当前位置:文档之家› 7.1多元函数的概念、极限与连续性

7.1多元函数的概念、极限与连续性

7.1多元函数的概念、极限与连续性
7.1多元函数的概念、极限与连续性

§7.1多元函数的概念、极限与连续性

一.多元函数的基本概念 1.引例

在自然科学和工程技术中常常遇到一个变量依赖于多个自变量的函数关系,比如:

例1矩形面积S 与边长x ,宽y 有下列依从关系:

)0,0(>>?=y x y x S .

其中,长x 与宽y 是独立取值的两个变量.在它们变化范围内,当x ,y 取定值后,矩形面积S 有一个确定值与之对应.

例2在第7章中我们学习了曲面的方程,例如椭圆抛物面的方程为:

2222b y a x z +=,双曲抛物面的方程为22

22b

y a x z -=,这里的z 坐标既跟x 有关,又跟

y 有关,它是x ,y 的二元函数.

2.多元函数的概念

定义1设D 是R 2的一个非空子集,映射f :D →R 称为定义在D 上的二元函数,记为

z =f (x ,y ),(x ,y )∈D (或z =f (P ),P ∈D )

其中,点集D 称为该函数的定义域,x ,y 称为自变量,z 称为因变量.

上述定义中,与自变量x 、y 的一对值(x ,y )相对应的因变量z 的值,也称为f 在点 (x , y ) 处的函数值,记作f (x ,y ),即z =f (x ,y ).

函数f (x ,y )值域:f (D )={z |z =f (x ,y ),(x ,y )∈D }. 函数的其它符号:z =z (x ,y ),z =g (x ,y )等.

类似地可定义三元函数u =f (x , y , z ),(x , y , z )∈D 以及三元以上的函数. 一般地,把定义1中的平面点集D 换成n 维空间R n 内的点集D , 映射f :D →R 称为定义在D 上的n 元函数,通常记为u =f (x 1,x 2,...,x n ),(x 1,x 2,...,x n )∈D ,或简记为u =f (x ),x =(x 1,x 2,...,x n )∈D ,也可记为u =f (P ),P (x 1,x 2,...,x n )∈D .

关于函数定义域的约定:在一般地讨论用算式表达的多元函数u =f (x )时,就以使这个算式有意义的变元x 的值所组成的点集为这个多元函数的自然定义域.因而,对这类函数,它的定义域不再特别标出. 例如:

函数z =ln(x +y )的定义域为{(x ,y )|x +y >0}(无界开区域); 函数z =arcsin(x 2+y 2)的定义域为{(x ,y )|x 2+y 2≤1}(有界闭区域).

二元函数的图形:点集{(x ,y ,z )|z =f (x ,y ),(x ,y )∈D }称为二元函数z =f (x ,y )的图形,由第6章的学习知,二元函数的图形是一张曲面.

例如z =ax +by +c 是一张平面,而函数z =x 2+y 2的图形是旋转抛物面. 例1求二元函数229y x z --=的定义域. 解 容易看出,当且仅当自变量x ,y 满足不等式

922≤+y x ,

函数z 才有定义.其几何表示是xOy 平面上以原点为圆心,半径为3的圆内及圆周边界上点的全体,如图7.1.1所示.即函数z 的定义域为

922≤+y x .

例2求函数)ln(y x z +=的定义域.

解 函数的定义域为0>+y x ,其几何图形是xOy 平面上位于直线x y -=上方的半平面,而不包括直线的阴影部分,如图7.1.2所示.

例3求函数22

22arcsin arcsec()2

x y z x y +=++的定义域. 解 函数z 是两个函数的和,其定义域应是这两个函数的定义域的公共部

图7.1.1 图7.1.2

分.函数的定义域由不等式组

?????≥+≤+1

2

2

222y x y x 构成,即2122≤+≤y x .

定义域的图形是圆环(包括边界),如图7.1.3所示.

例5求函数2

2

11y

x z --=

的定义域.

解 函数的定义域为

0)(122>+-y x ,

即122<+y x .它的图形是不包括边界的单位圆,如图7.1.4所示. 二.多元函数的极限

与一元函数的极限概念类似,如果在P (x ,y )→P 0(x 0,y 0)的过程中,对应的函数值f (x ,y ) 无限接近于一个确定的常数A ,则称A 是函数f (x ,y ) 当 (x ,y )→(x 0,y 0)时的极限.

定义2设二元函数f (P )=f (x ,y )的定义域为D ,P 0(x 0,y 0)是D 的聚点. 如果存

在常数A ,使得对于任意给定的正数ε,总存在正数δ,当0(,)(,)Pxy

D U P δ∈?

时,总有

|f (P )-A |=|f (x ,y )-A |<ε

成立,则称常数A 为函数f (x ,y )当(x ,y )→(x 0,y 0)时的极限,记为

00(,)(,)

lim (,)x y x y f x y A →=,或f (x ,y )→A ((x ,y )→(x 0,y 0)

图7.1.3 图7.1.4

也可简记为

lim ()P P f P A →=或f (P )→A (P →P 0)

上面定义的极限也称为二重极限. 定义用两个正数ε,δ和相关距离对极限过程做出了精确描述,这种描述通常称为ε—δ语言,该语言可以用来验证某个常数是函数在相关过程中的极限.

极限概念的推广:在定义2中将P (x ,y ) 改为P (x 1,x 2,…,x n )即可得到n 元函数的极限.

多元函数的极限运算法则与一元函数的运算法则类似. 例5 设2

2221

sin )(),(y x y x y x f ++=,求证0),(lim )0,0(),(=→y x f y x .

