当前位置:文档之家› 电站锅炉小径管焊缝超声波检测技术

电站锅炉小径管焊缝超声波检测技术

电站锅炉小径管焊缝超声波检测技术
电站锅炉小径管焊缝超声波检测技术

焊缝超声波探伤(第二节平板对接焊缝的超声波探伤方法)

第四章 焊缝超声波探伤 第二节 平板对接焊缝的超声波探伤方法 由于焊缝有增强量、表面凹凸不平,以及焊缝中危险性缺陷(裂缝、未焊透)大多垂直于板面,所以,对接焊缝超声波探伤基本方法一般都利用斜探头在焊缝两侧与钢板直接接触后 所产生的折射横波进行探测,见图4–4所示。 一、探测面的修整 为保证整个焊缝截面都被超声波束扫查到,探头必须在探测面上左 右、前后移动,为此,通常要对探测面进行修整。探测面上的焊接飞溅、氧化皮、锈蚀等应清理掉。清理的方 法可用铲刀、钢丝刷、砂轮等使钢板露出金属光泽。 探测面的修整宽度按GB11345–89标准规定: a. 用一次(直射)波法扫查,则焊缝两测的修整宽度(探头移动区)应大于0.75P : P=2TK (4–1) 式中:T 为母材厚度;K 为斜探头折射角的正切(K=tg β)。 b. 用一次反射波法,在焊缝两面两侧扫查,故修整宽度大于1.25P : 二、耦合剂的选用 为使超声波能顺利传入工件,在探伤前必须在探测面上涂上耦合剂,常用的耦合剂有机油、化学浆糊、水、甘油等。 耦合剂的选用应考虑: ① 工件表面光洁度和倾斜角度 ② 探测频率 ③ 耦合剂的声透性能 ④ 保存和使用的方便性 ⑤ 经济性和安全等 各种耦合剂在工件表面光洁度较高时,其声透性能一般相差不大,当工件表面光洁度较差时,选用声阻抗较大的耦合剂,如甘油,可获得较好的声透性能。 三、探头的选择 探头选择主要指探头角度和频率的选择 1. 探头角度的选择 对于钢质材料,为保证纯横波探测,探头的入射角应在第一临界角(27.5°)和第二临界角(57°)之间,即27.5°<α<57°。国内过去使用的探头均以入射角标称,如、30°、40°、45°、50°、55°等。近年来,考虑到为使缺陷定位计算方便,故均改用K 值探头(K=tg β)如K=0.8、K=1、K=1.5、K=2、K=2.5、K=3等。国外则普遍用折射角标称,如β=35°、β=45°、β=60°、β=70°、β=80°等。 为保证整个焊缝截面为声束覆盖,当用一次波和二次波探测时,探头的K 值尚须满足下式(见图4–5): K ≥ T b a l ++ (4– 2) 图4–4 焊缝探伤一般方法

