点:三条途径有共同的末端通路,即形成膜攻击复合物溶解细胞。
3.简述补体系统的生物学功能。
(1)溶菌和溶细胞作用:补体系统激活后,在靶细胞表面形成MAC,从而导致靶细胞溶解。
(2)调理作用:补体激活过程

中产生的C3b、C4b、iC3b都是重要的调理素,可结合中性粒细胞或巨噬细胞表面相应受体,因此,在微生物细胞表面发生的补体激活,可促进微生物与吞噬细胞的结合,并被吞噬及杀伤。
(3)引起炎症反应:在补体活化过程中产生的炎症介质C3a、C4a、C5a。它们又称为过敏毒素,与相应细胞表面的受体结合,激发细胞脱颗粒,释放组胺之类的血管活性物质,从而增强血管的通透性并刺激内脏平滑肌收缩。C5a还是一种有效的中性粒细胞趋化因子。
(4)清除免疫复合物:机制为:①补体与Ig的结合在空间上干扰Fc段之间的作用,抑制新的IC形成或使已形成的IC解离。②循环IC可激活补体,产生的C3b与抗体共价结合。IC借助C3b与表达CR1和CR3的细胞结合而被肝细胞清除。
(5)免疫调节作用:①C3可参与捕捉固定抗原,使抗原易被APC处理与递呈。②补体可与免疫细胞相互作用,调节细胞的增殖与分化。③参与调节多种免疫细胞的功能。
4.试述补体激活的调节机制。
补体活化的调控包括补体自身的调控和补体调节因子的作用。
(1) 补体自身的调控:补体激活过程中的某些中间产物极不稳定,例如:C3转化酶极易衰变;与细胞膜结合的C4b、C3b及C5b也易衰变;此外,只有结合固相的C4b、C3b及C5b才能触发经典途径,旁路途径的C3转化酶仅在特定的细胞或颗粒表面才具稳定性。
(2)补体调节因子的作用:补体调节蛋白有可溶性和膜结合型两类共十余种。
①调节经典途径:C1INH可与C1r和C1s结合形成复合物,使C1r和C1s失去酶解底物的能力,C1INH还可缩短C1的半衰期;可溶性C4bp和膜结合的CR1可与C4b结合,从而防止经典途径C3转化酶形成,并加速其分解;I因子可裂解C4b,MCP、C4bp和CR1可促进I因子对C4b的裂解;DAF可同C2竞争与C4b结合,从而抑制C3转化酶的形成。
②调节旁路途径:H因子可与B因子或Bb竞争结合C3b,进而使C3b被I因子灭活,CR1和DAF可抑制B因子与C3b结合;H因子、MCP和CR1可促进I因子裂解C3b;CR1和DAF可促进Bb从C3转化酶中解离。P因子可延长C3转化酶的半衰期,加强其裂解C3的作用,起正调节作用。
③调节膜攻击复合物:HRF也称为C8结合蛋白,可干扰C9与C8结合;MIRL可阻止C7、C8与C5b-6复合物结合,从而抑制MAC形成。
1.简述细胞因子共同的基本特征。
①细胞因子通常为低相对分子质量(15~30kD)的分泌性糖蛋白;②天然的细胞因子是由抗原、丝裂原或其他刺激物活化的细胞分泌;③多数细胞因子以单体形式存在,少数可为双体或三体形式;④细胞因子通常以非特异性方式发挥作用,也无MHC限制性;⑤细胞因子具

有极强的生物学效应,极微量的细胞因子就可对靶细胞产生显著的生物学效应;⑥细胞因子的产生和作用具有多源性和多向性;⑦细胞因子作用时具有多效性、重叠性以及拮抗效应和协同效应,从而形成复杂的网络;⑧多以旁分泌和(或)自分泌及内分泌形式在局部或远处发挥作用。
2.细胞因子有哪些主要的生物学功能 ? ★★
细胞因子的主要生物学作用有:①抗感染、抗肿瘤作用 , 如IFN、TNF等。②免疫调节作用,如IL-1、IL-2、IL-5、IFN等。③刺激造血细胞增殖分化,如M-CSF、G-CSF、IL-3等。④参与和调节炎症反应。如:IL-1、IL6、TNF等细胞因子可直接参与和促进炎症反应的发生。
3. 简述细胞因子及其受体的分类。
细胞因子共分六类:白细胞介素、干扰素、肿瘤坏死因子、集落刺激因子、生长因子和趋化性细胞因子。
细胞因子受体共分五个家族:
 ① 免疫球蛋白基因超家族,IL-1、IL-6、M-CSF、SCF、FGF等受体属于此类。
② I型细胞因子受体家族,又称红细胞生成素受体家族或造血因子受体家族。IL-2~IL-7、IL-9、IL-11、IL-13、IL-15、GM-CSF、G-CSF受体属于此类。
 ③ I型细胞因子受体家族,这类受体是干扰素的受体。
 ④ III型细胞因子受体家族,又称肿瘤坏死因子受体家族,是TNF及神经生长因子受体。
 ⑤ 趋化性细胞因子受体家族,这一家族是受体是G蛋白偶联受体。
4. 细胞因子有哪些临床应用及应用前景?
细胞因子的临床应用主要有以下几方面:
① 感染性疾病:给BSS患者注射IL-1受体拮抗剂或TNF-α单克隆抗体可降低其死亡率,干扰素可用于治疗病毒性感染,IFN-γ和IL-5对寄生虫感染有疗效。
②肿瘤:IL-2可活化NK细胞成LAK细胞,具有广谱肿瘤杀伤活性。组合细胞因子(IL-1、IL-2、IFN)和抗CD3 mAb诱导NK细胞成CIK,其杀瘤作用强于LAK细胞。拮抗IL-2或IL-2受体制剂可用于T细胞性白血病的治疗。抗IL-6的抗体可抑制多发性骨髓瘤的发展。
③移植物排斥:抗IL-2或IL-2受体制剂可抑制同种移植物的排斥。注射重组IL-1受体拮抗剂可延长动物心脏移植物的存活。
④白细胞减少症:用GM-CSF、M-CSF、G-CSF可治疗白细胞减少症,EPO可治疗红细胞减少症,IL-11可治疗血小板减少症。
⑤超敏反应:抑制IL-4和IL-13,可预防、治疗I型超敏反应。
⑥治疗自身免疫性疾病:IL-1治疗由 Th1细胞引起的自身免疫性疾病,中和IL-2或IL-2受体制剂可用于治疗某些自身免疫病,TNF抗体可减轻类风湿关节炎患者的关节损伤。
1.HLA复合体的结构及产物:根据HLA复合体各位点基因及其编码产物结构和功能的不

