当前位置:文档之家› CMOS运算放大器的设计和优化

CMOS运算放大器的设计和优化

CMOS运算放大器的设计和优化
CMOS运算放大器的设计和优化

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

运算放大器组成的各种实用电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg)

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。点击进入万联芯城 点击进入万联芯城

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等

音频放大器课程设计

电子课程设计 课程设计名称 : 电子课程设计 课程设计题目 : 音频放大器设计学院名称:工学院 班级:11级通信工程 学号:201101030119 姓名:陶媛 指导教师:朱家兴 2013年 8 月 25

摘要 进入21世纪以后,各种便携式的电子设备成为了电子设备的一种重要的发 展趋势。从作为通信工具的手机,到作为娱乐设备的MP3播放器,已经成为差不 多人人具备的便携式电子设备。在一些电子设备中,常常要求放大电路的输出级 能够带动较重负载,因而要求放大电路具有较高的效率,能够根据负载的要求提 供足够的输出功率。 本系统是基于三极管元件设计而成的一种音频放大器,由前置放大电路、 带通滤波电路、混频电路、电源电路四部分构成。前置放大电路主要由差分放大 电路构成,外加恒流源提供偏置,抑制电路的温漂,提高共模增益比。然后通过 由一个二阶压控电压源高通滤波器和一个二阶压控电压源低通滤波器构成的带 通滤波器,再接入一个混频电路(可加入背景音乐),最后通过电容耦合到功率 放大电路中除去了直流对后级放大电路的影响。混频电路由一个简单的加法器构 成。本次课程设计整个过程涉及到理论计算,电路板布局,焊接技术,电子仪器 的使用等一系列知识要点。 本方案使用MIC驻级体话筒收集人说话的微弱信号,并由话筒变成电信号,经过音频放大电路的多级放大,最后由耳机插座X2输出,输出的信号由外接的耳机 或扬声器发出声音 关键字:电子设备声音信号电信号放大 目录 前言 (1) 一、设计内容及要求 (2) 二、系统组成及工作原理 2.1 系统组成 (3) 2.2 工作原理 (4) 三、功率放大电路设计

运算放大器的电路仿真设计

运算放大器的电路仿真设计 一、电路课程设计目的 错误!深入理解运算放大器电路模型,了解典型运算放大器的功能,并仿真实现它的功能; 错误!掌握理想运算放大器的特点及分析方法(主要运用节点电压法分析); ○3熟悉掌握Multisim软件。 二、实验原理说明 (1)运算放大器是一种体积很小的集成电路元件,它包括输入端和输出端。它的类型包括:反向比例放大器、加法器、积分器、微分器、电 压跟随器、电源变换器等. (2) (3)理想运放的特点:根据理想运放的特点,可以得到两条原则: (a)“虚断”:由于理想运放,故输入端口的电流约为零,可近似视为断路,称为“虚断”。 (b)“虚短”:由于理想运放A,,即两输入端间电压约为零,可近似视为短路,称为“虚短”. 已知下图,求输出电压。

理论分析: 由题意可得:(列节点方程) 011(1)822A U U +-= 0111 ()0422 B U U +-= A B U U = 解得: 三、 电路设计内容与步骤 如上图所示设计仿真电路. 仿真电路图:

V18mV R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 0.016 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 0.011 V + - 根据电压表的读数,, 与理论结果相同. 但在试验中,要注意把电压调成毫伏级别,否则结果误差会很大, 致结果没有任何意义。如图所示,电压单位为伏时的仿真结 果:V18 V R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 6.458 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 4.305 V + - ,与理论结果相差甚远。 四、 实验注意事项 1)注意仿真中的运算放大器一般是上正下负,而我们常见的运放是上负下正,在仿真过程中要注意。

运算放大器。ic设计

IC课程设计论文题目:运算放大器电路的设计

2012/1/5 摘要 本次课程设计主要内容为:利用MOS管设计一个运算放大器。放大器具有放大小信号并抑制共模信号的功能。首先从放大器理论参数及结构下手,然后经过Hspice网表的生成及仿真调整最后得到满足参数要求的MOS管设定。 关键词:运算放大器,共模电压,电压摆幅,功耗电流 Hspice仿真,增益带宽