小径管对接焊接接头的相控阵超声检测

小径管对接焊接接头的相控阵超声检测 发表时间:2019-08-27T11:05:40.017Z 来源:《基层建设》2019年第16期作者:马寅山刘星张宪辉[导读] 摘要:对小径管对接焊接接头中的裂缝、密集气孔、未焊透等缺陷进行相控阵超声波检测和射线检测,通过将两者的检测结果进行分析和比较,对两者的检测效果进行评价。广州声华科技有限公司广东广州 510000摘要:对小径管对接焊接接头中的裂缝、密集气孔、未焊透等缺陷进行相控阵超声波检测和射线检测,通过将两者的检测结果进行分析和比较,对两者的检测效果进行评价。本文主要是对相控阵超声波检测手段的优势和其在小管径检测中的应用进行了一定的分析,旨在推动相控阵超声波检测技术的广泛应用。 关键词:小径管对接焊接;接头;相控阵超声检测引言 相控阵超声检测可以获取实时的检测结果,能够对工件的缺陷进行多种方式的扫描,是一种可以记录的无损检测方式。相控阵超声检测的主要优势就是声束角度和聚焦深度精确可控,声束可达性强,检测精度高,缺陷显示直观,检测速度快,是具有较高可靠性的检测技术,在工业领域有着颇为广泛的应用。笔者对小径管对接焊接接头中的缺陷进行了相控阵超声波检测,并且与射线检测结果进行了一定的比较分析。 一、相控阵超声检测技术 (一)相控阵超声检测技术的原理相控阵超声检测方法主要是通过对换能器阵列中的单个阵元进行分别控制,以特定的时序法则进行激发和接收,进而实现声束在工件中的偏转和聚焦。采用自聚焦传感器能进一步增强聚焦能力和分辨力,有效的改善了小径管中波型畸变和杂波干扰的情况。(二)试样管的焊制 小径管的试样管采用的是与广东省某电厂机组锅炉受热面管同规格同材质的管件,其中对接接头存在着一定的裂纹、未熔合、密集气孔有缺陷等问题,具体的示意图可以如下图1所示,焊接的方法主要是钨极氩弧焊。 图1 焊接接头简图 (三)相控阵检测系统 1、相控阵检测仪器 本次研究主要采用的仪器是phascan 32/128相控阵检测仪,Cobra16阵元自聚焦传感器,一次性激发16阵元。 2、相控阵检测探头和楔块 对于相控阵超声探头来说,它主要是阵列探头,在进行现场检测的时候要根据小径管的尺寸来对探头和楔块的型号和大小进行选择。一般来说,探头在进行使用的过程中,因为小径管的曲率过大,要将其和探头之间的耦合损失降低,就需要使用能够与小径管进行紧密切合的楔块,选择曲率相近的曲面。(四)声束覆盖范围设置 在对小径管焊缝进行相控阵超声扇形扫查的时候,要对探头前沿到焊缝中心线的距离进行正确的选择,要保证在进行扇形扫查的时候大角度声束能够对焊缝的下面部分进行覆盖,小角度声束可以覆盖到焊缝的上面部分,进而达到对焊接接头的全面检测,避免出现遗漏。在对小径管对接接头进行检测的时候,还可以通过使用专业的软件来对声束覆盖范围进行模拟,然后对的不同角度的波束覆盖情况的进行模拟现实,通过这样的模拟结果可以找到适当的探头前沿距离和波束角度范围等等。(五)相控阵检测校准设置 不同的声束之间是有不同的回波反射率的,因此在进行校准之前,要先进性灵敏度的校准。对于相控阵检测来说,角度的增益补偿是非常重要的内容。相控阵检测校准设置主要有延时校准、灵敏度校准和距离波幅曲线校准及编码器校准等。一般来说灵敏度校准就是要使统一反射体在不同的聚焦法则下得到相同的波幅;而距离波幅曲线校准就是在灵敏度校准之后按照常规的超声波检测标准进行DAC 曲线校准。 (六)相控阵检测方法 根据相关的标准可以得知,相控阵检测手段与常规的超声检测是具有差异的,在进行相控阵检测的过程中,不需要对探头进行频繁的前后移动,只需要对探头楔块前段与焊趾的距离进行明确,保证探头发射的声束能够覆盖整个被检测面,然后再沿着焊缝的方面进行纵向的移动即可。 二、检测结果比较分析 按照上述的检测手段和相关的标准和规范对15个试样管(试管规格为Φ51×5.1)进行相控阵检测和射线检测,选择具有代表性意义的6个试样管检测结构进行了一定的比较和分析,具体可以见下表2和图3、图4、图5、图6、图7、图8。表2 试样管S1~S6检测数据(mm)