同,将HLA复合体分为三个区域,即I类基因区、Ⅱ类基因 区和介于I类与Ⅱ类基因区之间的Ⅲ类基因区。
(1)I类基因区内含经典HLA的A、B、C基因位点和新近确定的非经典 HLA的E、F、G、H等基因位点。HLA的A、B、C各位点基因编码 HLA I类抗原分子的重链(α链),与β2m结合共同组成人类的 HLA I类抗原。
(2)Ⅱ类基因区包括HLA的DP、DQ、DR三个亚区和新近确定的HLA的DN、DO、DM三个亚区。HLA的DP、DQ、DR三个亚区编码相应的HLA的DP、DQ、DR抗原的α链和β链,组成HLA Ⅱ类抗原。
(3)Ⅲ类基因区位于I类与Ⅱ类基因区之间,内含众多编码血清补体成分和其他血清蛋白的基因,主要基因产物为 C4、C2、B因子、肿瘤坏死因子和热休克蛋白70等。
2.HLA 的多态性主要由以下原因所致:①复等位基因:HLA复合体的每一个位点均存在为数众多的复等位基因,这是HLA高度多态性的最主要原因。②共显性:HLA复合体中每一个等位基因均为共显性,从而大大增加了人群中HLA表型的多样性。
3.MHC 抗原分子的主要生物学功能有 :
(1) 引起移植排斥反应。器官或组织细胞移植时,同种异体内MHC抗原可作为异己抗原刺激机体,发生强烈的移植排斥反应。
(2) 抗原提呈作用。在抗原提呈细胞内,MHC分子通过抗原肽结合区与胞浆内加工处理过的抗原肽结合,形成MHC-抗原肽复合体,经转运表达于抗原提呈细胞表面,可被具有相应抗原受体的淋巴细胞识别结合,完成抗原呈递,启动免疫应答。
(3) 制约免疫细胞间的相互作用即MHC限制性。抗原提呈细胞与T细胞相互作用时,只有当二者MHC分子一致时, T细胞才能被激活,即细胞间相互作用的MHC限制性。CD4+Th细胞与抗原提呈细胞之间相互作用受MHCⅡ类分子的制约,CD8+Tc细胞与肿瘤或病毒感染细胞之间的相互作用受MHC I类分子的制约。
(4)诱导胸腺细胞分化。MHC分子参与胸腺细胞(前T细胞) 在胸腺中的分化和发育。通过阴、阳性选择后,胸腺产生对自身抗原无反应性的T细胞,形成天然自身免疫耐受;同时亦产生对非己抗原具有应答作用的T细胞,T细胞对非已抗原的应答作用受MHC分子制约。
 4.HLA I 类和Ⅱ类抗原的结构、组织分布、功能及与抗原肽相互作用特点:
HLA抗原类别 肽结合
结构域 表达特点 组织
分布 功能 与抗原肽相互作用特点
Ⅰ类(A、B、C) α1+α2 共显性 所有
有核
细胞
表面 识别和提呈内源性抗原肽,与辅助受体CD8结合,对CTL的识别起限制作用 Ⅰ类抗原凹槽两端封闭,接纳的抗原肽长度有限,为8-10个氨基酸残基,锚定位为P2和P9
Ⅱ类 (DR、DQ、DP) α1+β1 共显性 APC 及活
化的

T 细
胞 识别和提呈外源性抗原肽,与辅助受体CD4结合,对Th的识别起限制作用 Ⅱ类抗原凹槽两端开放,接纳的抗原肽长度变化较大,为13-17个氨基酸残基,锚定位为P1、P4、P6和P9

5.HLA在医学上的意义有 :
(1) HLA与同种器官移植的关系。同种器官移植的存活率主要取决于供者与受者间的HLA相合程度。通常存活率由高到低的顺序是:同卵双生>同胞>亲属>无血缘关系者。
(2)HLA 与输血反应的关系。对多次接受输血者应注意选择HLA抗原相同或不含抗白细胞抗体的血液,以避免由抗 HLA抗体所引发的输血反应。
(3)HLA 与疾病的相关性。某些疾病与HLA一种或几种抗原相关,如:90%以上的强直性脊柱炎患者具有HLA-B27 抗原。
(4)HLA异常表达与疾病的关系。① HLA I类抗原表达异常:当细胞癌变时其表面HLA I类抗原表达确失或显著减少,这可能是肿瘤细胞逃避免疫攻击的机制之一。②HLA Ⅱ类抗原表达异常:器官特异性自身免疫性疾病的靶细胞可异常表达HLA Ⅱ类抗原,可能以组织特异性方式把自身抗原提呈给自身反应性T细胞,从而启动自身免疫反应,导致自身组织损伤。
1.白细胞分化抗原的生物学作用有:⑴参与细胞生长、分化、正常组织结构的维持⑵参与免疫应答过程中免疫细胞的相互识别,免疫细胞抗原识别、活化、增值和分化,以及免疫功能的发挥⑶造血细胞的分化和造血过程的调控⑷参与炎症的发生、血栓形成和组织修复⑸肿瘤的恶化和转移。
2.粘附分子的分类和功能:粘附分子根据结构特点分为整合素家族、选择素家族、免疫球蛋白超家族、钙粘蛋白家族,此外还有一些尚未归类的粘附分子。功能:⑴参与免疫细胞的免疫发育与分化。如胸腺细胞发育成熟过程中涉及到胸腺细胞上CD8和CD4分子与胸腺基质细胞上的MHCⅠ、Ⅱ类抗原间的相互作用;T细胞活化分化过程中必须有粘附分子提供的细胞间协同刺激信号的存在。⑵通过白细胞与血管内皮细胞上的粘附分子之间的作用参与炎症过程 ⑶通过淋巴细胞上的淋巴细胞归巢受体与内皮细胞上的地址素之间的作用参与淋巴细胞归巢。
3.参与T细胞识别、粘附及活化的CD分子的种类 、结构特点、识别配体及其功能有:
种类 结构特点 识别配体 功能
CD3 五聚体,与TCR组成TCR/CD3复合物 稳定TCR结构、传递活化信号
CD4 单体分子 MHCⅡ类分子 增强TCR与APC或靶细胞的亲和性,并参与信号传导。
CD8 异源二聚体 MHCⅠ类分子 增强TCR与APC或靶细胞的亲和性,并参与信号传导。
CD2 单体分子 CD58(LFA-3) 增强T细胞与APC或靶细胞的粘附及CD2分子所介导的

