当前位置:文档之家› 煤炭气化工艺--气化炉试题答案

煤炭气化工艺--气化炉试题答案

煤炭气化工艺--气化炉试题答案
煤炭气化工艺--气化炉试题答案

一、填空题

1、气化炉

2、移动床(又叫固定床)、沸腾床(叫流化床)、气流床和熔融床

3、空气煤气

4、混合煤气

5、常压气化炉、加压气化炉、固态排渣气化炉、液态排渣气化炉。

6、加煤系统、气化反应部分、排灰系统。

7、水套、内璧衬里

8、物理和化学变化、煤气、灰渣

9、空气、氧气、水蒸气(称为气化剂)和气化时形成的煤气、燃料和燃料气化后形成的固体如灰渣等

10、固定床

11、气流床

12、非均相反应、均相反应

13、气化剂向燃料颗粒表面的外扩散过程、气化剂被燃料颗粒的表面吸附、气化剂、与碳的表面化学反应、产物分子的脱附、产物分子从颗粒表面扩散到气流主体

14、煤的干燥、干馏、热解、主要的化学反应

15、水蒸气、被煤吸附的少量的一氧化碳和二氧化碳等。

16、小分子(气体)、中等分子(焦油)、大分子(半焦)。

17、燃烧反应、还原反应

18、移动床上部的加煤装置、气化剂、逆流流动

19、空层、干燥层、干馏层、还原层、氧化层、灰渣层,

20、流态化

21、并流

22、空气煤气、混合煤气、水煤气、半水煤气

23、炉上部有加煤机构、中部为炉身、下部有除灰机构和气化剂的入炉装置。

24、炉算、灰盘、排灰刀和风箱等

25、加煤机构和破黏装置。

26、U·G·I型水煤气发生炉。

27、焦炭或无烟煤,炉顶、炉底、灰渣

28、用冷却水对煤气进行有效的洗涤,使煤气得到最终冷却、除尘和干燥。

29、煤气发生炉内氧化层的温度、1000~1200℃、950~1050℃、1150℃

30、氧化层和还原层

31、液态排渣和气态排渣

32、炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等

33、水蒸气,灰熔点,熔融状态。1100~1500℃,大,大,无残碳。

34、煤的气化,粗煤气的净化,煤气组成的调整处理。

35、煤的气化、煤气的净化部分,燃气与蒸汽联合循环发电部分,气化炉、空分装置、煤气净化设备(包括硫的回收装置) ,燃气轮机发电系统,蒸汽轮机发电系统、废热回收锅炉等。

36、分子数减小、分子数增大或不变

37、气化的原料粒度小.相应的传热面积大,传热效率高,气化效率和气化强度明显提高。

38、煤的预处理、气化、气化产物显热的利用、煤气的除尘和冷却等

39、气流床

40、水煤浆进料、淬冷型、和全热回收型

41、煤浆的制备和输送、气化和废热回收、煤气的冷却和净化等。

42、水煤浆的浓度、粉煤粒度、氧煤比和气化炉操作压力等。

43、煤在熔融的渣、金属或盐浴中直接接触蒸汽、空气(或氧气)而气化的方法。

二、名词解释

1、所谓气化强度,即单位时间、单位气化炉截面积上处理的原料煤质量或产生的煤气量。

2、气化炉单台生产能力是指单位时间内,一台炉子能生产的煤气量。它主要与炉子的直

径大小、气化强度和原料煤的产气率有关

3、所谓的气化效率是指所制得的煤气热值和所使用的燃料热值之吃.用公式表示为:

式中——气化效率,%;

Q`——lkg煤所制得煤气的热值,kJ/ kg;

Q——1kg煤所提供的热值.kJ/ kg;

4、煤气产率是指每千克燃料(煤或焦炭)在气化后转化为煤气的体积,它也是重要的技术经薪指标之一.

5、煤气单耗,定义为每生产单位体积的煤气需要消耗的燃料质量,以kg/m3计。

6、水蒸气的消耗量是指气化1kg煤所消耗蒸汽的量.水蒸气消耗量的差异主要由于原料煤的理化性质不同而引起的。

7、气化温度一般指煤气发生炉内氧化层的温度。

所谓的气化强度是指单位时间、单位炉截面积上所气化的燃料量。

8、料层高度:气化炉内,灰渣层、氧化层、还原层、干馏层和干燥层的总高度即为料层高度。

9、气化炉出来的煤气称粗煤气,净化后的煤气称为净煤气。

10、汽氧比是指气化剂中水蒸气和氧气的组成比例。

三、简答题

1、提高控制步骤的速度对于整个宏观速度有什么重要意义?

答:气固相非均相反应,其反应过程有五个过程组成:

即①气化剂向燃料颗粒表面的外扩散过程;

②气化剂被燃料颗粒的表面吸附;

③吸附的气化剂和燃料颗粒表面上的碳进行表面化学反应;

④生成的产物分子从颗粒表面脱附下来;

⑤产物分子从颗粒的表面通过气膜扩散到气流主体。

这些过程对煤炭气化过程的速度往往有不同的影响,由这些过程共同决定的气化速度通常称为宏观反应速度,而忽略其他过程的影响,只考虑第三步其表面化学反应的速度叫做本征动力学速度。在这五个过程中,若其中某一步进行的最慢,而其他步骤向对该步来讲速度很大,因而宏观反应速度就由这一步来决定,该步骤就称为控制步骤。它是确定和调整工艺条件的重要依据。

2、压力和温度影响可逆反应的基本规律是什么?

答:如果反应是吸热的(如上述碳与水蒸气的反应), kp随T的升高而增大;反之,对于放热反应,kp随T的增大而减小。这也就是说,对于吸热反应,提高温度有利于化学反应向生成产物的方向进行;对于放热反应,则降低温度有利于向生成产物的方向进行。

就压力对气化过程的平衡髟响而言,基本的规律是:对反应后体积增加(即分子数增

加)的反应,随着压力的增加,产物的平衡含量是减少的;反之,对于体积减少的反应加压有利于产物的生成。

3、影响煤热解的主要因素有哪些?

答:在绝热情况下将煤加热进行物理化学变化的过程为煤热解过程,煤的热解结果生成三类分子:小分子(气体)、中等分子(焦油)、大分子(半焦)。

就单纯热解作用的气态而言.煤气热值随煤中挥发分的增加而增加,随煤的变质程度的加深氢气含量增加而烃类和二氧化碳含量减少。煤中的氧含量增加时,煤气中二氧化碳和水含量增加。煤气的平均分子量则随热解的温度升高而下降.即随温度的升高大分子变小,煤气数量增加。

4、根据燃料在炉内的运动状况可以将气化炉分为哪几类?

答:根据燃料在炉内的运动状况来分类的方式应用比较广泛,相应的气化炉有移动床(固定床)、沸腾床(流化床)、气流床和熔融床。

5、简述移动床气化炉的燃料分层情况,并说明各层的主要作用。

答:炉内料层:当炉料装好进行气化时,以空气作为气化剂,或以空气(氧气、富氧空气)与水蒸气作为气化剂时,炉内料层可分为六个层带,自上而下分别为:空层、干燥层、干馏层、还原层、氧化层、灰渣层。

灰渣层

灰渣层中的灰是煤炭气化后的固体残渣,煤灰堆积在炉底的气体分布板上具有以下三个方面的作用:

①由于灰渣结构疏松并含有许多孔隙,对气化剂在炉内的均匀分布有一定的好处。

②煤灰的温度比刚人炉的气化剂温度高,可使气化剂预热。

③灰层上面的氧化层温度很高,有了灰层的保护,避免了和气体分布板的直接接触,故能起到保护分布板的作用。

氧化层

也称燃烧层或火层,是煤炭气化的重要反应区域,从灰渣中升上来的预热气化剂与煤接触发生燃烧反应.产生的热量是维持气化炉正常操作的必要条件。

还原层

在氧化层的上面是还原层,赤热的炭具有很强的夺取水蒸气和二氧化碳中的氧而与之化台的能力,水(当气化剂中用蒸汽时)或二氧化碳发生还原反应而生成相应的氧气和一氧化碳,还原层也因此而得名。

干馏层

干馏层位于还原层的上部,气体在还原层释放大量的热量,进入干馏层时温度已经不太高了,气化剂中的氧气已基本耗尽,煤在这个过程历经低温干馏,煤中的

挥发分发生裂解.产生甲烷、烯烃和焦油等物质,它们受热成为气态而进入干燥层。干馏区生成的煤气中因为含有较多的甲烷,因而煤气的热值高,可以提高煤气的热值,但也产生硫化氢和焦油等杂质。

干燥层

干燥层位于干馏层的上面,上升的热煤气与刚人炉的燃料在这一层相遇并进行换热,燃料中的水分受热蒸发。

空层

空层即燃料层的上部,炉体内的自由区,其主要作用是汇集煤气,并使炉内生成的还原层气体和干馏段生成的气体混合均匀。由于空层的自由截面积增大·使得煤气的速度大大降低,气体夹带的颗粒返回床层,减小粉尘的带出量。

6、什么是沸腾床气化?沸腾床气化和移动床气化相比较,有什么优点?

