当前位置:文档之家› 高中数学第二章平面向量第10课时2.4向量的数量积3教案苏教版必修4

高中数学第二章平面向量第10课时2.4向量的数量积3教案苏教版必修4

高中数学第二章平面向量第10课时2.4向量的数量积3教案苏教版必修4
高中数学第二章平面向量第10课时2.4向量的数量积3教案苏教版必修4

第10课时 §2.4 向量的数量积(3)

【教学目标】

一、知识与技能

掌握平面向量数量积的坐标表示,掌握向量垂直的坐标表示.

二、过程与方法

让学生充分经历,体验数量积的运算律以及解题的规律

三、情感、态度与价值观

通过师生互动,自主探究,交流与学习培养学生探求新知识以及合作交流

【教学重点难点】平面向量数量积的定义及运算律的理解和平面向量数量积的应用

【教学过程】

一、复习:

1.两平面向量垂直条件;

2.两向量共线的坐标表示;

3.轴上单位向量,轴上单位向量,则:,,.

二、新课讲解:

1.向量数量积的坐标表示:设 ,则, ∴. 从而得向量数量积的坐标表示公式:. 2.长度、夹角、垂直的坐标表示:

①长度: ;

②两点间的距离公式:若,则 ③夹角:;

④垂直的充要条件:∵,即

(注意与向量共线的坐标表示的区别)

三、例题分析:

例1、设,求

x i y j 1i i ?=1j j ?=0i j j i ?=?=1122(,),(,)a x y b x y ==1122,a x i y j b x i y j =+=+22

112212121212()()a b x i y j x i y j x x i x y i j y x j i y y j ?=++=+?+?+1212x x y y =+1212a b x x y y ?=+(,)a x y =22222||||a x y a x y =+?=+1122(,),(,)A x y B x y 222121()()AB x x y y =-+-1212

2

2221122cos ||||a b a b x y x y θ?==?+?+0a b a b ⊥??=12120x x y y +=(5,7),(6,4)a b =-=--a b ?

例2、已知,求证是直角三角形

例3、如图,以原点和为顶点作等腰直角,使,

求点

和向量的坐标。

例4、在中,,,求值

(1,2),(2,3),(2,5)A B C -ABC ?(5,2)A OAB ?90B ∠=B AB Rt ABC ?(2,3)AB =(1,)AC k =k

四、课时小结:

两向量数量积的坐标表示:长度、夹角、垂直的坐标表示

五、反馈练习:

已知,,

(1)求证: (2)若与的模相等,且,求的值

(cos ,sin ),(cos ,sin )a b ααββ==0αβπ<<<()()a b a b +⊥-ka b +a kb -0k ≠βα-

2021年高中数学-平面向量专题

第一部分:平面向量的概念及线性运算 欧阳光明(2021.03.07) 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 的(或称) 平面向量是自由向量 零向量长度为的向量;其方向是任意的记作0 单位向量长度等于的 向量 非零向量a的单位向量为± a |a| 平行向量方向或的非零向量 0与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0的相反向量为0 2.向量的线性运算 向量运算定义法则(或几何 意义) 运算律 加法求两个向量和的运算(1)交换律: a+b=b+a. (2)结合律: (a+b)+c=a+(b+c). 减法求a与b的相反向量-b 的和的运算叫做a与b 的差 法则 a-b=a+(-b) 数乘求实数λ与向量a的积的 运算 (1)|λa|=|λ||a|. (2)当λ>0时,λa的方向与a的方向; 当λ<0时,λa的方向与a的方向;当λ =0时,λa=0. λ(μa)=λμa; (λ+μ)a=λa+μa; λ(a+b)=λa+λb. 向量a(a≠0)与b共线的条件是存在唯一一个实数λ,使得b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线