ABSTRACT The main content of course design for: use the design a MOS operational amplifier. Amplifier has put size and control signal common mode signal function. Starting from the first amplifier parameters and structure theory laid a hand on him, and then after the formation of the Hspice nets table and adjust the final simulation parameters of the requirements to meet the MOS set. K eywords: operational amplifier ,common-mode voltage ,voltage swing current consumption ,Hspice simulation ,Gain bandwidth

运算放大器的工作原理

运算放大s得工作原理 放大器得作用:仁能把输入讯号得电压或功率放人得装置,由电了管或晶体管■电源变压器与其她电器元件组成。用在通讯、广播.需达、电视、自动控制等各种装置中。原理:高频功率放人器用于发射机得末级,作用就是将高频已调波信号进行功率放大,以满足发送功率得炎求,然后经过天线将其辐射到空间,保证在?定区域内得接收机可以接收到满意得信号 电平,并且不干扰相邻信道得通信。高频功率放大器就是通信系统中发送装置得重要组件。 按其工作频带得宽窄划分为窄带简频功率放人器与宽带高频功率放人器两种,窄带周频功率放人器通常以具有选频滤波作用得选频电路作为输出回路,故又称为调谐功率放人器或谐振功率放人器:宽带简频功率放人器得输出电路则就是传输线变圧器或其她宽带匹配电路,W此又称为非调谐功率放大器?高频功率放人能就是?种能量转换器件,它将电源供给得直流能量转换成为高频交流输出在“低频电r 线路噪程中己知倣人器可以按照电流导通角得不同, 运算放人器原理 运算放人器(Op e r atio n a 1 AmpI i Pier-简称OP、OPA、OPAMP)就是?种直 流耦合,差模(差动模式)输入、通常为单端输出(D 1 ffere ntial—in, sing 1 e—ended o utput)得高增益(gain)电压放人器阴为刚开始主耍用于加法,乘法等运算电路中? W而得名??个理想得运算放大器必须具备下列特性:无限人得输入阻抗.等于零得输出阻抗、无限人得开回路 增益、无限大得共模計#斥比得部分.无限人得频宽。最基本得运算放人器如图1-1- 一个运算放人器模组?般包括?个正输入端(OP_P〉、?个负输入端(OP_N〉与?个输出端(0 P_0)。 图1?1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node )连接,形成一负反馈(negative feedback)组态。原因就是运算放人器得电压増益非常大,范 圉从数百至数万倍不等,使用负反馈方可保证电路得稳定运作。但就是这并不代衣运算放人器不能连接成正回馈(positive f e edbac k ),相反地,在很多需要产生震荡讯号得系统中,正回馈组态得运算放大器就是很常见得组成元件。 开环回路

音频放大器的设计

四川师范大学成都学院电路与电子技术课程设计数字音频放大器的设计 学生姓名 学号 所在学院通信工程学院 专业名称通信工程 班级 指导教师 成绩 四川师范大学成都学院 二○一四年十二月

课程设计任务书

数字音频放大器的设计 内容摘要:数字音频放大器是将输入音频模拟信号或PCM数字信息变换成PWM 或PDM的脉冲信号用来控制大功率开关电路,经过低通滤波器整形实现数字信号的放大输出。数字音頻放大器也看上去成是一个一比特的功率数模变换器。放大器由由三角波振荡器、前置放大电路、PWM比较器、驱动电路、功率放大电路和 低通滤波器电路组成。 输入信号形成电路分PWM处理器和PDM处理两种,将输入信号的振幅变化变 换成脉冲宽度的变化或脉冲密度的变化。 低通滤波器的作用是将脉冲波形整形成漂亮的模拟波形,即滤除PWM或PDM 信号的载波成分。常采用功率损耗小的LC型滤波器。 本设计介绍了数字音频放大器的组成及原理,然后用QuartusⅡ软件进行仿真和模拟,用以验证实验。 关键词:PWM调制低通滤波数字音频 The design of digital audio amplifier Abstract:Digital audio amplifier is an analog input audio signal or the PCM digital information into a PWM or PDM pulse signal for controlling the power switching circuit, low-pass digital filter shaping to achieve an amplified output signal.Also appears as a digital audio amplifier is a one bit digital to analog converter power. Amplifier by the triangular wave oscillator, preamplifier circuit, PWM comparator, the driving circuit, power amplifier and a low pass filter circuit. Input signal forming circuit of two PWM processor and sub-processor PDM, the amplitude of the input signal is converted into a variation or change in the pulse density of the pulse width changes. Low-pass filter is shaped to the pulse waveform beautiful analog waveform, i.e. the carrier component was filtered PWM or PDM signal. Often with a small power loss LC filter.

