当前位置:文档之家› 第六章-力学量与本征态2

第六章-力学量与本征态2

第六章-力学量与本征态2
第六章-力学量与本征态2

§6 - 3 厄米算符的对

易关系

一 算符的一般运算规则和对易式

1 、 算符之和与积 1 ) 单位算符I

对于任意的波函数,有 ψψ=I .

(6. 42)

2 ) 算符A

?和B ?相等 如果对于任意的波函数ψ,都有

ψψB A

??=, 则有 B A ??=.

(6. 43)

3 ) 算符A

?与B ?之和B A ??+

对于任意的波函数ψ,有

ψψψB A B A ??)??(+=+.

(6. 44)

显然:

A B B A ????+=+,

(满足交换律)

C B A C B A

?)??()??(?++=++, (满足结合律)

可证:

● 两个线性算符之和仍为线性算符.

● 两个厄米算符之和仍为厄米算符。

4 ) 算符A

?与B ?之积B A ??

对于任意的波函数ψ,有

)?(?)??(ψψB A B A =. (6. 45)

问题:两个厄米算符之积是不是厄米算符?

研究两个算符作用是否与次序有关?

2、 对易式及其满足的恒等式 算符之积一般并不满足交换律,即

0????≠-A B B A

. ● 对易式的定义

A B B A B A

????]?,?[-≡. (6. 46)

若0]?,?[=B A

,则称算符A ?与B ?对易; 若]?,?[B A ≠ 0,则称算符A ?与B ?不对易。

● 两个厄米算符之积一般并不是厄米算符,除非这两个厄米算符可对易。具体

而言,若A A

??=+,B B ??=+,则有 A B A B B A ????)??(==+++,

(6. 47)

只有当0]?,?[=B A

或B A A B ????=时,才有 B A B A ??)??(=+,

这时两个厄米算符A

?与B ?的积B A ??才是厄米算符。

● 对易式满足下列恒等式:

]?,?[]?,?[]??,?[C A B A C B A

±=±, ]?,?[??]?,?[]??,?[C A B C B A C B A

+=, (6. 48)

]?,?[??]?,?[]?,??[C B A B C A C B A

+=.

3、 逆算符1?-A

若由 φψ=A ? 能够唯一地解出ψ,则有

φ1?-A ψ=. 若算符A

?的逆算符1?-A 存在,则有 I A A A A ==--????11.

可以证明,若A ?与B ?的逆算符均存在,则

111??)??(---=A B B A . (6. 49)

二 学的基量子力本对易式

1、动量算符的各个分量之间可对易

0]?,?[=y x p p ,

0]?,?[=z y p p

, 0]?,?[=x z p p

. 由坐标表象中的动量算符为

?-= i ?p

立即可证.

2、 量子力学的基本对易式(位置算符和动量

算符各分量之间的对易式,重要!)

αββαδ= i ],[p x ,

(6.50)

其中z y x ,,,=βα或1, 2, 3,这里用了克罗内克符号

1,0.

αβ

αβαβ=?δ=?≠?.

可见,动量算符的各个分量只与位置算符的不同分量对易

0]?,[=y p

x , 0]?,[=z p

x , 0]?,[=x p y , 0]?,[=z p y ,

0]?,[=x p

z , 0]?,[=y p z ; 动量算符的相同分量之间是不可对易的

i ]?,[]?,[]?,[===z y x p z p y p

x . 凡与经典力学量相对应的力学量之间的对易关系,均可由此导出。显然,克普朗常量 在力学量的对易关系中起着关键性的作用。 证明:

考虑坐标算符x 和动量算符的x 分量

x p

?. 对于任一波函数ψ,有 ψψx

x p

x x ??

-= i ?,

ψψψψx

x x x x p

x ??

--=??-= i i )(i ?. 将以上两式相减,得

ψψ i )??(=-x p

p

x x x . 由于ψ 是体系的任意波函数,所以有

i ??=-x p p

x x x . 其它等式与此类似证明。(典型证法,要掌握)

三 角动量算符各分量之间的对易式

1、角动量算符各分量之间

(6. 51)

2、角动量算符平方与各分量之间

),,(.0]?,?[2z y x L L

==αα.

(6. 52)

3、角动量算符各分量与空间坐标分量

之间

0],?[=x L

x ,

z y L

x i ],?[=,

y z L

x i ],?[-=, z x L

y i ],?[-=, 0],?[=y L y , x z L

y i ],?[=, (6. 53)

y x L z i ],?[=, x y L

z i ],?[-=,

0],?[=z L

z .

由以上各式可以归纳出以下规则:从左到右,以x z y x →→→依次循环指标为正,任一指标“错位”则为负,相同指标则为零。

4、角动量算符各分量与动量坐标分量

之间

有类似(6. 53)的关系。 5、若令

y x L L L ?i ??±=±,

(6. 54)

则有 ±±±=L L L z ?]?,?[ ,

(6. 55)

z L L L ?2]?,?[ =-+.

(6. 56)

[例题21. 2 ] 试证明对易式z y L

x i ],?[=.(要掌握)

[证明] 利用基本对易式(21. 66)和对易式恒等式(21. 64),可以得到

],??[],?[y p z p y y L y z x -=

],?[],?[y p z y p

y y z -= y y z z p y z y p z p y y y p

y ?],[],?[?],[],?[--+= ],?[y p

z y -= z i =.

[例题21. 3] 试证明角动量算符三分量之间的对易式(21. 67) (要掌握)。 [解] 利用基本对易式(21. 66)和对易式恒等式(21. 64),可以得到

x y y x y x L L L L L L

????]?,?[-=

)??()??()??()??(y z z x z x y z p z p y p x p z p x p z p z p

y -----= z y x y z z x z p x p z p z p z p x p y p z p

y ????????+--= y z z z y x z x p z p x p y p x p z p z p y p

z ????????-++- y z x z y z x z p x z p p y p z p x p z p y z p

????????--+= )??()??(x y z z p y p x z p p

z --=z L ?i = , 同理可得:

x y z z y z y L L L L L L L

?i ????]?,?[ =-= , y z x x z x z L L L L L L L

?i ????]?,?[ =-= . 以上三个关于分量的对易式,在形式上可以合写成一个矢量公式:

L L L i ??=?, (21.