段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线(或重合)的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合. 三.基础自测 1.化简OP →-QP →+MS →-MQ → 的结果等于________. 2.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量; ④相等向量一定共线.其中不正确命题的序号是_______. 3.在△ABC 中,AB →=c ,AC →=b.若点D 满足BD →=2DC →,则AD → =________(用b 、c 表示). 4.如图,向量a -b 等于() A .-4e1-2e2 B .-2e1-4e2 C .e1-3e2 D .3e1-e2 5.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是 () A .A 、B 、DB .A 、B 、C C .B 、C 、DD .A 、C 、D 四.题型分类深度剖析 题型一 平面向量的有关概念 例1 给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC → 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a|=|b|且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c.其中正确的序号是________. 变式训练1 判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a|=|b|,则a>b ; (2)若|a|=|b|,则a 与b 的长度相等且方向相同或相反; (3)若|a|=|b|,且a 与b 方向相同,则a =b ; (4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反; (6)若向量AB →与向量CD → 是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等 题型二 平面向量的线性运算 例2 如图,以向量OA →=a ,OB →=b 为边作?OADB ,BM →=13BC →,CN →=13 CD →,用a 、b 表示OM →、ON →、MN → . 变式训练2 △ABC 中,AD →=23 AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N.设AB →=a ,AC → =b ,用a 、b 表示向 量AE →、BC →、DE →、DN →、AM →、AN →. 题型三 平面向量的共线问题 例3 设e1,e2是两个不共线向量,已知AB →=2e1-8e2,CB →=e1+3e2,CD → =2e1-e2. (1)求证:A 、B 、D 三点共线; (2)若BF → =3e1-ke2,且B 、D 、F 三点共线,求k 的值.

高中数学平面向量知识点总结

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法),(y x yj xi a 向 量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的, 0 与任意向量平行零向量a =0 |a |=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即自 由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a 大 小相等,方向相同 ),(),(2211y x y x 2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法

【2019年整理】03第三节数量积向量积混合积

第三节 数量积 向量积 混合积 分布图示 ★两向量的数量积 ★例1 ★例4 ★向量积概念的引入 ★向量积的运算 ★例6 ★例9 ★向量的混合积 ★例11 ★内容小结 ★习题8-3 内容要点 一、两向量的数量积 定义1设有向量 示b ,它们的夹角为0 ,乘积| a ||b | cose 称为向量a 与b 的数量积(或 称为内积、 点积),记为a b,即 a b 却 a || b | cos . 根据数量积的定义,可以推得: (1) a b =|b |Pr j b a =|a |Pr j a b ; I — - 2 (2) a a a | ; (3) 设a*、b 为两非零向量,贝U a_L b 的充分必要条件是 a , b = 数量积满足下列运算规律: (1)交换律 a b = b a; (2)分配律 (a b) c = a c b c; (3)结合律 人(』b)=(杯b =a ,(Lb),( &为实数) 二、两向量的向量积 定义2若由向量a 与b 所确定的一个向量 c 满足下列条件: ★数量积的运算 ★例2 ★例3 ★例5 ★向量积的定义 ★例7 ★例8 ★例10 ★混合积的几何意义 ★例12 ★例13 ★课堂练习 ★返回

(1) c的方向既垂直于a又垂直于b, c的指向按右手规则从a转向b来确定(图

8-3-4); (2) C的模| C|=|a〔|b | sin6 ,(其中8为a与b的夹角), 则称向量c为向量a与b的向量积(或称外积、叉积),记为 c = a b . 根据向量积的定义,即可推得 (1) a 3 =0 ; (2) 设a、b为两非零向量,贝U a//b的充分必要条件是』xb = 0. 向量积满足下列运算规律: (1) a b = -b a; (2) 分配律(a b) c = a c b c; (3) 结合律u£xb) = (?a)Xb = ax(7_b),(岛为实数). 三、向量的混合积 例题选讲 两向量的数量积 例1(E01)已知a={1,1,~4}, b={1,—2,2},求 (1)a b; (2) a与b的夹角0 ; (3) a与b上的投影. 解(1) a b =1 1 1 (-2) (-4) 2 = -9. a x b x a y b y a z b z 1 . 3■: (2) cos@=j2 2;j 2 2 2 =_了,」.nr a x a y a z , b x b y b z 2 4 a b (3) a b =|b|PrRa, . Pr j b a = ------------- = -3. |a| 例2证明向量c与向量(£ d)b —(b 3)£垂直. 证[(a c)b - (b c)a] c =[(a c)b c - (b c)a c] =(b c)[a c - a c] =0,

