当前位置:文档之家› SIX NEW PLANETS FROM THE KECK PRECISION VELOCITY SURVEY1

SIX NEW PLANETS FROM THE KECK PRECISION VELOCITY SURVEY1

SIX NEW PLANETS FROM THE KECK PRECISION VELOCITY SURVEY1
SIX NEW PLANETS FROM THE KECK PRECISION VELOCITY SURVEY1

T HE A STROPHYSICAL J OURNAL,536:902è914,2000June20

2000.The American Astronomical Society.All rights reserved.Printed in U.S.A.

(

SIX NEW PLANETS FROM THE KECK PRECISION VELOCITY SURVEY1

S TEVEN S.V OGT,2G EOFFREY W.M ARCY,3R.P AUL B UTLER,4AND K EVIN A PPS5

Received1999November15;accepted2000January31

ABSTRACT

We report results of a search for planets around530main-sequence stars using the Keck HIRES spectrometer,which has provided Doppler precision of3m s~1during the past3yr.We report six new strong planet candidates having complete Keplerian orbits,with periods ranging from24days to3yr.

These are HD10697,HD37124,HD134987,HD177830,HD192263,and HD222582.We also provide updated orbital parameters for the previously announced planets around HD187123,HD 195019,HD201277,and HD217107.Four of the six newly discovered planets have minimum M sin i masses less than2while the remaining two have M sin i D5The distribution of planetary M JUP,M JUP.

masses continues to exhibit a rise toward lower masses.The orbital eccentricities of the new planets range from0.12to0.71,which also continues the ubiquity of high eccentricities.All17known extrasolar planets orbiting beyond0.2AU have eccentricities greater than D0.1.The current limiting Doppler pre-cision of the Keck Doppler survey is3m s~1per observation as determined from observations of both stable stars and residuals to KeplerianDts.

Subject headings:planetary systemsèstars:individual(HD10697,HD37124,HD134987,HD177830, HD187123,HD192263,HD195019,HD217107,HD222582)

1.INTRODUCTION

To date,22planet candidates have been identiDed around nearby main-sequence stars by measuring their Keplerian Doppler shifts.Four groups have contributed the bulk of the detections by surveying a total of D300stars at a Doppler precision of D10m s~1(cf.Marcy,Cochran,& Mayor2000;Noyes et al.1997).These““planets??all have mass estimates,M sin i,less than7.5where i is the

M JUP,

unknown orbital inclination.

Interestingly,these precision Doppler surveys,along with low-precision surveys of several thousand stars,have revealed only11orbiting brown dwarf candidates, M sin i\8è80and most are actually hydrogen-

M JUP,

burning stars with low orbital inclination(Mayor et al. 1997;Halbwachs et al.1999;Udry et al.2000).This paucity of brown dwarf companions renders the planet candidates distinguishable by their high occurrence at low masses:17 of the22have M sin i\0.4è4(cf.Fig.6,Butler&

M JUP

Marcy1997;Marcy et al.2000).

The planet candidates detected from precision radial velocity surveys reveal a mass distribution that rises toward lower masses,from D8to0.4which is the lowest

M JUP,

M sin i currently detected.Remarkably,all12planets that orbit beyond0.2AU reside in noncircular orbits with e[0.09and many higher than0.3.In contrast,Earth and giant planets in our solar system have eccentricity less than

1Based on observations obtained at the W.M.Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology.Keck Telescope time comes from both NASA and the University of California.

2UCO/Lick Observatory,University of California at Santa Cruz, Santa Cruz,CA95064;vogt=https://www.doczj.com/doc/ca4141689.html,.

3Department of Astronomy,University of California,Berkeley,CA 94720;and Department of Physics and Astronomy,San Francisco,CA 94132.

4Carnegie Institution of Washington,Department of Terrestrial Mag-netism,5241Broad Branch Road NW,Washington,DC20015-1305.

5Physics and Astronomy,University of Sussex,Falmer,Brighton BN1 9QJ,UK.

0.06.Planet formation theory is challenged toDnd robust

mechanisms that produce these observed distributions of mass and orbital eccentricity(cf.Lissauer1995;Weidens-chilling&Marzari1996;Lin&Ida1996;Rasio&Ford 1996).Further,the half-dozen planets that reside within0.2 AU o?er a challenge to explain their current location(cf.

Lin,Bodenheimer,&Richardson1996).

The system of three planetary-mass companions around the main-sequence star,t And,opens questions about the ubiquity of multiple planets and about the formation mechanisms that could explain multiple Jupiter-mass planets within3AU.One wonders if a Jupiter-mass planet within3AU is commonly accompanied by additional giant planets farther out,as demanded by dynamical evolution scenarios that involve mutual perturbations.Further Doppler measurements of existing and future planets can help ascertain the occurrence and character of multiple-planet systems.

The broad goals of the precision Doppler surveys include the following:(1)detection of several hundred planets,suffi-cient to construct statistically meaningful distributions of planet mass,eccentricity,and orbital distance;(2)the detec-tion of Jupiter-mass planets beyond4AU to compare with our Jupiter;(3)the characterization of multiple-planet systems;(4)characterization of planet distributions down to Saturn-masses;and(5)assessment of correlations between planets and stellar properties such as metallicity(i.e.,Gon-zalez,Wallerstein,&Saar1999).Toward achieving these goals,full-sky surveys of more than1000stars are being carried out by our group,by Mayor?s group(Mayor,Udry, &Queloz1999),and by others.Most main-sequence dwarf stars brighter than V\7.5are currently being surveyed, with a need for more surveys in di?erent regimes of param-eter space.

This paper reports the discovery of six new planet candi-dates from the Keck extrasolar planet survey.Section2 describes the Keck precision velocity program including technique,the stellar sample,and the current level of preci-sion.The stellar properties and Keplerian orbitalDts for the 902

SIX NEW KECK PLANETS 903

F I

G .1.èKeck/HIRES velocities of a representative subset of F and G dwarfs from our planet search,chosen to be chromospherically quiet (age [3Gyr).The typical velocity scatter is 3m s ~1,which represents the sum of measurement errors and intrinsic photospheric variability.The observations span the 2è3yr duration of our Keck planet search.

six new planet candidates are presented in °3.Section 4provides an update on the orbital parameters for several previously announced planets.A discussion follows.

2.

THE KECK PLANET SEARCH PROGRAM

The Keck Doppler planet survey began in 1996July using Keck I with the HIRES echelle spectrometer (Vogt et al.1994).The spectra have resolution,R \80,000and span wavelengths from 3900to 6200Wavelength calibration is A .carried out by means of an iodine absorption cell (Marcy &Butler 1992;Butler et al.1996),which superimposes a refer-ence iodine spectrum directly on the stellar spectra.

The stellar sample contains 530main-sequence stars from F7to M5.Stars hotter than F7contain too few spectral features to achieve precision of 3m s ~1,while stars later than M5are too faint (V [11)for the Keck telescope to achieve 3m s ~1precision in our nominal 10minute expo-sure time.The G and K dwarfs are mostly within 50pc and are selected from the Hipparcos catalog (Perryman et al.1997),while M dwarfs have been selected from both Hip -parcos and the Gliese catalog.Evolved stars have been removed from the observing list based on Hipparcos dis-tances.

F I

G .2.èVelocities of a representative set of K dwarfs,showing typical scatter of 3è4m s ~1that represent errors and intrinsic variability.

The list has been further sieved to remove chromo-spherically active stars as these stars show velocity ““jitter ??of 10to 50m s ~1,related to rapid rotation,spots,and magnetic Delds (Saar,Butler,&Marcy 1998).The Ca II H and K line reversals are used as a chromospheric diagnostic (Noyes et al.1984)and are measured directly from our Keck HIRES spectra.The H and K measurements are placed on the Mount Wilson ““S ??scale by calibration with previously published results (Duncan et al.1991;Baliunas et al.1995;Henry et al.1996).Based on their ““S ??index,stars with ages less than 2Gyr are either excluded from our sample,or are given shorter exposure times.

Stars with known stellar companions within 2A (including known spectroscopic binaries)are removed from the observing list as it is operationally difficult to get an uncon-taminated spectrum of a star with a nearby companion.Otherwise,there is no bias against observing multiple stars.Further,the list of Keck program stars has no bias against brown dwarf companions.Stars with known or suspected brown dwarf companions have not been excluded from the Keck target list.

Doppler measurement errors from our Keck survey were previously reported to be 6è8m s ~1(Butler et al.1998;Marcy et al.1999).However,we have since made improve-ments to the data analysis software.We now achieve a pre-

904VOGT ET AL.Vol.536

F I

G .3.èVelocities of a representative set of M dwarfs,showing typical scatter of 3è4m s ~1that represent errors and intrinsic variability.

cision of 3m s ~1with HIRES by treating readout electronics and CCD charge di?usion in the model that determines the instrumental point-spread function (PSF)of each observation (Valenti,Butler,&Marcy 1995).We rou-tinely achieve precision of 3m s ~1for V \8stars in 10minute exposures,as shown in Figures 1,2,and 3,which cover stars of spectral types late F and G,K,and M respec-tively.The observed velocity precision,is the quadra-p obs

,ture sum of the instrumental errors,and random

p inst ,velocity variations intrinsic to the program stars,Saar

p star

.et al.(1998)have shown that,for the slowest rotating G,K,and M stars,m s ~1.Thus,our instrumental preci-p star

D 2sion is presently m s ~1per observation.All pre-p inst

D 2vious HIRES data have also been reprocessed to bring their precision to this level.With further improvements,we expect to achieve photon-limited precision of D 2m s ~1with this system,and thus our exposures are nominally taken at a S/N sufficient for this goal.

3.

NEW PLANET CANDIDATES FROM THE KECK SURVEY

Six new planet candidates have recently emerged from the Keck survey.For HD 192263,the discovery of its planet was announced during the writing of this paper (Santos et al.1999).