证 因为

2

22

2222222 |1sin ||| |01sin

)(||0),(|y x y x y x y x y x y x f +≤+?+=-++=-,

可见? ε>0,取εδ=,则当

δ<-+-<22)0()0(0y x , 即),(),(δO U D y x P

?∈时,总有

|f (x ,y )-0|<ε, 因此

0),(lim )

0,0(),(=→y x f y x .

例6求极限222

00

sin()

lim

.x y x y x y →→+ 解 22200

sin()lim x y x y x y →→+2222200

sin()lim ,x y x y x y

x y x y

→→=?+令u =x 2y ,则 2200

sin()lim x y x y x y →→=0sin lim u u u →1,=而222x y x y +22122xy x x y

=?+12x ≤0

0,x →???→

所以222

00

sin()

lim 0.x y x y x y →→=+ 例7证明2200

lim

x y xy

x y →→+不存在.

证取(y kx k =为常数),则

222222

000

lim

lim ,1x x y y kx

xy x kx k

x y x k x k →→→=?==+++

易见,所要求的极限值随k 的变化而变化,故2200

lim

x y xy

x y →→+不存在.

例8证明362

00

lim x y x y

x y →→+不存在.

证取3

,y kx =3

333

62626000

lim lim

x x y y kx

x y x kx x y x k x →→→=?=++2

,1k k =+其极限值随k 的不同而变化,故极限不存在.

例9证明100

lim(1)

x y

x y xy +→→+极限不存在.

证取1

0,n n x y n

==

(n 为自然数),则当n →∞时,0,n y →且 1101/lim(1)

lim(10)

1.n n

x y n

n n n n x y ++→∞

→∞

+=+=

取11

,,1

n n x y n n ==-

+则当n →∞时,0,n x →0,n y →且 (1)

1

11lim(1)

lim 1,(1)n n

n n x y n n n n x y n n e

++→∞

→∞

??+=-=??+??

因为对于不同的子列,所求得的极限的值不同,故100

lim(1)

x y

x y xy +→→+不存在.

三.多元函数的连续性 1.多元函数连续性概念

定义3设二元函数f (P )=f (x ,y )的定义域为D , (1)P 0(x 0,y 0)为D 的聚点,且P 0∈D . 如果

0000(,)(,)

lim

(,)(,)x y x y f x y f x y →=,

则称函数f (x ,y )在点P 0(x 0,y 0)连续.

(2)设D 内的每一点都是D 的聚点,如果函数f (x ,y )在D 的每一点都连续, 则称函数f (x ,y )在D 上连续, 或称f (x ,y )是D 上的连续函数.

二元函数的连续性概念可相应地推广到n 元函数f (P )上去.

一元基本初等函数可看成其中一个自变量不出现的二元函数,很容易证明,把一元基本初等函数看成二元函数时它们都是连续的.

例10 设f (x ,y )=cos x ,证明f (x , y )是R 2上的连续函数. 证 对于任意的P 0(x 0,y 0)∈R 2,因为

),(cos cos lim

),(lim 000)

,(),()

,(),(0000y x f x x y x f y x y x y x y x ===

→→,

所以,函数f (x ,y )=cos x 在点P 0(x 0,y 0)连续,由P 0的任意性知, cos x 作为x , y 的二元函数在R 2上连续.

类似的讨论可知, 一元基本初等函数看成二元函数或二元以上的多元函数时,它们在各自的定义域内都是连续的.

定义4设函数f (x ,y )的定义域为D , P 0(x 0,y 0)是D 的聚点.如果函数f (x ,y )在点P 0(x 0,y 0)不连续, 则称P 0(x 0,y 0)为函数f (x ,y )的间断点.

注: 间断点可能是孤立点也可能是曲线上的点.

可以证明, 多元连续函数的和、差、积仍为连续函数,连续函数的商在分母不为零处的点仍连续;多元连续函数的复合函数也是连续函数.

多元初等函数: 与一元初等函数类似,多元初等函数是指可用一个式子所表示的多元函数,这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的.

例如 222

1x x y y +-+,cos(x +y +z ),222

x y z e

++都是多元初等函数. 一切多元初等函数在其定义区域内是连续的. 所谓定义区域是指包含在定义域内的区域或闭区域.

由多元连续函数的连续性, 如果要求多元连续函数f (P )在点P 0处的极限, 而该点又在此函数的定义区域内, 则

0lim ()()p p f P f P →=.

例11讨论二元函数

33

22,(,)(0,0)(,)0,(,)(0,0)x y x y f x y x y x y ?+≠?

=+??=?

在(0,0)处的连续性.

解由(,)f x y 表达式的特征,利用极坐标变换:令

cos ,sin ,x y ρθρθ==则

33(,)(0,0)

lim

(,)lim (sin cos )x y f x y ρρθθ→→=+0(0,0),f ==

所以函数在(0,0)点处连续.

例12

求极限01

lim ln().x y y x →→??

-?? 解

01

lim ln()ln(10)x y y x →→???

-+=-+???? 1.= 例13求01

lim

.x x y e y x y →→++ 解 因初等函数(,)x e y

f x y x y

+=+在(0,1)处连续,故 001

1lim

2.01x x y e y e x y →→++==++ 2.多元连续函数的性质

性质1(有界性与最大值最小值定理) 在有界闭区域D 上的多元连续函数,必定在D 上有界,且在D 上取得它的最大值和最小值.