答:在固定床阶段,燃料是以很小的速度下移,与气化剂逆流接触。当气流速度加快到一定程度时,床层膨胀,颗粒被气流悬浮起来。当床层内的颗粒全部悬浮起来而又不被带出气化炉,这种气化方法即为流化床(沸腾床)气化工艺。

和固定床相比较,流化床的特点是气化的原料粒度小.相应的传热面积大,传热效率高,气化效率和气化强度明显提高。

7、为什么煤的黏结性对气流床气化过程没有太大影响?

答:由于煤料悬浮在气流中,随气流并流运动,煤粒的干燥、热解、气化等过程瞬间完成,煤粒被气流隔开,所以煤粒基本上是单独进行膨胀、软化、燃尽及形成熔渣等过程,所以煤的黏结性、机械强度、热稳定性等对气化过程不起作用,原则上几乎可以气化任何煤种。

8、发生炉煤气分为哪几类?

答:发生炉煤气根据使用气化剂和煤气的热值不同,一般可以分为空气煤气、混合煤气、

水煤气、半水煤气等。

9、为什么实际混合煤气组成与理想混合煤气组成有一定的差别,

答:首先,气化的燃料不是纯碳,里面含有挥发分、灰分、水分等杂质,且气化过程也不可能达到平衡,碳也不可能完全气化,二氧化碳不可能完全还原,因而煤气中的一氧化碳和氢气的含量比理想情况的数值要低。

再者,混合煤气的组成与料层高度有关

实际制得的混合煤气除有一氧化碳、氢气、二氧化碳和氨气外,还含有干馏产生的一定量的高热值甲烷及一些其他的碳氢化合物,以及一定量的硫化氢、氨气及水蒸气等。另外,进人气化炉内的水蒸气实际反应温度较低,蒸汽的分解率较低,因此,蒸汽分解产生的氢气和一氧化碳较理论值低,但由于于馏段生成部分氢气的补充,最终煤气的组成视具体情况而定。对于实际煤气的热值而言,由于干馏段生成的甲烷等化合物热值高,反而实际煤气的热值较理想煤气的热值高一些。

10、什么是水煤气,什么是半水煤气,有何区别?

答、典型的制取水煤气的方法是煤的燃烧和水蒸气的分解分开交替进行,可制得?(H2+CO)与?(N2)之比在15.8~23.1左右的水煤气。在合成氨工业上需配入适量的氮气,

?(H2+CO)和?(N2)之比约为3.2左右,称为半水煤气。

使得

11、比较空气煤气、混合煤气和水煤气的热值大小.并简单说明其理由。

答、热值由大到小的顺序:水煤气〉混合煤气〉空气煤气。

理由如下:水煤气的主要组成是CO和H2,热值高;混合煤气的主要组成也是CO和H2,但里面含有较多的N2,故热值低于水煤气;空气煤气中的H2少,氮气多,CO的含量与混合煤气的差不多,故热值低于混合煤气。

12、 3M-2l型煤气发生炉的主要结构包括哪几个部分?

3M-2l型气化炉的主体结构由四部分组成.即炉上部有加煤机构、中部为炉身、下部有除灰机构和气化剂的入炉装置。

13、煤气发生炉设水夹套的目的是什么?

水夹套是炉体的重要组成部分,由于强放热反应使得氧化段温度很高,一般在100O℃以上。

加设水夹套的作用一是回收热量,产生一定压力的水蒸气供气化或探火孔汽封使用;另一方面.可以防止气化炉局部过热而损坏。

14、炉箅的主要作用是什么?

炉箅的主要作用作用是支撑炉内总料层的重量,使气化剂在炉内均匀分布,与碎渣圈一起对灰渣进行破碎、移动和下落。

15、3M-21型和3M-13型两种气化炉的主要区别是什么?

3M-13型和3M-21型的结构及操作指标基本相同,不同的是加煤机构和破黏装置。16、简述制取水煤气的工作循环。

间歇法制造水煤气,主要是由吹空气(蓄热)、吹水蒸气(制气)两个过程组成的。在实际生产过程中,还包含一些辅助过程,共同构成一个工作循环。

第一阶段为吹风阶段:吹入空气,提高燃料层的温度,空气由阀门1进人发生炉,燃烧后的吹风气由阀门4、5后经过烟囱排出,或去余热回收系统。

第二阶段为水蒸气吹净阶段:阀门1关闭,阀门2打开,水蒸气由发生炉下部进入,将残余吹风气经阀门4、5排至烟囱,以免吹风气混入水煤气系统,此阶段时间很短。如不需要得到纯水煤气时,例如制取台成氨原料气.该阶段也可取消。

第三阶段为一次上吹制气阶段:水蒸气仍由阀门2进入发生炉底部,在炉内进行气化反应,此时,炉内下部温度降低而上部温度较高,制得的水煤气经阀门4、6(阀门5关闭)后,进入水煤气的净化和冷却系统,然后进入气体储罐。

第四阶段为下吹制气阶段:关闭阀门2、4,打开阔门3、7,水蒸气由阀门3进入气化炉后,由上而下经过煤层进行制气,制得的水煤气经过阀门7后由阀门6去净化冷却系统。该阶段使燃料层温度趋于平衡。

第五阶段为二次上吹制气阶段:阀门位置与气流路线同第三阶段。主要作用是将炉底部的煤气吹净,为吹入空气做准备。

第六阶段为空气吹净阶段:切断阀门7,停止向炉内通入水蒸气。打开阀门1,通入空气将残存在炉内和管道中的水煤气吹人煤气净制系统。

17、要得到合成氨原料气,常采用什么方法?

通常是在上述生产水煤气的基础上,在一次上吹制气阶段鼓入水蒸气的同时,并适量鼓入空气(称加N2空气),这样制得的煤气中氮气含量增加,符合合成氨原料气中9(CO+H2)和9(N2)之比约3.2的要求,但需注意的是,在配入加氮空气时,其送入时间应滞后于水蒸气,并在水蒸气停送之前切断。

18、制取半水煤气循环时间的分配原则是什么?

对每一个工作循环,都希望料层温度稳定。一般而言,循环时间长,气化层的温度、煤气的产量和成分波动大;相反,则波动小.但阀门的开启次数频繁。

实际生产过程中,应根据具体使用的气化原料和阀门的控制条件来确定。一般来说,气化活性差的原料需较长的循环时间;相反,气化活性高的原料,时间可适当缩短,因为活性高的原料气化时,反应速度大,料层温度降低快,适当缩短时间对气化是有利的。工作循环的时间一般在6-10min之间。采用自动控制时,每一个工作循环可以缩短3-4min。

19、 w-G型发生炉的加煤装置和3M-21型的有什么不同?

w-G气化炉采用输料管加煤或焦,输料管和炉膛内都处于满料状态,不存在一般气化炉的炉膛空间。为避免装料不均匀现象,炉内径为3m的炉子,采用了四根输抖管一煤料由提升机送入炉子上面的受煤斗,再进人中料仓,然后由四根输料管加入炉内。输料管上下都有加煤阀,通过连锁装置来控制开闭。加煤时,四个上阀门关闭打开下阀门,煤料即进人妒内;加煤完毕,下阀门关闭,上阀门又打开接受煤料,如此循环往复。

3M一21型的加煤机构主要是由一个滚筒、两个钟罩和传动装置组成。

滚筒用来实现煤的定量加入,上钟罩接受滚筒落入的煤。

上下钟罩是交替开闭,当上钟罩打开时,下钟罩与炉体断开从而使煤料入炉。

分布锥保证煤料在整个炉膛截面上均匀分布,不能出现离析现象,即大颗粒煤在四周,而小颗粒煤在中间,可能出现中间高而四周低的不良状况。

20、比较间歇和连续式两段炉的优缺点。

连续式两段炉气化原料为褐煤、不黏结煤等。考虑到特殊的料层高度,煤的粒度大,比较有利。且要求均匀,选用中块煤,粒径在20~50ram之间。为了发挥两段炉干馏段的特长,增加生成煤气中的含烃量,提高煤气的热值,原料煤中的挥发分宜大于20%。

间歇式两段炉可以气化的煤种有不黏结或弱黏结性的烟煤、热稳定性好的褐煤。块度为20~40mm或30~60mm,煤灰分含量最高允许在40%~50%之间,最高允许的水分

舍量为5%~30%,超过此范围,必须干燥脱水,否则干馏段吸热太大而影响正常生产。

间歇式两段煤气炉生成气的有效成分较多,既可作原料气,也可以作燃料气,还可以怍为中小城市的城市煤气。

2l、煤气发生站常见的工艺流程有哪几种?