The stellar properties of the six host stars are given in Table 1.The Drst three columns provide the common name,the HD catalog number,and the Hipparcos catalog number,respectively.Spectral types are from the Simbad database.The stellar masses are estimated by interpolation of evolutionary tracks (Fuhrmann,Pfei?er,&Bernkopf 1997,1998).The values of a measure of the ratio of

R HK

@,chromospheric to bolometric ?ux (Noyes et al.1984),are measured from the Ca II H and K line cores in the Keck spectra.Distances are from Hipparcos (Perryman et al.1997).

The [Fe/H]values are based on a calibration of the Hauck &Mermilliod (1997)catalog of uvby photometry and 60[Fe/H]determinations from high-resolution spec-troscopy (Favata,Micela,&Sciortina 1997;Gonzalez &Vanture 1998;Gonzalez et al.1999;Gonzalez 1997,1998).From the scatter in the calibration relationship,the uncer-tainty in [Fe/H]is estimated to be 0.07dex for stars from G0V to K0V.

Astrophysical e?ects that can mimic Keplerian Doppler velocity signals include radial and nonradial pulsations and rotational modulation caused by stellar surface features (i.e.,spots,plages).Five of the new Keck candidates are chromo-spherically inactive,with values similar to that of the

R HK

@Sun or lower.In contrast,the sixth star,HD 192263,is extremely active with (Santos et al.1999).

R HK @\[4.37The orbital parameters

for the six new Keck planet candi-dates are listed in Table 2.The quantities in parentheses are the formal uncertainties in each orbital parameter,as deter-mined by Monte Carlo simulations.The individual Keck Doppler velocity measurements are listed in Tables 3through 8.The host stars are discussed below.

3.1.HD 10697

HD 10697(HR 508)is assigned a spectral type of G5IV by the Bright Star Catalog (Hoffleit 1982).From its spectral type,B [V color,and the Hipparcos -derived absolute mag-nitude,we Dnd a stellar mass of 1.10for HD 10697

M _based on placement on standard evolutionary tracks.This

star is a slow rotator and is chromospherically inactive,as

TABLE 1S TELLAR P ROPERTIES

Star Star M Star V d Star (HD)(Hipp)Spectral Type

(M _)(mag)R HK @[Fe/H](pc)109Psc......106978159G5IV 1.10 6.27[5.02]0.1532.63712426381G4V 0.917.68[4.90[0.3233.223Lib .......

134********G5V 1.05 6.47[5.01]0.2325.617783093746K0IV 1.157.18[5.2859.019226399711K0V 0.757.79[4.37[0.2019.9222582

116906

G5V

1.00

7.68

[5.00

[0.01

41.9

1997.0

1998.01999.0

2000.0

Time (Years)

-200

-100

100 V e l o c i t y (m /s )

No.2,2000SIX NEW KECK PLANETS

905

TABLE 2O RBITAL P ARAMETERS

Star Period K u T 0

M sin i a N rms (HD)(days)(m s ~1)e (deg)(JD [2,450,000)(M JUP )(AU)Obs (m s ~1)10697.......1072.3(9.6)119(3)0.12(0.02)113(14)1482(39) 6.35 2.12357.7537124.......155.7(2.0)43(7)0.19(0.12)73(52)1219(33) 1.040.5515 2.82134987......259.6(1.1)50(1)0.24(0.03)353(10)1364(6) 1.580.8143 2.99177830......391.6(11)34(14)0.41(0.13)5(35)1333(14) 1.22 1.1029 5.18192263......24.36(0.07)68(11)0.22(0.14)153(18)1380.9(1)0.780.1515 4.52222582......

575.9(3.6)

184(52)

0.71

(0.05)

306(12)

1310(17) 5.29

1.35

24

3.36

indicated by by its photometric stability

R HK

@\[5.02,(Lockwood,Ski?,&Radick 1997),and by its low X-ray ?ux (Hunsch,Schmitt,&Voges 1998).Relative to the Sun,HD 10697is modestly metal rich,[Fe/H]\]0.15.

We have made 35velocity observations of HD 10697,spanning 3yr,as shown in Figure 4and listed in Table 3.These observations barely cover one orbital period of the new planet candidate,accounting for the relatively large uncertainty in the derived orbital period.The amplitude (K )of the Keplerian orbital Dt is 119m s ~1,while the rms of the velocity residuals to the Keplerian Dt is 7.8m s ~1.This scatter is twice that of our present known errors,for reasons not yet known.The eccentricity of the orbit,e \0.12,is about twice as large as that of Jupiter,as is common for extrasolar planet candidates that orbit beyond 0.2AU.Its minimum mass,M sin i ,is 6.35placing it among the

M JUP

,most massive companions found from precision velocity surveys.

The semimajor axis of the orbit is a \2.12AU,yielding a maximum angular separation between planet and star of 73mas.The amplitude of the astrometric wobble of the star is 373/sin i k as,making this a prime target for interferometric astrometry.The expected e?ective temperature of the planet due to stellar insolation (assuming an albedo of 0.3)is 264K (Saumon et al.1996),and internal heating may increase this by 10è20K.Direct detection would be difficult at present.3.2.HD 37124

HD 37124(G4V)is a slowly rotating,chromospherically inactive star with As listed in Table 4and

R HK

@\[4.90.F IG .4.èVelocities for HD 10697(G5IV)spanning 3yr.The solid line is a Keplerian orbital Dt with orbital parameters,P \1072days,K \119m s ~1,and e \0.12,yielding a minimum mass,M sin i \6.35for the M JUP companion.The rms of the residuals to the Keplerian Dt is 7.8m s ~1

shown in Figure 5,15velocity measurements have been made,spanning 2.7yr,revealing six complete orbits with a derived orbital period of 155.7days.The semiamplitude (K )is 43m s ~1,and the eccentricity is 0.19,giving the compan-ion a minimum mass of 1.04The rms of the obser-M JUP

.vations to the Keplerian Dt is 2.82m s ~1

The semimajor axis of the companion orbit is a \0.55AU,yielding a maximum angular separation between planet and star of 20mas.The planet is expected to have K (Saumon et al.1996).HD 37124has low metal-T eff

\327licity,[Fe/H]\[0.32,relative to the Sun,but its metal-TABLE 3

V ELOCITIES FOR HD 10697JD

RV Error ([2,450,000)(m s ~1)(m s ~1)367.0617.......[63.0 2.8461.8056.......[98.8 4.2715.0682.......[125.1 3.0716.0976.......[134.8 2.8806.8627.......[62.2 4.5837.7322.......[49.8 5.1838.7081.......[48.0 4.6839.7260.......[51.0 4.6983.1289.......20.6 2.61013.0972......29.5 3.01014.0916......31.5 2.71043.0700......45.2 3.31044.0879......40.7 2.91051.0464......44.8 2.71068.9138......57.3 2.91070.0916......55.5 2.81070.9763......56.8 2.91071.9868......57.3 3.01072.9530......51.5 3.11074.8834......49.3 2.91075.8794......59.0 2.61170.8261......75.7 4.11342.1172......24.9 3.11343.1171......28.0 2.71368.1185...... 5.0 3.11369.0795......12.9 3.11374.1286......0.0 3.01410.1192......[25.3 2.91411.0250......[25.9 3.11412.0736......[34.7 3.21438.8873......[56.6 3.11439.9187......[53.0 3.01440.9339......[46.9 3.21487.9494......[111.4 3.71488.8072......

[97.2

3.7

1997.01997.5

1998.01998.51999.0

1999.5

2000.0

Time (Years)

-40

-20020406080 V e l o c i t y (m /s )

1997.0

1998.0

1999.0

2000.0

Time (Years)

-50

50 V e l o

c i t y (m /s )

906

VOGT ET AL.Vol.536

TABLE 4

V ELOCITIES FOR HD 37124JD

RV Error ([2,450,000)(m s ~1)(m s ~1)420.0466.......47.8 3.7546.7365.......30.7 2.8837.7662....... 1.2 2.8838.9487....... 4.0 3.1861.8046.......23.7 3.31069.0362......[1.7 2.71070.1319......0.7 2.61071.1149......0.0 3.31072.1295......[4.2 3.01073.0296......[8.0 3.11172.8957......32.6 3.31226.7806......[2.3 3.11227.7817......[6.0 3.21228.7429......[10.8 2.81412.1416......

[38.0

4.3

licity is nearly typical for Deld GK dwarfs.This is the lowest metallicity star known to have a planet.Most previous planet candidates have been found around metal rich host stars.

F I

G .5.èVelocities for HD 37124(G4V).The solid line is a Keplerian orbital Dt,giving P \155.7days,K \43m s ~1,and e \0.19,yielding M sin i \1.04The rms of the residuals 2.82m s ~1.

M JUP

.F IG .6.èVelocities for HD 134987(G5V).The solid line is a Keplerian orbital Dt,giving P \260days,K \50m s ~1,and e \0.24,yielding M sin i \1.58The rms of the residuals 3.0m s ~1.

M JUP

. 3.3.HD 134987

HD 134987(HR 5657,G5V)is similar to 51Peg in its spectral type,enhanced metallicity,and low chromospheric activity.But its planet has P \259days and M sin i \1.58We have made 43Doppler observations spanning 3M JUP

.yr,as shown in Figure 6and listed in Table 5.The eccentric-ity is 0.24,quite noncircular as with all extrasolar planet candidates orbiting beyond 0.2AU.The rms of the Keplerian Dt to the measured velocities is 3.0m s ~1,consis-tent with measurement errors.

The semimajor axis of the planetary orbit is a \0.81AU,yielding a maximum angular separation between planet and star of 39mas.We expect a planet temperature of T eff

\315

K (Saumon et al.1996).The amplitude of the associated astrometric wobble is 45/sin i k as.

3.4.HD 177830

HD 177830is an evolved subgiant of spectral type K0IV,with photometry placing it close to giant status,M V

\3.32.