小径管焊口射线探伤作业工艺

小径管焊接接头射线探伤工艺 1.概况 本探伤工艺适用于电力行业制作、安装和检修发电设备时,透照厚度大于等于2mm部件的射线检验,包括承压管道对接、管道和管件对接的单面施焊、双面成型的公称直径小于等于89mm的承压管道对接焊接接头的X 射线和γ射线透照检验。 其他行业的类似管道对接焊接接头,依据相关检验标准也可参照使用。 不适用于摩擦焊、闪光焊等机械方法焊接的对接接头。 2.编制依据: 2.1 火力发电厂焊接技术规程 DL/T 869—2004 2.2 钢制承压管道对接焊接接头射线检验技术规程 DL/T 821—2002)2.3 放射卫生防护基本标准 GB4792 2.4 线型象质计 JB/T7902 3.施工条件 3.1 从事射线检验的工作人员,必须符合GB4792的要求,必须经过由国家卫生部门组织的技术培训,并取得国家卫生行政部门颁发的放射工作人员证。 3.2从事射线检验的工作人员应符合《钢制承压管道对接焊接接头射线检验技术规程 DL/T 821—2002》的要求,各技术等级人员,只能在有效期内从事与该等级相符的射线检测工作,并承担相应的技术责任。 3.3 所使用的射线探伤机应经计量检定合格,且在有效期内。 3.4 检验人员配备了必要的射线防护用品和劳动保护用品。 3.5 检验执行委托单制度,所要检验的焊接接头的表面质量应经焊接质检人员外观检查符合DL/T 869—2004的要求后再由焊接技术员委托检验,表面的不规则状态在底片上的影像应不影响对接头中的缺陷评定,否则应作适当的修整。 1

3.6焊接接头焊后需要做热处理的,要在热处理后委托检验,有延迟裂纹倾向的,要在焊后24h后或经过更长的时间后进行检验。 3.7 根据委托检验焊接接头的位置,如需高空作业应准备必要的脚手架,并确保牢固可靠,射线机应采取可靠的措施防止高空坠落,夜间工作应准备足够的照明设备。 3.8 根据所要透照的焊接接头的位置和工作范围,施工前要对现场进行检查,工作前应划定辐射警戒区域,悬挂醒目的辐射警示标志,严禁无关人员入内。 3.9 射线机经过训练达到使用要求,探伤所需要的暗室条件和其他条件均已具备。 4.施工程序和方法 4.1 施工程序

焊缝超声波检测工艺规程

焊缝超声波检验规程 1范围 适用于金属材料制承压设备用原材料、零部件和设备的超声检测,也适用于金属材料制在用承压设备的超声检测。 与承压设备有关的支承件和结构件的超声检测,也可参照本部分使用. 2 规范性引用文件 下列文件中的条款通过JB/T 4730的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。 JB 4730.1—2005 承压设备无损检测第1部分:通用要求 JB/T 7913—1995 超声波检测用钢制对比试块的制作与校验方法 JB/T 9214—1999 A型脉冲反射式超声波探伤系统工作性能测试方法 JB/T 10061—1999 A型脉冲反射式超声波探伤仪通用技术条件 JB/T 10062—1999 超声探伤用探头性能测试方法 JB/T 10063—1999 超声探伤用1号标准试块技术条件 3一般要求 3.1 超声检测人员 超声检测人员的一般要求应符合JB/T 4730.1的有关规定。 3.2 检测设备 3.2.1 超声检测设备均应具有产品质量合格证或合格的证明文件。 3.2.2 探伤仪、探头和系统性能 3.2.2.1 探伤仪 采用A型脉冲反射式超声波探伤仪,其工作频率范围为0.5MHz~10MHz,仪器至少在荧光屏满刻度的80%范围内呈线性显示。探伤仪应具有80dB以上的连续可调衰减器,步进级每档不大于2dB,其精度为任意相邻12dB误差在±1dB以内,最大累计误差不超过1dB。水平线性误差不大于1%,垂直线性误差不大于5%。其余指标应符合JB/T10061的规定。 3.2.2.2 探头 3.2.2.2.1 晶片面积一般不应大于500mm2,且任一边长原则上不大于25mm。 3.2.2.2.2 单斜探头声束轴线水平偏离角不应大于2°,主声束垂直方向不应有明显的双峰。 3.2.2.3 超声探伤仪和探头的系统性能 3.2.2.3.1 在达到所探工件的最大检测声程时,其有效灵敏度余量应不小于10dB。 3.2.2.3.2 仪器和探头的组合频率与公称频率误差不得大于±10%。 3.2.2.3.3 仪器和直探头组合的始脉冲宽度(在基准灵敏度下):对于频率为5MHz的探头,宽度不大于10mm;对于频率为2.5MHz的探头,宽度不大于15mm。 3.2.2.3.4 直探头的远场分辨力应不小于30dB,斜探头的远场分辨力应不小于6dB。 3.2.2.3.5 仪器和探头的系统性能应按JB/T 9214和JB/T 10062的规定进行测试。 3.3 超声检测一般方法 3.3.1 检测准备 3.3.1.1 承压设备的制造安装和在用检验中,检测时机及抽检率的选择等应按法规、产品标准及有关技术文件的要求和原则进行。 3.3.1.2 检测面的确定,应保证工件被检部分均能得到充分检查。 3.3.1.3 焊缝的表面质量应经外观检测合格。所有影响超声检测的锈蚀、飞溅和污物等都应予以清除,其表