性质1表明:若f (P )在有界闭区域D 上连续,则必存在常数M >0,使得对一切P ∈D ,有|f (P )|≤M ,且存在P 1、P 2∈D ,使得

f (P 1)=max{f (P )|P ∈D },f (P 2)=min{f (P )|P ∈D }

性质2(介值定理) 在有界闭区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值.

问题讨论:

1.若点(,)x y 沿着无数多条平面曲线趋向于点00(,)x y 时,函数(,)f x y 都趋向于A ,能否断定

00(,)(,)

lim (,)?x y x y f x y A →=

2.讨论函数

2

2224

22,0(,)0,0xy x y x y f x y x y ?+≠?+=??+=?

的连续性.

3.你能否用ε—δ语言证明

22200

sin()lim 0.x y x y x y

→→=+

本节引入了多元函数概念,给出了多元函数极限的定义和计算方法,通过例题介绍了根据定义证明极限存在(即ε-δ语言)和不存在(沿不同方向或取不同子列得不同值)的方法,最后讨论了多元连续函数,给出了定义和它的基本性质.

习题7.1

1.设22,,y f x y x y x ?

?-=- ??

?求(,).f x y

2.已知函数22

cot ),(y x xy y x y x f -+=,试求f (tx ,ty ).

3.求下列各函数的定义域 (1) z =ln(y 2-5xy +1); (2) 2

21

1y

x y x z -++=

; (3) y x z -=

;

(4) 222222221r

z y x z y x R u -+++

---=(R >r >0);

(5) 2

2

arcsin

y

x z u +=.

4. 求下列各极限:

(1)332)3,0(),(1lim y x y

x y x +-→; (2)2

2

)

1,1(),()ln(lim

y

x e y x y x ++→;

(3)

xy xy y x 4

2lim

)0,0(),(+-→; (4)1

1lim

)

0,0(),(-+→xy xy

y x ;

(5)

x xy y x )

sin(lim

)2,0(),(→;

(6)22)()cos(1lim 2222)0,0(),(y x y x e y x y x ++-→. 5.证明下列极限不存在: (1)

y x y

x y x +-→)0,0(),(lim

;

(2)

y x y x y

x y x -+→)0,0(),(lim

.

6.函数x y ax

e z y 2-+=(a 为常数)在何处间断?

7.用 ε-δ 语言证明0lim

22)

0,0(),(=+→y

x xy

y x .

一、多元函数、极限与连续解读

一、多元函数、极限与连续 ㈠二元函数 1 .二元函数的定义:设 D 是平面上的一个点集,如果对于每个点 P (x,y)∈ D ,变量按照 一定法则总有确定的值与它对应,则称是变量 x 、y 的二元函数(或点 P 的函数),记为 (或),点集 D 为该函数的定义域, x 、y 为自 变量,为因变量,数集为该函数值域。由此也可定义三元函数以及三元以上的函数。二元函数的图形通常是 一张曲面。例如是球心在原点,半径为 1 的上半球面。 ㈡二元函数的极限 ⒈设函数 f(x,y)在开区域(或闭区域) D 内有定义, 是 D 的内点或边界点,如果对于任意给定的正数,总存在正 数,使得对于适合不等式的一切点 ,都有成立,则称常数 A 为函数f(x,y)当 时的极限,记作或, 这里 。为了区别一元函数的极限,我们把二元函数的极限叫做二重极限。

⒉注意:二重极限存在是指沿任意路径趋于,函数 都无限接近 A 。因此,如果沿某一特殊路径,例如沿着一 条定直线或定曲线趋于时,即使函数无限接近于某一确定值,我们也不能由此判定函数的极限存在。 ㈢多元函数的连续性 1 .定义:设函数 f(x,y)在开区间(或闭区间) D 内有定 义,是 D 的内点或边界点且。如果 ,则称函数 f(x,y)在点连续。如果函数 f(x,y)在开区间(或闭区间) D 内的每一点连续,那么就称函数 f(x,y)在 D 内连续,或者称 f(x,y)是 D 内的连续函数。 2 .性质 ⑴一切多元初等函数在其定义域内是连续的; ⑵在有界闭区域 D 上的多元连续函数,在 D 上一定有最大值和最小值; ⑶在有界闭区域 D 上的多元连续函数,如果在 D 上取两个不同的函数值,则它在 D 上取得介于这两

对函数极限相关性质的理解及应用1111

对函数极限相关性质的理解及应用 定西师范高等专科学校 数学系 数学教育专业 09级3班 程艳君 摘 要:函数极限的概念和存在条件是我们理解函数极限和判断函数极限是否存在的主要依据,函数的极限在数学分析中占有十分重要的地位,因此,较为复杂函数极限的计算也是我们学者应该掌握的。本文浅略地介绍了函数极限的概念和存在条件,函数极限的性质以及两个重要极限在计算比较复杂的函数极限中的应用。 关键词:函数极限;重要极限;四则运算;迫敛法。 引 言: 函数极限是数学分析的重要概念,它贯彻于整个数学分析中,函数极限理论是研究函数连续、导数、积分、级数等的基本工具,而一些较为复杂的函数极限计算又在解决实际问题中是必不可少的。本文最主要介绍函数极限的概念和函数极限存在的条件,还有两个重要函数极限、迫敛法和四则运算法在解较复杂函数极限中的应用。 1 . 函数的极限和极限存在的条件 1.1 函数的极限 1.1.1 x 趋于∞+时函数的极限 设函数f 定义在 ),[∞a 上,类似于数列的情形,我们研究当自变量x 趋于∞+时,对应的函数值能否无限的接近于某个正数A 。例如,对于函数x x f 1)(=,从图像上可见,当x 无限的增大时,函数值无限的接近于0;而对于函数 x crc x g tan )(=,则当x 趋于∞+时函数值无限的接近于2 π。我们称这两个函数当x 趋于∞+时有极限。一般地,当x 趋于∞+ 时函数的极限饿精确定义如下: 设f 为定义在),[∞a 上的函数,A 为定数。若对任给的0>ε,存在正数M(a ≥),使得当M x >时有ε<-a x f )(,则称函数f 当x 趋于∞+时以A 为极限,记作