It is difficult to estimate [Fe/H]of subgiants from photo-metry,and we are not aware of a spectroscopic analysis of metallicity.The stellar mass estimate of 1.15^0.2is

M _

based on placement on evolutionary tracks but is similarly suspect.Figure 7shows a spectroscopic comparison of HD 177830(dotted line )and the chromospherically inactive K dwarf p Dra (light solid line )in the core of the Ca II H line.The heavy solid line is the chromospherically active K2V star HD 192263,which will be discussed in the next sub-section.Even slowly rotating,chromospherically inactive,main-sequence K dwarf stars,such p Dra,show mild core reversal in Ca II H &K lines,while evolved K subgiants,like HD 177830,have ““?at-bottomed ??line cores.

We have made 29velocity measurements of HD 177830spanning 3yr,as shown in Figure 8and listed in Table 6.The orbital Dt yields P \391.6days,K \34m s ~1,and e \0.41,yielding M sin i \1.22The rms of the

M JUP

.velocity residuals to the Keplerian Dt is 5.2m s ~1,again larger than our known errors.

The somewhat elevated rms of 5.2m s ~1is probably related to the subgiant status of HD 177830.This star is a

F I

G .7.èComparison of Ca II

H line core of HD 177830(dotted line )with a chromospherically quiet K2V star p Draconis (light solid line ).Slowly rotating K dwarfs show a mild core reversal,unlike the more evolved subgiants such as HD 177830,which have ?at-bottomed cores.Dramatic line core reversal is seen in the rapidly rotating,chromo-spherically active,K2V star HD 192263(heavy solid line ).

1997.0

1998.01999.02000.0

Time (Years)

-20

020406080 V e l o c i t y (m /s )

1998.61998.81999.01999.21999.41999.61999.8

Time (Years)

V e l o c i t y (m /s )

No.2,2000

SIX NEW KECK PLANETS

907

TABLE 5

V ELOCITIES FOR HD 134987JD

RV Error ([2,450,000)(m s ~1)(m s ~1)276.8020.......[18.0 3.3604.8935.......28.7 3.9838.1755.......40.1 2.6839.1727.......41.5 2.7840.1707.......42.3 2.6863.1203.......36.3 2.8954.9159.......[54.4 1.8956.9547.......[54.4 3.0981.8126.......[59.9 3.0982.8190.......[54.6 2.5983.8498.......[50.9 3.51011.8011......[51.8 2.61012.8005......[50.7 2.71013.8006......[54.4 2.81050.7730......[16.8 3.01051.7547......[14.0 2.61068.7306...... 1.7 2.51069.7193...... 4.6 2.21070.7242...... 5.1 2.21071.7229...... 1.6 2.11072.7204......11.0 2.61073.7196......7.2 3.41074.7070......13.0 2.41200.1581......[47.0 2.81227.0883......[52.9 2.71228.1038......[53.1 2.51229.1161......[51.6 2.61310.8892......[22.7 2.81311.9101......[20.3 2.81312.9239......[19.2 3.11314.0005......[18.1 2.91340.8393......25.2 2.41341.8853......21.2 2.71342.8787......25.6 2.91367.7877......36.4 2.81368.7558......47.0 2.61369.7821......43.8 3.11370.8677......47.2 3.11371.7599......41.9 2.61372.7678......46.6 2.81373.7712......40.6 2.71410.7258......0.0 2.51411.7251......

[5.5

3.0

very evolved subgiant,with True K III

M v

\3.32^0.1.giants often show complex velocity variability with periods ranging from less than a day to several hundred days.b Oph,a K2III giant,shows evidence of multiple period-icities with timescales of less than 1day and velocity ampli-tudes of D 40m s ~1(Hatzes &Cochran 1994).Velocity variations with periods of several hundred days have been observed in n Her (Hatzes &Cochran 1999)and Aldebaran and b Gem (Hatzes &Cochran 1993).Arcturus (Hatzes &Cochran 1993,1994)shows both short-and long-period Doppler velocity variations with amplitudes of order 150m s ~1.In contrast Horner (1996)surveyed four late-type giants with spectral types ranging from G8III to K2III and found these stars to be stable at the 25m s ~1level.

Little is known about the intrinsic velocity stability of subgiants.The three stars on the Keck precision velocity program that most closely match the B [V and absolute magnitude of HD 177830are HD 136442,HD 208801,and

F I

G .8.èVelocities for HD 177830(K0IV).The solid line is a Keplerian orbital Dt with P \391.6days,K \34m s ~1,and e \0.41,yielding M sin i \1.22The rms of residuals is 5.2m s ~1.

M JUP

.HD 23249.These stars are stable at the 4è6m s ~1level.It is thus probable that the observed velocity variations of HD 177830are due to Keplerian orbital motion,but we cannot rule out intrinsic photospheric variations.This star should be followed up with precision photometry and line bisector studies.

The semimajor axis of the planetary orbit is a \1.10AU,yielding a maximum separation between planet and star of 27mas.The planet is expected to have K

T eff

\362(Saumon et al.1996),with some increase due to internal heating.

3.5.HD 192263

A planet around this star was recently announced by Santos et al.(1999)during the writing of this paper.They found the following orbital parameters:P \23.87^0.14days,K \65m s ~1,and a small but uncertain orbital eccentricity.Here we Dnd P \24.4^0.07days,and K \68^11m s ~1,as listed in Table 2.Our 15Keck veloc-ity measurements are shown in Figure 9and are listed in Table 7.The eccentricity,0.03,derived from 40observations of Santos et al.is somewhat lower than that derived from

F I

G .9.èVelocities for HD 192263(K0V).The solid line is a Keplerian orbital Dt with a P \24.36days,K \68m s ~1,and e \0.22,yielding a minimum M sin i \0.78.The rms of the residuals is 4.5m s ~1.

M JUP

908

VOGT ET AL.

Vol.536

TABLE 6

V ELOCITIES FOR HD 177830JD

RV Error ([2,450,000)(m s ~1)(m s ~1)276.0345.......0.0 2.5605.0434.......13.4 2.3666.8855.......0.0 2.3982.9395.......18.7 2.11009.9321...... 5.3 2.71068.8172......[15.0 2.01069.8500......[14.1 1.91070.8953......[10.5 2.21071.8312......[13.4 2.01072.8201......[9.7 2.11073.8180......[11.7 1.91074.8078......[17.8 2.01075.8981......[22.4 2.61311.1097......51.3 2.21312.1075......46.0 2.61313.1058......36.9 2.21314.1286......45.2 2.21341.9544......50.7 2.01367.9145......31.6 2.61368.9065......31.6 2.61369.9181......24.9 2.41409.8468......[3.5 2.41410.8018......[6.1 2.41411.7991...... 2.7 2.31438.7419......[2.1 2.01439.7602......[6.2 2.21440.8698......[3.4 2.31441.7234......[3.5 2.21488.7226......

[3.0

2.7

our 15Keck observations,e \0.22^0.14,which indicates that the eccentricity is small but requires further obser-vations to establish Drmly.We Dnd that M sin i \0.78a \0.15AU,implying an expected K M JUP ,T eff \486(Saumon et al.1996).

HD 192263is a rapidly rotating,chromospherically active,K0dwarf with (Santos et al.1999).

R HK

@\[4.37F IG .10.èPeriodogram of the chromospheric ““S ??measurements for HD 192263.The primary peak of 26.7days is similar to the period,P \24days,exhibited in the velocities,leaving an ambiguous interpretation of the velocities.The orbital interpretation is favored (see text).

TABLE 7

V ELOCITIES FOR HD 192263JD

RV Error ([2,450,000)(m s ~1)(m s ~1)984.0580.......23.5 2.81011.9079......[21.3 2.61050.8738......11.6 2.61069.8856......[45.3 2.41312.0841......[70.7 3.11313.1102......[63.1 2.71342.0531......0.0 3.41342.9791......9.3 5.01367.9100......24.4 3.81409.9277......[60.8 4.61411.8736......[30.3 3.31438.7651......[1.5 3.41439.8239......16.6 3.41440.8836......14.9 4.21441.8293......

23.6

3.6

Figure 7shows the line core reversal of the Ca II H line for HD 192263(dark solid line ).The slowly rotating chromo-spherically inactive K dwarf p Dra is shown for compari-son.Based on the measured value of [4.37,we

R HK

@estimate that the intrinsic Doppler ““jitter ??for this star is 10è30m s ~1(Saar et al.1998).Figure 10shows the perio-dogram of the chromospheric ““S ??value measurements from our 15Keck spectra.The highest peak corresponds to a period of 26.7days,uncomfortably close to the observed Doppler velocity period of 24days.The false alarm prob-ability for this periodogram peak is 4.7%,suggesting the peak may be coincidental.It remains possible that the velocity periodicity is not due to an orbiting body,but rather to surface e?ects.However,the stellar rotation period is expected to be D 8days from the chromospheric strength (Noyes et al.1984).This short rotation period argues against rotational modulation of surface features as the cause of the velocity variations having P \24days.

Hipparcos found photometric variability for HD 192263of D 0.011mag,which is low given its high chromospheric activity.This star should be subject to intensive photo-metric monitoring.If photometry or ““S ??value measure-

F I

G .11.èComparison of Ca II

H line core for HD 222582(dotted line )with the Sun (solid line ).The solar spectrum is remarkably similar to that of HD 222582throughout the visible region.

1998.0

1998.5

1999.01999.5

2000.0

Time (Years)

-200

-1000100200300 V e l o c i t y (m /s )

0.0

0.5

1.0

Orbital Phase

V e l o c i t y (m /s )

No.2,2000SIX NEW KECK PLANETS

909

ments continue to show periodicities similar to the observed Doppler velocity period,this would suggest that the source of the variations is intrinsic to the star rather than to an orbiting planet

The rotational Doppler broadening in the Keck/HIRES spectra implies V sin i \3.0km s ~1,consistent with that found,V sin i \1.8^1.2km s ~1,by Santos et al.(1999).Given the short rotation period of D 8days,implied by the chromospheric activity,along with low V sin i ,the star must be viewed within 30?of pole-on.Such a pole-on vantage point is consistent with the nearly constant photo-metric brightness reported by Hipparcos .Apparently the chromospheric activity and spotted regions remain visible on the (polar)hemisphere during an entire rotation period.If the orbital plane of the companion is also nearly pole-on,its mass is considerably higher than M sin i of 0.78M JUP

.