集成运算放大器

成绩评定表

课程设计任务书

摘要 本设计是根据要求进行的集成运算放大器的设计,用Protel软件设计实验电路,并绘制出PCB电路板,根据电路图对设计进行制作,最后进行调试测试。通过对Protel软件的学习与应用,加深对相关原理的理解,并对protel软件有初步的认识和一定的操作能力,为后续相关课程和相关软件的学习与应用打下坚实的基础。并根据通信电子线路所学的知识,掌握电路设计,熟悉电路的制作,运用所学理论和方法进行一次综合性设计训练,从而培养独立分析问题和解决问题的能力。根据相关课题的具体要求,按照指导老师的指导,进行具体项目的设计,提高自己的动手能力和综合水平。 本设计采用LM324芯片,它是一个四运算放大器的基本电路,在四运算放大器电路中起到了至关重要的作用。通过LM324芯片与其他相关电子元件的组合,画出调制与解调电路图,并完成PCB电路的绘制,完成课题的设计,可以算是对自我综合能力的一次有益尝试。 关键字:Protel、PCB、LM324、四运算放大器

目录 1 Protel的简要介绍 (5) 1.1 Protel的发展历史 (5) 1.2 Protel99SE简介 (5) 2 设计任务及要求 (6) 2.1设计任务 (6) 2.2设计要求 (6) 3 电路原理介绍 (7) 3.1 反向运算放大器 (7) 3.2 反向加法器 (7) 3.3 差动运算放大器 (7) 3.4积分器电路 (8) 4 原理图设计 (10) 4.1电路元件明细表 (10) 4.2 绘制原理图 (10) 4.3 元件生成清单 (12) 5 印刷版图的绘制 (12) 5.1 准备电路原理图和网络表 (12) 5.2 创建PCB文件以及网络表的装入 (15) 5.3 元件的布局以及印刷板的布线 (15) 6收获和体会 (16) 7 主要参考文献 (17)

运算放大器组成的基本运算电路

实验五运算放大器组成的基本运算电路 一、实验目的 1、了解运算放大器的基本使用方法。 2、应用集成运放构成的基本运算电路 3、学会使用线性组件u A741。 4、掌握加法运算、减法运算电路的基本工作原理及测试方法。 5、学会用运算放大器组成积分电路。 二、实验属性 验证性实验 三、实验仪器设备及器材 1、实验台 2、数字万用表 3、示波器 4、计时表 四、实验内容及步骤 1.调零:按图 7-1 接线,接通电源后,调节调零电位器 RW 使输出 0V。运放调零后, 在后面的实验中均不用调零了。 图7-1 仿真参考电路:

电路如图7-2 所示,根据电路参数计算A V=Vo/V i,并按照表7-1 给定的V i 计算和测量对应的Vo值,并把结果记入表7-1 中。 图7-2 仿真参考电路:

电路如图7-3 所示,根据电路参数计算A V=Vo/V i,并按照表7-2 给定的V i 计算和测量对应的Vo值,并把结果记入表7-2 中。 图7-3 仿真参考电路:

电路如图7-4 所示,按照表7-3 给定的V i1 和V i2 计算和测量对应的Vo 值,并把结果记入表7-3中。 图7-4 仿真参考电路:

电路如图7-5 所示,按照表7-4 给定的V i1 和V i2 计算和测量对应的Vo 值,并把结果记入表7-4中。 图7-5 仿真参考电路:

五、实验报告 1.整理实验数据,填入表中。 答:整理数据如上表中。 2.分析各运算关系。 答: 反相比例运算:U0=-(R f/R1)X(U i) 放大倍数 A uf=-R f/R1 随着电压的不断增加,实际运放也不断变大,误差逐渐减小同相比例运算:U0=(1+(R f/R1))X(U i) 放大倍数 A uf=1+(R f/R1) 随着电压的不断增加,误差逐渐减小,越来越趋近于理论值加法运算:U0=-((R f/R i1))X(U i1)+ (R f/R i2))X(U i2)) 改变任一电路的输入电阻时,对其他路没有任何影响减法运算:U0=(1+(R f/R1))X(R3/(R2+R3))X(U i2)-(R f/R1)X(U i1) 输出与两个输入信号的差值成正比