76)

上式可以看成是角动量算符的定义式,是经典物理学中根本不可能存在的关系式。在经典物理学中,所有物理量都是可对易的,因

此对任何矢量A总有A A = 0. 然而,在量子力学中,角动量算符L?的各分量互不对易,满足式(21. 76),由此决定了角动量的一系列异乎寻常的性质。

§6-4 共同本征函数(量子力学中的核心问题)

一不同力学量同时有确定值的条件和共同本征函数

通常,对大量的、完全相同的、均处在用波函数 描述的状态体系的集合多次测量力学量A,然后对所得的结果求平均,则将会得一个平均值。每一次测量的结果将围绕平均值有一个涨落

τψψd )?(*)(222

?-=-=?A A A A A . (6. 57)

若令

22

,B B A A ?=??=?,

(6. 58)

对于任意两个力学量A 和B ,普遍的不确定关系为(省略证明)

],[21

B A B A ≥???.

(6. 59) 可见:

●如果[A ,B ]≠0,则一般来说?A 和?B 不可能同时为零,即A 与B 不可能同时具有确定值,或者说,它们不

可能具有共同本征态。

●如果[A ,B ]=0,则可以找到使?A =0和?B =0同时得到满足的态,即可以找到这两个算符的共同本征态。 ●可以证明,一组算符具有共同本征函数的充要条件是,这组算符中的任意两个算符都可以对易。

例、动量算符p

?的三个分量z y x p p p ?,?,?中的任意两个算符都可以对易,它们的共同本征函数是

)()()()(z y x z y x p p p ψψψψ=r p

/)(i 2

/3e

)

2(1z y x p z p y p x ++π=

/i 2

/3e

)

2(1r p ?π=

,

相应的本征值是p ( p x ,p y ,p z )。

二 角动量)?,?(2z L L

的共同本征函数 球谐函数

1、角动量z 分量z L

?的本征值方程以及正交归一化的本征函数

)()(??Φ?Φm m z m L =,

(6. 60)

)

,2,1,0(,e 21)(i ±±=π

=m m m ?

?Φ (6. 61)

其相应的本征值为

m L z ='. ),2,1,0( ±±=m

2、)?,?(2z L L 的共同本征函数

考察2?L

的本征值方程 ),(),(?22?θλ?θY Y L =,

(6. 62)

2?L

的本征值,λ是待定的无量纲参量

2?L

的本征函数 从2?L 和z L

?的表达式 θ

θθθθ2222sin ?)sin (sin ?z L L +????-= , ???-= i ?z L

可以看出,本征值方程(6. 62)可以用分离

变量法来求解。取其本征函数为

)()(),(?ΦθΘ?θm Y =. (6. 63)

将它代入本征值方程(6. 62),利用z L

?的本征值方程,可得关于函数)(θΘ的方程为

0)sin ()d d sin (d d sin 122

=-+Θθ

λΘθθθθm .

为了保证上述方程解的有限性,待定参量λ满足

)

,2,1,0(,

)1( =+=l l l λ

(6.64)

通过计算,可以得到)?,?(2z L L

的正交归一化共同本征函数为

?

θ?θm m l m m l m l m l l i e )cos (P !

)(!)(412)

1(),(Y +-π+-=,

(6. 65) 其中的)cos (P θm

为关联勒让德函数,),(Y ?θm l 为

球谐函数(见表6 - 1)

表6 - 1 球谐函数),(Y ?θm l

物理学史10.7 关于量子力学完备性的争论史

10.7关于量子力学完备性的争论 玻恩、海森伯、玻尔等人提出了量子力学的诠释以后,不久就遭到爱因斯坦和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、测不准原理和互补原理。双方展开了一场长达半个世纪的大论战,许多理论物理学家、实验物理学家和哲学家卷入了这场论战,这一论战至今还未结束。现在正在进行的关于隐参量的辩论就是他们论战的继续。 早在1927年10月召开的第五届索尔威会议上就爆发了公开论战。那次会议先由德布罗意介绍自己对波动力学的看法,提出了所谓的导波理论。在讨论中泡利对他的理论进行了激烈的批评,于是德布罗意声明放弃自己的观点。接着,玻恩和海森伯介绍矩阵力学波函数的诠释和测不准原理。最后他们说:“我们主张,量子力学是一种完备的理论,它的基本物理假说和数学假设是不能进一步被修改的。”玻尔也在会上发表了上节提到的演讲内容。这些话显然是说给爱因斯坦听的,但爱因斯坦一直保持沉默。只是在玻恩提到爱因斯坦的工作时,才起来作了即席发言,他用一个简单的理想实验来说明他的观点。 “设S是一个遮光屏,在它上面开一个不大的孔O(见图10-1),P是一个大半径的半球面形的照相胶片。假定电子沿着箭头所指示的方向落到遮光屏S 上。 这些电子的一部分穿过孔O,由于孔小,而电子具有速度,因此它们均匀地分布在(按:即衍射到)所有的方向从而作用在胶片上。” 这一事件的发生几率可由衍射的球面波在所考虑的点上的强度来量度。爱因斯坦说,可以有两种不同的观点来解释实验结果。按照第一种观点,德布罗意-薛定谔的ψ波不是代表一个电子,而是一团分布在空间中的电子云;量子论对于任何单个过程是什么也没有说的。它只给出关于一个相对说来无限多个基元过程的集合的知识。按照第二种观点,量子论可以完备地描述单个过程。落到遮光屏上的每个粒子,不是由位置和速度来表征而是用德布罗意-薛定谔波束来描述,这些描述概括了全部的事实和规律性。