We also remain puzzled by the rms of 4.5m s ~1of the velocity residuals to our Keplerian Dt.This rms is just too low for such an active star,which should exhibit jitter of at least 10m s ~1.Perhaps it is because the inclination angle is so low,and thus there is not much radial velocity jitter produced by the surface brightness inhomogeneities since they are not strongly rotationally modulated.We will con-tinue to monitor the ““S ??value and Doppler velocities.For now,we are not yet completely convinced of a planet-companion interpretation for the velocity variations of HD 192263.

3.6.HD 222582

HD 222582is a G5dwarf.Figure 11shows a comparison of the solar ?ux spectrum (Kurucz et al.1984)and a spec-trum of HD 222582,centered on the core of the Ca II H line with a resolution of R B 80,000.The many narrow absorp-tion lines due to neutral metal atoms (mostly Fe I )have the same widths and depths in HD 222582and the Sun,indicat-ing that the two stars have similar temperature,abun-dances,and V sin i .The core of the H line,formed in the chromosphere,is deeper in HD 222582,suggesting slightly weaker chromospheric and magnetic activity than that of the Sun.

F I

G .12.èVelocities for HD 222582(G5V).The solid line is a Keplerian orbital Dt with P \575.9days,K \184m s ~1,and e \0.71,yielding M sin i \5.29.The rms of the residuals is 3.36m s ~1,

M JUP consistent with measurement

errors.F IG .13.èPhased velocities for HD 187123(G3V).The solid line is a Keplerian orbital Dt with P \3.096days,a semiamplitude of 68m s ~1,and an eccentricity of 0.01,yielding M sin i \0.48The rms of the

M JUP .residuals to the Keplerian Dt is 3.29m s ~1.A linear trend

of [7^2m s ~1yr ~1has been removed here.This linear trend suggests presence of a second companion with an orbital period much longer than 2yr.

We have made 24Doppler observations spanning 1.7yr,as shown in Figure 12and listed in Table 8.The Keplerian shown in Figure 12has P \575.9days,a velocity semi-amplitude,K \184m s ~1,and an eccentricity,e \0.71,yielding a minimum mass,M sin i \5.29The rms to

M JUP

.the Keplerian orbital Dt is 3.4m s ~1.

The semimajor axis of the orbit is a \1.35AU,yielding a maximum angular separation between planet and star of 55mas.The amplitude of the astrometric wobble is 165/sin i k as.The e?ective temperature of the planet is expected to be 234K (Saumon et al.1996).

TABLE 8

V ELOCITIES FOR HD 222582JD

RV Error ([2,450,000)(m s ~1)(m s ~1)805.7232.......40.0 3.3984.1216.......[83.5 3.91014.1166......[101.7 3.21050.9569......[118.6 3.11051.9943......[117.5 3.11071.9679......[126.7 3.21072.8569......[130.5 2.91173.7117......[158.4 5.01342.0968......131.4 3.81368.0064......69.5 3.61369.0076......59.4 5.01370.0873......63.8 3.11371.0903......59.0 3.11372.0672......54.5 3.81373.0733......50.0 4.11374.0611......52.1 3.31410.0295......9.8 3.21411.0017......0.0 3.21411.9651......0.4 3.11438.8624......[22.9 3.51439.9007......[28.4 3.01440.8981......[25.4 2.81441.9259......[21.6 3.41488.7946......

[60.1

3.4

0.0

0.5

1.0

Orbital Phase

-400

-2000200 V e l o c i t y (m /s )

910

VOGT ET AL.

Vol.536

4.

UPDATE OF PREVIOUSLY ANNOUNCED PLANETS

Orbital parameters for several previously announced extrasolar planet candidates are updated in this section based on recent Keck observations.The stellar properties of these stars are listed in Table 9,which has the same format as Table 1.The updated orbital parameters are listed in Table 10,while the individual Keck Doppler velocity mea-surements are listed in Tables 11è14for HD 187123,HD 195019,HD 210277,and HD 217107,respectively.

We cannot at this time update the orbits for two stars,HD 168443(Marcy et al.1999)and Gliese 876(Marcy et al.1998;Delfosse et al.1998),for which planetary companions were found previously in the Keck Doppler survey.As noted in those discovery papers,both stars continue to show small secular departures from simple Keplerian motion,making the Dt to a single orbit imprecise.In the case of HD 168443,the velocity residuals to the Keplerian Dt now exhibit a long-term trend with signiDcant curvature (as of 1999October),strongly indicative of a second com-panion with long period.However,more data are required to test the Keplerian nature of the velocity residuals for both stars and to place constraints on plausible orbits.4.1.HD 187123

The Keck velocities for HD 187123are listed in Table 11,and the phased velocities are shown in Figure 13with a linear trend removed.The updated orbital elements shown in Table 10are consistent with the discovery data (Butler et al.1998),though the rms to the Keplerian Dt has improved by about a factor of 2.

Two years of additional monitoring reveal a linear trend in the velocities with a slope of [7^2m s ~1yr ~1.This suggests the existence of a second companion with a period much longer than 3yr.Another few years of monitoring will be required to determine if this slope is real.HD 187123does not have any known companions.

4.2.HD 195019

The discovery of the planet around HD 195019was ini-tially announced from data collected with both the Lick 3m

F I

G .14.èPhased velocities for HD 195109(G3V).The solid line is a Keplerian orbital Dt with P \18.20days,K \272m s ~1,and e \0.02,yielding M sin i \3.47The rms of the residuals to the Keplerian Dt

M JUP .is 3.46m s ~1.

and the Keck telescopes (Fischer et al.1999).The newly

derived orbit given here is in good agreement with the orig-inally published orbit,but again with smaller velocity residuals owing to the improvements in our Doppler tech-nique.The measured velocities are listed in Table 12,and the phased velocities are shown on Figure 14.

With an orbital period of 18.2days and a semimajor axis of 0.13AU,this is the most distant planet yet found in a circular orbit,e \0.02^0.02.

4.3.HD 210277

We have made 45velocity measurements of HD 210277,listed in Table 13and shown in Figure 15.The newly derived orbit conDrms the orbit from the discovery paper (Marcy et al.1999),but the rms (3.3m s ~1)of the residuals to the orbital Dt is again smaller by a factor of D 2owing to our improved Doppler precision.

TABLE 9

S TELLAR P ROPERTIES OF P REVIOUSLY A NNOUNCED P LANETS

Star Star Spectral M Star V d (HD)(Hipp)Type (M _)(mag)R HK @[Fe/H](pc)187123......97336G3V 1.007.83[5.00]0.1647.9195019......100970G3V 0.98 6.87[5.02]0.0037.4210277......109378G7V 0.92 6.54[5.03]0.2421.3217107......

113421

G7

V

0.96

6.17

[5.06

]0.29

19.7

TABLE 10

O RBITAL P ARAMETERS OF P REVIOUSLY A NNOUNCED P LANETS

Star Period K u T 0

M sin i rms (HD)(days)(m s ~1)e (deg)(JD [2,450,000)(M JUP )N (m s ~1)187123a ...... 3.0966(0.0002)68(2)0.01(0.03)324(45)1013.8(0.31)0.4841 3.29195019.......18.200(0.006)272(4)0.02(0.02)227(33)1306.5(2) 3.4714 3.46210277.......436.6(4)39(2)0.45(0.03)118(6)1428(4) 1.2345 3.24217107b ......

7.1260(0.0007)

140(3)

0.14

(0.02)

31(7)

1331.4(0.2)

1.27

21

4.20

a Additional slope is [7^2m s ~1yr ~1.

b Additional slope is 40^3m s ~1yr ~1.

1997.0

1998.01999.02000.0

Time (Years)

-40

-200204060 V e l o c i t y (m /s

)

Orbital Phase

V e l o c i t y (m /s )

No.2,2000

SIX NEW KECK PLANETS

911

TABLE 11

V ELOCITIES FOR HD 187123JD

RV Error ([2,450,000)(m s ~1)(m s ~1)805.7017.......[9.1 2.3983.0277.......76.9 2.61009.9419......[23.9 2.71011.1156......74.9 3.11011.8744......[8.4 2.71012.0665......[31.8 2.61012.8400......[45.2 2.91012.9485......[30.0 2.61013.0751......[18.4 2.41013.7906......73.0 2.81013.9150......72.3 2.81014.0811......80.6 2.61043.0075......[30.2 1.81043.9607......[32.5 3.21044.0560......[23.6 2.61050.7296......44.5 1.71051.0040......73.0 1.91051.7296......42.9 1.61052.0122...... 5.5 2.11068.8311......[19.3 2.31069.8458......71.7 2.51070.8914......[28.1 2.51071.8273......[30.5 2.41072.8169......74.3 3.01073.8431......[9.0 2.71074.8048......[43.6 2.91312.1143......0.0 3.11341.0340......[50.5 3.81341.9865......57.6 2.81342.9757......14.5 3.11367.9201......[6.9 3.11368.9109......[58.9 2.91370.0220......67.2 3.01370.9293......7.7 2.51372.0223......[50.3 2.91373.0195......66.1 2.71373.8137......42.3 3.51409.9445......33.2 2.91410.9016......41.9 2.91411.8813......[67.2 3.01439.7663......

[69.3

2.7

TABLE 12

V ELOCITIES FOR HD 195019JD

RV Error ([2,450,000)(m s ~1)(m s ~1)1068.8520......[319.2 2.91069.8930......[264.0 2.91070.9127......[185.7 2.61071.8489......[91.8 2.81072.8369......0.0 3.01074.8568......149.9 2.71075.7970......189.1 4.21312.0909......181.0 3.11342.0562......[315.9 3.21367.9120......187.3 3.41409.9302......[170.9 3.11411.8760......[315.8 2.91438.7673......144.9 2.81439.8259......