信号传导
CD58 单体分子 CD2 促进T细胞识别抗原,参与T细胞信号传导
CD28 同源二聚体 B7 提供T细胞活化的辅助信号
CD152 同源二聚体 B7 对T细胞活化有负调节作用
CD40L 三聚体 CD40 是B细胞进行免疫应答和淋巴结生发中心形成的重要条件
4.参与B细胞识别、粘附及活化的CD分子的种类 、结构特点、识别配体及其功能有:
 种类 结构特点 识别配体 功能
CD79 异源二聚体 与mIg组成BCR复合物,介导B细胞信号传导
CD19 单体分子 促进B细胞激活
CD21 单体分子 C3片段EB病毒 增强B细胞对抗原的应答,参与免疫记忆
CD80/CD86 单体分子 CD28 提供T细胞活化的辅助信号
CD40 单体分子 CD40L 是B细胞进行免疫应答和淋巴结生发中心形成的重要条件
5.IgFc受体的分类和功能分别为:
(1)FcγR:是IgG Fc受体,又可分为① F cγR Ⅰ(即CD64):是高亲和力IgG Fc受体,可介导ADCC,清除免疫复合物,促进吞噬细胞对颗粒性抗原的吞噬作用,促进吞噬细胞释放IL-1、IL-6和TNF-α等介质;② FcγR Ⅱ(即CD32):是低亲和力IgG Fc受体,可介导中性粒细胞和单核巨噬细胞的吞噬作用和氧化性爆发;③FcγRⅢ(即CD16):是低亲和力IgG Fc受体,可与FcεRγ链或与TCR-CD3ζ链相连,传递活化信号,并可介导促进吞噬和ADCC作用。
(2)FcαR(即CD89):是IgA Fc受体,能结合IgA,介导吞噬细胞的吞噬作用、超氧产生、释放炎症介质以及发挥ADCC。
(3)FcεR:是IgE Fc受体,可分为:①FcεR Ⅰ:是IgE高亲和力受体,可介导Ⅰ型超敏反应;② FcεRⅡ(即CD23):是IgE低亲和力受体,可以不同方式参与IgE合成的调节。
1.巨噬细胞的生物学功能有:
⑴吞噬杀伤和消除作用:巨噬细胞可吞噬病原体等抗原性异物,并通过其氧依赖性和氧非依赖性杀菌系统发挥杀伤和消除作用;
⑵分泌多种细胞因子(例如TNF-α IL-1 IL-6 IL-8 IL-12 MCP-1等)和其他炎症介质(例如LBT-4 PAF 前列腺素E 磷脂酶等),参与局部炎症反应、发热反应和急性期反应,从而发挥抗感染免疫作用,并对免疫细胞有重要的调节作用;
⑶加工处理提呈抗原,启动特异性免疫应答;
⑷抗肿瘤作用
2.NK细胞的生物学功能有:
⑴直接或通过ADCC效应非特异性杀伤靶细胞,发挥抗感染和抗肿瘤作用。作用无MHC限制性,且无需抗原预先致敏;
⑵分泌细胞因子,参与免疫调节;
⑶参与移植排斥反应、超敏反应和自身免疫病等免疫病理过程。
3.B-1B细胞的抗体应答特点是:①B-1B细胞可通过表面抗原受体,直接与相应多糖抗原配体交联结合而被激活,IL-5等细胞因子作为细胞活化第二信号,可

协助和增强TI-2型多糖抗原对B-1B细胞的激活作用和分泌功能;②B-1B细胞在接受相应多糖抗原刺激后,48小时之内可产生以IgM为主的低亲和性抗体,这对机体早期抗感染免疫和清除变性自身抗原具有重要作用;③B-1B细胞在增值分化过程中不发生Ig类别转换,每个B-1B细胞克隆只能产生一种类型Ig;④B-1B细胞不产生免疫记忆,再次接受相同抗原刺激后,其抗体效价与初次应答时无明显改变。
4.单核吞噬细胞的表面分子及功能:
单核吞噬细胞可表达多种表面分子,包括白细胞分化抗原、粘附分子、MHC分子及各种受体分子等,它们与单核吞噬细胞的吞噬杀伤、抗原呈递、免疫调节等多种生物学功能密切相关。例如,单核吞噬细胞具有免疫球蛋白 Fc 受体和补体C3b受体,可分别与IgG的Fc段及补体 C3b 片段结合, 从而促进吞噬细胞吞噬抗原性异物。单核吞噬细胞的MHC分子, 可与抗原肽形成复合物呈递给T细胞,启动免疫应答。单核吞噬细胞表面的协同刺激分子,可与T细胞表面的协同刺激分子受体结合,从而产生T细胞活化的协同刺激信号(第二信号)。单核吞噬细胞表面的细胞因子受体、激素受体,可接受多种调控其功能的刺激信号。
5.巨噬细胞在非特异性抗感染免疫各时相的主要作用及其作用机制是:
(1)即刻非特异性免疫应答阶段:吞噬清除病原体,机制是:巨噬细胞经吞饮或吞噬作用将病原体等抗原摄入胞内,形成吞噬体,之后与溶酶体融合形成吞噬溶酶体,再通过氧依赖和氧非依赖系统,杀伤消除病原体等抗原性异物。
(2)早期非特异性免疫应答阶段:吞噬杀伤病原体,机制是:产生大量细胞因子(如IL-1、IL-6、IL-8、IL-12、TNF-α等)引起炎症反应,使血管扩张,通透性增强,从而利于血管内补体、抗体和急性期蛋白等免疫效应分子进入感染部位发挥作用,且能吸引招募血管和周围组织中的吞噬细胞到达感染部位,增强抗感染免疫能力,促进病原体的清除。
(3)特异性免疫应答诱导阶段:作为专职APC,或活化APC(DC)可将加工处理过的抗原携带至局部淋巴结等处,通过与抗原特异性淋巴细胞之间的相互作用,诱导产生特异性免疫应答。机制是:巨噬细胞以吞噬、胞饮、吸附或调理作用摄取抗原,在胞内将其加工处理为小分子的免疫原性多肽片段,并以多肽-MHCⅡ/Ⅰ类分子复合物的形式表达于细胞表面,呈递给Th/Tc细胞,使 Th/Tc细胞激活,从而产生特异性免疫应答。
6.NK细胞能够杀伤病毒感染的细胞和某些肿瘤细胞,而不能杀伤正常组织细胞的原因是:
NK细胞表面具有两种不同的受体:杀伤细胞活化受

体(KAR),能识别自身组织细胞病毒感染的细胞和某些肿瘤细胞表面的糖基配体,传导活化信号,发挥杀伤作用;杀伤细胞抑制受体(KIR),能识别自身组织细胞表面的MHCⅠ类分子,介导抑制信号的产生。病毒感染的细胞和某些肿瘤细胞及正常自身组织细胞表面均可和这两种受体结合,对病毒感染的细胞和某些肿瘤细胞而言,表面MHCⅠ类分子表达减少或缺失,则KAR的作用占主导地位,从而表现为杀伤作用;对正常自身组织细胞而言,表面MHCⅠ类分子表达正常或增加,则KIR的作用占主导地位,从而表现为NK细胞失活,自身组织细胞不被破坏。
7.γδT细胞主要分布于粘膜和上皮组织中,γδT细胞的主要作用有:
(1)抗感染;
(2)抗肿瘤;
(3)可分泌多种细胞因子,参与免疫调节,介导炎症反应,增强机体早期非特异性免疫防卫功能。
1.T细胞主要的表面分子及其主要作用是
表面分子 主要作用
TCR 特异性识别由MHC分子提呈的抗原肽
CD3 稳定TCR结构,传递活化信号
CD4/CD8 增强TCR与APC或靶细胞的亲和性,并参与信号传导。
CD28
LFA-2(CD2) 提供T细胞活化的第二信号
可与CD58结合,能介导T细胞旁路激活途径,还能介导效应阶段的激活途径
CD40L 可表达于部分活化的T细胞表面,可与B细胞表现CD40结合,产生的信号是B细胞进行免疫应答和淋巴结生发中心形成的重要条件。
丝裂原受体 与丝裂原结合后,直接使静止状态的T细胞活化增殖转化为淋巴母细胞