量子力学中几种表象及其之间的关系

量子力学中几种表象及其之间的关系 摘要 体系的态可以用以坐标为变量的波函数ψ(x,t)来描写,力学量则以作用在这种波函数上的算符(量子力学中的算符代表对波函数的一种运算)来表示,这是量子力学中态和力学量的一种具体表述方式。态还可以用其他变量的函数作为波函数来描写体系的状态。 微观粒子体系的状态(量子态)和力学量的具体表示形式称为表象。 常用的表象有坐标表象、动量表象和能量表象。 而研究量子力学规律的各种表示形式以及这些不同形式之间的变换的理论,则称为表象理论。 关键词 态的表象 坐标表象 动量表象 Q 表象 算符表象 角动量表象 正文 体系的态既可用以x (表示全部坐标变量)为变量的波函数ψ(x,t)来描写,也可用以动量p 为变量的波函数c(p,t)来描写。ψ(x,t)和c(p,t)之间的变换关系是 式中 是动量的本征函数, dx x t x t p c dp x t p c t x p p )(),(),()(),(),(*ψ?=?=ψψψ /2 /1)2(1)(ipx p e x -=πψ

称ψ(x,t)是在坐标表象中的波函数,而c(p,t)是同一态在动量表象中的波函数。 由ψ(x,t)可知,粒子坐标在x 到x+dx 之间的概率 c 由(p,t )可知,粒子动量在p 到p+dp 之间的概率 如果ψ(x,t)所描写的状态是具有动量p ’的自由粒子的状态,即ψ(x,t)=ψp ’(x,t),则 在动量表象中,粒子具有确定动量p ’的波函数是以动量p 为变量的δ函数。 那么,态在任意力学量Q 的表象中的描写方式又是什么样呢? 设力学量Q 具有分立的本征值Q1,Q2,…Qn …,对应的本征函数为u1(x),u2(x),…,un(x),…,并组成正交归一的完全系。将态在坐标表象中的波函数ψ(x,t)按{un(x)}展开成 dx t x dx t x w 2 ),(),(ψ=dp t p c dp t p w 2 ),(),(=dx e x x dx x t x t p c t iEp p p p p /''')()()(),(),(-**?=ψ?=ψψψ /')'(t iEp e p p --=δ) ()(),(x u t a t x n n n ∑=ψ

量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e α ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ?? 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a =?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率16 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量: =??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ω ==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

力学量和算符

第三章力学量和算符 内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数。用波函数描述粒子的运动状态。本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。我们将证实算符的运动方程中含有对易子,出现。 §3.1 力学量算符的引入 §3.2 算符的运算规则 §3.3 厄米算符的本征值和本征函数 §3.4 连续谱本征函数 §3.5 量子力学中力学量的测量 §3.6 不确定关系 §3.7 守恒与对称 在量子力学中。微观粒子的运动状态用波函数描述。一旦给出了波函数,就确定了微观粒子的运动状态。在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。一般说来。当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。当给定描述这一运动状态的波函数后,力学量出现各种可能值的相应的概率就完全确定。利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。既然一切力学量的平均值原则上可由给出,而且这些平均值就是在所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。 力学量的平均值

对以波函数(,)r t ψ描述的状态,按照波函数的统计解释,2 (,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是: ()2 * (,)(,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞ ∞ -∞ -∞ = =?? 坐标r 的函数()f r 的平均值是: ()()() *(,)(,) 3.1.2f r r t f r r t dr ψψ∞ -∞ =? 现在讨论动量的平均值。显然,P 的平均值P 不能简单的写成 2(,)P r t Pdr ψ∞ -∞ = ?,因为2 (,)r t dr ψ只表示在 r r dr →+中的概率而不代表在 P P dP →+中找到粒子的概率。要计算P ,应该先找到在t 时刻,在P P dP →+中找 到粒子的概率2 (,)C P t dP ,这相当于对(,)r t ψ作傅里叶变化,而(,)C r t 有公式 给出。动量p 的平均值可表示为 但前述做法比较麻烦,下面我们将介绍一种直接从(,)r t ψ 计算动量平均值的方法。由(3.1.4)式得 利用公式 可以得到 记动量算符为 ?p i =-? 则 ()* ?(,)(,) 3.1.9p r t p r t dr ψ ψ∞ -∞ = ? 从而有 ()()()* ?(,)(,) 3.1.10f p r t f p r t dr ψψ∞ -∞ = ? 例如:动能的平均值是 角动量L 的平均值是

量子力学 第一章 态矢量

序章基本背景知识 1、量子力学得基本要素就是:「态」(状态)、「演化」、「可观测量」(力学量)、「观测行为」(简单解说:粒子在任一时刻都具有一个「状态」,粒子具有得某些可测量得性质(位置、动量、角动量、自旋,etc)称为「可观测量」,而测量粒子得这些性质得过程就就是「观测行为」,俗称“做实验”) 2、初等量子力学得任务就是: (1)预测「对一个系统(“态”)进行实验(“观测”)得到得实验结果(观测结果)」 (2)寻找“态”随时间得「演化」规律 3、从旧量子论到现代量子力学: (1)普朗克能量量子化假设(1900年) (2)爱因斯坦光量子假说(1905年) (3)光得波粒二象性(1909年) (4)玻尔模型(1913年) (5)斯特恩-盖拉赫实验(1922年) (6)德布罗意假设:物质波假说,粒子动量(1924年) (7)乌伦贝克-古兹米特自旋假说;泡利不相容原理;海森堡-矩阵力学(1925年) (8)薛定谔-波动力学(1926年) 波函数统计诠释:就是概率密度函数,(1926年) (9)海森堡不确定性原理;玻尔得互补原理:观测影响状态(1927年) (10)态叠加原理;《量子力学原理》(狄拉克,1930年) 4、量子力学与经典力学得比较: 量子力学经典力学 研究对象在t时刻得位置 无法确定 只能确定在得出现概率 可以确定 t时刻得动量与速度 无法确定,速度无意义 只能确定具有得概率 且不可同时确定位置与动量 位置、动量与速度 同时确定 研究对象得状态得描述波函数(复函数) 或态矢量(复矢量) (实矢量函数) 状态得 演化方程 薛定谔方程(复系数方程) 牛顿第二定律(实系数方程)