188.9

3.1

F I

G .15.èDoppler velocities for HD 210277(G7V).The implied orbital parameters are P \436.6days,K \39m s ~1,and e \0.45,giving M sin i \1.23The rms of the residuals is 3.24m s ~1.

M JUP

.The new orbit implies a \1.10AU and e \0.45^0.03.The maximum separation between the companion and the primary is 75mas,and the amplitude of the astrometric variation is 65/sin i k as.The expected equilibrium tem-perature of the companion is 243K.

4.4.HD 217107

We have made 21Keck velocity measurements of HD 217107,listed in Table 14and shown in Figure 16with a linear trend of 40m s ~1yr ~1removed from this plot.The updated orbit agrees with the orbit from the discovery paper (Fischer et al.1999),which was based on data from both the Lick and Keck Observatories.

The current Lick observations (51measurements)reveal a linear trend in the velocity residuals to the orbital Dt,strongly indicative of a second companion.A simultaneous

F I

G .16.èPhased velocities for HD 217107(G7V).The solid line is a Keplerian orbital Dt giving P \7.126days,K \140m s ~1,and e \0.14,yielding M sin i \1.27An apparent linear trend of 40m s ~1yr ~1

M JUP .has been removed from the measured velocities prior to performing the Dt.

This linear trend suggests a second companion with an orbital period much longer than 2yr and mass [4The rms of the residuals to the

M JUP .Keplerian Dt is 4.20m s ~1.

912VOGT ET AL.Vol.536

TABLE13

V ELOCITIES FOR HD210277

JD RV Error

([2,450,000)(m s~1)(m s~1)

277.0413.......[2.2 2.6

366.7926.......24.6 2.2

462.7062.......33.5 2.6

605.0940.......[26.3 2.2

665.9876.......[10.4 2.6

688.9457.......[1.7 2.4

689.9833.......[1.8 2.3

713.8792....... 3.9 2.2

714.9728....... 3.3 2.1

715.9286.......9.7 2.2

783.7124.......12.0 2.6

784.7205.......26.1 2.5

785.6995.......19.5 2.6

805.7146.......16.9 2.5

806.7032.......23.8 1.8

956.0877.......24.6 2.2

983.0511.......[6.8 2.7

984.0878.......[4.4 3.2

1010.0261......[39.2 2.5

1011.1015......[39.4 2.2

1011.9692......[38.9 2.2

1013.0816......[40.0 2.2

1014.0859......[38.3 2.7

1043.0057......[37.6 2.4

1043.9942......[34.4 2.5

1050.9169......[35.3 1.6

1051.9839......[33.8 2.0

1068.8670......[24.6 2.1

1069.9748......[24.9 2.2

1070.9566......[21.8 2.3

1071.8706......[23.6 2.3

1072.9307......[27.0 2.4

1074.8716......[19.4 2.3

1170.6885...... 6.1 2.2

1172.6894...... 6.1 2.5

1173.6868...... 6.4 2.1

1311.1031......32.2 2.3

1312.0938......33.7 2.1

1313.1131......39.0 2.5

1341.1060......38.5 2.7

1342.0662......38.9 2.0

1367.9567......35.9 2.5

1410.0179...... 5.0 2.4

1438.8105......[35.7 2.5

1441.9290......[39.9 2.4

Dt of the Lick velocities to a model composed of a Keplerian orbit plus a trend yields a best-Dt trend of43.3^2.8m s~1 yr~1and a period of P\7.127^0.001days(D.A.Fischer 1999,private communication).We attempted the same type of modelDt to the Keck velocities and found a best-Dt trend of39.4^3.5m s~1yr~1and P\7.126^0.001days.Thus the velocity trend in the Lick data are conDrmed indepen-dently by those from Keck.

The Keck data yield an orbital eccentricity, e\0.14^0.02,in agreement with that from Lick(Fischer et al.1999).Thus the noncircular orbit for such a close companion(a\0.072AU)raises questions about the tidal circularization timescale.Perhaps the eccentricity is driven by another companion,indeed possibly that which causes the linear velocity trend.The velocities indicate that any second companion must have a period longer than2yr and

TABLE14

V ELOCITIES FOR HD217107

JD RV Error

([2,450,000)(m s~1)(m s~1)

1068.8595......[20.9 2.7

1069.9728......[114.4 2.9

1070.9542......[119.6 2.0

1071.8687......[68.2 2.4

1072.9288......34.5 2.7

1074.8695......128.6 2.5

1075.8261......[8.1 3.6

1171.7040......[58.4 4.6

1172.7064......53.3 4.9

1173.7052......142.3 4.8

1312.1031......[78.6 3.1

1343.0337......[2.9 2.9

1367.9608......37.2 3.5

1371.0873......[43.4 2.7

1372.0642......50.7 2.8

1373.0712......161.3 3.2

1374.0587......169.1 3.2

1410.0248......140.3 2.7

1410.9805......0.0 3.0

1411.9452......[85.9 2.8

1438.8143......107.0 2.6

a mass greater than4Follow-up work with astrom-

M JUP.

etry and high-resolution IR imaging is warranted to detect this possible second companion.

5.DISCUSSION

Our Keck program has gathered velocity measurements for3yr,making it sensitive to planets orbiting out to2AU. Including the six new planet candidates described in this paper,the Keck survey has resulted in the discovery or codiscovery of12extrasolar planet candidates.The current precision of the Keck survey,held over the3yr time base,is 3m s~1,sufficient to eventually make3p detections of Jupiter-mass companions in5AU orbits,should they exist. However,another decade of data will be required before the Keck survey will begin probing planets in these5AU orbits. We are working to improve single-shot precision with the Keck system to2m s~1.

Four of the six newly discovered planets have minimum masses(M sin i)less than2Figure17shows the latest

M JUP.

mass distribution of the known extrasolar planets(Marcy et al.2000).The high incidence of companions having M sin i\2adds further support to a planetary mass M JUP

distribution that begins a dramatic rise at about5è6M JUP and increases toward the lowest detectable masses from8to 0.5(Butler&Marcy1997).Below0.5detect-

M JUP M JUP,

ability drops markedly.The highest planetary masses are apparently D8and this may constitute a physical

M JUP,

upper limit that should be explained by planet-formation theory,perhaps via tidal truncation of growth in the proto-planetary disk(Bryden et al.1999;Nelson et al.1999). Having said that,we are not implying that this represents some formal upper limit,above which planets then become brown dwarfs.The dividing line between planets and brown dwarfs is not likely to be so sharp in the M sin i plane.

It is important to keep in mind here that there is no bias against brown dwarf companions in the Lick,Keck,or Geneva surveys.Indeed,the CORAVEL survey found11

5

10

1520

M sin i (M JUP )

0246810 N

No.2,2000

SIX NEW KECK PLANETS 913

F I

G .17.èMass histogram for all known planetary companions to main-sequence stars.

brown dwarf ““candidates ??orbiting within 5AU (Duquennoy &Mayor 1991;Mayor et al.1997).However,Hipparcos astrometry (Halbwachs et al.1999)has subse-quently revealed that most of these 11brown dwarf candi-dates previously identiDed from the low-precision CORAVEL survey are,in fact,M dwarfs viewed at low inclination angles.

Nonetheless,companions of 10è80are much easier

M JUP

to detect than those of Jupiter-mass.But the most massive companion found to date from any precision velocity survey is 70Vir b,with 7.4(Marcy &Butler 1996).

M JUP

Our Keck survey has not revealed any ““brown dwarf candidates ??(deDned by M sin i \10è80out of the

M JUP )530stars being surveyed.Thus the occurrence

of brown dwarf companions within 2AU resides below 0.5%,in agreement with the few detections from previous surveys (Cumming,Marcy,&Butler 1999;Halbwachs et al.1999).More than 1000stars have been surveyed for 2yr or longer by the Geneva group and by our surveys,from which Dve ““51Peg èlike ??planets have emerged,with orbital periods less than 5days.Precision Doppler programs are strongly biased toward detecting these planets.Thus we estimate that D 0.5%of main-sequence stars have these ““hot Jupiter ??companions.Four planets have been found with orbital periods between 7and 20days,and the dis-tribution of orbital radii is steadily Dlling in,suggesting a continuous and nearly ?at distribution of semimajor axes above 0.04AU.

The eccentricities of the six newly announced planet can-didates range from 0.12to 0.71.All of the extrasolar planets orbiting beyond 0.2AU,now numbering 17,have eccentric-ities,e o0.1.For comparison,the eccentricities of Jupiter and Earth are 0.05and 0.017,respectively.HD 222582has the largest eccentricity,0.71,of any planet found to date.Unlike the other extreme eccentricity case,16Cyg B,HD 222582has no known stellar companion.These eccentric extrasolar planet orbits may arise from gravitational inter-actions with other planets or stars or from resonant inter-action with the protoplanetary disk.Whatever the ultimate

cause of eccentric orbits,the growing ubiquity of high-eccentricity systems seems to suggest that ““minimum entropy ??planetary systems,like our own,with its suite of nested coplanar nearly circular orbits,may be rare.

Most of the stars with known planetary companions are metal-rich relative to the Sun (Gonzalez et al.1999;Gonza-lez &Vanture 1998;Gonzalez 1997,1998).Two of the six new candidates described here are metal-rich,but two are metal-poor (Table 1),one has nearly solar abundances,and the metallicity of the remaining star is not yet known.Thus these six new planet-bearing stars do not add any addi-tional support to the suspected metallicity correlation.