小径管对接焊接接头的相控阵超声检测

小径管对接焊接接头的相控阵超声检测 摘要:对小径管对接焊接接头中的裂缝、密集气孔、未焊透等缺陷进行相控阵超声波检测和射线检测,通过将两者的检测结果进行分析和比较,对两者的检测效果进行评价。本文主要是对相控阵超声波检测手段的优势和其在小管径检测中的应用进行了一定的分析,旨在推动相控阵超声波检测技术的广泛应用。 关键词:小径管对接焊接;接头;相控阵超声检测 引言 相控阵超声检测可以获取实时的检测结果,能够对工件的缺陷进行多种方式的扫描,是一种可以记录的无损检测方式。相控阵超声检测的主要优势就是声束角度和聚焦深度精确可控,声束可达性强,检测精度高,缺陷显示直观,检测速度快,是具有较高可靠性的检测技术,在工业领域有着颇为广泛的应用。笔者对小径管对接焊接接头中的缺陷进行了相控阵超声波检测,并且与射线检测结果进行了一定的比较分析。 一、相控阵超声检测技术 (一)相控阵超声检测技术的原理 相控阵超声检测方法主要是通过对换能器阵列中的单个阵元进行分别控制,以特定的时序法则进行激发和接收,进而实现声束在工件中的偏转和聚焦。采用自聚焦传感器能进一步增强聚焦能力和分辨力,有效的改善了小径管中波型畸变和杂波干扰的情况。 (二)试样管的焊制 小径管的试样管采用的是与广东省某电厂机组锅炉受热面管同规格同材质的管件,其中对接接头存在着一定的裂纹、未熔合、密集气孔有缺陷等问题,具体的示意图可以如下图1所示,焊接的方法主要是钨极氩弧焊。 图1 焊接接头简图 (三)相控阵检测系统 1、相控阵检测仪器 本次研究主要采用的仪器是phascan 32/128相控阵检测仪,Cobra16阵元自聚焦传感器,一次性激发16阵元。 2、相控阵检测探头和楔块 对于相控阵超声探头来说,它主要是阵列探头,在进行现场检测的时候要根据小径管的尺寸来对探头和楔块的型号和大小进行选择。一般来说,探头在进行使用的过程中,因为小径管的曲率过大,要将其和探头之间的耦合损失降低,就需要使用能够与小径管进行紧密切合的楔块,选择曲率相近的曲面。 (四)声束覆盖范围设置 在对小径管焊缝进行相控阵超声扇形扫查的时候,要对探头前沿到焊缝中心线的距离进行正确的选择,要保证在进行扇形扫查的时候大角度声束能够对焊缝的下面部分进行覆盖,小角度声束可以覆盖到焊缝的上面部分,进而达到对焊接接头的全面检测,避免出现遗漏。在对小径管对接接头进行检测的时候,还可以通过使用专业的软件来对声束覆盖范围进行模拟,然后对的不同角度的波束覆盖情况的进行模拟现实,通过这样的模拟结果可以找到适当的探头前沿距离和波束角度范围等等。 (五)相控阵检测校准设置