2.T细胞亚群分类及其功能。
T细胞是异质性群体,分类方法有很多:按CD分子不同可分为CD4+和CD8+两个亚群;按TCR分子不同可分为TCRαβ和TCRγδT细胞;按功能不同可分为辅助性和抑制性T细胞;按对抗原的应答不同可分为初始T细胞、抗原活化过的T细胞、记忆性T细胞。
功能:(1)CD4+辅助性T细胞(Th):增强免疫应答;活化细胞,增强其吞噬或杀伤功能;
(2)CD8+杀伤性T细胞(Tc):特异性直接杀伤靶细胞,与细胞免疫有关;
(3)抑制性T细胞(Ts):抑制免疫应答
(4)迟发型超敏反应性T细胞(TD):主要为Th1,还有CTL,Th1分泌多种淋巴因子,引起以单核细胞浸润为主的炎症反应,CTL可以直接破坏靶细胞。
3.Th1细胞与Th2细胞各分泌的细胞因子及其主要作用是:
Th1细胞分泌IL-1、IFN-γ、TNF-β等细胞因子,引起炎症反应或迟发型超敏反应;Th2细胞分泌IL-4、 IL-5、IL-6、IL-10等细胞因子,诱导B细胞增殖分化合成并分泌抗体,引起体液免疫应答。
4.不能。
因为Ts细胞既可以是CD4+T细胞又可以是CD8+T细胞。
5.T细胞

与B细胞:表面的抗原受体不同,T细胞是TCR而B细胞是BCR;
初始T细胞与记忆T细胞: 二者表面CD45分子的异构型不同,初始T细胞表达CD45RA,而记忆T细胞表达CD45RO;
Th1细胞与Th2细胞:二者分泌的细胞因子不同, Th1细胞分泌IL-1、IFN-γ,与TDH和TC细胞的增殖分化成熟有关,可促进细胞介导的免疫应答;而Th2细胞偏向于分泌IL-4、IL-5、IL-6、IL-10,与B细胞增殖成熟和促进抗体生成有关,可增强抗体介导的免疫应答。
6.CD8+杀伤性T细胞破坏靶细胞的机制有2种:细胞裂解和细胞调亡。
⑴细胞裂解:CD8+杀伤性T细胞特异性识别靶细胞表面的抗原肽:MHC分子复合物后,通过颗粒胞吐释放穿孔素,使靶细胞膜上出现大量小孔,膜内外渗透压不同,水分进入胞浆,靶细胞胀裂而死;
⑵细胞调亡:有2种不同机制:①Tc活化后大量表达FasL,可与靶细胞表面的Fas结合,通过Fas分子胞内段的死亡结构域激活caspase,在激活一系列caspase,引起死亡信号的逐级转导,最终激活内源性DNA内切酶,使核小体断裂,并导致细胞结构毁损,细胞死亡;②Tc细胞颗粒胞吐释放的颗粒酶,可借助穿孔素构筑的小孔穿越细胞膜,激活另一个caspase10, 引发caspase级联反应,使靶细胞调亡。
7.NK1.1+T细胞表型的特点有:表达NKR.P1C(NK1.1), 通常为CD4-CD8-, TCR多为TCRαβ。其功能有:
⑴细胞毒作用:①可分泌穿孔素使靶细胞溶解; ②胸腺中的该细胞可通过FasL/Fas途径诱导CD4+CD8+双阳性的胸腺细胞调亡;
⑵免疫调节作用:①在受某些抗原刺激时,如寄生虫感染,可分泌大量IL-4,可诱导活化的Th0细胞分化为Th2细胞,参与体液免疫应答或诱导B细胞发生Ig类别转换,产生特异性IgE;②在病毒抗原作用下,可产生IFN-γ,与IL-12共同作用,可使Th0细胞转向Th1细胞,增强细胞免疫应答。
1.B细胞的特点:
在哺乳动物,B细胞在骨髓中发育成熟,成熟B细胞可定居于周围淋巴组织,是体内唯一能产生抗体的细胞,B细胞表面可表达多种膜分子,如:BCR、CD79a、CD79b、CD19、CD20、CD40、CD80、CD86、CD35、CD21、CD22、CD32、MHC分子、丝裂原受体等等。
B细胞的主要生物学功能。
(1)产生抗体,参与特异性体液免疫;
(2)作为APC,提呈抗原;
(3)产生细胞因子,参与免疫应答炎症反应及造血过程。
2.B1细胞与B2细胞的主要特征:
性质 B1 B2
初次产生时间 胎儿期 出生后
分布 胸腔腹腔 外周免疫器官
CD5 + -
BCR mIgM MigM, mIgD
识别抗原 TI抗原 TD抗原
更新方式 自我更新 由骨髓产生
自发性Ig的产生 高 低
特异性 多反应性 单特异性,尤在反应后

分泌的Ig的同种型 IgM>IgG IgG>IgM
免疫记忆 易形成 不易形成
简述抗原受体基因重排的过程。
T细胞表面的TCR和B细胞表面的BCR V区胚系基因是由V、D、J基因片段组成,各基因片段之间均有内含子隔开,其抗原受体基因重排的过程是各基因片段在重组信号序列(RSS)的作用下,识别位于V、D、J基因片段两侧的保守序列,切断及修复DNA。重组信号序列是由一个七核苷酸的七聚体和一个九核苷酸的九聚体之间间隔一个12或23碱基对的间隔序列组成。在基因重排时,基因片段和七聚体之间被切断,带有12bp间隔序列RSS的基因片段和带有23bp间隔序列的片段结合,使两个基因片段相互连接,两个连接片段之间多余出的序列被环出。从而保证了基因的正确重组。
2.简述BCR多样性产生的机制。
BCR是通过其V区抗原结合部位来识别抗原的。BCR V区,尤其是V区CDR1、CDR2和CDR3氨基酸序列的多样性,就决定了对抗原识别的多样性。造成BCR多样性的机制主要有:①组合造成的多样性:编码BCR重链 V区的基因有V、D、J三种,编码轻链V区的有V和J两种基因,而且每一基因又是由很多的基因片段组成的。这样,重链基因的组合和重链基因与轻链基因的组合,将产生众多不同特异性的BCR。②连接造成的多样性:编码BCR CDR3的基因位于轻链V、J或重链V、D、J片段的连接处,两个基因片段的连接可以丢失或加入数个核苷酸,从而显著增加了CDR3的多样性。③体细胞高频突变造成的多样性:在BCR各基因片段重排完成之后,其V区基因也可发生突变,而且突变频率较高,因而增加其多样性。
简述多能造血干细胞的主要特征及其表面标志。
造血干细胞是存在于骨髓中的一类原始的造血细胞,具有自我增生和分化功能,是各种血细胞的共同祖先,可增生分化产生多种功能不同的血细胞。其主要的表面标志为:CD34和CD117。
何谓阳性选择?其生理意义是什么?:
阳性选择是T细胞在胸腺内分化成熟过程中经历的一个发育阶段。胸腺内CD4、CD8双阳性的T细胞与胸腺上皮细胞表达的自身肽-MHC-I或MHC-II类分子以适当亲和力结合。其中与MHC-I类分子结合的双阳性细胞CD8分子表达升高,而CD4分子表达下降;与MHC-II类分子结合的双阳性细胞CD4分子表达升高,而CD8分子表达下降,选择性发育分化为CD4或CD8的单阳性细胞。而未能与胸腺上皮细胞表达的自身肽-MHC-I或MHC-II类分子结合的或亲和力过高的双阳性的T细胞则发生凋亡。此过程称为阳性选择。阳性选择的结果,使双阳性T细胞发育为成熟单阳性T细胞时获得了MHC限制性。
何谓阴性选择?其生理意义是什么?
在T细胞发育的阳性选择