音响放大器的设计分析

电子技术(综合)课程设计 题目名称:音响放大器的设计 班级:电气1302班 学号: 姓名: 指导教师:吴建国 日期:2015.6.27

音响放大器的设计 1. 设计任务和要求: (1) 具有对话筒与录音机输出信号进行扩音、音调控制、卡拉OK 伴唱等功能。 (2) 主要技术指标:额定功率O W P ≥1(γ<3%);负载阻抗L 8R =Ω;截止频率 L 40f z =H ,H k 10f z =H ;音调控制特性:k 1z H 处增益为0dB ;z H 100处和k 10z H 处有12±dB 的调节范围;VL LH 20A A =≥dB ;话筒放大级输入灵敏度mV 5;录音机的输出信号电压为mV 100;输入阻抗i 20R >>Ω。(为了保证设计内容的多样性,技术指标部分可另取值)。 (3) 主要器件:CC V =+9V ;话筒(低阻20Ω)电子混响模块一个;集成功放LA4102一只;集成运放LM324一只(或μA741 3只);W 8/2Ω负载电阻L R 一只;W 8/4Ω扬声器一只。 题目分析或内容摘要: 这个音响放大器的设计过程为:首先确定整机电路的级数,再根据各级的功能及技术指标要求分配电压增益,然后分别计算各级电路参数,通常从功放级开始向前级逐级计算。只需给定电子混响器电路模块,需要设计的电路为话筒放大器,混合前置放大器,音调控制器及功率放大器。根据题意要求,输入信号为5mV 时输出功率的最大值为lW , 因此电路系统的总电压增益∑u A =L PoP /Ui=566(55dB),由于实际电路中会有损耗,故取∑u A =600(55·6dB),各级增益分配如图4所示。功放级增益4u A 由集成功放块决定,取4u A =100(40dB),音调控制级在fo=lkHz 时,增益应为1(0dB),但实际电路有可能产生衰减,取3u A =0.8 (一2dB)。话放级与混合级一般采用运算放大器,但会受到增益带宽积的限制,各级增益不宜太大,取1u A =7.5(17.5dB),2u A =l(OdB)。 2. 设计方案 甲类放大器作为一种最古老,效率最低,最耗电,最笨重,最耗资,失真最小的放大器 输入音 频信号 前置放大级电路 共射-共基电路 共射-共基电路 恒压源电路 推动级 反馈电路 至末级 功放 沃尔漫电路

基于Spectre运算放大器的设计

《集成电路CAD》课程设计报告 课题:基于Spectre运算放大器的设计 一:课程设计目标及任务 利用Cadence软件设计使用差分放大器,设计其原理图,并画出其版图,模拟器各项性能指标,修改宽长比,使其最优化。 二:运算放大器概况 运算放大器(operational amplifier),简称运放(OPA),如图1.1所示: 图1.1运放示意图 运算放大器最早被设计出来的目的是将电压类比成数字,用来进行加、减、乘、除的运算,同时也成为实现模拟计算机的基本建构方块。然而,理想运算放大器的在电路系统设计上的用途却远远超过加减乘除的计算。今日的运算放大器,无论是使用晶体管或真空管、分立式元件或集成电路元件,运算放大器的效能都已经接近理想运算放大器的要求。早期的运算放大器是使用真空管设计的,现在多半是集成电路式的元件。但是如果系统对于放大器的需求超出集成电路放大器的需求时,常常会利用分立式元件来实现这些特殊规格的运算放大器。 三:原理图的绘制及仿真

3.1原理图的绘制 首先在Cadence电路编辑器界面绘制原理图如下: 图3.1电路原理图 原理图中MOS管的参数如下表: Instance name Model W/m L/m Multiplier Library Cell name View name M1 nmosl 800n 500n 1 Gpdk180 nmos symbol M2 nmosl 800n 500n 1 Gpdk180 nmos symbol M3 pmosl 1.1u 550n 1 Gpdk180 pmos symbol M4 pmosl 1.1u 550n 1 Gpdk180 pmos symbol M5 nmosl 800n 500n 1 Gpdk180 nmos symbol