The Keck survey,after 3yr,is now detecting planets out to 2.1AU and is thus marching through and able to probe the interesting ““habitable zone ??(HZ)deDned by Kasting,Whitmire,&Reynolds (1993)around main-sequence stars.Five of the six new planets lie either directly in,or near the edges of,the habitable zones for their stars.HD 10697orbits at 1.87è2.39AU,just at the outer edge of the HZ for a G5V star but probably well within the HZ for its evolved G5IV star.Its equilibrium insolation temperature is expected to be 274è284K.HD 37124orbits at 0.45è0.65AU with an expected temperature of K.It lies at

T eff

\327the inner edge of the HZ for its G4V star.HD 134987orbits at 0.62è1.00AU with a K,solidly in the HZ for

T eff

\315its G5V star.HD 177830orbits at 0.63è1.57AU,with an expected K.It would lie at the inner edge of the

T eff \362HZ for a K0

star but is probably slightly outside the inner edge since its star is an evolved subgiant.HD 222582has an orbital semimajor axis of 1.35AU,but the orbit is quite eccentric,and its orbital distance varies from 0.39to 2.31AU.It has an expected K and also lies directly in

T eff

\234the HZ of its G5V star.Whether or not water could exist in liquid form,either in the atmospheres of these gas giants or possibly on accompanying moons,is beyond our ability to say at present and requires further detailed theoretical mod-eling of planetary atmospheres (Burrows &Sharp 1999).Complementary extrasolar planet detection techniques include photometric transit surveys,interferometric astrom-etry,IR imaging of dust disks (Trilling et al.1998;Trilling,Brown,&Rivkin 1999;Koerner et al.1998;Schneider et al.1999),and spectroscopic searches for re?ected light (Cameron et al.1999;Charbonneau et al.1999).Several of the new planet candidates provide good targets for these new techniques.In particular,HD 10697and HD 222582will have minimum astrometric amplitudes of 373and 165k as,and astrometric detection will yield unambiguous masses.

We gratefully acknowledge support by NASA grant NAG5-8861and NSF grant AST 95-20443(to G.W.M.),by NSF grant AST 96-19418and NASA grant NAG5-4445(to S.S.V.),travel support from the Carnegie Institution of Washington (to R.P.B.),and by Sun Microsystems.We thank the NASA and UC Telescope assignment committees for allocations of telescope time.We also thank Debra Fischer and Doug Lin for useful discussions.This research has made use of the Simbad database,operated at CDS,Strasbourg,France.

914VOGT ET AL.

REFERENCES

Baliunas,S.L.,et al.1995,ApJ,438,269

Bryden,G.,Chen,X.,Lin,D.N.C.,Nelson,R.P.,&Papaloizou,J.C.B. 1999,ApJ,514,344

Burrows,A.,&Sharp,C.M.1999,ApJ,512,843

Butler R.P.,&Marcy,G.W.1997,in IAU Colloq.161,Astronomical and Biochemical Origins and the Search for Life in the Universe,ed.

C.Cosmovici,S.Bowyer,&

D.Werthimer(Bologna:Editrice Compositori),331

Butler,R.P.,Marcy,G.W.,Vogt,S.S.,&Apps,K.1998,PASP,110,1389 Butler,R.P.,Marcy,G.W.,Williams,E.,McCarthy,C.,Dosanjh,P.,& Vogt,S.S.1996,PASP,108,500

Cameron,A.C.,Horne,K.,Penny,A.,&James,D.1999,Nature,402,751 Charbonneau,D.,Noyes,R.W.,Korzennik,S.G.,Nisenson,P.,Jha,S., Vogt,S.S.,&Kibrick,R.I.1999,ApJ,522,L145

Cumming,A.,Marcy,G.W.,&Butler,R.P.1999,ApJ,526,890 Delfosse,X.,Forveille,T.,Mayor,M.,Perrier,C.,Naef,D.,&Queloz,D. 1998,A&A,338,L67

Duncan,D.K.,et al.1991,ApJS,76,383

Duquennoy,A.,&Mayor,M.1991,A&A,248,485

Favata,F.,Micela,G.,&Sciortina,S.1997,A&A,323,809

Fischer,D.A.,Marcy,G.W.,Butler,R.P.,Vogt,S.S.,&Apps,K.1999, PASP,111,50

Fuhrmann,K.,Pfei?er,M.J.,&Bernkopf,J.1997,A&A,326,1081

èèè.1998,A&A,336,942

Gonzalez,G.1997,MNRAS,285,412

èèè.1998,A&A,334,221

Gonzalez,G.,&Vanture,A.D.1998,A&A,339,L29

Gonzalez,G.,Wallerstein,G.,&Saar,S.H.1999,ApJ,511,L111 Halbwachs,J.L.,Arenou,F.,Mayor,M.,Udry,S.,&Queloz,D.1999, A&A,355,581

Hatzes,A.P.,&Cochran,W.D.1993,ApJ,413,339

èèè.1994,ApJ,432,763

èèè.1999,MNRAS,304,109

Hauck,B.,&Mermilliod,M.1997,A&AS,129,431

Henry,T.J.,Soderblom,D.R.,Donahue,R.A.,&Baliunas,S.L.1996,AJ, 111,439

Horner,S.1996,ApJ,460,449

Hoffleit,D.1982,The Bright Star Catalogue(New Haven:Yale Univ. Obs.)

Hunsch,M.,Schmitt,J.H.M.M.,&Voges,W.1998,A&AS,132,155 Kasting,J.F.,Whitmire,D.P.,&Reynolds,R.T.1993,Icarus,101,108 Koerner,D.W.,Ressler,M.E.,Werner,M.W.,&Backman,D.E.1998, ApJ,503,L83

Kurucz,R.L.,Furenlid,I.,Brault,J.,&Testerman,L.1984,National Solar Observatory Atlas No.1(Tucson:NSO)Lin,D.N.C.,Bodenheimer,P.,&Richardson,D.C.1996,Nature,380,606 Lin,D.N.C.,&Ida,S.1997,ApJ,477,781

Lissauer,J.J.1995,Icarus,114,217

Lockwood,G.W.,Ski?,B.A.,&Radick,R.R.1997,ApJ,485,L789 Marcy,G.W.,&Butler,R.P.1992,PASP,104,270

èèè.1996,ApJ,464,L147

Marcy,G.W.,Butler,R.P.,Vogt,S.S.,Fischer,D.,&Lissauer,J.J.1998, ApJ,505,L147

Marcy,G.W.,Butler,R.P.,Vogt,S.S.,Fischer,D.,&Liu,M.1999,ApJ, 520,239

Marcy,G.W.,Cochran,W.D.,&Mayor,M.2000,in Protostars and Planets IV,ed.V.Mannings,A.P.Boss,&S.S.Russell(Tucson:Univ. of Arizona Press),in press

Mayor,M.,Queloz,D.,Udry,S.,&Halbwachs,J.-L.1997,in IAU Colloq. 161,Astronomical and Biochemical Origins and the Search for Life in the Universe,ed.C.Cosmovici,S.Bowyer,&D.Werthimer(Bologna: Editrice Compositori),313

Mayor,M.,Udry,S.,&Queloz,D.1999,Invited talk at DPS Meeting,31, 0501Extra-solar Planetary Systems:New Discoveries,Tenerife Nelson,R.P.,Papaloizu,J.C.B.,Masset,F.,&Kley,W.1999,MNRAS, submitted

Noyes,R.W.,Hartmann,L.,Baliunas,S.L.,Duncan,D.K.,&Vaughan, A.H.1984,ApJ,279,763

Noyes,R.W.,Jha,S.,Korzennik,S.G.,Krockenberger,M.,Nisenson,P., Brown,T.M.,Kennelly,E.J.,&Horner,S.D.1997,ApJ,483,L111 Perryman,M.A.C.,et al.1997,A&A,323,L49(The Hipparcos Catalog) Rasio,F.A.,&Ford,E.B.1996,Science,274,954

Saar,S.H.,Butler,R.P.,&Marcy,G.W.1998,ApJ,403,L153

Santos,N.,Mayor,M.,Naef,D.,Pepe,F.,Queloz,D.,Udry,S.,Burnet,M., &Revaz,Y.1999,in ASP Conf.Ser.,Cool Stars,Stellar Systems,and the Sun:Eleventh Cambridge Workshop,ed.R.J.Garcia Lopez,R.Rebolo, &M.R.Zapaterio Osorio(San Francisco:ASP),in press

Saumon,D.,Hubbard,W.B.,Burrows,A.,Guillot,T.,Lunine,J.I.,& Chabrier,G.1996,ApJ,460,993

Schneider,G.,et al.1999,ApJ,513,L127

Trilling,D.E.,Benz,W.,Guillot,T.,Lunine,J.I.,Hubbard,W.B.,& Burrows A.1998,ApJ,500,428

Trilling,D.E.,Brown,R.H.,&Rivkin,A.S.1999,ApJ,529,499

Udry,S.,et al.2000,A&A,356,590

Valenti,J.,Butler,R.P.,&Marcy,G.W.1995,PASP,107,966

Vogt,S.S.,et al.1994,Proc.SPIE,2198,362

Weidenschilling,S.J.,&Marzari,F.1996,Nature,384,619

对翻译中异化法与归化法的正确认识

对翻译中异化法与归化法的正确认识 班级:外语学院、075班 学号:074050143 姓名:张学美 摘要:运用异化与归化翻译方法,不仅是为了让读者了解作品的内容,也能让读者通过阅读译作,了解另一种全新的文化,因为进行文化交流才是翻译的根本任务。从文化的角度考虑,采用异化法与归化法,不仅能使译文更加完美,更能使不懂外语的人们通过阅读译文,了解另一种文化,促进各民族人们之间的交流与理解。翻译不仅是语言符号的转换,更是跨文化的交流。有时,从语言的角度所作出的译文可能远不及从文化的角度所作出的译文完美。本文从翻译策略的角度,分别从不同时期来说明人们对异化法与归化法的认识和运用。 关键词:文学翻译;翻译策略;异化;归化;辩证统一 一直以来,无论是在我国还是在西方,直译(literal translation)与意译(liberal translation)是两种在实践中运用最多,也是被讨论研究最多的方法。1995年,美籍意大利学者劳伦斯-韦努蒂(Lawrence Venuti)提出了归化(domestication)与异化(foreignization)之说,将有关直译与意译的争辩转向了对于归化与异化的思考。归化与异化之争是直译与意译之争的延伸,是两对不能等同的概念。直译和意译主要集中于语言层面,而异化和归化则突破语言的范畴,将视野扩展到语言、文化、思维、美学等更多更广阔的领域。 一、归化翻译法 Lawrwnce Venuti对归化的定义是,遵守译入语语言文化和当前的主流价值观,对原文采用保守的同化手段,使其迎合本土的典律,出版潮流和政治潮流。采用归化方法就是尽可能不去打扰读者,而让作者向读者靠拢(the translator leaves the reader in peace, as much as possible, and moves the author towards him)。归化翻译法的目的在于向读者传递原作的基本精神和语义内容,不在于语言形式或个别细节的一一再现。它的优点在于其流利通顺的语言易为读者所接受,译文不会对读者造成理解上的障碍,其缺点则是译作往往仅停留在内容、情节或主要精神意旨方面,而无法进入沉淀在语言内核的文化本质深处。 有时归化翻译法的采用也是出于一种不得已,翻译活动不是在真空中进行的,它受源语文化和译语文化两种不同文化语境的制约,还要考虑到两种文化之间的