《量子力学》考试知识点(精心整理)

《量子力学》考试知识点 第一章:绪论―经典物理学的困难 考核知识点: (一)、经典物理学困难的实例 (二)、微观粒子波-粒二象性 考核要求: (一)、经典物理困难的实例 1.识记:紫外灾难、能量子、光电效应、康普顿效应。 2.领会:微观粒子的波-粒二象性、德布罗意波。 第二章:波函数和薛定谔方程 考核知识点: (一)、波函数及波函数的统计解释 (二)、含时薛定谔方程 (三)、不含时薛定谔方程 考核要求: (一)、波函数及波函数的统计解释 1.识记:波函数、波函数的自然条件、自由粒子平面波 2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程 1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理 2.简明应用:量子力学的初值问题 (三)、不含时薛定谔方程 1. 领会:定态、定态性质 2. 简明应用:定态薛定谔方程 第三章:一维定态问题

一、考核知识点: (一)、一维定态的一般性质 (二)、实例 二、考核要求: 1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振 2.简明应用:定态薛定谔方程的求解、 第四章量子力学中的力学量 一、考核知识点: (一)、表示力学量算符的性质 (二)、厄密算符的本征值和本征函数 (三)、连续谱本征函数“归一化” (四)、算符的共同本征函数 (五)、力学量的平均值随时间的变化 二、考核要求: (一)、表示力学量算符的性质 1.识记:算符、力学量算符、对易关系 2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系 (二)、厄密算符的本征值和本征函数 1.识记:本征方程、本征值、本征函数、正交归一完备性 2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。 (三)、连续谱本征函数“归一化” 1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

(完整word版)量子力学所有简答题答案(2)

简答题 1 ?什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。这类光致电变的现象被人们统称为光电效应。或光照射到金属上,引起物质的电性质发生变 化。这类光变致电的现象被人们统称为光电效应。 光电效应规律如下: 1.每一种金属在产生光电效应时都存在一极限频率(或称截止频率),即照射光的频率不能低于某一临界值。当入射光的频率低于极限频率时,无论多强的光都无法使电子逸出。 2.光电效应中产生的光电子的速度与光的频率有关,而与光强无关。 3.光电效应的瞬时性。实验发现,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的。 4?入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积是逸出的光电 子数目。 爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正 比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。逸出电子的动能、光子能量和逸出功之间的关系可以表示成: 1 2 h A -mv2这就是爱因斯坦光电效应方程。其中,h是普朗克常数;f是入射光子的 2 频率。 2. 写出德布罗意假设和德布罗意公式。 德布罗意假设:实物粒子具有波粒二象性。 h 德布罗意公式:E h P k 3. 简述波函数的统计解释,为什么说波函数可以完全描述微观体系的状态。几率波满足的条件。 波函数在空间中某一点的强度和在该点找到粒子的几率成正比。因为它能根 据现在的状态预知未来的状态。波函数满足归一化条件。 4. 以微观粒子的双缝干涉实验为例,说明态的叠加原理。 答:设1和2是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说

量子力学基础概念试题库完整

一、概念题:(共20分,每小题4分) 1、何为束缚态? 2、当体系处于归一化波函数ψ(,)?r t 所描述的状态时,简述在ψ(,)? r t 状态中测量力学量F 的可能 值及其几率的方法。 3、设粒子在位置表象中处于态),(t r ? ψ,采用 Dirac 符号时,若将ψ(,)? r t 改写为ψ(,)? r t 有何不 妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 4、简述定态微扰理论。 5、Stern —Gerlach 实验证实了什么? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1. 束缚态: 无限远处为零的波函数所描述的状态。能量小于势垒高度,粒子被约束在有限的空间内运动。 2. 首先求解力学量F 对应算符的本征方程:λλλφφφλφ==F F n n n ??,然后将()t r ,? ?按F 的本征态展开: ()?∑+=λφφ?λλd c c t r n n n ,? ,则F 的可能值为λλλλ,,,,n 21???,n F λ=的几率为2 n c ,F 在λλλd +~范围内 的几率为λλd c 2 3. Dirac 符号是不涉及任何表象的抽象符号。位置表象中的波函数应表示为?r ? 。 4. 求解定态薛定谔方程ψψE H =∧ 时,若可以把不显含时间的∧ H 分为大、小两部分∧ ∧ ∧ '+=H H H ) (0,其中(1) ∧) (H 0的本征值)(n E 0和本征函数)(n 0ψ 是可以精确求解的,或已有确定的结果)(n )(n )(n ) (E H 0000ψ ψ =∧,(2)∧ 'H 很 小,称为加在∧) (H 0上的微扰,则可以利用) (n 0ψ和) (n E 0构造出ψ和E 。 5. Gerlack Stein -实验证明了电子自旋的存在。 一、概念题:(共20分,每小题4分) 1、一个物理体系存在束缚态的条件是什么? 2、两个对易的力学量是否一定同时确定?为什么? 3、测不准关系是否与表象有关? 4、在简并定态微扰论中,如?()H 0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 5、在自旋态χ12 ()s z 中,?S x 和?S y 的测不准关系(?)(?)??S S x y 22?是多少? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1、条件:①能量比无穷远处的势小;②能级满足的方程至少有一个解。 2、不一定,只有在它们共同的本征态下才能同时确定。 3、无关。 4、因为作为零级近似的波函数必须保证()()()()()()()()011 1 00E H E H n n n n ??φφ--=-有解。 5、16 4 η。