后,单阳性的T细胞与胸腺树突状细胞、巨噬细胞表达的自身肽-MHC-I或MHC-II类分子发生高亲和力结合而被清除或不能活化。只有那些未能与胸腺树突状细胞、巨噬细胞表达的自身肽-MHC-I或MHC-II类分子结合的T细胞才能发育分化为成熟的T细胞,此过程称为阴性选择。阴性选择清除了自身反应性T细胞克隆,是T细胞形成自身耐受的主要机制。
简述T、B、NK细胞形成自身耐受的机制。
T细胞自身耐受的形成是在T细胞发育阶段经阴性选择后产生的。双阳性的T细胞在胸腺皮质、皮髓交界处以及髓质区与胸腺树突状细胞、巨噬细胞表达的自身肽-MHC-I类或II类分子发生高亲和力结合后而被清除,这样保证了机体T细胞库中不含有针对自身成分的细胞克隆。
B细胞自身耐受的形成是在B细胞分化过程中产生的。当早期B细胞逐渐发育为不成熟B细胞时,细胞膜表面表达mIgM,此时如接受自身抗原刺激,则易形成自身耐受。
NK细胞在发育成熟过程中可表达具有抑制作用的杀伤细胞抑制受体(KIR)和CD94分子等。这些抑制性受体通过识别自身的MHC-I类分子使NK细胞处于受抑制状态,发生自身耐受。
1.决定抗原免疫原性的因素有哪些?怎样才能获得高效价的抗体?
决定抗原免疫原性的因素有:①异物性:异物性是抗原分子免疫原性的核心。一般来讲,抗原必须是异物,而且抗原与机体的亲缘关系越远,其免疫原性越强。但某些自身物质在一定情况下,免疫系统也可将其视为异物而发生免疫应答。②抗原分子的理化性状:如大分子物质、复杂的化学性质和结构、具有一定的分子构象和物理状态等。
用抗原免疫动物后,要想获得高效价的抗体,应考虑以下方面的问题:动物的遗传背景、年龄、健康状态、抗原的剂量、免疫的途径、次数等。必要时应加一定量的免疫佐剂。
2.简述T细胞表位与B细胞表位的区别。
T细胞表位 B细胞表位
表位受体 TCR BCR
MHC分子 需 不需
表位性质 线性短肽 天然多肽
表位大小 8~12个氨基酸 5~15个氨基酸
12~17个氨基酸
表位类型 线性表位 构象表位或线性表位
表位位置 在抗原分子任意部位 在抗原分子表面

3.简述TD-Ag与TI-Ag的区别。
TI-Ag TD-Ag
化学性质 主要为某些糖类 多为蛋白质类
结构特点 结构简单,具有相同或重复出现的同一抗原决定基 结构复杂,往往具有多种且不重复的抗原决定基
载体决定基 无 有
T细胞依赖性 无 有
免疫应答类型 体液免疫 体液免疫细胞免疫
产生Ig类型 IgM IgG
免疫记忆 无 有
MHC限制性 无 有
再次应答 无 有

4.如何理解抗原抗体结合的特异性和交叉反应性。
抗原与抗体结合

的特异性,是指某一抗原表位与相应抗体结合的特异性。这种结合的分子机制是抗原表位的空间结构与抗体分子超变区互补的结果。而交叉反应是指两种抗原分子表面存在有相同或相似的抗原表位时,同一种抗体结合的现象。因此,交叉反应实质上也是抗原与抗体的特异性结合。
5.简述超抗原与普通抗原的区别。
普通抗原 超抗原
化学性质 蛋白质
多糖 细菌外毒素或逆转录病毒的产物
APC处理 需 不需
MHC-II类分子结合部位 抗原结合槽 非多肽区
T细胞反应频率 10 6 ~ 1010 1/20 ~ 1/5
MHC限制性 有 无

6.何谓佐剂?佐剂的种类有哪些?作用机制如何?
凡与抗原一起注射或预先注射机体时,可增强机体对抗原的免疫应答或改变免疫应答类型的物质称为佐剂。常用的佐剂有生物佐剂(如BCG、CP、LPS和细胞因子等)、化学佐剂(如氢氧化铝、明矾等)及人工合成的佐剂(poly IC、poly AU)等。
作用机制是:改变抗原的物理性状,增加抗原在体内存留的时间;增加单核巨噬细胞对抗原的处理及提呈;刺激淋巴细胞增生分化,增强和扩大免疫应答的能力。
简述抗原提呈细胞的概念、种类。
抗原提呈细胞是指具有摄取、加工、处理抗原,并能将抗原信息提呈给淋巴细胞的一类细胞,在免疫应答过程中起十分重要的作用。抗原提呈细胞根据其功能可分为专职抗原提呈细胞和非专职性抗原提呈细胞,前者包括巨噬细胞、树突状细胞和B细胞;后者包括内皮细胞、纤维母细胞、上皮细胞和间皮细胞等。
2.试述巨噬细胞及树突状细胞在处理和提呈抗原方面的特点。
巨噬细胞摄取抗原的方式有吞噬作用、胞饮作用和受体介导的胞吞作用三种方式,可摄入较大的固体物质、极小的颗粒状物质、液态物质等。巨噬细胞表面带有大量不同的受体如FcR、CR等,也可通过受体介导将抗原摄取。这些抗原被摄取后,首先在细胞内溶酶体的作用下被降解成小分子的多肽片段,然后与细胞内合成的MHC-II类分子结合形成抗原肽-MHC-II类分子的复合物,提呈给T细胞。
树突状细胞摄取抗原的方式有巨吞饮作用、受体介导的内吞作用和吞噬作用三种方式。可吞入非常大量的液体,也可摄入较大颗粒的抗原性物质。但是树突状细胞与巨噬细胞不同的是,其仅在发育的某些特定的阶段才具有一定的吞噬功能。外来抗原性物质被树突状细胞摄入后处理成13~25个氨基酸的肽段,与MHC-II类分子结合后表达在细胞表面,再提呈给CD4 T细胞。
3.简述MHC-I类分子提呈内源性抗原的过程。
内源性抗原是指由细胞内合成的抗原,如胞内蛋白质、核蛋白及病