铁路桥梁钢结构焊缝超声波探伤实施细则

钢构作业指导书 铁路桥梁钢结构焊缝超声波探伤 文件编号: 版本号: 编制: 批准: 生效日期:

铁路桥梁钢结构焊缝超声波探伤实施细则 1. 目的 为使测试人员在做建筑钢结构焊缝超声波探伤时有章可循,并使其操作合乎规范。 2. 适用范围 适用于母材厚度为10~80mm的碳素钢和低合金钢的钢板对接、T型接头、角接头焊缝。 3. 检测依据 TB10212-2009铁路钢桥制造规范 GB/T11345-2013焊缝无损检测超声检测技术、检测等级和评定 4.检验方法概述 超声波探伤法的原理是利用超声波探伤仪换能器发射的脉冲超声波,通过良好的耦合方式使超声波入射至被检工件内,超声波在工件内传播遇到异质界面产生反射,反射波被换能器所接收并传至超声波探伤仪示波器。通过试块或工件底面作为反射体调节时基线以确定缺陷反射回波的位置,调整检测灵敏度以确定缺陷的当量大小。 5.人员要求 所有从事超声波探伤的检验员应通过有关部门组织的超声波探伤培训、考试并取得相应的执业资格证书,Ⅰ级检验员具有现场操作资格,但必须在Ⅱ级或Ⅲ级人员的指导或监督下进行,Ⅱ级或Ⅲ级人员可以编制超声波探伤工艺规程和工艺卡以及签发审核检验报告。超声检验人员的视力应每年检查一次,校正视力不得低于1.0。 6.检测器材 6.1超声波探伤仪:采用数字A型脉冲反射式超声波探伤仪,频率范围为0.5-10MHz,且实时采样频率不应小于40MHz;衰减器精度为任意相邻12dB的误差在±1dB以内,最大累计

误差不超过1dB;水平线性误差不大于1%,垂直线性误差不大于5%。 6.2探头:晶片面积一般不应大于500mm2,且任一边长原则上不大于25mm;单斜探头声束轴线水平偏离角不应大于2°;主声束垂直方向上不应有明显双峰;折射角的实测值与公称值的偏差应不大于2°(K值偏差不应超过士0. 1),前沿距离的偏差应不大于1mm。 6.3仪器和探头系统性能:系统有效灵敏度必须大于评定灵敏度10dB以上;直探头远场分辨力≥30dB,斜探头远场分辨力>6dB; 6.4试块 6.4.1标准试块: CSK-ⅠA、CSK-ⅠB 该试块主要用于测定探伤仪、探头及系统性能,调校探头K值、前沿,调整时基线比例。 6.4.2对比试块: RB-1、RB-2、RB-3该系列试块主要用于探测范围为10~80mm的距离波幅曲线制作,调整检测灵敏度。 6.4.3铁路钢桥制造专用柱孔标准试块:用于贴角焊缝超声波探伤调整时基线比例也及距离波幅曲线制作,调整检测灵敏度等。 6.5耦合剂 6.5. 1 应选用适当的液体或糊状物作为耦合剂,耦合剂应具有良好透声性和适宜流动性,不应对材料和人体有损伤作用,同时应便于检验后清理。 6.5.2 典型的藕合剂为水、机油、甘油和浆糊,耦合剂中可加人适量的“润湿剂”或活性剂以便改善藕合性能。 6.5.3 在试块上调节仪器和产品检验应采用相同的耦合 7. 工作程序 7.1检测准备 7.1.1测试前可由项目负责人或有关人员前往现场踏勘,了解现场基本情况(操作环境\工件材