比较常见的工艺流程分为下述三种形式。

(1)热煤气流程

(2)无焦油回收的冷煤气流程

(3)有焦油回收的冷煤气流程

22、简述有焦油回收系统的冷煤气流程。

当气化烟煤和褐煤时气化过程中产生的大量焦油蒸气会随同煤气一起排出。这种焦油冷凝下来会堵塞煤气管道和设备,所以必须从煤气中除去。

原料煤经过粗碎、破碎、筛分等准备阶段,输送到气化炉厂房上部的炉顶煤仓,经过给料机落人气化炉的炉内,与炉底鼓人的气化剂反应。

气化产生的煤气由煤气炉出来后,首先进A.ig,竖管,煤气被增湿降温到85~90°C在此除去大部分粉尘和部分粒子较大的焦油雾,但细小的焦油雾滴难以去除,所以煤气进一步送人除油雾效率较高的电捕焦油器脱除,然后进入洗涤塔使煤气去湿降温到35°C左右,经排送机加压后进一步除雾,净化后的煤气送给用户。

23、简述电捕焦油器的除尘原理。

静电除粉尘和焦油效率较高,内部为直立式管束状结构,每个圆管中央悬挂一根放电极,管壁作为沉降极,下端设有储油槽。在每个放电极和接地的沉降极之问,建立一个高压强电场。当煤气通过强电场时,由于电离使煤气中大部分粉尘和焦油雾滴带上负电,而向圆管壁(相当于正极)移动,碰撞后放电而黏附在上面,逐渐积聚沉淀而向下流动,煤气经两极放电后由电捕焦油器导出。

24、什么是气化温度,它对气化过程有何影响?

气化温度一般指煤气发生炉内氧化层的温度。

气化温度的太小直接影响煤气成分、煤气热值气化效率和气化强度。

25、饱和温度和蒸汽含量有什么关系?

气化剂的饱和温度提高,则进人炉内的气化剂中水蒸气盼含量增大、空气的含量减少;

26、太高或太低的饱和温度对气化过程有什么影响?

气化剂的饱和温度太低,则其中水蒸气的含量很小、空气的含量很大因而氧化反应增多而制气反应减少从而造成煤气产量和质量的下降;

气化剂的饱和温度过高,则其中水蒸气的含量很大、空气的含量很小,温度下降从而也会抑制制气反应的发生。

27、如何通过调节饱和温度来调节气化炉的火层温度?

当炉温偏高时,提高气化剂的饱和温度,增加水蒸气的含量,空气中的氧气不足,则主要进行生成CO的反应,放热较少气化温度下降;相反当炉温偏低时,适当降低气化剂的入炉饱和温度,氧气充足,主要进行的是生成CO2的反应,热效应大,气化温度上升。

28、影响气化温度的主要因素有哪些?

气化剂的饱和温度、原料煤的粒度、水分、灰分、灰熔点等。

29、什么是气化炉的料层高度?

气化炉内,灰渣层、氧化层、还原层、干馏层和干燥层的总高度即为料层高度。

30、影响混合煤气发生炉水蒸气分解率的因素有哪些?

水蒸气的分解率除了和气化温度有关外,还与其消耗量有关。

31、间歇制取水煤气的吹风阶段,炉内温度如何影响吹风气中CO和C02的含量?

当燃料层的温度低时,吹风气中C02含量增多,吹风气中C0减少,因为低温有利于燃烧反应,不利于制气反应。

32、水煤气发生炉的主要工艺指标有哪些?

水煤气发生炉的主要工艺指标有热效率、制气效率、气流速度、水蒸气用量、料层高度、循环时间。

33、加压气化有何优点?

①原料方面。加压气化所用的煤种有无烟煤、烟煤、褐煤等。煤的活性高,能在较低的温度下操作,降低氧耗,并能提高气化强度和煤气质量,因此煤的活性越高越好;加压气化也可以采用弱黏结性煤种,炉内需设搅拌破黏装置,依靠桨叶的转动,将结块打碎;由于气化温度降低,因而可以采用灰熔点较低的煤种;煤的粒度可选择2~20mm、燃料的水分可高达20%~30%、灰分高达30%也无碍于操作,这就扩大了煤种的使用范围.降低了制气成本;可以气化一些弱黏结性和稍强黏结性的煤;耗氧量低,在2 OMPa压力下仅为常压的1/3~2/3,压力提高后,耗氧量还可以降低。

②生产过程方面。气化炉的生产能力高,以水分含量20%~25%的褐煤为原料,气化炉的气化强度在2500kg/(m2·h)左右,比一般的常压气化高4~6倍;所产煤气的压力高,可以缩小设备和管道的尺寸。

③气化产物方面。压力高的煤气易于净化处理。副产品的回收率高;通过改变气化压力和气化剂的汽氧比等条件,以及对煤气进行气化处理后,几乎可以制得H2/CO各种比例的化工合成原料气。

④煤气输送方面。可以降低动力消耗,便于远距离输送。

34、简进鲁奇炉的加煤过程。

加煤过程简述如下。

①煤锁在大气压下(此时煤锁下阀关,煤锁上阀开),煤从煤斗经过给煤溜槽流入煤锁。

②煤锁充满后,关闭煤锁上阀。煤锁用煤气充压到和炉内压力相同。

③充压完毕,煤锁下阀开启,煤开始落入炉内,当煤锁空后,煤锁下阀关闭。

④煤锁卸压,煤锁中的煤气送人煤锁气柜,残余的煤气由煤锁喷射器抽出,经过除

尘后捧入大气。煤锁上阀开启,新循环开始。

35、简述整体煤炭气化联合循环发电流程主要由哪两部分构成

该系统包括两大部分,第一部分是煤的气化、煤气的净化部分,第二部分是燃气与蒸汽联合循环发电部分。

第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置).

第二部分的主要设备有燃气轮机发电系统,蒸汽轮机发电系统、废热回收锅炉等。

36、压力提高对气化指标有什么影响?

高压对下列反应有利:

①压力对氧气消耗量的影响

加压气化过程随压力的增大,甲烷的生成反应增加,由该反应提供给气化过程的热量亦增加。这样由碳燃烧提供的热量相对减少.因而氧气的消耗亦减少。

②压力对蒸汽消耗量的影响

加压蒸汽的消耗量比常压蒸汽的消耗量高2.5~3倍,原因有几个方面。一是加压时随甲烷的生成量增加,所消耗的氢气量增加,而氢气主要来源于水蒸气的分解。从上面的化学反应可知,加压气化不利于水蒸气的分解,因而只有通过增加水蒸气的加入量提高水蒸气的绝对分解量,来满足甲烷生成反应对氢气的需求。

另一方面,在实际生产中,控制炉温是通过水蒸气的加入量来实现的,这也加剧丁蒸汽消耗。

③ 压力对气化炉生产能力的影响

化压力在2.5MPa 左右时.其气化强度比常压气化炉约高4~5倍。

加压下气体密度大,气化反应的速度加快有助于生产能力的提高。加压气化的气

固接触时间长。一般加压气化料层高度较常压的大,因而加压气化具有较大的气固接触时间,这有利于碳的转化率的提高,使得生成的煤气质量较好。

④ 压力对煤气产率的影响压力

随着压力的提高,粗煤气的产率是下降的,净煤气的产率下降得更快。这是由于气化过程的主要反应中,如C+H20H2+CO ?,以及C+CO22CO ?等都是分子数增大的反应,提高气化压力,气化反应将向分子数减小的方向进行,即不利于氢气和一氧化碳的生成,因此煤气的产率是降低的。而加压使二氧化碳的含量增加,经过脱除二氧化碳后的净煤气的产率却下降。

I 从以上的分析来看,总体讲,加压对煤的气化是有利的,尤其用来生产燃烧气(如城市煤气),因为它的甲烷含量高。但加压气化对设备的要求较高,

37、温克勒气化炉为什么使用二次气化剂?

使用二次气化剂的目的是为了提高煤的气化教率和煤气质量。被煤气带出的粉煤和未分解的碳氢化合物,可以在二次气化剂吹入区的高温环境中进一步反应,从而使煤气中的一氧化碳含量增加、甲烷量减少。

38、高温温克勒气化工艺有什么优点?

除了保持常压温克勒气化炉的简单可靠、运行灵活、氧耗量低和不产生液态烃等优点外,主要采用了带出煤粒再循环回床层的做法,从而提高了碳的利用率。

39、什么是灰熔聚气化法,属于哪一种气化类型?

灰熔聚气化法也属于加压流化床气化工艺。所谓的灰熔聚是指在一定的工艺条件下煤被气化后,含碳量很少的灰分颗粒表面软化而未熔融的状态下,团聚成球形颗粒,当颗粒足够大时即向下沉降并从床层中分离出来。

40、K-T炉的喷嘴为什么对称设置?