高中数学平面向量公式(精选课件)

高中数学平面向量公式1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤

2、向量的数量积不满足消去律,即:由a?b=a? c (a≠0),推不出 b=c。 3、|a?b|≠|a|?|b| 4、由 |a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b ∣=|a|?|b|?sin〈a,b>;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0。...文档交流仅供参考... 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积. a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c。 注:向量没有除法,“向量AB/向量CD”是没有意义的. 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

向量数量积的运算律

向量数量积的运算律 新知检索 8.向量数量积满足交换律:·=__________________________. 9.向量数量积满足分配律:(+)·=______________________. 10.数乘向量的数量积,可以与任一向量交换结合,即对任意实数λ,有(?λ=_________. 学法指导 本节课的学习目标是掌握向量数量积的运算规律,并准确运用;重点是注意结合律的正确使用.学习本节课应注意的问题: 1.对于分配律,用向量数量积的几何意义给出了证明.在学习与使用时,可以类比数量乘法的交换律.但要明确它们的不同. (1)已知实数)0≠b c b a (、、,则c a bc ab =?=;但对于向量、、,该推理是不正确的,即a ·b =b ·不一定能推出a =.只有当向量a 、b 、共线且同向时,才成立,否则就不成立. 比如:|a |=3,|b |=1,|c |=3,< a ,b >=30°,=60°, 经过计算可知:·=·,但≠. (2)对于实数c b a 、、有(ab )c =a (bc ),但对于向量、、c ,(·)·c ≠·(·c ),这是因为(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 一般并不共线,所以(a ·b )·c ≠a (b ·c ) . 2.教材中的例题1是直接对数量积性质、运算律的应用.其中推得结论: (1)2(+=22||2||b b a a +?+; (2)(a +b )·(a -b )=22||||-.在以后的运算中,可以直接运用. 3.用向量知识证明几何问题.用向量解题可分为三步:

高中数学平面向量doc

专题讲座 高中数学“平面向量” 一、整体把握“平面向量”教学内容 (一)平面向量知识结构图 (二)重点难点分析

本专题内容包括:平面向量的概念、运算及应用. 课标要求: 平面向量(约12课时) (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。(2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义。 ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。 ③了解向量的线性运算性质及其几何意义。 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义。 ②掌握平面向量的正交分解及其坐标表示。 ③会用坐标表示平面向量的加、减与数乘运算。 ④理解用坐标表示的平面向量共线的条件。 (4)平面向量的数量积

①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。 ②体会平面向量的数量积与向量投影的关系。 ③掌握数量积的坐标表达式,会进行平面向量数量积的运算。 ④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 (5)向量的应用 经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。 依据课标要求,并结合前面的分析可知:新概念、新运算的定义,向量运算和向量运算的几何意义是本专题的重点,平面向量基本定理是坐标表示(几何代数化)的关键,也是本专题教学的难点。 二、“平面向量”教与学的策略 (一)在概念教学中,依据概念教学的方法,建构概念知识体系 本专题的教学中,向量、向量的运算等都是新定义的概念,如何让这些概念的出现自然轻松,还能让学生迅速把握住本质,达成理解?不妨遵循概念教学的方法。 比如说:“向量的概念”教学中,可从力、位移等实例引入,进行抽象概括,形成向量的概念。之后,提出“温度、功是不是向量?”这样的问题,通过比较,对向量的概念进行辨析,在此基础上,抓住向量的两个要点:大小、方向进行拓展,按如下表格整理,将向量概念精致化。 概念辨析:

(完整word版)高中数学-平面向量专题.doc

第一部分:平面向量的概念及线性运算 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 平面向量是自由向量的(或称) 零向量长度为的向量;其方向是任意的记作 0 单位向量长度等于的非零向量 a 的单位向量为± a 向量|a| 平行向量方向或的非零向量 0 与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0 的相反向量为 0 2.向量的线性运算 向量运算定义法则 (或几何 运算律意义 ) 加法求两个向量和的运算 求 a 与 b 的相反向量- b 减法的和的运算叫做 a 与 b 的差 (1)交换律: a+ b= b+ a. (2)结合律: (a+ b)+ c= a+ (b+c). a- b= a+ (- b) 法则 求实数λ与向量 a 的积的(1)|λa|= |λ||a|. ;λ(μa)=λμa; 数乘 (2)当λ>0 时,λa 的方向与 a 的方向 运算当λ<0 时,λa 的方向与 a 的方向;当λ (λ+μ)a=λa+μa; =0 时,λa= 0. λ(a+ b)=λa+λb. 3.共线向量定理 向量 a(a≠0)与 b 共线的条件是存在唯一一个实数λ,使得 b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说, 即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线 (或重合 )的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.

高中数学平面向量习题及答案

第二章 平面向量 一、选择题 1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .与相等 D .与相等 2.下列命题正确的是( ). A .向量与是两平行向量 B .若a ,b 都是单位向量,则a =b C .若=,则A ,B ,C , D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同 3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足=α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ). A .3x +2y -11=0 B .(x -1)2+(y -1)2=5 C .2x -y =0 D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A . 6 π B . 3 π C . 23 π D . 56 π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则=( ). A .λ(+),λ∈(0,1) B .λ(+),λ∈(0,22 ) C .λ(-),λ∈(0,1) D .λ(-),λ∈(0, 2 2) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则=( ). A .+ B .- C .+ D .+ 7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ). (第1题)

高三数学复习微专题之平面向量篇矩形大法教师

一、 知识清单 1. 极化恒等式:如图,+=AD AB AC 2 ① -=CB A B A C ②,则: ①2 +②2 得:AC AD BC AB +=+242 2 22 ;①2-②2 得:AC AD BC AB ?=-4422 推广:AC AB AC BC AB AB AC cosA ?=?=?+-2 222 速记方法:?==-+-a b a b a b 4()()22,=++=+-a b a b a b 2 ()()2222 2. 矩形大法:如图,由极化恒等式可得 +=+PO BD 2PD PB 42 2 22①+=+PO AC 2 PA PC 422 22 ② 因为BD=AC ,所以PD PB PA PC +=+2222, 速记方法:矩形外一点到矩形对角顶点的平方和相等。 推广1:若ABCD 为平行四边形,则有PA PC PD PB =+-+-AC 2 )(BD 2 2 2 2 22 =-?= -AC AM BC 4 422 =4 1 0,且对于边AB 上任一点P ,恒有?≥?PB PC P B PC 00 。则( ) A.∠=ABC 90 B. ∠=BAC 90 C.=AB AC D. =AC BC 解析:D 为BC 中点,由极化恒等式有:?=-PC PD BC 4 PB 422 则当PD 最小时,PB ????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。 3. 已知向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()12,3,0,求-a b 的范围? 解析:由?-++=b e a b a ()10,得-?-=e b e a ()()0 如图,===OA a OB b OE e ,, ,构造矩形ACBE ,由矩形大法有 +=+OE OC OA OB 222 2,则=OC ==∈-+=-+-AB CE OC OE OC OE a b [,] [2 3 1,231] 高三数学复习微专题之平面向量篇 第三讲:极化恒等式与矩形大法 解析:由极化恒等式有:AB 16推广2:若P 为平面外一点,上述性质仍成立。二、典型例题1.(2019浙江模拟卷)在?ABC 中,M 是BC 的中点,AM =3,BC =10,则A B A ? C =_________. 2.(2019山东模拟)在?ABC 中,P 0是边AB 上一定点,满足P B AB