小径管弯管段超声波检测内壁裂缝方法探讨

小径管弯管段超声波检测内壁裂缝方法探讨 董亮 (武汉锅炉股份有限公司质量检查处 武汉 430000) 摘 要 小径管原材料检测一般采用涡流和超声波在线检测。已加工成型的弯管,针对弯管段内壁的裂缝,采用直接接触法手工超声波探伤方法,能快速检测缺陷,达到检测目的。 关键词 小口径管;探头;曲面探伤。 1 前 言 电站锅炉在运行过程中由于小径管爆管造成的停炉占有很大的比例,而爆管的原因主要有2种:第一,在制造钢管的过程中产生的缺陷——原材料存在缺陷;第二,钢管在加工过程中(焊接、弯管过程)产生的缺陷。对第一种情况,小口径管原材料进厂后,采用涡流和超声波在线自动检测,能有效地保证原材料的质量。针对第二种情况,小口径管对接焊接接头一般采用射线检测来保证焊接质量;如果小径管在弯管过程中弯头部位产生了缺陷,由于对弯头部位采用射线检测方法不易操作,也达不到检测缺陷的目的,因此采用超声波检测方法。 小径管原材料在线检测合格后进入弯管工序。在弯管时发现有弯裂断开情况,取样后发现在钢管内壁弯头的外圆弧有环向裂缝产生。针对这种缺陷,射线检测方法已不能操作,而常规的超声波检测也不能准确地发现缺陷,此时采用小晶片、专一K 值(管壁厚度不同其K 值也不一样),带弧面的探头进行超声波检测,能达到检测缺陷,保证弯头质量的目的。 2 实 例 下面以Φ51×8.5mm 小径管为例来说明 2.1探头的频率,晶片尺寸 小径管直径为51mm ,壁厚为8.5mm ,弯管处半径为53mm (见图一),探头在直径51mm 的弧面上对曲率半径为53mm 的弯管段进行探伤,为保证探头与钢管表面接触良好,可选用频率为5MHz ,晶片尺寸为6mm×6mm 的横波斜探头。检测范围为弯管段加上两端各200mm 直管段的外圆弧侧钢管如见图一所示。 图1 2.2探头的K 值 探头在弯管段探伤,为使超声波主声速轴线扫查到钢管内壁,K 值应满足(见图二) ?=-=-1.57)535 .853(sin 1β 55.11.57≤≤tg K

焊缝超声波检测技术总结知识讲解

一、超声波探伤常见缺陷回波类型显示 1、气孔:单个气孔回波高度低,波形稳定,从各个方向探测,反射波大致相同,稍一移动探头就消失。密集气孔为一族反射波,其波高随气孔的大小而不同,当探头作定点转动时,会出现此起彼落的现象。 2、夹渣:点状夹渣的回波信号与点状气孔相似。条状夹渣回波信号多呈锯齿状,反射率低,一般波幅不高,波形常呈树枝状,主峰边上有小峰,探头平移时波幅有变动,从各个方向探测,反射波幅高度不相同。 3、未焊透:在板厚双面焊缝中,未焊透位于焊缝中部,声波在未焊透缺陷表面上类似镜面反射,用单斜探头探测时有漏检的危险。对于单面探测根部未焊头,类似端角反射。探头平移时,未焊透波形稳定。焊缝两侧探伤时,均能得到人致相同的反射波幅。 4、未熔合:当超声波垂直入射到其表面时,回波高度大,当探头平移时,波形较稳定,两侧探测时,反射波幅不同,有时只能从一面探测。 5、裂纹:一般来说,裂纹回波较大,波幅宽,会出现多峰。探头平移时,反射波连续出现,波幅有变化,探头转动时,波峰有上下错位的现象。 常见的缺陷回波图片 常见的缺陷类型图片 未熔合、未焊透 裂纹 气孔