两个稍向下倾斜的喷嘴相对设置,一方面可以使反应区内的反应物形成高度湍流,加速反应,同时火焰对喷而不直接冲刷炉墙,对炉墙有一定的保护作用。另一方面,在一个反应区未燃尽的喷出颗粒将在对面的火焰中被进一步气化,如果出现一个烧嘴临时堵塞时保证连续安全生产。

4l、德士古气化炉有哪两种类型,主要区别是什么?

德士古气化炉是一种以水煤浆进料的加压气流床气化装置,该炉有两种不同的炉型,根据粗煤气采用的冷却方法不同,可分为淬冷型和全热回收型.

两种炉型的比较:两种炉型下部合成气的冷却方式不同,但炉子上部气化段的气化工艺是相同的。

42、制取水煤浆有哪两种方法?

固体物料的研磨分为干法和湿法两大类。制取水煤浆时普遍采用的是湿法,

43、水煤浆的浓度对气化过程有什幺影响?

所谓水煤浆的浓度是指煤浆中煤的质量分数,该浓度与煤炭的质量、制浆的技术密切相关。

水煤浆浓度对气化过程的影响基本表现在几个方面。一般地,随着水煤浆浓度的提高,煤气中的有效成分增加,气化效率提高,氧气的消耗量下降.

44、在水媒浆中加入添加剂有什么意义?

在工业规模的条件下,煤浆黏度是一限制因素。为使煤装易于泵送和提高其浓度,工业上采用添加表面活性剂来降低其黏度。

表面活性剂是一种两亲分子,由疏水基和亲水基两部分组成。在水煤浆中。表面活性剂的亲水基伸入水中,而疏水端却被煤粒的表面吸引,对煤粒起到很好的分散作用。水煤浆用的表面活性剂多选择芳烃类中与煤结构相近的物质,这样可以在煤的表面更好地吸附。

45、为什么德士古气化炉不适宜气化褐煤?

德士古气化的煤种范围较宽,一般情况下不适宜气化褐煤,由于褐煤的内在水分含量高,内孔表面大,吸水能力强,在成浆时,煤粒上吸附的水量多。因此,相同的浓度下自由流动的水相对减少,煤浆的黏度大,成浆困难。

46、熔融床对煤的粒度有没有特殊要求?

熔融床不同于固定床、流化床和气流床,对煤的粒度没有限制,可以用较粗的煤,也可以用粉煤,对强黏结煤甚至高灰煤和高硫煤都能气化,而且气化是在不太高的压力下进行。

47、煤气设备选择有哪些基本厚则?

(1)煤气用于工业原料或者燃料时,均应按最大需要量来配备气化设备,对于需要量渡动较大的用户,应有较大的裕量。

(2)煤气炉的台数按所需最大煤气量确定、单台炉的产量应按平均气化强度来计算。

(3)煤气发生炉应考虑备用炉,以便在检修或生产出现非正常情况时,不致影响整个生产过程。例如,某厂四台气化炉生产合成氨原料气,三开一备,最大限度在两台炉停车时开肩备用炉,仍能满足生产的要求。

(4)每台气化炉一般应配置竖管、洗涤塔、煤气排送机、字气鼓风机等设备。不同的煤气用途对净化和冷却要求不同,配置的冷却净化设备可能不同。

(5)鼓风机风量应按单台炉的最大瞬时风量来考虑,鼓风机应设备用。

(6)洗涤塔按最大通过气量来选择。

四、画图题

1、画出移动床内料层分布情况

2、画出有焦油回收系统的冷煤气流程

3、画出加压气化的有废热回收的制气工艺流程

4、画出常压温克勒气化工艺流程

5、画出高温温克勒气化工艺流程

6、画出德士古煤炭气化工艺流程

德士古气化炉操作规程

目录 1、岗位任务..................... - 1 - 2、工艺描述..................... - 1 - 3、联锁系统(根据现有联锁逻辑图编写) ............................... - 5 - 4、工艺指标.................... - 20 - 5、主要设备一览表:见附表...... - 21 - 6、开车 ....................... - 21 - 7、停车 ....................... - 42 - 8、倒系统(A为运行炉,B为备用炉). - 50 - 9、正常操作要点................ - 50 - 10、不正常现象及事故处理....... - 52 - 11、巡回检查制度............... - 62 - 12、基本操作................... - 63 -

1、岗位任务 磨煤工序生产的合格水煤浆与空分生产的氧气在一定的工艺条件下进入气化炉内进行部分氧化反应,产生以CO、H2、CO2为主要成分的合成气,经增湿、降温、除尘后送入下游变换工序;同时,将系统中产生的黑水送入闪蒸、沉降系统,以达到回收热量及灰水再生、循环使用的目的,粗渣及细渣送出界外。 2、工艺描述 (1)制浆系统: 由煤贮运系统来的小于10mm的碎煤进入煤贮斗(V1001)后,经煤称量给料机(W1001)称量送入磨机(M1001)。粉末状的添加剂由人工送至添加剂溶解槽(V1005)中溶解成一定浓度的水溶液,由添加剂溶解槽泵(P1004)送至添加剂槽(V1004)中贮存。并由添加剂计量泵(P1002A/B)送至磨机(M1001)中。添加剂槽可以贮存使用若干天的添加剂。在添加剂槽(V1004)底部设有蒸汽盘管,在冬季维持添加剂温度在20--30℃,以防止冻结。 甲醇废水、低温变换冷凝液、循环上水和灰水送入研磨水槽(V1006),正常用灰水来控制研磨水槽液位,当灰水不能维持研磨水槽(V1006)液位时,才用循环上水来补充。工艺水由研磨水泵(P1003A/B)加压经磨机给水阀(FV1005)来控制水量送至磨机。煤、工艺水和添加剂一同送入磨机(M1001)中研磨成一定粒度分布的浓度约60~65%合格的水煤浆。水煤浆经滚筒筛(S1001)滤去3mm以上的大颗粒后溢流至磨机出料槽(V1003)中,由磨机出料槽泵(P1001)经分流器(V1104)送至煤浆槽(V1101A/B)。磨机出料槽(V1003)和煤浆槽(V1101A/B)均设有搅拌器(X1001、X1101A/B),使煤浆始终处于均匀悬浮状态。 (2)气化炉系统: 来自煤浆槽(V1101A/B)浓度为60~65%的煤浆,由煤浆给料泵(P1101A/B/C)加压,投料前经煤浆循环阀(XV1203A/B/C)循环至煤浆槽(V1101A/B)。投料后经煤浆切断阀(XV1202A/B/C)送至德士古烧嘴的内环隙。 空分装置送来的纯度为%的氧气经氧气缓冲罐(V1210)贮存,由氧气总管放空控制阀(FV1214)控制氧气压力为~,在投料前打开氧气手动阀(HV1240A/B/C),用氧气调节阀(FV1205A/B/C)控制氧气流量(FIA1204/05/06A/B/C),经氧气放空阀(XV1207A/B/C)送至氧气消音器(X1201)放空。投料后由氧气调节阀(FV1205A/B/C)控制氧气流量经氧气上、下游切断

煤气化工艺的优缺点及比较

13种煤气化工艺的优缺点及比较 我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对比较丰富的优势发展煤化工已成为大家关心的问题。近年来,我国掀起了煤制甲醇热、煤制油热、煤制烯烃热、煤制二甲醚热、煤制天然气热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤加压气化技术作评述,供大家参考。 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm 粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常

德士古气化炉简介与基本原理和特点

德士古气化炉 Texaco(德士古)气化炉 德士古气化炉是一种以水煤气为进料的加压气流床气化工艺。德士古气化炉由美国德士古石油公司所属的德士古开发公司在1946年研制成功的,1953年第一台德士古重油气化工业装置投产。在此基础上,1956年开始开发煤的气化。本世纪70年代初期发生世界性危机,美国能源部制定了煤液化开发计划,于是,德士古公司据此在加利福尼亚州蒙特贝洛(Montebello)研究所建设了日处理15t的德士古气化装置,用于烧制煤和煤液化残渣。目前国内大化肥装置较多采用德士古气化炉,并且世界范围内IGCC电站多采用德士古式气化炉。 典型代表产品我厂制造过的德士古气化炉典型的产品有:渭河气化炉、恒升气化炉、神木气化炉、神华气化炉等。1992年为渭河研制的德士古气化炉是国际80年代的新技术,制造技术为国内先例,该气化炉获1995年度国家级新产品奖。它的研制成功为化工设备实现国产化,替代进口做出了重要贡献。德士古气化炉是所以第二代气化炉中发展最迅速、开发最成功的一个,并已实现工业化。 一、德士古气化的基本原理 德士古水煤浆加压气化过程属于气化床疏相并流反应,水煤浆通过