第十三章 多元函数的极限与连续性习题(学生用)

班级:_______________ 学号:______________ 姓名:________________ 第十三章 多元函数的极限与连续性 §1. 平面点集 1.判别下列平面点集哪些是开集、闭集、有界集和区域,并分别指出它们的聚点: (1)(){}2 ,|E x y y x =<; (2)(){}2 2,|1E x y x y =+≠;(3)(){},|0E x y xy =≠; (4)(){},|0E x y xy ==;(5)(){},|02,222E x y y y x y =≤≤≤≤+;(6)()1,|sin ,0E x y y x x ?? ==>???? ; (7)(){}2 2,|10,01E x y x y y x =+==≤≤或; (8)(){},|,E x y x y =均为整数. 2.证明:平面点列{}n P 收敛的充要条件是:任给正数ε,存在正整数 N ,使得当n N >时,对一切正整数p ,都有(,)n n p P P ρε+<. (其中(,)n n p P P ρ+表,n n p P P +之间的距离)

§2. 多元函数的极限和连续性 1.求下列极限(包括非正常极限): (1) 2200lim x y x y x y →→++; (2) ()332200 sin lim x y x y x y →→++; (3) 2200 x y →→; (4) ()22 00 1 lim sin x y x y x y →→++; (5) ()2 2 2 2 lim ln x y x y x y →→+; (6) 00lim cos sin x y x y e e x y →→+-; (7) 3 2 2 4200 lim x y x y x y →→+; (8) ()02 sin lim x y xy x →→; (9) 10 ln y x y x e →→+ (10) 12 1 lim 2x y x y →→-; (11) 4400 1 lim x y xy x y →→++; (12) 2222001lim x y x y x y →→+++;

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

函数极限的综合分析与理解

函数极限的综合分析与理解 PB 王欣 极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。 一、函数极限的定义和基本性质 函数极限可以分成x →0x ,x →∞两类,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以0x x →的极限为例,()x f 在点0x 以A 极限的定义是:,0,0>?>?δε使当δ<-<00x x 时,有()().f x A A ε-<为常数问题的关键在于找到符合定义要求的δ,在这一过程中会用到一些不等式技巧,例如放缩法等。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若0 lim x x →存在,则在该点的极限是唯一的)可以体现在用海涅定理证明()x f 在0x 处的极限不存在。即如果()A x f n →,()B x f n →'(0',x x x n n n →∞→和), 则()x f 在0x 处的极限不存在。 运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式()()() x Q x P x f =(()()x Q x P ,均为多项式,()0≠x Q )。设()x P 的次数为n ,()x Q 的次数为m , 当∞→x 时,若m n <,则()0→x f ;若m n =,则()→x f ()x P 与()x Q 的最高次项系数之比;若 m n >,则()∞→x f 。 000()()(()0)()P x f x Q x Q x →→≠0当x x 时,。 二、运用函数极限的判别定理 最常用的判别定理包括单调有界定理和夹挤定理,在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值,参见附例2。二是应用夹挤定理的关键是找到极限值相同的函数()x g 与()x h ,并且要满足()()()x h x f x g ≤≤,从而证明或求得函数()x f 的极限值。

对函数极限概念的理解

对函数极限概念的理解 函数极限概念,不易理解。由于极限概念具有高度的抽象性,因此,令人很难快速正确理解和掌握极限数学语言的真正内涵,以致于学完了极限,极限的意识还很薄弱。因此,要抓住理解的关键,我们体会,宜抓住以下三点: (一)将“任意近处”的描绘性语言,转化为可进行量化比较的准确表达 考察数集X={x},若在点x0的任意近处包含有X中异于x0的x的值,则点x0称为这数集的聚点。 为着要更准确地表达这定义,我们引入点x0的邻域的概念:以点x0为中心的开区间(x0?δ,x0+δ)称为点x0的邻域。下边我们将聚点做可进行量化比较的准确表达:若在点x0的任一邻域内包含X中异于x0的x的值,则x0是数集X的聚点。关于“任一邻域”,δ=1cm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;δ=1mm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;δ=1nm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;……,点x0的邻域可以无穷小。因此,“任一邻域”是一个无穷集。 对聚点x0本身来说,可以属于X,或不属于X。也就是说x0在X上可以有定义或无定义。x0在X上无定义时,它的邻域也存在,叫做空心领域。 (二)注意函数f(x)在x接近于x0时的性态。 设在区域X内给定函数f(x),且x0是X的聚点。这函数f(x)在x接近于x0时的性态是值得注意的。相对于自变量x,通过法则f,得到f(x),若出现了f(x)无限趋近于数A的性态,或者叫做f(x)与数A的差距无限小的性态,则可类似于x0的邻域δ,把ε看作A的邻域, 而把这种性态更准确地表达为:Ⅰf(x)- AⅠ<ε(ε是任一大于零的数)。这个表达就具备了可 进行量化比较性。 (三)δ与ε的关系 从x与f(x)的关系看,前者为因,后者为果。但是从x0的邻域δ与A的邻域ε的关系看,则是前者依赖后者,总是要先给定任一ε>0,而后求那个能保证ε成立的δ。即δ的几何空 间受ε的几何空间的约束。既然f(x)无限趋近于数A的性态,可更准确地表达为:Ⅰf(x)- A Ⅰ<ε(ε是任一大于零的数),那么,使Ⅰf(x)- AⅠ<ε(ε是任一大于零的数)成立的δ应是什么样呢?也就是如何依赖Ⅰf(x)- AⅠ<ε求δ呢?具体过程如下: 将Ⅰf(x)- AⅠ变形:Ⅰf(x)- AⅠ=MⅠx-x0Ⅰ,其中M是一个与x无关的常量。 再取δ=ε M ,则当0<Ⅰx-x0Ⅰ<δ时,有0<Ⅰx-x0Ⅰ<ε M ,整理为00能求出δ>0,只须Ⅰx-x 0Ⅰ<δ能使Ⅰf(x)- AⅠ<ε(式中的x取自X 内且异于x0)成立,则称当x趋向于x0时(或在x0)函数f(x)以数A为极限。 记成:lim x→ x0 f x=A