(完整版)高中数学平面向量专题训练

高中数学平面向量专题训练 一、选择题: 1、若向量方程23(2)0x x a --=r r r r ,则向量x r 等于 A 、65 a r B 、6a -r C 、6a r D 、65 a -r 2、两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a r 和b r ,那么下列命题中错误的一个是 A 、a r 与b r 为平行向量 B 、a r 与b r 为模相等的向量 C 、a r 与b r 为共线向量 D 、a r 与b r 为相等的向量 3、AB BC AD +-=u u u r u u u r u u u r A 、AD u u u r B 、CD uuu r C 、DB u u u r D 、DC u u u r 4、下列各组的两个向量,平行的是 A 、(2,3)a =-r ,(4,6)b =r B 、(1,2)a =-r ,(7,14)b =r C 、(2,3)a =r ,(3,2)b =r D 、(3,2)a =-r ,(6,4)b =-r 5、若P 分AB u u u r 所成的比为4 3 ,则A 分BP u u u r 所成的比为 A 、7 3 - B 、3 7 - C 、73 D 、 3 7 6、已知(6,0)a =r ,(5,5)b =-r ,则a r 与b r 的夹角为 A 、045 B 、060 C 、0135 D 、0120 7、已知i r ,j r 都是单位向量,则下列结论正确的是 A 、1i j ?=r r B 、22 i j =r r C 、i r ∥j i j ?=r r r D 、0i j ?=r r 8、如图,在四边形ABCD 中,设AB a =u u u r r ,AD b =u u u r r , BC c =u u u r r ,则DC =u u u r A 、a b c -+r r r B 、()b a c -+r r r C 、a b c ++r r r D 、b a c -+r r r 9、点),0(m A )0(≠m ,按向量a r 平移后的对应点的坐标是)0,(m ,则向量a r 是 C B A D

8.1.2 向量数量积的运算律

8.1.2 向量数量积的运算律 (教师独具内容) 课程标准:理解掌握数量积的性质和运算律,并能运用性质和运算律进行简单的应用. 教学重点:向量数量积的性质与运算律及其应用. 教学难点:平面向量数量积的运算律的证明. 【知识导学】 知识点 平面向量数量积的运算律 已知向量a ,b ,c 与实数λ,则 交换律 a ·b =□ 01b ·a 结合律 (λa )·b =□ 02λ(a ·b )=□03a ·(λb ) 分配律 (a +b )·c =□ 04a ·c +b ·c 【新知拓展】 对向量数量积的运算律的几点说明 (1)向量数量积不满足消去律:设a ,b ,c 均为非零向量且a ·c =b ·c ,不能得到a =b .事实上,如图所示,OA →=a ,OB →=b ,OC → =c ,AB ⊥OC 于D ,可以看出,a ,b 在向量c 上的投影分别为|a |cos ∠AOD ,|b |cos ∠BOD ,此时|b |cos ∠BOD =|a |cos ∠AOD =OD .即a ·c =b ·c .但很显然b ≠a . (2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a ·b )c ≠a (b ·c ),这是由于a ·b ,b ·c 都是实数,(a ·b )c 表示与c 方向相同或相反的向量,a (b ·c )表示与a 方向相同或相反的向量,而a 与c 不一定共线. 1.判一判(正确的打“√”,错误的打“×”) (1)对于向量a ,b ,c 等式(a·b )·c =a ·(b·c )恒成立.( ) (2)若a·b =a·c ,则b =c ,其中a ≠0.( ) (3)(a +b )·(a -b )=a 2 -b 2 .( ) 答案 (1)× (2)× (3)√ 2.做一做