喷嘴在高速氧气流的作用下,破碎、雾化喷入气化炉。氧气和雾状水煤浆在炉内受到耐火砖里的高温辐射作用,迅速经历预热、水分蒸发、煤的干馏、挥发物的裂解燃烧以及碳的气化等一系列复杂的物理、化学过程,最后生成一氧化碳,氢气二氧化碳和水蒸气为主要成分的湿煤气,熔渣和未反应的碳,一起同向流下,离开反应区,进入炉子底部激冷室水浴,熔渣经淬冷、固化后被截流在水中,落入渣罐,经排渣系统定时排放。煤气和饱和蒸汽进入煤气冷却系统。 水煤浆是一种最现实的煤基流体燃料,燃烧效率达96~99%或更高,锅炉效率在90%左右,达到燃油等同水平。也是一种制备相对简单,便于输送储存,安全可靠,低污染的新型清洁燃料[1]。具有较好的发展与应用前景。水煤浆的气化是将一定粒度的煤颗粒及少量的添加剂在磨机中磨成可以泵送的非牛顿型流体,与氧气在加压及高温条件下不完全燃烧,制得高温合成气的技术,以其合成气质量好、碳转化率高、单炉产气能力大、三废排放少的优点一直受到国际社会的关注,我国也将水煤浆气化技术列为“六五”、“七五”、“八五”、“九五”的科技攻关项目。本文基于目前我国水煤浆气化技术的现状,以Texaco气化炉为研究对象,根据对气化炉内流动、燃烧和气化反应的特性分析,将Texaco气化炉膛分成三个模拟区域,即燃烧区、回流区和管流区,分别对各区运用质量守恒和能量守恒方程,建立了过程仿

鲁奇加压气化炉工艺操作

鲁奇加压气化炉工艺操作 新疆广汇新能源造气车间--程新院 一、相关知识 1、影响化学平衡的因素有三点:①反应温度(T)、②反应压力(P)、 ③反应浓度(C)。勒夏特列原理:如果改变影响化学平衡条件之一(T、P、C),平衡将向着能够减弱这种改变的方向移动。 2、气化炉内氧化层主反应方程式 ① 2C+O?=CO?(-Q)ΔH<0 ②2C+O?=2CO(-Q)ΔH?<0 ΔH<ΔH? 3、气化炉内还原层主反应方程式 ③C+CO?=2CO(+Q)ΔH?>0 ④C+H?O=CO+H?(+Q)ΔH?>0 ⑤C+2H?=CH?(+Q)ΔH5>0 ΔH?>ΔH?>ΔH5 |ΔH|>ΔH?>|ΔH?|>ΔH?>ΔH? 4、煤灰熔点对气化炉的影响 鲁奇气化炉的操作温度介于煤的DT(变形温度)和ST(软化温度)之间。若入炉煤的灰熔点高,则操作时适当降低汽氧比,相应提高炉温,蒸汽分解率增加,煤气水产量低,气化反应完全,有利于产气。但是受气化炉设计材料的制约,汽氧比不能无限制降低,否则可能会烧坏炉篦及内件。因此受设备材质的局限,煤灰熔点不能太高,

一般控制在1150℃≦DT≦1250℃。反之,若煤灰熔点低,则操作时要适当提高汽氧比,相应降低炉温(防止炉内结渣,造成排灰困难),蒸汽分解率降低,煤气水产量增加,气化反应速度减缓,不利于产气。因此入炉煤的灰熔点要尽可能在一定的范围内,不能变化太大。二、汽氧比的判断 鲁奇加压气化炉汽氧比是调整控制气化过程温度,改变煤气组份,影响副产品产量及质量的重要因素。汽氧比过低,会造成气化炉结渣,排灰困难,不利于产气;汽氧比过高,会造成灰细或排灰困难,煤气水产量增加等。因此,在不引起灰份熔融的情况下,尽可能采用低的汽氧比。汽氧比的高低应该结合煤气组份中有效气体的含量、灰样和指标参数做出准确的判断! 1、从煤气组份1判断汽氧比的高低 我们在实际操作中一般都根据CO2、CO、H2、CH?来判断汽氧比的高低,下面分情况进行说明。 1:我公司白石湖煤产气组份 a、煤气组份中CO2和CH?同时降低,CO和H2同时升高,这种情况最容易判断,根据还原层反应方程式 ③C+H?O=CO+H?ΔH?>0 ④C+CO?=2COΔH?>0

煤气化工艺流程

精心整理 煤气化工艺流程 1、主要产品生产工艺 煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之 化碳 15%提 作用。 2 。净化 装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分装置提供气化用氧气和全厂公用氮气。仪表空压站为全厂仪表提供合格的仪表空气。 小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽

,一部分供发电站发电。 3、主要装置工艺流程 3.1备煤装置工艺流程简述 备煤工艺流程分为三个系统: (1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。 缓 可 能周期性地加至气化炉中。 当煤锁法兰温度超过350℃时,气化炉将联锁停车,这种情况仅发生在供煤短缺时。在供煤短缺时,气化炉应在煤锁法兰温度到停车温度之前手动停车。 气化炉:鲁奇加压气化炉可归入移动床气化炉,并配有旋转炉篦排灰装置。气化炉为双层压力容器,内表层为水夹套,外表面为承压壁,在正常情况下,外表面设计压力为3600KPa(g),内夹套与气化炉之间压差只有50KPa(g)。 在正常操作下,中压锅炉给水冷却气化炉壁,并产生中压饱和蒸汽经夹套蒸汽气液分离器1

德士古水煤浆气化操作规程下

614操作规程 一、岗位任务: 本岗位对气化炉排出的黑水进行闪蒸,回收灰水和热量。 二、管辖范围: 工段的管辖范围是,V1401—V1408、E1401—E1404、P1411E、P1401、P1402、P1406、P1411、P1412、Q1401、渣池及上述设备相关的管道、阀门、调节阀仪表、电动机和其它各种设备所属附件。 三、开车: 大检修后开车: 系统机电仪安装检修完毕,吹扫或清洗干净,气密实验、单体试车及全部仪表调试合格后准备开车。 1.启动真空闪蒸系统: 在气化炉投料前,启动真空闪蒸系统: a.向E1402、E1403、E1404和P1411E供CW;打开换热器CW进出口阀、排气后关闭排气阀; b.打开DW到V1406的截止阀,向V1406供脱盐水; c.当V 1406液位达到50%时,按泵运行规程启动P1412,LICA1408稳定后投自动; d.打开P1411密封水阀、FI14102前阀、打开LV1409前后截止阀,LICA1409投自动,当液位稳定后,停DW; e.由P1401-3/4向V1404送水;打开P1401出口到V1404截止阀,关闭到S1401的截止阀,建立V1404的上塔液位; f.打开LV1404,当上塔液位达到50%时,打开LV1406; g.V1404下塔液位达到50%时,按运行规程启动P1402,打开LV1407前后阀,关闭导淋阀,打开P1402到S1401的截止阀,手动打开LV1407; f.当V1404上塔液位达到50%且上、下塔液位均稳定后,LICA1406、LICA1407投自动; h.按运行规程启动P1411; i.投用PIC1404/PIC1406,打开PV1404前后截止阀,关闭旁路阀,打开PV1406截止阀,逐渐降PICA1406、PICA1404的设定值,直到 PICA1404 -64,24KPa PICA1406 -91,50KPa 如果PICA1404压力不正常,通过N3管线上的放空阀吸入空气;或检查LV1405阀位。V1405液位达到50%时,打开LV1411前后截止阀,LI1411投自动; 当V1404上塔压力稳定后,停止吸入空气,关闭第二道给气阀后,关闭排气阀; 打开LV1408前后截止阀,关闭旁路阀,LICA1408投自动设定50%; j.确认P1402泵送水S1401后,启动P1409加絮凝剂(开车前溶好物料); k.确认P1406向气化炉供水后,启动P1410给P1406入口管线加分散剂; l.打开P1502给V1408供水截止阀(两道阀,第一道位于P1502出口,第二道位于614框架E1401东北侧); 2.接通黑回管线

常压炉和鲁奇炉对比稿分解

常压炉和鲁奇炉对比 一、气化装置投资对比: 鲁奇加压气化炉(含空分)-----------6.665亿; 纯氧常压气化炉(含空分)-----------3.297亿; 该项对比结果为:纯氧常压气化炉比鲁奇炉少投资3.368亿。 二、年运行费用对比 鲁奇加压气化炉-------------年生产费用3.79亿元; 纯氧常压气化炉-------------年生产费用4.62亿元; 该项对比结果为:纯氧常压气化炉年运行成本比鲁奇炉高 1.43亿元。 三、常压炉和鲁奇炉对比结论 加压鲁奇炉一次性投资多3.368亿元。运行成本年节省1.43亿元,在2.35年回收该一次投资。对比结论是鲁奇炉比常压炉更适合本项目。