翻译中的归化与异化

“异化”与“归化”之间的关系并评述 1、什么是归化与异化 归化”与“异化”是翻译中常面临的两种选择。钱锺书相应地称这两种情形叫“汉化”与“欧化”。A.归化 所谓“归化”(domestication 或target-language-orientedness),是指在翻译过程中尽可能用本民族的方式去表现外来的作品;归化翻译法旨在尽量减少译文中的异国情调,为目的语读者提供一种自然流畅的译文。Venuti 认为,归化法源于这一著名翻译论说,“尽量不干扰读者,请作者向读者靠近” 归化翻译法通常包含以下几个步骤:(1)谨慎地选择适合于归化翻译的文本;(2)有意识地采取一种自然流畅的目的语文体;(3)把译文调整成目的语篇体裁;(4)插入解释性资料;(5)删去原文中的实观材料;(6)调协译文和原文中的观念与特征。 B.“异化”(foreignization或source-language-orientedness)则相反,认为既然是翻译,就得译出外国的味儿。异化是根据既定的语法规则按字面意思将和源语文化紧密相连的短语或句子译成目标语。例如,将“九牛二虎之力”译为“the strength of nine bulls and two tigers”。异化能够很好地保留和传递原文的文化内涵,使译文具有异国情调,有利于各国文化的交流。但对于不熟悉源语及其文化的读者来说,存在一定的理解困难。随着各国文化交流愈来愈紧密,原先对于目标语读者很陌生的词句也会变得越来越普遍,即异化的程度会逐步降低。 Rome was not built in a day. 归化:冰冻三尺,非一日之寒. 异化:罗马不是一天建成的. 冰冻三尺,非一日之寒 异化:Rome was not built in a day. 归化:the thick ice is not formed in a day. 2、归化异化与直译意译 归化和异化,一个要求“接近读者”,一个要求“接近作者”,具有较强的界定性;相比之下,直译和意译则比较偏重“形式”上的自由与不自由。有的文中把归化等同于意译,异化等同于直译,这样做其实不够科学。归化和异化其实是在忠实地传达原作“说了什么”的基础之上,对是否尽可能展示原作是“怎么说”,是否最大限度地再现原作在语言文化上的特有风味上采取的不同态度。两对术语相比,归化和异化更多地是有关文化的问题,即是否要保持原作洋味的问题。 3、不同层面上的归化与异化 1、句式 翻译中“归化”表现在把原文的句式(syntactical structure)按照中文的习惯句式译出。

翻译的归化与异化

万方数据

万方数据

万方数据

万方数据

翻译的归化与异化 作者:熊启煦 作者单位:西南民族大学,四川,成都,610041 刊名: 西南民族大学学报(人文社科版) 英文刊名:JOURNAL OF SOUTHWEST UNIVERSITY FOR NATIONALITIES(HUMANITIES AND SOCIAL SCIENCE) 年,卷(期):2005,26(8) 被引用次数:14次 参考文献(3条) 1.鲁迅且介亭杂文二集·题未定草 2.刘英凯归化--翻译的歧路 3.钱钟书林纾的翻译 引证文献(15条) 1.郭锋一小议英语翻译当中的信达雅[期刊论文]-青春岁月 2011(4) 2.许丽红论汉英语言中的文化差异与翻译策略[期刊论文]-考试周刊 2010(7) 3.王笑东浅谈汉英语言中的差异与翻译方法[期刊论文]-中国校外教育(理论) 2010(6) 4.王宁中西语言中的文化差异与翻译[期刊论文]-中国科技纵横 2010(12) 5.鲍勤.陈利平英语隐喻类型及翻译策略[期刊论文]-云南农业大学学报(社会科学版) 2010(2) 6.罗琴.宋海林浅谈汉英语言中的文化差异及翻译策略[期刊论文]-内江师范学院学报 2010(z2) 7.白蓝跨文化视野下文学作品的英译策略[期刊论文]-湖南社会科学 2009(5) 8.王梦颖探析汉英语言中的文化差异与翻译策略[期刊论文]-中国校外教育(理论) 2009(8) 9.常晖英汉成语跨文化翻译策略[期刊论文]-河北理工大学学报(社会科学版) 2009(1) 10.常晖对翻译文化建构的几点思考[期刊论文]-牡丹江师范学院学报(哲学社会科学版) 2009(4) 11.常晖认知——功能视角下隐喻的汉译策略[期刊论文]-外语与外语教学 2008(11) 12.赵勇刚汉英语言中的文化差异与翻译策略[期刊论文]-时代文学 2008(6) 13.常晖.胡渝镛从文化角度看文学作品的翻译[期刊论文]-重庆工学院学报(社会科学版) 2008(7) 14.曾凤英从文化认知的视角谈英语隐喻的翻译[期刊论文]-各界 2007(6) 15.罗琴.宋海林浅谈汉英语言中的文化差异及翻译策略[期刊论文]-内江师范学院学报 2010(z2) 本文链接:https://www.doczj.com/doc/ca4141689.html,/Periodical_xnmzxyxb-zxshkxb200508090.aspx

归化与异化翻译实例

翻译作业10 Nov 15 一、请按归化法(Domestication)翻译下列习语。 Kill two birds with one stone a wolf in sheep’s clothing strike while the iron is hot. go through fire and water add fuel to the flames / pour oil on the flames spring up like mushrooms every dog has his day keep one’s head above water live a dog’s life as poor as a church mouse a lucky dog an ass in a lion’s skin a wolf in sheep’s clothing Love me, love my dog. a lion in the way lick one’s boots as timid as a hare at a stone’s throw as stupid as a goose wet like a drown rat as dumb as an oyster lead a dog’s life talk horse One boy is a boy, two boys half a boy, and three boys nobody. Man proposes, God disposes. Cry up wine and sell vinegar (cry up, to praise; extol: to cry up one's profession) Once bitten, twice shy. An hour in the morning is worth two in the evening. New booms sweep clean. take French leave seek a hare in a hen’s nest have an old head on young shoulder Justice has long arms You can’t teach an old dog Rome was not built in a day. He that lives with cripples learns to limp. Everybody’s business is nobody’s business. The more you get, the more you want. 二、请按异化法(foreignization)翻译下列习语。 Kill two birds with one stone a wolf in sheep’s clothing

翻译术语归化和异化

归化和异化这对翻译术语是由美国著名翻译理论学家劳伦斯韦努蒂(Lawrence Venuti)于1995年在《译者的隐身》中提出来的。 归化:是要把源语本土化,以目标语或译文读者为归宿,采取目标语读者所习惯的表达方式来传达原文的内容。归化翻译要求译者向目的语的读者靠拢,译者必须像本国作者那样说话,原作者要想和读者直接对话,译作必须变成地道的本国语言。归化翻译有助于读者更好地理解译文,增强译文的可读性和欣赏性。 异化:是“译者尽可能不去打扰作者,让读者向作者靠拢”。在翻译上就是迁就外来文化的语言特点,吸纳外语表达方式,要求译者向作者靠拢,采取相应于作者所使用的源语表达方式,来传达原文的内容,即以目的语文化为归宿。使用异化策略的目的在于考虑民族文化的差异性、保存和反映异域民族特征和语言风格特色,为译文读者保留异国情调。 作为两种翻译策略,归化和异化是对立统一,相辅相成的,绝对的归化和绝对的异化都是不存在的。在广告翻译实践中译者应根据具体的广告语言特点、广告的目的、源语和目的语语言特点、民族文化等恰当运用两种策略,已达到具体的、动态的统一。 归化、异化、意译、直译 从历史上看,异化和归化可以视为直译和意译的概念延伸,但又不完全等同于直译和意译。直译和意译所关注的核心问题是如何在语言层面处理形式和意义,而异化和归化则突破了语言因素的局限,将视野扩展到语言、文化和美学等因素。按韦努蒂(Venuti)的说法,归化法是“把原作者带入译入语文化”,而异化法则是“接受外语文本的语言及文化差异,把读者带入外国情景”。(Venuti,1995:20)由此可见,直译和意译主要是局限于语言层面的价值取向,异化和归化则是立足于文化大语境下的价值取向,两者之间的差异是显而易见的,不能混为一谈。 归化和异化并用互补、辩证统一 有些学者认为归化和异化,无论采取哪一种都必须坚持到底,不能将二者混淆使用。然而我们在实际的翻译中,是无法做到这么纯粹的。翻译要求我们忠实地再现原文作者的思想和风格,而这些都是带有浓厚的异国情调的,因此采用异化法是必然;同时译文又要考虑到读者的理解及原文的流畅,因此采用归化法也是必然。选取一个策略而完全排除另一种策略的做法是不可取的,也是不现实的。它们各有优势,也各有缺陷,因此顾此失彼不能达到最终翻译的目的。 我们在翻译中,始终面临着异化与归化的选择,通过选择使译文在接近读者和接近作者之间找一个“融会点”。这个“融会点”不是一成不变的“居中点”,它有时距离作者近些,有时距离读者近些,但无论接近哪