量子力学 第一章 态矢量

序章基本背景知识 1.量子力学的基本要素是:「态」(状态)、「演化」、「可观测量」(力学量)、「观测行为」 (简单解说:粒子在任一时刻都具有一个「状态」,粒子具有的某些可测量的性质(位置、动量、角动量、自旋,etc )称为「可观测量」,而测量粒子的这些性质的过程就是「观测行为」,俗称“做实验”) 2.初等量子力学的任务是: (1)预测「对一个系统(“态”)进行实验(“观测”)得到的实验结果(观测结果)」 (2)寻找“态”随时间的「演化」规律 3.从旧量子论到现代量子力学: (1)普朗克能量量子化假设(1900年)(2)爱因斯坦光量子假说(1905年) (3)光的波粒二象性(1909年)(4)玻尔模型(1913年) (5)斯特恩-盖拉赫实验(1922年) (6)德布罗意假设:物质波假说,粒子动量k p =(1924年) (7)乌伦贝克-古兹米特自旋假说;泡利不相容原理;海森堡-矩阵力学(1925年) (8)薛定谔-波动力学(1926年) 波函数统计诠释:2 ψ是概率密度函数, 12 =ψ? ∞ ∞ -dx (1926年) (9)海森堡不确定性原理;玻尔的互补原理:观测影响状态(1927年) (10)态叠加原理;《量子力学原理》(狄拉克,1930年)

4.量子力学与经典力学的比较: *量子力学的测量:在量子领域,在实验中通常事先准备好大量具有相同状态ψ的粒子(这称为「系综」(esemble)),同时测量它们的「物理量」Q,然后考察统计平均值Q。这是由于测量行为会直接改变粒子的状态(所谓的“坍缩”),导致重复实验的结果平均值失去意义(一旦某粒子坍缩到了状态A,之后的一切实验结果也都只会是A) 关于力学量测量结果的详细讨论,见第三章 *不确定性原理:位置和动量无法同时确定,严格来说是指其之一的测量标准差可以任意地大以至于无法确定真实结果,这是不确定性原理的结果,详见第二章第7节

量子力学讲义第4章

第四章 量子力学的表述形式 (本章对初学者来讲是难点) 表象:量子力学中态和力学量的具体表示形式。 为了便于理解本章内容,我们先进行一下类比: 矢量(欧几里德空间) 量子力学的态(希尔伯特空间) 基矢),,(321e e e ~三维 本征函数,...),...,,(21n ψψψ~无限维 任意矢展开∑=i i i e A A 任意态展开 ∑=n n n a ψψ ),,(z y x e e e ),...)(),...,(),((21x x x n ψψψ 取不同坐标系 ),,(?θe e e r 取不同表象 ),...)(),...,(),((21p C p C p C n ………. ………. 不同坐标之间可以进行变换 不同表象之间可以进行变换 由此可见,可以类似于矢量A ,将量子力学“几何化”→在矢量空间中建立它的一般形式。 为此,我们将 ① 引进量子力学的矢量空间~希尔伯特空间; ② 给出态和力学量算符在该空间的表示; ③ 建立各种不同表示之间的变换关系。 最后介绍一个典型应用(谐振子的粒子数表象)和量子力学的三种绘景。 4.1希尔伯特空间 狄拉克符号 狄拉克符号“ ”~类比: ),,(z y x A A A 欧氏空间的矢量 A →坐标系中的分量 ),,(?θA A A r ………. )(r ψ →表象下的表示 )(p C ……….

引入狄拉克符号的优点:①运算简洁;②勿需采用具体表象讨论。 一、 希尔伯特空间的矢量 定义:希尔伯特空间是定义在复数域上的、完备的、线性内积空间,并且一般 是无限维的。 1、线性:①c b a =+;②a b λ=。 2、完备性:∑=n n n a a 。 3、内积空间: 引入与右矢空间相互共轭的左矢空间 ∑ ==? +n n n a a a a * ; )(:。 定义内积:==* a b b a 复数,0≥a a 。 1=a a ~归一化;b a b a ,~0=正交; m n n m δ=~正交归一;)(x x x x '-='δ~连续谱的正交归一。 二、 量子体系的态用希尔伯特空间的矢量表示 (此属“符号问题”,仅作简要介绍,主要由学生自己通过练习来熟悉符号) 1、态矢符合线性空间的要求:?λψψψψ=+=21。 2、任意态矢可用一组完备的基矢展开: nm m n n n n f f f a δψ==∑, 。 ∑∑ =→====n n n n m mn n n m n m n f a a a f f a f a ψδψ? 。 3、态可以求内积: ??==dx x x dx x x )(,)(??ψψ ~ 以}{x 为基, 其中 ??ψψx x x x ==)()(。 取ψ的左矢:?=dx x x )(*ψψ,有内积 ????='''='''=dx x x dx x d x x x x x d x x dx x x )()()()()()(***?ψ?ψ?ψ?ψ 上式已利用了连续谱的正交归一性)(x x x x '-='δ。 三、 希尔伯特空间的算符 算符 ψ?F F =: 1、算符对左矢的作用: F b 存在,其意义(定义)为 )()(a F b a F a F ==。

量子力学-束缚态和散射态概念比较

) ()(x x V γδ-=束缚态和散射态 量子力学的主要研究对象有两类:束缚态 散射态 束缚态:在势阱中E γ 见右图。 在0≠x 处,0)(=x V 。 0>∴E 为游离态(自由态),E 可取任何连续值。 0