四、常压炉和鲁奇炉分析明细 1、投资对比 序 号项目 纯氧常压气化炉 万元 鲁奇加压气化 万元 1 焦块筛分+焦粉制块 +输送 650 650 2 入炉前煤锁100 800 3 煤气炉系统11700(8开备2)38000(三开一备) 5 循环水处理站(回收)1220 12000 6 气柜+电除尘1000 7 一级压缩机 二级压缩机 10000 8 空分8000 15000(汽轮机拖动) 投资合计 3.297亿 6.665亿差值+3.368亿 该项对比结果为:纯氧常压气化炉比鲁奇炉少投资3.368亿2、年运行费用对比

一年(8000小时)生产费用表 序号项目纯氧常压气化炉鲁奇加压气化 1 焦炭t/h53 56 8000小时万元 13568 14336 (焦炭320元/t) 2 氧气耗Nm3/h 2592019948 8000小时万元 6220.8 4787.52 (氧气0,3元/Nm3) 3 蒸汽耗t/h 82126 30(回收用) 8000小时万元 7872 12096 (蒸汽120元/t) 4 电耗kw h 408001600 8000小时万元 18604.8 729.6 (电价0,57元/kwh) 8000小时生产费用 46265.631949.12 5合计 万元 差值+14316.68 对比结果:纯氧常压气化炉年运行成本比鲁奇炉高1.43亿元。

3组主要气化工艺及8种典型气化炉图文详解

组主要气化工艺及种典型气化炉图文详解 中国耐火材料网 一、气化简介 气化是指含碳固体或液体物质向主要成分为和的气体的转换。所产生的气体可用作燃料或作为生产诸如或甲醇类产品的化学原料。 气化的限定化学特性是使给料部分氧化;在燃烧中,给料完全氧化,而在热解中,给料在缺少的情况下经过热降解。 气化的氧化剂是或空气和,一般为蒸汽。蒸汽有助于作为一种温度调节剂作用;因为蒸汽与给料中的碳的反应是吸热反应(即吸收热)。空气或纯的选择依几个因素而定,如给料的反应性、所产生的气体用途和气化炉的类型。 气化最初的主要应用是将煤转化成燃料气,用于民用照明和供暖。虽然在中国(及东欧)气化仍有上述用途,但在大多数地区,由于可利用天然气,这种应用已逐渐消亡。最近几十年中,气化主要用于石化工业,将各种碳氢化合物流转换成"合成气",如为制造甲醇,为生产提供或为石油流氢化脱硫或氢化裂解提供。另外,气化更为专门的用途还包括煤转换为合成汽车燃料(在南非应用)和生产代用天然气()(至今未有商业化应用,但在年代末和年代初已受到重视)。 二、气化工艺的种类 有多种不同的气化工艺。这些工艺在某些方面差别很大,例如,技术设计、规模、参考经验和燃料处理。最实用的分类方法是按流动方式分,即按燃料和氧化剂经气化炉的流动方式分类。 正像传统固体燃料锅炉可以划分成三种基本类型(称为粉煤燃烧、流化床和层燃),气化炉分为三组:气流床、流化床和移动床(有时被误称为固动床)。流化床气化炉完全类似于流化床燃烧器;气流床气化炉的原理与粉煤燃烧类似,而移动床气化炉与层燃类似。每种类型的特性比较见表。

* 如果在气化炉容器内有淬冷段,则温度将较低。 .气流床气化炉 在一台气流床气化炉内,粉煤或雾化油流与氧化剂(典型的氧化剂是氧)一起汇流。气流床气化炉的主要特性是其温度非常高,且均匀(一般高于℃),气化炉内的燃料滞留时间非常短。由于这一原因,给进气化炉的固体必须被细分并均化,就是说气流床气化炉不适于用生物质或废物等类原料,这类原料不易粉化。气流床气化炉内的高温使煤中的灰溶解,并作为熔渣排出。气流床气化炉也适于气化液体,如今这种气化炉主要在炼油厂应用,气化石油原料。 现在,运营中的或在建的几乎所有煤气化发电厂和所有油气化发电厂都已选择气流床气化炉。气流床气化炉包括德士古气化炉、两种类型的谢尔气化炉(一种是以煤为原料,另一种以石油为原料)、气化炉和气化炉。其中,德士古气化炉和谢尔油气化炉在全世界已有部以上在运转。 .流化床气化炉 在一个流化床内,固体(如煤、灰)悬浮在一般向上流动的气流中。在流化床气化炉内,气体流包含氧化介质(一般是空气而非)。流化床气化炉的重要特点(像流化床燃烧器一样)是不能让燃料灰过热,以至熔化粘接在一起。假如燃料颗粒粘在一起,则流化床的流态化作用将停滞。空气作为氧化剂的作用是保持温度低于℃。这表示流化床气化炉最适合用比较易反应的燃料,如生物质燃料。 流化床气化炉的优点包括能接受宽范围的固体供料,包括家庭垃圾(经预先适当处理的)和生物质,如木柴,灰份非常高的煤也是受欢迎的供料,尤其是那些灰熔点高的煤,因为其他类型的气化炉(气流床和移动床)在熔化灰形成熔渣中损失大量能。 流化床气化炉包括高温温克勒(),该气化炉由英国煤炭公司开发,目前由能源有限公司()销售,作为吹空气气化联合循环发电()的一部分。在运转的大型流化床气化炉相对较少。流化床气化炉不适用液体供料。 .移动床气化炉 在移动动床气化炉里,氧化剂(蒸汽和)被吹入气化炉的底部。产生的粗燃料气通过固体燃料床向上移动,随着床底部的供料消耗,固体原料逐渐下移。因此移动床的限定特性是逆向流动。在粗燃料气流经床层时,被进来的给料冷却,而给料被干燥和脱去挥发分。因此在气化炉内上下温度显着不同,底部温度为℃或更高,顶部温度大约℃。燃料在气化过程中脱除挥发分意味着输出的燃料气含有大量煤焦油成分和甲烷。故粗燃料气在出口处用水洗来除去焦油。其结果是,燃料气不需要在合成气冷却器中来高温冷却,假如燃料气来自气流反应器,它就需冷却。移动床气化炉为气化煤而设计,但它也能接受其他固体燃料,比如废物。

煤气化工艺流程

煤气化工艺流程 1、主要产品生产工艺 煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之有效的方法之一,同时也方便群众生活,节约时间,提高整个城市的社会效率和经济效益。作为一项环保工程,(其一期工程)每年还可减少向大气排放烟尘1.86万吨、二氧化硫3.05万吨、一氧化碳0.46万吨,对改善河南西部地区城市大气质量将起到重要作用。 甲醇是一种重要的基本有机化工原料,除用作溶剂外,还可用于制造甲醛、醋酸、氯甲烷、甲胺、硫酸二甲酯、对苯二甲酸二甲酯、丙烯酸甲酯等一系列有机化工产品,此外,还可掺入汽油或代替汽油作为动力燃料,或进一步合成汽油,在燃料方面的应用,甲醇是一种易燃液体,燃烧性能良好,抗爆性能好,被称为新一代燃料。甲醇掺烧汽油,在国外一般向汽油中掺混甲醇5~15%提高汽油的辛烷值,避免了添加四乙基酮对大气的污染。 河南省煤气(集团)有限责任公司义马气化厂围绕义马至洛阳、洛阳至郑州煤气管线及豫西地区工业及居民用气需求输出清洁能源,对循环经济建设,把煤化工打造成河南省支柱产业起到重要作用。 2、工艺总流程简介: 原煤经破碎、筛分后,将其中5~50mm级块煤送入鲁奇加压气化炉,在炉内与氧气和水蒸气反应生成粗煤气,粗煤气经冷却后,进入低温甲醇洗净化装置

,除去煤气中的CO2和H2S。净化后的煤气分为两大部分,一部分去甲醇合成系统,合成气再经压缩机加压至5.3MPa,进入甲醇反应器生成粗甲醇,粗甲醇再送入甲醇精馏系统,制得精甲醇产品存入贮罐;另一部分去净煤气变换装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分装置提供气化用氧气和全厂公用氮气。仪表空压站为全厂仪表提供合格的仪表空气。 小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽,一部分供发电站发电。 3、主要装置工艺流程 3.1备煤装置工艺流程简述 备煤工艺流程分为三个系统: (1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。 (2)最终筛分系统:块煤仓内块煤经8#、9#皮带运至最终筛分楼驰张筛进行检查性筛分。大于6mm块煤经10#皮带送至200#煤斗,筛下小于6mm末煤经14#皮带送至缓冲仓。 (3)电厂上煤系统:末煤仓内末煤经12#、13#皮带转至5#点后经16#皮