毒感染细胞合成的病毒蛋白等。这些抗原在细胞内合成后首先在胞浆内蛋白酶体的作用下降解成小分子的肽段,这些8~11个左右氨基酸组成的肽段大小与MHC-I类分子肽结合区凹槽相仿,在抗原加工相关转运体(TAP)的作用下转移至内质网腔中,与新组装的MHC-I类分子结合,形成抗原肽MHC I类分子复合物。然后通过分泌途径运送至细胞膜表面,提呈给CD8 T细胞。
4.简述MHC-II类分子提呈外源性抗原的过程。
外源性抗原是指来自细胞外的抗原。当外源性抗原进入机体后,大部分抗原被抗原提呈细胞以吞噬、吞饮及受体介导的胞吞方式摄入至细胞浆中,被内体及溶酶体中的蛋白酶水解为能与MHC-II类分子结合的抗原肽片段。在内质网中新合成的MHC-II类分子与抗原肽结合,形成稳定的抗原肽MHC II类分子复合物,然后转运至细胞膜表面,提呈给CD4 T细胞。
1.T细胞识别抗原的特点是什么?
T细胞只能特异性识别表达在APC表面并与MHC分子结合成复合物的肽类抗原,这又称为TCR的双识别,即TCR在特异性识别APC所提呈的抗原肽的过程中,必须同时识别与抗原肽形成复合物的MHC分子,也就是说,T细胞对抗原肽的识别受MHC分子种类的限制。
TCR所识别的,是由氨基酸一级序列所决定的抗原肽的线性决定簇,后者可在APC表面MHC分子的肽结合凹槽中形成特定构象。体内表达TCR的T细胞是参与特异性免疫应答的主要细胞群,它们识别抗原肽-MHC复合物时,由TCR 链可变区进行特异性识别: 链可变区的CDR1 和CDR2 结构域识别并结合MHC分子的非多态性区和抗原肽的两端; 链的CDR3 结构域识别并结合于抗原肽中央的T细胞表位,所以决定TCR 识别抗原特异性的是CDR3区。
2.T

细胞活化的信号要求是什么?
T细胞特异性识别APC 所提呈的MHC-抗原肽复合物,并被激活和发生增生,进而分化成效应细胞。在上述过程中,T 细胞均需要两个来自胞外的信号刺激,即淋巴细胞活化的双信号作用。
T 细胞的第一激活信号主要来自TCR与MHC 分子-抗原肽复合物的特异性结合,即抗原识别。另外,CD4和CD8分子作为共受体,可分别与MHC-II 及MHC-I 类分子结合,除可增强T细胞与APC 间的黏附作用外,还参与第一激活信号的启动和转导。
T细胞活化的第二信号来自协同刺激分子,故又称协同刺激信号,即由APC上的协同刺激分子与T 细胞表面的相应受体分子间的相互作用所提供。在参与T细胞激活的诸多协同刺激分子中,最重要的是T 细胞表面CD28分子与APC 表面相应配体B7-1(CD80)和B7-2(CD86)的结合。由CD28/B7发出的第二信号,可增强细胞因子基因的转录与表达,进而使T 细胞增殖;还可增加bcl-xL的表达,保护T 细胞免于凋亡。
活化T细胞还表达CTLA-4,后者的配基也是B7-1和B7-2。但与CD28分子的作用相反,CTLA-4与配基结合后可向T细胞发出抑制信号,降低活化T细胞的子代细胞对抗原刺激的敏感性,从而将T细胞应答的强度限制在一定范围。APC表面表达的其他协同刺激分子还包括VCAM-1、ICAM-1 和LFA-3,它们分别与T 细胞表面的VLA-4、LFA-1和CD2分子结合,共同提供T细胞活化的第二信号。缺乏协同刺激信号,T细胞活化不充分,不能表现效应功能,或使抗原特异性T淋巴细胞凋亡,或被诱导呈无能状态。
3.T细胞活化信号的主要转导过程如何?
T细胞表面的TCR和CD3分子结合复合物。TCR是跨膜蛋白,其胞外部分特异结合抗原,但胞内部分短小,不能传递信号,而CD3分子是重要的信号转导分子,可将胞外刺激信号传递至细胞内部,使转录因子活化,转位到核内,活化相关基因。这一过程称为信号转导。活化信号的主要转导过程包括:
(1)受体交联:抗原与TCR结合后,使膜表面的位置及构型发生改变,使本来分散存在的TCR发生聚集而交联,并由此导致两种效应:一方面,可使细胞表面的离子通道开放,离子由胞外进入胞内,改变胞内某些重要离子的浓度,后者可作为信号转导分子引起胞内变化;另一方面,构型发生改变并聚集的TCR可使其胞内部分相互接触,从而活化胞内信号蛋白和酶。
(2)PTK活化:T细胞活化信号转导的早期,因受体交联而活化的胞内酶类主要有蛋白酪氨酸激酶p56lck、p59fyn 及ZAP-70等。当受体交联时,与TCR有关的膜蛋白如CD3、CD4或CD8的胞浆尾部同时聚在一起,促使带有酪氨酸的蛋白发生磷酸化而活化,

产生激酶活化的级联反应,将活化信号传递给其他分子。
(3)PLC-活化:PTK-ZAP-70与 链上已磷酸化的ITAM结合,CD4携带的p56lck再促使ZAP-70磷酸化而活化。活化的ZAP-70使接头蛋白(LAT,SLP-76)磷酸化,然后与含有SH2功能区的磷脂酶C-(PLC-)结合并使之活化。活化的PLC-可裂解细胞膜上的磷脂酰肌醇二磷酸(PIP2)产生肌醇三磷酸(IP3)和甘油二酯(DAG),开通两个信号转导通路并放大信号。IP3可开放胞膜Ca2+通道使胞浆Ca2+浓度升高,继而活化胞浆内的Ca2+神经素,后者使胞内核转录因子(NF-AT)去磷酸化而被活化,并向核内转位。位于胞膜内面的DAG可结合并活化蛋白激酶C(PKC),继而活化转录因子B(NF-B),后者转位至核内,将活化信号传至胞核。
(4)MAPK激酶活化:ZAP-70活化后可经ras激活丝裂原活化的蛋白激酶(MAPK)级联反应。这种级联反应参与多种细胞的活化过程。经CD28-B7的第二激活信号可活化MAPK及IP3激酶途径,后续的系列级联反应直接导致核内转录因子活化,特别是激活癌基因fos和jun表达,由两者组成转录因子AP-1。
(5)转录因子活化:T细胞活化信号经肌醇磷脂代谢活化PKC和钙离子信号途径和ras—MAPK途径,产生激酶磷酸化的级联反应,从而放大了开始时的初始信号,使T细胞内的转录因子活化。活化的转录因子与相关基因的调控区结合,通过增强启动子的活性而促进基因转录。由此,推动细胞进入分裂周期,出现克隆扩增并向效应细胞分化。
4.效应T细胞的主要功能是什么?
抗原活化T细胞后,经克隆扩增及功能分化,成为效应T细胞:CD4+Th1细胞和CD8+Tc细胞。其主要功能有:
(1)抗感染作用:主要针对胞内感染的病原体,包括抗细菌、抗病毒、抗真菌、抗寄生虫感染等。
(2)抗肿瘤作用:Tc细胞的特异性杀伤表达抗原的肿瘤细胞;藉细胞因子直接或间接的杀伤肿瘤细胞。
(3)免疫损伤作用:效应T细胞可引起IV型超敏反应、移植排斥反应、某些自身免疫病的发生和发展。
5.Th1细胞分泌的细胞因子及其生物学作用:
Th1细胞主要分泌IL-2、TNF-和IFN-等细胞因子,其生物学作用简述如下:
(1)IL-2:促进Tc细胞增殖分化为致敏Tc细胞;通过自分泌和旁分泌作用途径,促进Th1细胞增殖分化,合成分泌细胞因子,扩大细胞免疫效应。
(2) TNF-:作用于血管内皮细胞,使之表达粘附分子和分泌IL-8等趋化性细胞因子(这些粘附分子和趋化因子能使血流中中性粒细胞、淋巴细胞和单核细胞等与血管内皮细胞粘附,进而迁移和外渗至局部组织,引起慢性炎症反应);激活中性粒细胞,增强其吞噬杀