翻译中的归化与异化

姓名:徐中钧上课时间:T2 成绩: 翻译中的归化与异化 归化与异化策略是我们在翻译中所采取的两种取向。归化是指遵从译出语文化的翻译策略取向,其目的是使译文的内容和形式在读者对现实了解的知识范围之内,有助于读者更好地理解译文,增强译文的可读性。异化是指遵从译入语文化的翻译策略取向,其目的是使译文保存和反映原文的文化背景、语言传统,使读者能更好地了解该民族语言和文化的特点。直译和意译主要是针对的是形式问题,而归化和异化主要针对意义和形式得失旋涡中的文化身份、文学性乃至话语权利的得失问题,二者不能混为一谈。 在全球经济一体化趋势日益明显的今天,人们足不出门就能与世界其他民族的人进行交流。无论是国家领导人会晤、国际经济会议,还是个人聚会、一对一谈话,处于不同文化的两个民族都免不了要进行交流。如果交流的时候不遵从对方的文化背景,会产生不必要的误会,造成不必要的麻烦。在2005年1月20 日华盛顿的就职典礼游行活动中,布什及其家人做了一个同时伸出食指和小指的手势。在挪威,这个手势常常为死亡金属乐队和乐迷使用,意味着向恶魔行礼。在电视转播上看到了这一画面的挪威人不禁目瞪口呆,这就是文化带来的差异。人们日常生活中的习语、修辞的由于文化差异带来的差别更是比比皆是,如以前的“白象”电池的翻译,所以文化传播具有十分重要的意义。由此可见,借助翻译来传播文化对民族间文化的交流是很有必要的。 一般来说,采取归化策略使文章变得简单易懂,异化使文章变得烦琐难懂。归化虽然丢掉了很多原文的文化,但使读者读起来更流畅,有利于文化传播的广度。采取异化策略虽然保存了更多的异族文化,能传播更多的异族文化,有利于文化传播的深度,但其可读性大大降低。归化和异化都有助于文化的传播,翻译时应注意合理地应用归化与异化的手段。对于主要是表意的译文,应更多地使用归化手段,反之则更多地使用异化手段。 要使翻译中文化传播的效果达到最好,译者应该考虑主要读者的具体情况、翻译的目的、译入文的内容形式等具体情况而动态地采取归化与异化的手段。 文章字符数:920 参考文献: 论异化与归化的动态统一作者:张沉香(即讲义) 跨文化视野中的异化/归化翻译作者:罗选民https://www.doczj.com/doc/ca4141689.html,/llsj/s26.htm

翻译的归化与异化

【摘要】《法国中尉的女人》自1969年面世以来,凭借着高度的艺术价值,吸引了国内外学者的眼球。在中国市场上也流传着此书的多个译本,本文就旨在透过《法国中尉的女人》中的两处题词的译作分析在具体翻译文本中如何对待归化与异化的问题。 【关键词】《法国中尉的女人》;题词;归化;异化 一、归化与异化 在翻译领域最早提出归化与异化两个词的学者是美国翻译学者韦努蒂。归化一词在《翻译研究词典》中的定义为:归化指译者采用透明、流畅的风格以尽可能减弱译语读者对外语语篇的生疏感的翻译策略。异化一词的定义为:指刻意打破目的语的行文规范而保留原文的某些异域特色的翻译策略。韦努蒂主张在翻译的过程中更多的使用异化,倡导看起来不通顺的译文,注重突出原文的异域风格、语言特色与文化背景。 二、如何看待归化与异化 鲁迅说对于归化与异化,我们不能绝对的宣称哪种是绝对的好的,另一种是绝对的不好的。翻译的过程中归化与异化是相辅相成互相补充的,具体使用哪种方法不仅需要依据翻译目的以及译文的读者群来判断。这也正是本文对待归化异化的一个态度。下面就通过分析刘蔺译本与陈译本在处理《法国中尉的女人》第五章的引言丁尼生《悼念集》时的例子来具体分析这一点。对于原文 at first as death, love had not been, or in his coarsest satyr-shape had bruised the herb and crush’d the grape, 刘蔺译本将此处翻译为 啊,天哪,提这样的问题 又有保益?如果死亡 首先意味着生命了结, 那爱情,如果不是 在涓涓细流中戛然中止, 就是一种平庸的友情, 或是最粗野的色迷 在树林中肆意饕餮, 全不顾折断茎叶, 揉碎葡萄―― 而此时陈译本却将此诗译作 哦,我啊,提出一个无益的问题 又有何用?如果人们认为死亡 就是生命的终结,那么,爱却不是这样, 否则,爱只是在短暂的空闲时 那懒散而没激情的友谊, 或者披着他萨梯粗犷的外套 已踩伤了芳草,并摧残了葡萄, 在树林里悠闲自在,开怀喝吃。 两篇译作各有千秋,从这首诗整体着眼刘蔺译本更趋向于归化手法,陈译本更倾向于异化处理。刘蔺译本将satyr一词译色迷采用了归化的技巧,而陈译本却将satyr一词译为萨梯,采用了异化的手法。satyr原指人羊合体的丛林之神,其实刘蔺译本与陈译本在处理satyr 时采用不同的方法就是因为翻译目的及读者文化群不同引起的。1986年出的刘蔺译本出版时,

中国旅游文本汉英翻译的归化和异化演示教学

中国旅游文本汉英翻译的归化和异化

中国旅游文本汉英翻译的归化和异化 内容摘要:自改革开放政策执行以来,我国旅游业一直呈现迅速繁荣发展趋势,旅游业在我国国民经济发展中扮演着十分重要的角色。与此同时,旅游类翻译已经被视为一条将我国旅游业引往国际市场的必经之路。为了能够让国外游客更清楚地了解中国的旅游胜地,我们应该对旅游翻译加以重视。尽管国内的旅游资料翻译如同雨后春笋般涌现,但在旅游翻译中仍存在许多问题,尤其是翻译策略的选择问题。归化与异化作为处理语言形式和文化因素的两种不同的翻译策略,无疑对旅游翻译的发展做出了巨大贡献。本文将重点讨论在汉英旅游翻译中,译者该如何正确的处理归化和异化问题,实现归化和异化的有机结合,从而达到理想的翻译水平。从归化与异化的定义、关系、以及归化和异化在旅游翻译中的应用与意义进行论述。 关键词:旅游文本归化翻译异化翻译 关于翻译中归化和异化的定义,国内外的专家学者已经做了很多的描述。为了使得本文读者更好地了解什么是翻译中的归化和异化,作者将介绍这两种翻译方法的关键不同,包括两者的定义以及两者之间的关系。

从他们的定义,很容易找到归化和异化之间的差异。通过对比,这两种策略有各自的目的、优点和语言样式。归化是指翻译策略中,应使作为外国文字的目标语读者尽可能多的感“流畅的风格,最大限度地淡化对原文的陌生感的翻译策略”(Shuttleworth & Cowie,1997:59)。换句话说,归化翻译的核心思想是译者需要更接近读者。归化的目的在于向读者传递最基本精神和内容含义。这种翻译策略明显的优势就是读者可以很容易地接受它流畅的语言风格。例如,济公是个中国神话中的传奇人物。不过,外国人可能没有在这种明确的翻译方式下获得信息。因此,适合的翻译方法是找出西方国家中类似济公这样的人物。因此最终的翻译为:济公是一个中国神话中的传奇人物(类似于西方文化中的罗宾汉)。这样的翻译更容易被目的语读者所接受。“异化是指在在翻译策略中,使译文打破目地语的约束,迁就外来文化的语言特点以及文化差异。”(Venuti,2001:240)这一战略要求“译者尽可能不去打扰作者,让读者向作者靠拢。”(Venuti,1995:19)归化可能保留源语的主要信息。异化的目的是使读者产生一种非凡的阅读体验。异化可以容纳外语的表达特点,将自身向外国文化靠拢,并将特殊的民族文化考虑在内。例如,如果将“岳飞庙和墓”翻译成英语,可以翻译为:“Yue Fei’s

英语论文 归化与异化翻译

2010届本科生毕业设计(论文) 毕业论文 Domestication or Foreignism-oriented Skills in Translation 学院:外国语学院 专业:姓名:指导老师:英语专业 xx 学号: 职称: xx 译审 中国·珠海 二○一○年五月

xx海学院毕业论文 诚信承诺书 本人郑重承诺:我所呈交的毕业论文Domestication or Foreignism-oriented Skills in Translation 是在指导教师的指导下,独立开展研究取得的成果,文中引用他人的观点和材料,均在文后按顺序列出其参考文献,论文使用的数据真实可靠。 承诺人签名: 日期:年月日

Domestication or Foreignism-oriented Skills in Translation ABSTRACT Translation, a bridge between different languages and cultures, plays an indispensable role in cross-culture communication. However, as a translator, we have to choose which strategy to deal with the cultural differences between the source language and the target language in the process of translation where there exists two major translation strategies--- domestication and foreignization. In this thesis, I will discuss these strategies and their application from translation, linguistics, and cross-cultural communication perspectives. In the thesis, I will first talk about the current research of the domestication and foreignization in the translation circle as well as point out the necessity for further research. Then, I will illustrate the relationship between linguistics and translation as well as between culture and translating and next systematically discuss these two translation strategies including their definitions, the controversy in history and their current studies. Besides, I will continue to deal with such neglected factors as may influence the translator’s choice of translation strategies: the type of the source text (ST), the translation purposes, the level of the intended readers, the social and historical background, the translator’s attitude and so on. Finally, from the linguistic and cultural perspectives, the thesis makes a comparative study of the application of domestication and foreignization by analyzing typical examples from the two English versions of Hong Lou Meng translated by Yang Xianyi and David Hawkes respectively. The thesis will conclude that these two translation strategies have their respective features and applicable value. I sincerely hope that this research into translation strategies will enlighten translators and make a little contribution to the prosperity of

相关主题
文本预览
相关文档 最新文档