德士古气化炉简介与基本原理和特点

德士古气化炉 TeXaCo(德士古)气化炉 德士古气化炉是一种以水煤气为进料的加压气流床气化工艺。德士古气化炉由美国德士古石油公司所属的德士古开发公司在1946 年研制成功的, 1953年第一台 德士古重油气化工业装置投产。在此基础上, 1956 年开始开发煤的气化。本世纪 70 年代初期发生世界性危机,美国能源部制定了煤液化开发计划,于是,德士古公司据此在加利福尼亚州蒙特贝洛 (Montebello) 研究所建设了日处理 15t 的德士古气化装置,用于烧制煤和煤液化残渣. 目前国内大化肥装置较多采用德士古气化炉,并且世界范围内IGCC电站多采用德士古式气化炉. 典型代表产品我厂制造过的德士古气化炉典型的产品有 : 渭河气化炉、恒升气化炉、神木气化炉、神华气化炉等。 1992 年为渭河研制的德士古气化炉是国际 80 年代的新技术,制造技术为国内先例,该气化炉获1995年度国家级新产品奖。它 的研制成功为化工设备实现国产化,替代进口做出了重要贡献。德士古气化炉是所以第二代气化炉中发展最迅速、开发最成功的一个,并已实现工业化。 一、德士古气化的基本原理 德士古水煤浆加压气化过程属于气化床疏相并流反应,水煤浆通过

喷嘴在高速氧气流的作用下,破碎、雾化喷入气化炉。氧气和雾状水煤浆在炉 内受到耐火砖里的高温辐射作用,迅速经历预热、水分蒸发、煤的干馏、挥发物的 裂解燃烧以及碳的气化等一系列复杂的物理、化学过程,最后生成一氧化碳,氢气 二氧化碳和水蒸气为主要成分的湿煤气,熔渣和未反应的碳,一起同向流下,离开 反应区,进入炉子底部激冷室水浴,熔渣经淬冷、固化后被截流在水中,落入渣 罐,经排渣系统定时排放.煤气和饱和蒸汽进入煤气冷却系统。 水煤浆是一种最现实的煤基流体燃料,燃烧效率达96~99%或更高,锅炉效率在 90%左右,达到燃油等同水平。也是一种制备相对简单,便于输送储存,安全可靠,低 污染的新型清洁燃料[1].具有较好的发展与应用前景。水煤浆的气化是将一定粒 度的煤颗粒及少量的添加剂在磨机中磨成可以泵送的非牛顿型流体 ,与氧气在加压 及高温条件下不完全燃烧,制得高温合成气的技术,以其合成气质量好、碳转化率 高、单炉产气能力大、三废排放少的优点一直受到国际社会的关注 ,我国也将水煤 浆气化技术列为“六五"、“七五”、“八五"、“九五”的科技攻关项目。 本 文基于目前我国水煤浆气化技术的现状,以TeXaCo 气化炉为研究对象,根据对气化 炉内流动、燃烧和气化反应的特性分析,将TeXaCO 气化炉膛分成三个模拟区域,即 燃烧区、回流区和管流区,分别对各区运用质量守恒和能量守恒方程,建立了过程仿 真模型.该模型 德 士 古气 化 炉

煤气化工艺流程简述

煤气化工艺流程简述 1)气化 a)煤浆制备 由煤运系统送来的原料煤**t/h(干基)(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。 出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。 煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。 用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。 煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。

GE德士古气化炉

德士古气化炉 1.德士古气化炉概况 德士古水煤浆加压气化工艺简称TCGP ,是美国德士古石油公司TEXACO 在重油气化的基础上发展起来的。1945 年德士古公司在洛杉矶近郊蒙特贝洛建成第一套中试装置,并提出了水煤浆的概念,水煤浆采用柱塞隔膜泵输送,克服了煤粉输送困难及不安全的缺点,后经各国生产厂家及研究单位逐步完善,于80年代投入工业化生产,成为具有代表性的第二代煤气化技术。 国外已建成投产的装置有6套,15台气化炉;国内已建成投产的装置有8套,24台气化炉,正在建设、设计的装置还有4套,13台气化炉。已建成投产的装置最终产品有合成氨、甲醇、醋酸、醋酐、氢气、一氧化碳、燃料气、联合循环发电。 我国自鲁南化肥厂第一套水煤浆加压气化装置(2台气化炉)1993年建成投产以来,相继建成了上海焦化厂气化装置(4.0 MPa气化,4台气化炉,于1995年建成投产),渭河化肥厂气化装置(6.5 MPa气化,3台气化炉,于1996年建成投产),淮南化肥厂气化装置(4.0 MPa气化,3台气化炉,于2000年建成投产),金陵石化公司化肥厂气化装置(4.0 MPa气化,3, , , , 台气化炉,于2005年建成投产),浩良河化肥厂气化装置(3.0~4.0 MPa气化,3台气化炉,于2005年建成投产),南化公司气化装置(8.5 MPa气化,2006年建成投产),南京惠生气化装置(6.5 MPa气化,2007年建成投产)等装置。由于我国有关生产厂的精心消化吸收,已掌握了丰富的连续稳定运转经验,新装置一般都能顺利投产,短期内便能连续稳定、高产、长周期运行。并且掌握了以石油焦为原料的气化工艺技术。

德士古气化炉的优缺点

德士古气化炉的优缺点 淮化“”工程是于年建成投产的一套年产万吨合成氨并加工成万吨尿素的生产装置, 它由空分、气化、净化、合成、尿素等几个工序组成, 其中气化是制备合格煤气的工序, 采用的是最新一代德士古水煤浆加压气艺技术。该是美国德士古石油公司受重油气化的启发, 于年首先开发的煤气化工艺, 后经前西德鲁尔煤鲁尔化学公司在磨煤、热回收方面的进一步改进, 以及日本对系统关键进行合理改造后, 逐步形成比较完善的煤气化工艺。相继在美国、德国、日本等地建成了多套工业性示范及工业化生产装置, 其系统工艺技术已基本成熟。淮化公司的气化装置由磨煤、低压煤浆、煤浆槽、高压煤浆泵、气化炉、收排渣系统、洗气系统及渣水系统组成。投产年来, 总体运行情况良好, 同时也暴露出一些。在此之前, 国内的上海焦化厂、山东鲁南化肥厂、陕西渭河化肥厂等企业都先后建成投产了多套类似的煤气化装置。虽然在煤浆制备、操作压力及装置能力等方面存在小的差异, 但核心技术基本相同。根据公司六年来的使用实践, 结合国内其它兄弟单位的使用经验以及国外的相关资料, 总结出德士古水煤浆加压气化工艺技术相对于传统的固定床、流化床等气化工艺, 具有如下优点: ( ) 煤种适应性广。德士古气化工艺可以利用次烟煤、烟煤、石油焦、煤加氢液化残渣等。不受灰熔点限制( 灰熔点高可加助熔剂) , 同时因煤最终要磨制成水煤浆,故不受煤的块度大小限制。原设计为河南义马煤, 但在近几年煤炭市场紧俏的情况下, 我们经常掺烧山东、陕西等地的煤种, 经过局部的工艺调节, 同样能够平稳运行。 ( ) 连续生产性强。气化炉的原料———煤浆、氧气的生产是连续的, 因此也就能够连续不断地进入气化炉。排渣经排渣系统固定程序控制, 不需停车, 气化开停少, 系统操作稳定。迄今单炉连续稳定运行最长已达天。 ( ) 气化压力高。气化炉内的高压, 首先是相同质量的产品气大幅度

煤炭气化工艺

煤炭气化工艺 1、何为煤化工? 答:煤化工是以煤为原料经过化学加工,实现煤的转化并进行综合利用的工业。煤化工包括炼焦工业、煤炭气化工业、煤炭液化工业、煤制化学品工业以及其他煤加工制品工业等。 2、什么是煤气化? 答:煤的气化是煤或煤焦与气化剂在高温下发生化学反应将埭或煤焦中有机物转变为煤气的过程。 3、什么是煤炭的汽化? 答:煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。 4、煤气的有效成分:一氧化碳、氢气、甲烷 5、煤气化的四个过程:煤的干燥、干馏、热解、氧化和还原 6、煤的热解的影响因素:煤的品味、煤的颗粒粒径、加热速度、分解温度、压力、周围气体和介质。 7、煤的热解结果生成的三类分子:小分子(气体)、中等分子(焦油)、大分子(半焦) 8、煤产生的热量用于哪些方面?