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

数量积向量积混合积

第三节 数量积 向量积 混合积 分布图示 ★ 两向量的数量积 ★ 数量积的运算 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 向量积概念的引入 ★ 向量积的定义 ★ 向量积的运算 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 向量的混合积 ★ 混合积的几何意义 ★ 例11 ★ 例12 ★ 例13 ★ 内容小结 ★ 课堂练习 ★ 习题8-3 ★ 返回 内容要点 一、两向量的数量积 定义1设有向量a 、b ,它们的夹角为θ,乘积θcos ||||b a 称为向量a 与b 的数量积(或称为内积、点积),记为b a ?,即 θcos ||||b a b a =?. 根据数量积的定义,可以推得: (1) b j a a j b b a a b Pr ||Pr ||==?; (2) 2 ||a a a =?; (3) 设a 、b 为两非零向量,则 b a ⊥的充分必要条件是 0=?b a . 数量积满足下列运算规律: (1)交换律 ;a b b a ?=? (2)分配律 ;)(c b c a c b a ?+?=?+ (3)结合律 )()()(b a b a b a λλλ?=?=?,(λ为实数). 二、两向量的向量积 定义2 若由向量a 与b 所确定的一个向量c 满足下列条件: (1)c 的方向既垂直于a 又垂直于b , c 的指向按右手规则从a 转向b 来确定(图

8-3-4); (2)c 的模 θsin ||||||b a c =,(其中θ为a 与b 的夹角), 则称向量c 为向量a 与b 的向量积(或称外积、叉积),记为 b a c ?=. 根据向量积的定义,即可推得 (1)0 =?a a ; (2)设a 、b 为两非零向量,则 b a //的充分必要条件是 0=?b a . 向量积满足下列运算规律: (1);a b b a ?-=? (2)分配律 ;)(c b c a c b a ?+?=?+ (3)结合律 )()()(b a b a b a λλλ?=?=?,(λ为实数). 三、向量的混合积 例题选讲 两向量的数量积 例1(E01) 已知},2,2,1{},4,1,1{-=-=b a 求 (1) ;b a ? (2) a 与b 的夹角θ; (3) a 与b 上的投影. 解 (1) b a ?2)4()2(111?-+-?+?=.9-= (2) 222222cos z y x z y x z z y y x x b b b a a a b a b a b a ++++++= θ,2 1- = ∴.4 3π θ= (3) ,Pr ||a j b b a b =?.3| |Pr -=?=∴a b a a j b 例2 证明向量c 与向量a c b b c a )()(?-?垂直. 证 c a c b b c a ??-?])()[(])()[(c a c b c b c a ??-??=])[(c a c a c b ?-??=,0= ∴.])()[(c a c b b c a ⊥?-?

高中数学平面向量知识点总结及常见题型(供参考)

平面向量 一.向量的基本概念与基本运算 1 ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB 几何表示法 AB ,a ;坐标表示法,(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ? |a |=0 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即 自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大 小相等,方向相同),(),(2211y x y x =?? ?==?2 12 1y y x x 2 求两个向量和的运算叫做向量的加法 设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:

12022-向量数量积的运算律

向量数量积的运算律 制作人:张明娟 审核人:叶付国 使用时间:2012-5-8 编号:12022 学习目标: 1、 掌握平面向量数量积的运算律及其运算; 2、 通过向量数量积分配律的学习,体会类比、猜想、证明的探索性学习 方法; 3、通过解题实践,体会向量数量积的运算方法. 学习重点:向量数量积的运算律及其应用. 学习难点:向量数量积分配律的证明. 重点知识回顾: 1、两个向量的夹角的范围是: ; 2、向量在轴上的正射影 正射影的数量为 ; 3、向量的数量积(内积):a ·b = ; 4、两个向量的数量积的性质: (1)b a ⊥? ; (2)a a ?= 或a = ; (3)θcos = ; 向量数量积的运算律 平面向量数量积的常用公式 证明:(1) (2) c b c a c b a b a b a b a b a a b b a ?+?=?+?=?=?=??=?))(3(;)()())(2(; 1λλλλ)(222 2))(1(b b a a b a +?+=+2 2))()(2(b a b a b a -=-+