第十五章多元函数的极限与连续性§1平面点集

第十五章 多元函数的极限与连续性 §1 平面点集 1.设(){} ,n n n P x y =是平面点列,()000,P x y =是平面上的点. 证明0lim n n P P →∞=的充要条件是0lim n n x x →∞=,且0lim n n y y →∞ =. 2. 设平面点列{}n P 收敛,证明{}n P 有界. 3. 判别下列平面点集哪些是开集、闭集、有界集和区域,并分别指出它们的聚点: (1)(){}2,|E x y y x = <; (2)(){}22,|1E x y x y = +≠; (3)(){},|0E x y xy = ≠; (4)(){},|0E x y xy = =; (5)(){},|02,222E x y y y x y =≤≤≤≤+; (6)()1,|sin ,0E x y y x x ? ?==>????; (7)(){}22,|10,01E x y x y y x = +==≤≤或; (8)(){},|,E x y x y =均为整数. 4.设F 是闭集,G 是开集,证明\F G 是闭集,\G F 是开集. 5.证明开集的余集是闭集. 6.设E 是平面点集. 证明0P 是E 的聚点的充要条件是E 中存在点列{}n P ,满足 ()01,2,n P P n ≠= 且0lim n n P P →∞ =. 7.用平面上的有限覆盖定理证明致密性定理. 8.用致密性定理证明柯西收敛原理. 9.设E 是平面点集,如果集合E 的任一覆盖都有有限子覆盖,则称E 是紧集. 证明紧集是有界闭集. 10.设E 是平面上的有界闭集,()d E 是E 的直径,即 ()()',''sup ',''P P E d E r P P ∈=.

函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2,n x x n ≠= ,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A + -→→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ? φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ????? ? ? ? +? -?? () 2 11c o s ~2 (1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ? φ≤≤(,且 0 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

(整理)多元函数的极限与连续习题.

多元函数的极限与连续习题 1. 用极限定义证明:14)23(lim 1 2=+→→y x y x 。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-=),(; (2) y x y x y x f 1s i n 1s i n )(),(+=; (3) y x y x y x f ++=23 3),(; (4) x y y x f 1 s i n ),(=。 3. 求极限 (1)2 20 ) (lim 22 y x x y x y +→→; (2)1 1lim 2 2 220 0-+++→→y x y x y x ; (3)2 20 01 sin )(lim y x y x y x ++→→; (4)22220 0) sin(lim y x y x y x ++→→。 4. 试证明函数?? ???=≠+=0 0)1ln(),(x y x x xy y x f 在其定义域上是连续的。

1. 用极限定义证明:14)23(lim 2 1 2=+→→y x y x 。 因为1,2→→y x ,不妨设0|1|,0|2|<-<-y x , 有54|2||42||2|<+-≤+-=+x x x , |22123||1423|2 2 -+-=-+y x y x |1|2|2|15|1|2|2||2|3-+-<-++-≤y x y x x |]1||2[|15-+-?ε,要使不等式 ε<-+-<-+|]1||2[|15|1423|2 y x y x 成立 取}1,30 min{ ε δ=,于是 0>?ε, 0}1,30 min{ >=?ε δ,),(y x ?:δδ<-<-|1|,|2|y x 且 )1,2(),(≠y x ,有ε<-+|1423|2 y x ,即证。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-= ),(; 1lim lim 00=+-→→y x y x y x , 1l i m l i m 00-=+-→→y x y x x y , 二重极限不存在。 或 0l i m 0=+-=→y x y x x y x , 3 1l i m 20-=+-=→y x y x x y x 。

二元函数的连续、偏导数、可微之间的关系

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1二元函数连续、偏导数、可微三个概念的定义 (1) 2二元函数连续、偏导数、可微三个概念之间的关系 (2) 2.1二元函数连续与偏导数存在之间的关系 (2) 2.2二元函数连续与可微之间的关系 (3) 2.3二元函数可微与偏导数存在之间的关系 (3) 2.4二元函数可微与偏导数连续之间的关系 (4) 二元函数连续、偏导数、可微的关系图 (6) 参考文献 (7) 致谢 (8)