运算放大器工作原理、分类及特点介绍

运算放大器工作原理、分类及特点介绍 1.模拟运放的分类及特点 模拟运算放大器从诞生至今,已有40多年的历史了。最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。 经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。这使得初学者选用时不知如何是好。为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。 1.1.根据制造工艺分类 根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。 标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB之间。标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。通过变更标准硅工艺,可以设计出通用运放和高速运放。典型代表是LM324。 在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在1000M欧姆数量级。典型代表是TL084。 在标准硅工艺中加入了MOS场效应管工艺的运算放大器分为三类,一类是是将标准硅工艺的集成模拟运算放大器的输入级改进为MOS场效应管,比结型场效应管大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在10^12欧姆数量级。典型代表是CA3140。 第二类是采用全MOS场效应管工艺的模拟运算放大器,它大大降低了功耗,但是电源电压降低,功耗大大降低,它的典型开环输入阻抗在10^12欧姆数量级。 第三类是采用全MOS场效应管工艺的模拟数字混合运算放大器,采用所谓斩波稳零技术,主要用于改善直流信号的处理精度,输入失调电压可以达到0.01uV,温度漂移指标目前可以达到0.02ppm。在处理直流信号方面接近理想运放特性。它的典型开环输入阻抗在10^12欧姆数量级。典型产品是ICL7650。1.2.按照功能/性能分类 按照功能/性能分类,模拟运算放大器一般可分为通用运放、低功耗运放、精密运放、高输入阻抗运放、高速运放、宽带运放、高压运放,另外还有一些特殊运放,例如程控运放、电流运放、电压跟随器等等。实际上由于为了满足应用需要,运放种类极多。本文以上述简单分类法为准。 需要说明的是,随着技术的进步,上述分类的门槛一直在变化。例如以前的LM108最初是归入精密

简易音频功率放大器

闽南师范大学《模拟电子技术》课程设计 设计题目:简易音频功率放大器 姓名:庄伟彬 学号:1205000425 系别:物理与信息工程学院 专业电气工程及其自动化 年级:12级 指导教师:周锦荣老师 2014年 5月 1 日

目录 一系统设计┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 1.设计任务┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 2.设计要求┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 二电路设计原理┄┄┄┄┄┄┄┄┄┄┄┄ 3 1.系统原理┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 2.方案比较┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 3.芯片介绍┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 三PCB布板┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10 四实物安装与调试┄┄┄┄┄┄┄┄┄┄┄┄ 11 1.实物图┄┄┄┄┄┄┄┄┄┄┄┄┄11 2.测试的波形┄┄┄┄┄┄┄┄┄┄┄12 3.实验结果分析及与理论对比┄┄┄┄┄ 15 五附录┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 15 1.设计总结┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 2. 原件清单┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 3.参考文献┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 16

摘要:本方案采用LM358,LM386集成运放芯片,外加电阻、电容等元器件调整、滤波,滑动变阻器实现音量可调,构成简易音频功率放大器,音频功率放大器主要用于推动扬声器发声。 关键词:LM358;LM386;音频放大 一系统设计 1 设计任务 利用集成运算放大器LM358,LM386设计一个简易音频功率放大器。 2 设计要求 设计一个简易的音频功率放大器,要求如下: (1)系统主要由前置放大电路和后级功率放大器电路构成,电路具有音量可调; (2)前置放大电路主要有集成芯片LM358构成;后级功率放大器电路主要由集成芯片LM386音频功率放大芯片构成; (3)要求输入音频信号在10mV/1kHz时,输出功率1 (负载:8Ω),输出音频信号无 Po W 明显失真,输出功率大小可调; (4)系统测试可以由函数信号发生器产生音频信号,系统所需电源可由实验室现有学生电源提供; (5)完成相应的电路原理图设计、硬件电路设计和调试及相关结果测试; (6)完成课程设计报告撰写。

通用四运放的原理LM324

通用四运放的原理与应用(LM324为例) 本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 LM324作反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值, Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 LM324作同相交流放大器