菌能力;局部产生的高浓度TNF-可使周围组织细胞发生损伤坏死。
(3) IFN- 作用于巨噬细胞和内皮细胞,使之MHC II类分子表达增强,提高抗原提呈效率,扩大细胞免疫应答;活化单核吞噬细胞,增强其吞噬和胞内杀伤功能,并使之获得杀伤肿瘤的功能;促使活化巨噬细胞产生多种引发炎症反应的细胞因子和介质;活化NK细胞,增强杀瘤和抗病毒作用,提高机体免疫监视功能。
6.致敏Tc细胞对靶细胞发挥杀伤作用的机制:
(l)致敏Tc细胞对靶细胞的杀伤作用具有抗原特异性,并受MHC I类分子限制。它们只能杀伤表达相应致敏抗原的靶细胞,并且必须与靶细胞密切接触。致敏Tc细胞对靶细胞的作用是通过其表面TCR-CD3复合受体分子与靶细胞表面抗原肽-MHC I类分子复合物特异性结合,并在表面CD8分子与靶细胞表面相应配体(自身MHC I类分子Ig样区)的相互作用下实现的,此时致敏Tc细胞分泌穿孔素、丝氨酸蛋白酶和FasL等细胞毒性物质,使靶细胞溶解破坏和发生细胞凋亡。
(2)致敏Tc细胞杀伤溶解靶细胞后本身不受损伤,它们与溶解破坏的靶细胞分离后,又可继续攻击杀伤表达相应致敏抗原的其他靶细胞。通常一个致敏Tc细胞在几小时内可连续杀伤数十个靶细胞。这种由CD8+ Tc细胞介导的特异性细胞杀伤效应在清除病毒感染、同种移植排斥和抗肿瘤免疫中具有重要意义。
7. 试述CD4+初始T细胞(Th0)在免疫应答中的活化过程及效应:
CD4+ 初始T细胞通过表面TCR-CD3复合受体与抗原呈递细胞表面抗原肽-MHC II 类分子复合物特异性结合,在CD4分子的辅助下,产生T细胞活化第一信号。进而通过抗原呈递细胞和CD4+初始T细胞表面一组粘附分子(协同刺激分子与协同刺激分子受体)的相互作用,产生协同刺激信号,即T细胞活化第二信号。在上述两种信号刺激下,初始T细胞活化,分泌IL-2、4、5、6等细胞因子,这些细胞因子是诱导T、B细胞增生分化的重要生物活性介质。
活化CD4+初始T细胞在以IL-4为主的细胞因子的作用下,可增殖分化为Th2细胞。后者产生大量以IL-4、5、6、10为主的细胞因子,辅助B细胞激活、增殖与抗体产生。
活化CD4+初始T细胞在巨噬细胞分泌的IL-12作用下,可增殖分化为Th1细胞(即炎性T细胞)。后者可通过释放IL-2、IFN-和TNF-等细胞因子,使局部组织产生以淋巴细胞和单核吞噬细胞浸润为主的慢性炎症反应或迟发型超敏反应。
1.体液免疫应答的特点。
机体的特异性体液免疫应答主要由B细胞介导,藉B细胞分泌的抗体执行。B细胞对TD抗原的免疫应答始于BCR对TD抗原的识别,所产生的第一活化信号经由Ig/Ig向胞内传导

。BCR辅助受体复合物加强第一活化信号的传导。Th细胞藉与B细胞表面分子的相互作用(CD40-CD40L 等)及分泌的细胞因子向B细胞提供第二活化信号。B细胞从骨髓进入周围淋巴器官后,在抗原刺激下,迁移进入原始淋巴滤泡,形成生发中心,并在生发中心发生抗原受体编辑、体细胞高频突变、抗原受体亲和力成熟及类别转换,最后分化成熟为浆细胞或记忆B细胞。B细胞在外周淋巴器官的发育分化大致可分为活化、增殖和分化三个阶段。TI抗原诱导B细胞产生免疫应答一般不需要T细胞的辅助。
2.Th细胞如何辅助B细胞的免疫应答。
(1)Th细胞的激活:在B细胞应答中,Th细胞的激活分为两种不同情况①初次免疫应答时,DC和巨噬细胞负责摄取、处理抗原,以MHC II类分子-抗原肽复合物的形式将抗原提呈给CD4+Th细胞;②再次免疫应答时,由B细胞内吞抗原,将抗原加工、处理成小肽段,并以MHC II类分子-抗原肽复合物的形式将抗原提呈给CD4+Th细胞。
(2)Th细胞提供B细胞活化的第二信号:活化的T细胞表达CD40L与B细胞表面组成性表达的CD40相互作用,向B细胞传递重要的第二活化信号。在Th细胞对B细胞的辅助中,其他膜分子间的作用(如ICAM-1/LFA-1、CD2/LFA-3等)也很重要。
(3)Th细胞产生细胞因子的作用:活化的Th细胞(主要是Th2)产生多种细胞因子(如IL-4、IL-5、IL-6、IL-10、IL-13等),可辅助B细胞活化、增生与分化及抗体的产生。
3.黏膜免疫应答的特点。
黏膜免疫是免疫系统中一个特殊的组成部分。产生黏膜免疫IgA的B细胞主要来自黏膜伴随淋巴组织(MALT)。这里产生的B细胞可经血流迁移到全身的外分泌器官。在黏膜上皮的下面,富含巨噬细胞、树突状细胞,它们与B、T细胞混处在一起。M细胞输送颗粒抗原给巨噬细胞及树突状细胞,进而活化T细胞。B细胞藉BCR与相应抗原结合,并内吞抗原,然后把加工处理过的小肽提呈给T细胞,T细胞被激活,产生IL-2,并增殖。活化的T细胞反过来辅助B细胞产生抗原特异的IgA。在穿越黏膜上皮的过程中,IgA与存在于外分泌液中的分泌成分结合,增加了IgA对外分泌液中蛋白水解酶的抵抗。同时,IgA也许会与侵入细胞的相应抗原结合,把病原体或其产物从胞内带出到黏膜腔,从而避免对黏膜上皮细胞的伤害。
4.B细胞在生发中心的分化成熟。
在周围淋巴器官的T细胞区激活的部分B细胞进入原始淋巴滤泡,分裂增殖,形成生发中心。生发中心在抗原的刺激下于一周形成。生发中心的B细胞大约6小时分裂一次。这些分裂增殖的B细胞称为生发中心母细胞,有着B细胞的典型形态特征。不发