答:煤产生的热量用于:(1)灰渣带出的热量;(2)水蒸气和碳还原反应需要的热量;(3)煤气带走的热量;(4)传给谁夹套和周围环境的热量 9、分气化技术的分类:(1)按气化技术:地面气化和地下气化;(2)按气化剂不同:富氧气化(产品为空气煤气)、纯氧气化(产品为混合煤气)、氢气气化(产品为水煤气)、水蒸气气化(产品为半水煤气);(3)按给热方式:外热式气化、自热式气化、热载体式气化;(4)按气化炉类型分:移动床气化、流化床气化、气流床气化、熔融床气化;(5)按操作压力分:加压气化和常压气化 10、什么是固定床气化? 答:在气化过程中,煤由气化炉顶部加入,气化剂由气化炉底部加入,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降速度很慢,甚至可视为固定不动,因此称之为固定床气化;而实际上,煤料在气化过程中是以很慢的速度向下移动的,比较准确的称其为移动床气化。 11、煤的气化过程发生哪些主要的化学反应. 答:C+O2→CO2 394.1kJ/mol C+H2O→H2+CO -135.0kJ/mol C+ O2→CO 110.4kJ/mol C+2H2O→2H2+CO2 -96.6KJ/mol C+2H2→CH4 +84.3kJ/mol C+CO2→ 2C0 +173.3 kJ/mol

气化炉维护检修规程

气化炉维护检修规程 1总则 1.1适用范围 本规程适用于山东华鲁恒升化工股份有限公司 A气化炉及B/C气化炉的维护检修。 1.2设备概述 气化炉为华鲁恒升大氮肥国产化装置中核心设备之一,用于水煤浆的加压气化,为合成氨或甲醇生产提供粗原料气。我公司采用的气化炉分为两种类型:一种为西北化工研究院的专有技术(B/C气化炉,类似于德士古气化炉);另一种为华东理工大学的专有技术(A气化炉,为四烧嘴对撞式,具有自主知识产权)。 1.3设备结构与技术性能简介 1.3.1设备结构 A气化炉和B/C气化炉均由燃烧室和激冷室组成。 燃烧室内衬耐火材料,就燃烧室筒体来说,从内到外依次为热面砖、背衬砖、隔热砖和可压缩层(膨胀材料)。衬里材料结构为:炉膛基本为竖向直筒;上面为球形拱顶;下面为收缩的渣口结构,即锥底。在使用中蚀损最严重的部位是向火面砖。 A气化炉和B/C气化炉在结构上的主要区别有: a)A气化炉安四个烧嘴,在炉子侧面即燃烧室筒体上水平对置安装, A 气化炉开车时在炉子顶部安装预热烧嘴,正常生产时炉子顶部用堵头堵死; B/C气化炉只一个烧嘴,在炉子顶部朝下安装,开车时预热烧嘴也安装在 此。 b)A气化炉在激冷室只有下降管没有上升管,而设置了气泡分离器;B/C 气化炉既有下降管也有上升管,没有设置气泡分离器。 1.3.2技术参数与性能 A气化炉和B/C气化炉的介质均为02、H2、CO、C02、H2O、H2S、N2和炉渣,工作压力均为6.5MPa,燃烧室工作温度均为1450C,激冷室工作温度均为252°C。 单炉日处理煤量A气化炉比B/C气化炉略高。另外,A气化炉产生的气化气中有效气体成分(CO+ H2)含量高。 1.4设备完好标准

煤制气

摘要 简单介绍了国内外几种主要煤制气技术的特点、发展概况和应用情况。对我国煤制天然气产业的发展现状、产业政策与应用特点进行了分析,指出国家对煤制天然气产业“目标明确、示范先行、规范发展、有序推进”从思路没有变化,设定了环保、资源等前置条件、强调了升级示范和总量控制。 关键词:煤制气;气化;应用分析

Abstract Introduced the characteristics of several main coal gasification technology at home and abroad, development situation and application situation. Coal gas of our country industry development present situation, industrial policy and application characteristics are analyzed, and points out that the state of coal seam gas industry \"the clear goal, the demonstrative leading, specification development, pushing\" from the train of thought did not change, set up environmental protection, resources and other pre-conditions, emphasized the upgrade demonstration and total amount control. key words:coal gas; gasification; application analysis

德士古气化炉维护检修规程

1.3.2技术参数与性能气化炉维护检修规程 1总则 1.1适用范围 本规程适用于德士古气化炉的检修周期与内容、检修与质量标准、试车与验收、维护与故障处理。 1.2设备概述 气化炉是我公司气化装置中核心设备之一,用于水煤浆的加压气化,为甲醇生产提供粗原料气。 1.3设备结构与技术性能简介 1.3.1设备结构 气化炉呈圆筒状,顶部有烧嘴安装口,底部连接破渣机,主要由燃烧室和激冷室组成,燃烧室为氧气和水煤浆的燃烧反应提供了空间,而激冷室则是对反应后的气体和熔渣进行了激冷和分离。 a)燃烧室壳体的主材为SA387Gr11CL2,内衬耐火砖,耐火砖从内到外 依次为向火面砖、背衬砖、隔热砖和可压缩层(膨胀材料)。炉膛顶部 为球形拱顶;中间为竖向直筒状;下部为收缩的渣口结构,即锥底。 壳体表面遍布测温点。 b)激冷室壳体主要采用SA387Gr11CL2+316L复合板卷制而成,内部主 要由激冷环、水环管和抽引管等组成。人孔开于下部。

总高mm20050净重t252 2检修周期和检修内容 2.1检修周期 检修周期可适当调整。中修主要根据气化炉实际运行状况,比如激冷水、炉砖情况或突发性状况等,而当筒体和拱顶向火面炉砖烧损至1/2厚度或壳体局部变形时,则必须安排大修。 2.2检修内容 2.2.1小修 a.处理日常检查中发现的不需要停车处理的问题,如消除漏点、检修或更换部分管路、阀门或仪表,加固管道支撑等; b.设备、管道的防腐、保温的修补; c.检查完善防静电接地。 2.2.2中修 a.包括小修内容; b.清理激冷水管路,包括外环管、弯管和激冷环等; c.检查耐火砖表面烧损情况,特别是渣口砖,有无剥落掉块等现象,必要时进行修补或更换; d.检查激冷环、水环管和抽引管等内件,有无穿孔、腐蚀、龟裂、变形等情况,若有则必须调正、修复、补焊甚至更换; e.激冷环与水环管的四周环隙是否均匀,有无异物堵塞,并疏通下降管平衡孔; f.检查抽引管的支撑、水环管的定位板是否牢靠,必要时进行修复; g.检查修复大法兰的密封面及高压螺栓、螺母或螺孔; h.检查、调校或更换测温热电偶、仪表联锁、自动调节装置及现场液位计,并冲洗流量计的导压管; i.进行压力容器年度检验。 2.2.3大修

煤炭气化技术

煤炭气化技术 一.煤炭气化的概念: 煤炭气化是指适当处理后的煤或煤焦为原料,以氧气(空气、富氧、纯氧)、水蒸气或氢气等作为气化剂,在一定的温度和压力条件下通过化学反应将煤或煤 焦中的可燃部分(碳、氢)转化为气体(气体中含有CO、H 2、CH 4 、CO 2 、N 2 )的 热化学过程,而煤中的灰分以废渣的形式排出。煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。 二.煤炭气体原理和反应 气化过程是煤炭的一个热化学加工过程。气化时所得的可燃气体成为煤气,对于做化工原料用的煤气一般称为合成气(合成气除了以煤炭为原料外,还可以采用天然气、重质石油组分等为原料),进行气化的设备称为煤气发生炉或气化炉。煤炭气化包含一系列物理、化学变化。一般包括干燥、燃烧、热解和气化四个阶段。干燥属于物理变化,随着温度的升高,煤中的水分受热蒸发。其他属于化学变化,燃烧也可以认为是气化的一部分。煤在气化炉中干燥以后,随着温度的进一步升高,煤分子发生热分解反应,生成大量挥发性物质(包括干馏煤气、焦油和热解水等),同时煤粘结成半焦。煤热解后形成的半焦在更高的温度下与通入气化炉的气化剂发生化学反应,生成以一氧化碳、氢气、甲烷及二氧化碳、氮气、硫化氢、水等为主要成分的气态产物,即粗煤气。气化反应包括很多的化学反应,主要是碳、水、氧、氢、一氧化碳、二氧化碳相互间的反应,其中碳与氧的反应又称燃烧反应,提供气化过程的热量。 煤气的热值分类 中热值煤气的热值在10.0—22.4MJ/m3,主要成分是一氧化碳和氢气,燃烧迅速,火焰温度比天然气高,适合于冶金和机械制造行业供热。低热值煤气是由于在制造过程中混入大量不可燃烧气体,比如煤气化过程中直接采用空气,引入大量氮气,或者气化过程氧超标,室可燃气体被进一步氧化生成二氧化碳,低热值煤气热值一般在3.1—5.6MJ/m3,除一定量的一氧化碳和氢气外,还有大量不可燃氮气,燃烧温度低。高热值煤气热值一般在36.2—37.3MJ/m3,主要成份是甲烷和少量一氧化碳和氢气。其热值与天然气相当。中低热值煤气可以通过催化转化后制得高热值煤气。

相关主题
文本预览
相关文档 最新文档