)0(2)0(')0('2 ψγ ψψ m - =--+ 与δ势垒跃变条件比较:)0(2)0(')0('2ψγ ψψ m =--+ 在0≠x 区域,Schrodinger 方程可以写成为 0)(''2=-ψβψx 其中02>-= mE β,)0(=-0 )(x ce x ce x x x ββψ 或写成||)(x ce x βψ-= c 为归一化因子。现在根据跃变条件求解。 按'ψ的跃变条件, c m c c ?-=--2/2 γββ 2/ γβm =∴ 因此可得出粒子能量的本征值 22 22022 γβm m E E -=-== 由归一化条件?∞ ∞ -==1/||d ||22βψc x , 可得出L m c /1/2=== γβ,

力学量算符之间的对易关系 - 屏幕长和宽

力学量算符之间的对易关系 讨论微观态ψ中某一力学量F 时,总是以∧ F 的本征质谱作为力学量F 的可能值。若我们同时观测状态ψ中的一组不同力学量 ,, G F ,将会得到什么结果呢?这一讲我们主要讨论这个问题。主要内容有: 一个关系:力学量算符之间的对易关系 三个定理?? ? ??力学量守恒定理不确定关系逆定理)共同本征态定理(包括 1 算符之间的对易关系 1.1 算符的基本运算关系 (1)算符之和:算符∧ F 与∧ G 之和∧ ∧+G F 定义为 ψψψ∧ ∧∧∧+=+G F G F )( (1) ψ为任意函数。一般∧ ∧ ∧ ∧ +=+F G G F ,例如粒子的哈密顿算符)()(22 r U T r U p H +=+=∧∧∧ μ 是 动能算符∧ T 与势能算符)(r U 之和。 (2)算符之积:算符∧ F 与∧ G 之积定义为 )()(ψψ∧ ∧∧∧=G F G F (2) 显然,算符之积对函数的作用有先后作用次序问题,一般不能颠倒,即∧ ∧∧ ∧≠F G G F 常记为 ∧ ∧ ∧ ∧≠-0F G G F (3) n 个相同算符∧F 的积定义为算符∧ F 的n 次幂 例如 dx d F =∧ ,则 222dx d F =∧,n n n dx d F =∧ 。 为了运算上的方便,引入量子括号 ∧ ∧∧∧∧∧-=??????F G G F G F , (5) 若 0,≠?? ? ???∧∧G F (6) 称算符∧F 与∧G 是不对易的(不能交换位臵),即∧ ∧∧∧≠F G G F 。

若 0,=?? ? ???∧∧G F (7) 称算符∧F 与∧G 是对易的,即∧ ∧∧∧=F G G F 。 下面几个经常使用的对易关系,请自行证明。 ?????????+=+=+=+-=∧∧∧∧∧∧∧ ∧∧∧ ∧∧∧∧∧∧ ∧∧∧∧∧∧∧∧∧∧∧∧ ∧) 11(],[],[],[)10(],[],[],[)9(] ,[],[],[)8(],[],[G M F M G F M G F M G F M F G M G F M F G F M G F F G G F 1.2 坐标算符与动量算符的对易关系 坐标算符是乘数因子,相互对易 []0],[0],[0 ,===x z z y y x (12) 动量算符是微分算符,因为 x y y x ???= ???2 2 ,则 0,0,0 ,=?? ? ???=?? ? ???=?? ? ???∧∧∧∧∧∧x z z y y x p p p p p p (13) 坐标算符与动量算符:设ψ为任意函数 ?? ??? ?? --=??-=??-=∧∧ψ ψψψψψx x i i x x i x p x x i p x x x )( 比较后可得 ψψψ i x p p x x x =-∧ ∧,即 i p x x =??? ???∧, (14a ) 但是 0,0 ,=?? ? ???=?? ? ???∧∧z y p x p x (14b ) 同理可得坐标算符与动量算符的其它对易关系式,可概括为 ij j i i p x δ =?? ? ???∧ , (14c) 其中 ),,()3,2,1(z y x i x i ≡== ),,()3,2,1(∧ ∧∧∧≡=z y x j p p p j p ※坐标算符与动量算符的对易关系是最基本的对易关系,其它力学量的对易关系均可由 此导出。 1.3 角动量算符的对易关系

量子力学的表象与表示

第五章 量子力学的表象与表示 §5.1 幺正变换和反幺正变换 1, 幺正算符定义 对任意两个波函数)(r ?、)(r ψ,定义内积 r d r r )()(),(ψ?ψ?*?= (5.1) 按第一章中所说,(5.1)式的含义是:当微观粒子处在状态()r ψ时,找 到粒子处在状态()r ?的概率幅。 依据内积概念,可以定义幺正算符如下: “对任意两个波函数?、ψ,如果算符 U 恒使下式成立 ),()?,?(ψ?ψ?=U U (5.2) 而且有逆算符1?-U 存在,使得I U U U U ==--11????1,称这个算符U ?为幺正算符。” 任一算符A ?的厄米算符+A ?定义为:+A ?在任意?、ψ中的矩阵元恒由下式右方决定 ??(,)(,)A A ?ψ?ψ+= (5.3) 由此,幺正算符U ?有另一个等价的定义: “算符U ?为幺正算符的充要条件是 I U U U U ==++???? (5.4a) 或者说 1??-+=U U 。” (5.4b) 证明:若),()?,?(ψ?ψ?=U U 成立,则按+U ?定义, ),??()?,?(),(ψ?ψ?ψ?U U U U +== 由于?、ψ任意,所以 I U U =+?? 又因为U ?有唯一的逆算符1?-U 存在,对上式右乘以1?U -,即得 1??U U +-= 这就从第一种定义导出了第二种定义。类似,也能从第二种定义导出第一种定义。从而,幺正算符的这两种定义是等价的。 2, 幺正算符的性质 幺正算符有如下几条性质: i, 幺正算符的逆算符是幺正算符 证明:设 1-+=U U , 则()()(),1 11--+++-===U U U U 所以1-U 也是幺正 1 这里强调了 U -1 既是对 U 右乘的逆又是对 U 左乘的逆。和有限维空间情况不同,无限维空间情况下,任一算符 U 有逆算符的三种情况:1)有一个左逆算符和无穷多个右逆算符;2)有一个右逆算符和无穷多个左逆算符;3)有一个左逆算符和一个右逆算符,并且它俩相等,唯有此时可简单地写为 U -1 。