本科生毕业论文 2 二元函数的连续、偏导数、可微之间的关系 摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性. 关键词 二元函数 连续 偏导数 可微 The Relationship among Continuation, Partial Derivatives and Differentiability in Binary Function Abstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common.. Key words binary function continuation partial derivatives differentiability 引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系. 1 二元函数连续、偏导数、可微三个概念的定义 定义1 设f 为定义在点集2D R ?上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ?∈, 就有0)||()(f P f P ε<-,则称f 关于集合 D 在点0P 连续. 定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内 有定义,则当极限00000000(,))(,) (,lim lim x x x f x y f x y f x x y x x ?→?→+-=????存在时,则称这个极限 为函数f 在点00,)(y x 关于x 的偏导数,记作0 (,) |x y f x ??. 定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义, 对于0()U P 中的点00,)(,)(y P x y x x y ++=??,若函数f 在点0P 处的全增量可表示为

函数与极限重点知识归纳

常量与变量 变量的定义 我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。 变量的表示 如果变量的变化是连续的,则常用区间来表示其变化范围。 在数轴上来说,区间是指介于某两点之间的线段上点的全体。 以上我们所述的都是有限区间,除此之外,还有无限区间: [a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞; (-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b; (-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 邻域 设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 函数 函数的定义 如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。 注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的. 注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 函数的有界性 如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注意:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. 函数的单调性

高数8多元函数的极限与连续

二元函数的极限 二元极限存在常用夹逼准则证明 例1 14)23(lim 2 12=+→→y x y x 例2 函数?? ???+=01sin 1sin ),(,x y y x y x f .00=≠xy xy ,在原点(0,0)的极限是0. 二元极限不存在常取路径 例3 证明:函数)),(,,00)(()y (442≠+=y x y x y x x f 在原点(0,0)不存在极限. 与一元函数极限类似,二元函数极限也有局部有限性、极限保序性、四则运算、柯西收敛准则等. 证明方法与一元函数极限证法相同,从略. 上述二元函数极限)(lim 0 0y x f y y x x ,→→是两个自变量x 与y 分别独立以任意方式无限趋近于0x 与0y .这是个二重极限. 二元函数还有一种极限: 累次极限 定义 若当a x →时(y 看做常数),函数)(y x f ,存在极限,设当b y →时,)(y ?也存在极限,设 B y x f y a x b y b y ==→→→)(lim lim )(lim ,?, 则称B 是函数)(y x f ,在点)(b a P ,的累次极限.同样,可定义另一个不同次序的累次极限,即 C y x f b y a x =→→)(lim lim ,. 那么二重极限与累次极限之间有什么关系呢?一般来说,它们之间没有蕴含关系. 例如: 1)两个累次极限都存在,且相等,但是二重极限可能不存在. 如上述例3. 2)二重极限存在,但是两个累次极限可能都不存在. 如上述的例2. 多重极限与累次极限之间的关系 定理 若函数)(y x f ,在点),000(y x P 的二重极限与累次极限(首先0→y ,其次0→x )都存在,则 )(lim lim (lim 0 000y x f y x f y y x x y y x x ,),→→→→=. 二元函数的连续性 定理 若二元函数)(P f 与()P g 在点0P 连续,则函数)()(P g P f ±,)()(P g P f ,) ()(P g P f (0)(0≠P g )都在点0P 连续

(整理)多元函数的极限与连续

数学分析 第16章多元函数的极限与连续计划课时: 1 0 时

第16章 多元函数的极限与连续 ( 1 0 时 ) § 1 平面点集与多元函数 一. 平面点集: 平面点集的表示: ),(|),{(y x y x E =满足的条件}. 余集c E . 1. 常见平面点集: ⑴ 全平面和半平面 : }0|),{(≥x y x , }0|),{(>x y x , }|),{(a x y x >, }|),{(b ax y y x +≥等. ⑵ 矩形域: ],[],[d c b a ?, 1||||),{(≤+y x y x }. ⑶ 圆域: 开圆 , 闭圆 , 圆环,圆的一部分. 极坐标表示, 特别是 }cos 2|),{(θθa r r ≤和}sin 2|),{(θθa r r ≤. ⑷ 角域: }|),{(βθαθ≤≤r . ⑸ 简单域: -X 型域和-Y 型域. 2. 邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域. 空心邻域和实心邻域 , 空心方邻域与集 }||0 , ||0|),{(00δδ<-<<-

二元函数的极限与连续5页word文档

§2.3 二元函数的极限与连续 定义设二元函数在点的某邻域内有意义, 若存在 常数A,,当(即)时,都有 则称A是函数当点趋于点时的极限,记作 或 或或。必须注意这个极限值与点趋于点的方式无关,即不论P 以什么方 向和路径(也可是跳跃式地,忽上忽下地)趋向。只要P与充分接近, 就能 使与A 接近到预先任意指定的程度。注意:点P趋于点点方式可有无穷多 种,比一元函数仅有左,右两个单侧极限要复杂的多(图8-7)。 图8-7 同样我们可用归结原则,若发现点P按两个特殊的路径趋于点时,极限 存在,但不相等, 则可以判定在该点极限不存在。这是判断多元函数极限不 存在的重要方法之一。 一元函数极限中除了单调有界定理外,其余的有关性质和结论, 在二

元函数极 限理论中都适用,在这里就不一一赘述了。 例如若有, 其中 求多元函数的极限, 一般都是转化为一元函数的极限来求, 或利用夹逼定理 来计算。例4 求。解由于 而,根据夹逼定理知 ,所以 例5求(a≠0)。解。例6求。解由于且 ,所以根据夹逼定理知 . 例7 研究函数在点处极限是否存在。解当x2+y2≠0时,我们研究函数,沿x→0,y=kx→0这一方式趋于 (0,0)的极限,有,。很显然,对于不同的k值,可得到不同的极