见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。 LM324作交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。而对信号源的影响极小。因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。 R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。 LM324作有源带通滤波器 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的 多少来指示出信号幅度的大小。这种有源带通滤波器的中心频率,在中心频率fo处的电压增益Ao=B3/2B1,品质因数,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao值,去求出带通滤波器的各元件参数值。R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。上式中,当fo=1KHz时,C取0.01Uf。此电路亦可用于一般的选频放大。

简单音响电路的设计与实验

简单音响电路的设计与实验 一.设计任务 1.音响放大器设计 1)输出小信号进行放大扩音。 2.主要指标要求: 1.最大输出功率 02 P W 2.负载R L=8Ω。 3.频率变化范围f=20HZ-20KHZ 二. 实验目的 1.掌握模拟电路系统设计的基本方法。 2.掌握功率放大器的特性和质量参数的测试方法。 3.通过实验加深互补对称功率放大电路的理解。 4.学习电压放大倍数及最大不失真输出电压幅度的测试方法 三、实验说明 1、音响系统的组成框图 2、音响系统简介 1)功率放大器 功率放大器可采用分立元器件组成,也可以使用集成功率放大器,前者常用于大功率或要求较高的音响系统中,后者常用于小功率或要求不太高的音响系统中,使用集成功率放大器应注意:在任何情况下,集成功率放大器都不能工作在超过极限参数或绝对额定值所规定的工作条件下。 2)前置放大器 前置放大器属于小信号低噪声放大器。可采用分离元件电路,也可采用低

噪声运算放大器。采用分离元件电路时,为了减少噪声,一般静态工作点选取较低。 四、实验仪器 1、实验箱(TPE-A2) 2、.示波器(V212) 3、函数信号发生器(DF1642A ) 4、双通道交流毫伏表(AS2294D ) 5、台式数字万用表(VC8045) 6、扬声器 五、实验原理 1)前置放大器的设计 前置放大器实际就是对一个小信号进行放大的作用。因为功率放大器对输入信号有一定的要求,太弱的功率放大器“不理睬”,所以功率放大器之前需要增加一至数级的放大器。将小信号逐步放大到功率放大器需要的信号幅度。而反相比例放大电路使用比较方便,所以本实验采用了反相比例放大电路。如下图 1 R R U U A f i O uf - == 2)功率放大器的设计 功率放大器任务是将音频放大到足够推动扬声器,不同于前置放大器,功率放大器不仅对信号进行放大,而且放大了电流信号,以满足外接负载的功率要求。功率放大器还应具有频率特性平坦、高信噪比和优良的动态特性等功能。经过对比 采用互补对称功率放大电如上图

基于运算放大器的正弦波发生器

目录 第1章摘要 (2) 第2章设计目的及设计要求 (2) 第3章基本原理 (2) 3.1 基本文氏振荡器 (2) 3.2 振荡条件 (3) 3.3 振荡频率与振荡波形 (5) 第4章参数设计及运算 (6) 4.1 器件选择 (6) 4.2 参数计算 (6) 4.3 波形仿真图 (9) 第5章结论及误差分析 (13) 心得体会 (14) 参考文献 (15)

第1章摘要 本文中介绍了一种基于运算放大器的文氏电桥正弦波发生器。经测试,该发生器能产生频率为100-1000Hz的正弦波,且能在较小的误差范围内将振幅限制在2.5V以内,通过电位器的调节使频率在100HZ-1000HZ内变化。 无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器与正交振荡器,本文将对文氏桥振荡器进行讨论。 第2章设计目的及要求 2.1、设计目的: (1).掌握波形产生电路的设计、组装和调试的方法; (2).熟悉集成电路:集成运算放大器LN356N。并掌握其工作原理,组成文氏电桥振路。 2.2、设计要求: (1)设计波形产生电路。 (2)信号频率范围:100Hz——1000Hz。 (3)信号波形:正弦波。 (4)画出波形产生电路原理图,写出终结报告。 第3章基本原理 3.1正弦振荡器的组成 (1)放大电路:放大信号 (2)反馈网络:必须是正反馈,反馈信号即是放大电路的输入信号 (3)选频网络:保证输出为单一频率的正弦波,即使电路只在某一特定频率下满足自激振荡条件

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: 图4 同相比例电路电路图 i 1 f O U R R U -=

相关主题
文本预览
相关文档 最新文档