物理现实的量子力学描述能否认为是完备的

物理现实的量子力学描述能否认为是完备的? [著]爱因斯坦、波多尔斯基和罗森 [译] 07046007 杜雪 在一个完备的理论中,每一个物理实体的要素都要有与之相对应的要素。一个物理参量客观存在的充分条件是——在不会干扰系统的情况下,能够准确预计其值。量子力学中,在由不可对易的算符所描述的两个物理要素的情况下,知道其中一个物理量的准确知识将排除对另外一个的准确知识。 那么就会有这两种可能: (1)由量子力学中的波函数所描述的实体是不完备的; (2)这两个物理实体要素不能够同时客观存在。 在预测一个系统时,我们是基于另一个先前与其相互作用的系统得出的测量法则。出于对这个问题的考虑会导致这样的结果:如果第(1)种可能是错误的,那么第(2)种可能也是错误的!这样我们就可以推断出量子力学中波函数对物理实体要素的描述是不完备的。 1 任何一个严谨的物理理论必须要区别客观实体与这个理论运作所依据的物理概念。客观实体应该独立于任何理论存在。这些概念联系着客观实体,而且通过这些概念我们为自己描绘出了这个客观实体。 判断一个物理体系的成功与否,我们会问自己这样两个问题: (1)“这个理论是正确的吗?” (2)“理论的描述是完备的吗?” 只有在这两个问题都给出肯定的回答的情况下,这个理论的概念才能被看作是令人满意的。这个理论体系的正确性是通过此体系的结论与人类自身的经验的一致程度来判别的。这种经验在物理学中体现为实验和计算。我们只有通过实验才能对客观实体做出推断。在此我们来探讨第(2)个问题——“量子理论的描述是完备的吗?”用量子力学的原理来阐述。 无论富于“完备性”这个术语何种解释,紧接着对一个完备系统必须有一个必要条件:“每一个物理实体的要素必须在其物理理论中有一对应物!”我们把这个必要条件称作完备性的条件。只要我们能够确定什么是物理实体的要素,那么第二个问题就容易回答了。 物理实体的要素不能够通过由原因推出结果的哲学理念来决定,而必须由实验和计算的结果来发现。然而对实体的完整的定义对于我们的目的来说不是必要条件。我们会对接下来这个我们认为是合理的标准感到满意:“如果在不对系统造成任何干扰的情况下,我们可以准确地预测(即,以等于1的概率)一个物理参量的值,那么就存在一个物理实体的要素对应于这个物理参量。”看起来,这个标准决不是让我们穷尽所有可能的方法去认知一个物理实体。至少它给我们提供了这样一个方法——条件在事物发生的一刻确定了。只要这个标准不是被看

量子力学

工科基对杨理学(下) 14.3 量子力学基础 描述微观粒子运动规律的系统理论时量子力学,它是薛定谔、海森伯等人在1925-192年期间初步建立,波尔等人不断完善起来的。量子力学的主要任务是研究微观粒子的状态随时间变化的规律,建立微观粒子遵从的动力学方程。 14.3.1微观粒子状态的描述 19世纪,通过光的干涉、衍射等实验,人们已认识到光是一种波动——电磁波,并建立了光的电磁理论——麦克斯韦理论。进入20世纪,从爱因斯坦起,人们又认识到光是粒子流——光子流。综合起来,关于光的本性的全面认识就是:光既具有波动性,又具有粒子性,相辅相成。在有些情况下,光突出地显示其波动性,而在另一些情况下,则突出地显示其粒子性。光的这种两重性被称为波粒二象性。为了找到一种既能反应波动性,又能反应粒子性的描述方法,物理学家们作了大量工作并取得一定成果,1925年,海森伯放弃了经典轨道模型,用矩阵描述微观粒子状态,建立矩阵力学;1926年薛定谔提出用波函数描述微观粒子状态,建立波动力学;1948年,费曼建立了通过路径积分来描述的量子力学。而这里我 们主要介绍薛定谔的波动力学。 薛定谔将德布罗意的关系同某种波函数(),r t ψ 组合起来,提出了描述微观粒子运动状态的物理量——波函数: 0cos2() E x t h h p π ψ=ψ-(14.1) 式(14.1)既有反应的波函数的形式,又有反应粒子性特征的能量E和动量p,它不再是经典意义下的波函数,而是量子力学中描述自由粒子状态的波函数。 14.3.2波函数的统计解释 波函数与它所描写的粒子之间的关系曾经有过不同的看法。有人提出波是由它所描写的粒子组成的,即是由大量粒子分布于空间而形成的疏密波,如果是这样,那么粒子的衍射图样就是由粒子之间的相互作用而产生的。而实验发现,衍射图样和入射粒子流强无关,即使把粒子流强减小到使得粒子一个一个地通过,只要经过足够长的时间,所得到的衍射图样也还是一样的。这说明波函数不是由它所描写的粒子组成的,粒子的波动性并不依存于大量粒子的聚集,单个电子就具有波动性;还有人把波理解为它所描写的粒子的某种实际结构,即把粒子看成在三维空间连续分布的物质波包,波包的群速度即是粒子的速度。但理论分析发现,这样的波包即使原来很窄,在经历一段时间后必然要扩散,这与实验是矛盾的。