限值,所以极限不存在,但 。注意:的区别, 前面两个求极限方式的 本质是两次求一元函数的极限, 我们称为累次极限, 而最后一个是求二元函数的 极限,我们称为求二重极限。 例8 设函数。它关于原点的两个累次极限都不存在,因 为对任何,当时,的第二项不存在极限;同理对任何 时,的第 一项也不存在极限,但是, 由于, 因此 由例7知, 两次累次极限存在, 但二重极限不存在。由例8可知,二重极限存 在,但二个累次极限不存在。我们有下面的结果: 定理1若累次极限和二重极限 都存在,则 三者相等(证明略)。推论若存在但

函数极限的定义与基本性质

函数极限的定义与基本性质 本章主要阐述函数的定义与基本性质,其中,最为重要的函数的极限的模型来自于对自由落体运动,由平均速度, h gt h t g 2 221)(21-+(1) 求解瞬时速度,也就是说要考察上述函数(1)中h (注意,t 是固定的),当h 无限变小时,它的变化趋势,也就是看它是否无限接近于一个数。 首先看到,这个函数在0=h 是没有定义的,但至少在包含0的一个开区间(0点除外)有定义,h 不等于0的时候,有 gh gt h gt h t g 2 121)(2122+=-+ 当{}h 很小的时候,左边的函数值与右边的函数值的差也很小,而且当h 无限接近于0的时候,左边的函数值也无限接近于gt 。 接下来,把“接近”、“无限”等语言精确化,便得到我们所要的函数极限概念的定义: 1.1定义: 设)(x f 在0x 点附近(除0x 点以外)有定义,A 是一定数,若对任意给定的0>ε,存在0>δ,当δ<-<00x x 的时候,有 ε<-A x f )(, 则称A 是函数)(x f 当x 趋于0x 的时候的极限,记为 A x f x x =→)(lim 0 或者记为: A x f →)( (0x x →)

1.2 定理: 若 B x g x x A x f x x =→=→)(lim ,)(lim 00,则 (1) B A x g x f x x ±=±→))()((lim 0 (2) B A x g x f x x ?=?→))()((lim 0 (3)B A x g x f x x =→)()(lim 0 1.3 推论: 若 A x f x x =→)(lim 0,c 为常数,则 []cA x cf x x =→)(lim 0 1.4 局部有界性定理: 若 A x f x x =→)(lim 0 ,则存在0>δ,使得)(x f 在 ),(),(0000δδ+?-x x x x 上有界。 1.5 局部保号性定理: A x f x x =→)(lim 0 >0, 则存在0>δ,当δ<-<00x x 的时候, 有: 02)(>> A x f 1.6定理: 若 0)(lim 0=→x f x x ,且存在0>δ,)(x g 在),(),(0000δδ+?-x x x x 上有界,则 0)()(lim 0 =→x g x f x x

二元函数连续可微偏导之间的关系解读

一、引言 对于一元函数而言,函数y=f(x在点x0处连续、导数存在、可微这三个概念的关系是很清楚的,即可微一定连续,但连续不一定可微,可微和导数存在是等价的。对多元函数而言,由于偏导数的出现,使得他们之间的关系要复杂的多。下面以二元函数为例,探讨其在点(x0,y0处连续、偏导数存在、可微、偏导数连续之间的关系。 二、二元函数连续、偏导数存在、可微、偏导数连续之间的关系 1.可微与连续的关系 若函数f(x,y在点(x0,y0处可微,则在该点连续,但反之不成立(同一元函数。 证明:因为f(x,y在点(x0,y0处可微,因此有0≤f(x0+△x,y0+△y- f(x0,y0≤A△x+B△y+O(O→(△x→0,△y→0, 所以lim (△x,△y→(0,0 f(x0+△x,y0+△y=f(x0,y0,故f(x,y在 点(x0,y0处连续。反之不成立。 例1.f(x,y= x2y x2+y2 ,x2+y2≠0 0,x2+y2= $

在点(0,0处连续, 但在该点不可微。 2.偏导数存在与可微的关系 由定理17.1[1](可微的必要条件,函数f(x,y在点(x0,y0处可微,则f(x,y在点 (x0,y0的偏导数一定存在;但反之不成立,如例1中函数f(x,y在点(0,0处偏导数存在,但在此点不可微。 3.偏导数连续与可微的关系 由定理17.2[2](可微的充分条件知,函数f(x,y在点(x0,y0处偏导数连续,则f(x,y 在点(x0,y0处可微;但反之不成立, 例2.f(x,y=(x2+y2sin1 x2+y2 ,x2+y2≠0 0,x2+y2= % ’ ’ ’ & ’ ’