典例剖析: 例1、已知a =6,b =4,a 与b 的夹角为060, 求:(1)b 在a 方向上的投影; (2)a 在b 方向上的投影; (3) 例2、已知a 与b 的夹角为0120,a =2,b =3,求: ()() b a b a 32-?+) ())(;();()(b a b a b a b a 32321 22+?-- ?(-+5 4取何值,问夹角为与t t b a -==0 120,1

例 3、已知a =3,b =4,(且a 与b 不共线),当且仅当k 为何值时,向量b k a +与b k a - 互相垂直? 变式:已知a =1, b =2, a 与b a -垂直.求a 与b 的夹角. 练习题:求证菱形的对角线互相垂直. 例 4、已知a =2,b =4,0120,=b a ,求a 与b a -的夹角.

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

第二课时向量数量积的运算律(可编辑修改word版)

= = AC ? ?? ? 2.3.2 向量数量积的运算律 类型二、运用向量数量积的运算律求向量的模 【学习目标】: 熟练掌握平面向量数量积的运算律,并会应用。 【自主学习】: 向量数量积的运算律: (1) 交换律: 例 2、已知 a = b = 5, 向量 a 与b 的夹角为 ,求 a - b , a + b 。 3 (2) 数乘 向量的数量积 结合律: 那么分配律是否成立呢? 【合作探究】 分配律: 变式: 在三角形 ABC 中,已知 AB 3, BC 5, ∠ABC = 600 , 求 。 【课堂互动】 类型一、运用向量数量积的运算律计算例 1、求证: 类型二、运用向量数量积的运算律解决有关垂直问题例 2、求证:菱形的两条对角线互相垂直: 已知: ABCD 是菱形, AC 和 BD 是它的两条对角线。 (1) (a + b ) 2 = 2 + 2a ? b + 2 → → → → ;(2) a + b ?? a - b ? = ? ?? ? → 2 → 2 a - b ; 求证: AC ⊥ BD . 证明: → → → → 变式:已知 a = 3, b = 4, ?a , b ? = 60 , 求(a + 2b ) (a - 3b ) . 总结: a ⊥ b ? 。 a b

a b a ⊥ 变式: 已 知 a = 3, b = 4 ,且(a + kb ) ⊥ (a - kb ), 求 k 的值。 2 【合作探究】 1 、 若 a,b( b ≠ 0 ) 为 实 数 , 则 a ? b = a ? b 成 立 , 对 于 向 量 3、已知 e 1 , e 2 是夹角为 3 的两个单位向量, a = e 1 - 2e 2 , b = ke 1 + e 2 , 若 a ? b = 0 ,则 k 的值为 。 a , b , a ? b = ? 成立吗? 2、若 a,b,c( b ≠ 0 )为实数,则 ab = bc ? a = c ; 但对于向量, ab = bc ? a = c 还成立吗? 4、证明平行四边形中, AC 2 + BD 2 = 2 AB 2 + 2 AD 2. 3、 向量的数量积满足结合律吗,即(a ? b )? c = a ? (b ? c )成立吗? (a ? b ) ? c 表 示什么意义? a ? (b ? c ) 表示什么意义? 【当堂检测】 → → < >= 1200 , = = 5, (2a - b )? a = 1 、 已 知 向 量 a , b 且 a 2, b 则 (选做)5、设 a b , 且 = 2, b = 1, k,t 是两个不同时为零的实数。 。 (1) 若 x = a + (t - 3)b 与 y = -ka + tb 垂直,求 k 关于 t 的函数关系式 k=f(t); (2) 求出函数 k=f(t)的最小值。 → → → → 2 2 、 a = 6, b = 8, ?a , b ? = 120 , 求 a + b , a + b .

相关主题
文本预览
相关文档 最新文档