生分裂增殖的B细胞被推向外侧,形成冠状带。在生发中心,B细胞继续分化发育,发生抗原受体编辑、体细胞高频突变、抗原受体亲和力成熟及Ig类别转换,最后分化成熟为浆细胞或记忆B细胞。
5.免疫应答的概念、基本类型和生物学意义:
(1) 概念: 免疫应答是指机体受抗原性物质刺激后,免疫细胞发生一系列反应以排除抗原性异物的过程。主要包括抗原提呈细胞对抗原的加工、处理和呈递,以及抗原特异性淋巴细胞活化、增殖、分化,进而产生免疫效应的过程。
(2) 类型: 免疫应答根据其效应机理, 可分为B细胞介导的体液免疫和T细胞介导的细胞免疫两种类型。
(3) 生物学意义: 免疫应答的重要生物学意义是及时清除体内抗原性异物以保持内环境的相对稳定。但在某些情况下,免疫应答也可对机体造成损伤,引起超敏反应或其他免疫性疾病。
6.TD抗原诱导的体液免疫应答感应阶段的基本过程: 此阶段系指抗原提呈细胞(APC)摄取、加工、处理和呈递抗原,以及Th细胞和B细胞识别抗原后启动活化的阶段。
TD抗原经APC加工处理后, 以抗原肽 - MHC II 类分子复合物的形式表达于细胞表面。Th细胞通过表面TCR-CD3复合受体与APC表面抗原肽 - MHC II 类分子复合物特异性结合,并在CD4分子与APC表面相应配体(MHC II 类分子的Ig样区)相互作用下,诱导产生Th细胞活化第一信号。进而通过细胞表面协同剌激分子与协同刺激分子受体 (B7与CD28、ICAM-l与LFA-1、LFA-3与LFA-2)间的相互作用,产生协同刺激信号, 即Th细胞活化第二信号。在上述二种信号剌激下,Th细胞活化, 活化的Th细胞可分泌IL-2、4、5和IFN-等多种细胞因子。与此同时,巨噬细胞可分泌IL-1、12等细胞因子,这些细胞因子是诱导T、B细胞增殖分化的重要生物活性介质。
B细胞作为免疫效应细胞,通过表面抗原受体结合摄入抗原时可产生活化第一信号,通过Th细胞表面协同刺激分子(CD40L与ICAM-1)和B细胞表面的协同刺激分子受体(CD40与LFA-1)的相互作用,产生协同刺激信号,即B细胞活化第二信号。在上述二种活化信号作用下,B细胞被激活。
7.TD抗原诱导的体液免疫应答反应阶段的基本过程:此阶段系指活化的T、B细胞在细胞因子的作用下增生分化为效应细胞的阶段。活化的Th细胞通过表面IL-4、2、6 等细胞因子受体,与以IL-4为主的细胞因子(自分泌或旁分泌)结合,可进一步增殖分化为Th2细胞。该种T细胞形成细胞克隆,产生大量IL-4、5、6、10等多种细胞因子,从而为活化B细胞和其他T细胞的增殖分化做好物质准备。活化B细胞通过表面IL-2、4、5、6等细胞因子受体与活化Th和Th2细胞

产生的IL-2、4、5、6等细胞因子作用后,可进一步增殖分化为浆细胞,合成、分泌Ig。在B细胞分化阶段有部分B细胞停止分化,成为记忆B细胞,该种B细胞再次与相同抗原接触后,可迅速增殖分化为浆细胞,合成分泌抗体。
8.初次应答和再次应答的主要不同点见下表 :
表 16-1 初次应答和再次应答的鉴别
区别点 初次免疫应答 再次免疫应答
抗原提呈细胞 巨噬细胞为主 B 细胞为主
抗体出现的潜伏期 较长 较短
抗体高峰浓度 较低 较高
抗体维持时间 较短 较长
抗体类别 IgM 为主 IgG 为主
抗体亲和力 较低 较高

9.在TI抗原引起的免疫应答中,B1细胞的活化机制:TI 抗原可分为I型TI抗原和II型TI抗原,在TI抗原引起的体液免疫应答中,其诱导B1细胞活化的机制不同。
(1)I型TI抗原(如细菌脂多糖和聚合鞭毛素等)诱导Bl细胞活化的机制为:B1细胞通过表面抗原受体(SIgM)与I型TI抗原表面特异性抗原决定簇结合,产生第一信号;通过表面有丝分裂原受体与I型TI抗原表面相应有丝分裂原结合,产生第二信号。B1细胞接受双信号作用后活化。
(2)II型TI抗原(如肺炎球菌荚膜多糖和D-氨基酸聚合物等),表面具有多个重复出现的抗原决定簇,呈线状排列。这些抗原决定簇在体内不易降解,对B1细胞抗原受体亲和力强,它们与Bl细胞抗原受体结合后,B1细胞由于受体交联而活化。
1.为什么抑制性受体能在信号转导水平抑制免疫细胞的激活?
免疫细胞受体参与的调节作用通过信号转导实现。信号转导涉及蛋白质磷酸化。如果因磷酸化被修饰的蛋白质属于酶或是信号转导中的连接蛋白,即可使其处于激活状态,进而启动后续的信号转导级联反应。
蛋白质的磷酸化和去磷酸化是一个可以相互转化的过程,分别由蛋白激酶和蛋白磷酸酶促成。能使蛋白质上酪氨酸残基发生磷酸化的激酶,称蛋白酪氨酸激酶(PTK),它参与免疫细胞的活化,活跃在激活信号转导的起始阶段和上游阶段。同理,能把磷酸化酪氨酸去磷酸化的磷酸酶称为蛋白酪氨酸磷酸酶(PTP)。因而对免疫细胞的激活而言,PTK和PTP作用相反,可以分别发挥正、负调节作用。
免疫细胞通常表达带有ITAM的激活性受体和带有ITIM的抑制性受体。免疫细胞活化过程中分子水平的正负反馈性调节是通过ITAM 和ITIM来完成的。ITIM中供SH2识别的YxxL虽然可以和ITAM 中的YxxL/V相同,但其酪氨酸残基一侧相隔一个任意氨基酸之后必须是异

相关主题
文本预览
相关文档 最新文档