极限的概念_函数的连续性详解

第二章.极限概念 函数的连续性 对于函数的概念,我们总是能够从日常直观出发,就能很好地加以理解,因为毕竟因果关系的观念在我们的意识当中是非常深根蒂固的。那么要真正严格地理解极限的观念,就不是那么自然的了。 对于极限的观念,最为关键的问题是,如何定量地加以描述,并把这种描述作为一般的判别标准。 这个问题实际上困扰了人们几百年,一直到19世纪才加以解决的。 数列的极限描述(数列存在极限判别定理,定义法、柯西法、子数列法、夹逼法、单调有界法) 设存在一个数列,也就是一个数值的集合,这个集合的元素可以一个一个的数出来,同时每一个元素都可以加上唯一的标志,而自然数是最为适宜作这件工作的。比如说,把一个数列写成这样的样子:,....,,321a a a ,或者简单地记成{}a n 。 观察这个数列取值变化, 有的数列变化具有下面的变化规律: 对于数列,....,,321a a a ,假设存在一个确定的常数a ,现在我们考虑变量a a n -(显然这是一个反映数列数值变化的,随着n 而发生变化的变量。),如果我们任意找到一个数ε,无论它的数值有多么大或者多么小,我们总是能够在这个数列当中找到一个元素a N ,使得在这个a N 元素后面的所有的数列元素,都使得相应的变量a a n -的值小于ε, 换一句话来说,对于任意的ε,总是存在一个N ,当n>N 时, 总是有ε <-a a n 成立 这时我们就把a 称为数列,...,,321a a a 的极限。并且称数列 ,....,,321a a a 收敛于极限a 。我们使用记号a a n n =∞→lim 来表示该数列极限。 否则我们就说数列{}a n 是发散的。

多元函数的概念极限与连续性

§5.1 多元函数的概念、极限与连续性 一、多元函数的概念 1. 二元函数的定义及其几何意义 设D 是平面上的一个点集,如果对每个点()p x y D ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x y ,的二元函数,记以()z f x y =,,D 称为定义域。 二元函数()z f x y =,的图形为空间一块曲面,它在xy 平面上的投影区域就是定义域D 。 例如 22: 1z D x y =+≤二元函数的图形为以原点为球心,半径为1 的上半球面,其定义域D 就是xy 平面上以原点为圆心, 半径为1的闭圆。 2. 三元函数与n 元函数。 ()()u f x y z x y z =∈ΩΩ,,,,,,为空间一个点 集则称()u f x y z =,,为三元函数 ()12n u f x x x =,,,,称为n 元函数。 它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。条件极值中,可能会遇到超过三个自变量的多元函数。 【例1】 求函数arcsin 3 x z = 解 要求13 x ≤,即33x -≤≤; 又要求0xy ≥即00x y ≥≥,或00x y ≤≤, 综合上述要求得定义域300x y -≤≤??≤?或030 x y ≤≤??≥?

【例2】 求函数()2ln 21z y x =-+的定义域。 解 要求2240x y --≥和2210y x -+> 即 2222212x y y x ?+≤??+>?? 函数定义域D 在圆2222x y +≤的内部 (包括边界)和抛物线212y x +=的左侧(不包括抛物线上的点) 【例3】 设()22 f x y x y x y y +-=+,,求()f x y ,。 解 设x y u x y v +=-=,解出()()1122 x u v y u v = +=-, 代入所给函数化简 ()()()()221184 f u v u v u v u v +-+-,= 故 ()()()()221184f x y x y x y x y +-+-,= 【例4】 设()22 35f x y xy x xy y ++++,=,求()f x y ,。 解 ()22223525x xy y x xy y xy +++=++++ ()25x y xy =+++ ∴ ()25f x y x y =++, 二、 二元函数的极限 设()f x y ,在点()00x y ,的去心邻域内有定义;如果对任意0ε>,存在0δ>,只要 0δ<,就有()f x y A ε-<, 则记以()00lim x x y y f x y A →→=,或()() ()00lim x y x y f x y A →=,,, 称当()x y ,趋于()00x y ,时,()f x y ,的极限存在,极限值为A ,否则,称为极限不存在.

多元函数及其极限与连续

第5讲 多元函数及其极限与连续 本节主要内容: 第一节 多元函数的基本概念 1 领域 2 平面区域的概念 3 聚点与孤立点 4 n 维空间的概念 5 多元函数的概念 6 二元函数的极限 7 多元函数的连续性 8 二元初等函数 9 闭区域上连续函数的性质 讲解提纲: 第八章 多元函数微分法及其应用 第一节 多元函数的基本概念 在第一至第六章中,我们讨论的函数都只有一个自变量,这种函数称为一元函数. 但在许多实际应用问题中,我们往往要考虑多个变量之间的关系,反映到数学上,就是要考虑一个变量(因变量)与另外多个变量(自变量)的相互依赖关系. 由此引入了多元函数以及多元函数的微积分问题. 本章将在一元函数微积分学的基础上,进一步讨论多元函数的微积分学. 讨论中将以二元函数为主要对象,这不仅因为有关的概念和方法大都有比较直观的解释,便于理解,而且这些概念和方法大都能自然推广到二元以上的多元函数. 一、平面点集,邻域,点集E 的内点、外点、边界点、聚点、开集、闭集、连通集、区域、 闭区域、有界集、无界集等概念. 点集},|||{),(00δδ<=PP P P U 称为点0P 的邻域. 平面区域的概念:连通 的开集称为区域或开区域;开区域连同它的边界一起所构成的点集称为闭区域. 如果对于任意给定的0>δ,点P 的去心邻域),(0 δP U 内总有E 中的点,则称P 为E 的聚点;如果存在),(0δP U ,使得φδ=E P U ),(0 ,则称P 为E 的孤立点.. 二、n 维空间中的线性运算,距离, n 维空间的概念. n 元有序数组),,,(21n x x x 的全体称为n 维空间 三、多元函数的概念 设非空点集,n R D ?映射R D f →:称为定义在D 上的n 元函数,记作 ;),(),,,(21D P P f u x x x f u n ∈==或 称点集D 为函数的定义域,数集 }),(|{D P P f u u ∈=为函数的值域. 四、二元函数的极限 设二元函数),()(y x f P f =的定义域为D ,),(000y x P 为D 的聚点. 如果存

相关主题
文本预览
相关文档 最新文档