量子力学中状态叠加原理的表述

量子力学中状态叠加原理的表述 发表时间:2017-03-15T15:26:33.883Z 来源:《科技中国》2016年12期作者:宋书玮 [导读] 状态叠加原理属于量子力学中的重要知识点,其中包括两种表述,第一种表述是物理叠加型的状态叠加原理。成都七中万达学校 610037 摘要:状态叠加原理属于量子力学中的重要知识点,其中包括两种表述,第一种表述是物理叠加型的状态叠加原理,第二种表述则是数学叠加型的表述,本文主要针对量子力学中的状态叠加原理的表述进行重点分析。 关键词:量子力学;状态叠加原理;分析 关于量子力学中的叠加状态原理,总的来说有两种表述:以布洛欣采夫为代表的第一种表述和以狄拉克和郎道为代表的第二种表述。第一种表述是物理叠加型的状态叠加原理,而在一些教材中并没有把这种类型的叠加原理作为一条独立的基本原理。第二种表述则是数学叠加型的表述,在许多的教材中,一般将这种表述归于算符的基本原理。这两种状态叠加原理的表述完全不一样,本文将对这两种表述方式进行分析探讨。 1.第一种表述 第一种表述:“如果任何一个系统(粒子或粒子的集合)既能处在由波函数ψ1所表示的态中,又能处在另一个态ψ2中,则它必定也能处在由如下波函数ψ所表示的态中:ψ=c1ψ1+c2ψ2,式中c1和c2一般是任意的复数。” ψ1和ψ2都是粒子能处在其中的状态,才是真实的状态,假如两者是胡乱编的数字,粒子是不会处在其中的,这样的表述也就不是原理。 这个表述也是有错误的,它的意思是随意两个真实的态都可以叠加,然而这是不严谨的,任何一个原理都有其限制条件或者说其环境范围,所以这个表述之前要加上在相同的环境之内。不仅如此,即使加上了这个限制条件,这个表述也是不对的,例如两个定态加在一起不满足定态薛定谔函数也是不会叠加成一个定态的。 由此可见,虽然这个表述的立意是好的,但是错误太多,不能成为一个真正的状态叠加原理的表述。 物理叠加型的状态叠加原理的作用,是向我们展示了粒子的波粒二象性的主要特征,这才是它的重要意义。其代表了粒子之间的波函数可以相互叠加,是可以发生干涉现象的,这是量子力学的核心。作为一个基本原理,突出其物理性质比突出它的数学性质更好一些。 2.第二种表述 这个表述就是数学性质的表述了,没有考虑物理方面,也不考虑其结果是否能够实现。 狄拉克的表述和朗道的表述是一样的,朗道和栗弗席茨的书对状态叠加原理的表述是:“设在波函数为ψ1(q)的态中进行某种测量,可以获得可靠的肯定结果(称为结果1),而在ψ2(q)的态中进行这种测量也可以获得可靠的肯定结果,那么可以假定,在ψ1和ψ2的任一线性组合所给出的态中,即在任一具有c1ψ1+c2ψ2函数形式(其中c1和c2为常数)的态中,进行该种测量所得结果或者是1,或者是2.此外,还可进一步假定只要以上两个态的时间依赖关系是已知的,也就是一个由函数ψ1(q,t)给出,另一个由函数ψ2(q,t)给出,那么,它们的任一线性组合也给出了这个组合态的可能的时间依赖关系.以上这些假定,构成了量子力学的一个首要原理,称为状态叠加原理.” 这讲的是一个物理状态的数学分解。并且狄拉克明确的说明,这是数学的叠加。这跟上面的第一种表述内容完全不同。这是一个新的量子力学的基本原理。所以不能用经典物理体系的概念来解释和判断。 3.分析与结论 叠加原理表明,线性方程式的任意几个解所组成的线性组合,也是这方程式的解。由于薛定谔方程式是线性方程式,所以叠加原理也适用于量子力学,这在量子力学里称为态叠加原理。假设某量子系统的量子态可以是 { f{1} } 或 { f{2} } ,这些量子态都满足描述这量子系统物理行为的薛定谔方程式。则这量子系的量子态也可以是它们的线性组合 {f=c{1}|f{1} +c{2}|f{2} } ,也满足同样的薛定谔方程式;其中,{ c{1}} 、 { c{2}} 是复值系数,为了归一化 { |f } ,必须让 { |c{1}|^{2}+|c{2}|^{2}=1}。 从以上可以看出,很多的学者关于状态叠加原理的认识有许多的不同。量子力学是用一些基本假设建立起来的理论体系,其错误与否是由推测结果和观察到的结果是否一致来判断的。但是这些基本假设是怎么来的,它的基础是什么,这些问题还不清楚。关于态叠加原理方面的很多差异,都依赖于量子力学基本问题的答案,现如今在教材上还没有一个明确的答案,但是随着科学的进步,我相信今天遇到的难题,必将得到完善的解决,所以我认为在这个阶段,对于这些问题的分歧和争议不妨更保守一些。 4.结语 以上是对于量子力学中的状态叠加原理的一些理解,如今的量子力学理论已经非常成熟,但是还是很明显带着经典物理体系的影子。如果有一天不再使用经典物理的概念来解释量子力学,相信当时关于状态叠加原理的差异将不再存在。 参考文献: [1] 朱光平,刘忠良,刘亲壮. 量子力学态叠加原理及教学的几点看法[J]. 吉林师范大学学报(自然科学版). 2010(03) [2] 陈念陔,杨蕾. 关于量子态叠加原理表述方式的讨论与建议[J]. 黑龙江大学自然科学学报. 2008(06) [3] 黄亦斌. 为什么量子力学中力学量要用厄米算符表示[J]. 大学物理. 2008(04) [4] 陈念陔,杨蕾. 量子态叠加原理有关问题的实质分析[J]. 黑龙江大学自然科学学报. 2008(04)

相关主题
文本预览
相关文档 最新文档