二、焊缝探伤中常见的伪缺陷回波 6、仪器杂波:在不接探头的情况下,由于仪器性能不良,灵敏度调节过高,荧光屏上出现单峰或者多峰波形,接上探头工作时,此波仔荧光屏上的位置固定不变。一般情况下,降低灵敏度后,此波即消失。 7、探头杂波:仪器接上探头后,在荧光屏上显示山脉冲波幅很高、很宽的信号,无论探头是否接触好,它都存在且位置不随探头移动而移动,即固定不变。 8、耦合剂反射回波:如果探头的折射角度大,而探伤灵敏度有调得较高,则有一部分能量转换成表面波,这种表面波传播到探头前沿耦合剂堆积处,造成反射信号。只要探头固定不动,随着耦合剂的流大、波幅慢慢降低,很不稳定,用手擦掉探头前面的耦合剂时,信号就会消失。 9、焊缝表面和沟槽反射波:在多到焊缝表面形成一道道沟槽。当超声波扫查到沟槽时,会引起沟槽反射。鉴别的方法是,一般出现在一次、二次波处或稍偏后的位置,这种反射信号的特点是不强烈、迟钝。 10、焊缝上下错位引起的反射波:由于焊缝上下焊偏,在一侧探伤时,焊角反射波很像焊缝内的缺陷,当探头移到另一侧时,在一次波前没有反射波或测得探头的水平距离的焊缝的母材上。 11 、焊角回波:焊缝一般都有一定的余高,余高与母材的交界处称为焊角,由焊角产生的回波称为焊角回波。在阶梯试块上做试验:如下图A、图B所示,从A、B两个相反的方向检测同一个台阶,探头在A位置时会有回波,在B位置时没有回波。角焊回波的特点是:探头在工件上A位置处会有焊角回波产生,在B位置处则无焊角回波产生。焊角回波高度与余高高度有关,余高高时焊角回波高度高,余高低时焊角回波高度低,余高到一定程度时,无焊角回波。当探头沿焊缝平行移动时,焊角回波的位置不会改变,当探头垂直焊缝作前后移动时,焊角回波的位置会相应的移动一段距离,如果根据最高焊角回波的位置计算出它的水平位置和垂直距离,计算出的焊角位置与工件上的实际焊角位置相同;如果用手沾油轻轻敲击工件的焊角处,焊角回波会上下跳动。 (图A)(图B)

钢结构焊缝超声波检测实施细则

1 引用标准 《无损检测人员资格鉴定与认证》GB/T 9445-2008 《焊缝无损检测超声检测技术检测等级和评定》GB/T 11345-2013 《焊缝无损检测超声检测焊缝中的显示特征》GB/T 29711-2013 《焊缝无损检测超声检测验收等级》GB/T 29712-2013 《钢结构超声波探伤及质量分级法》JG/T 203-2007 《钢结构工程施工质量验收规范》GB 50205-2001 2 适用范围 本细则适用于母材厚度为不小于8mm铁素体钢全熔透焊缝(包括对接接头、T型接头和角接接头)的超声波探伤。如母材厚度小于8mm且不小于4mm,则按照标准JG/T 203-2007进行超声波探伤。 3 主要仪器设备 3.1 超声检测仪器应定期进行性能测试。除另有约定外,超声检测仪宜符合下列要求: 3.1.1 温度的稳定性:环境温度变化5℃,信号的幅度变化不大于全屏高度的±2%,位置变化不大于全屏宽度的±1%。 3.1.2 显示的稳定性:频率增加约1Hz,信号幅度变化不大于全屏高度的±2%,位置变化不大于全屏宽度的±1%。 3.1.3 水平线性的偏差不大于全屏宽度的±2%。 3.1.4 垂直线性的测试值与理论值的偏差不大于±3%。 3.2 系统性能测试 至少在每次检测前,应按JB/T9214推荐的方法,对超声检测系统工作进行性能试。除另有约定外系统性能宜符合下列要求: 3.2.1 用于缺欠定位的斜探头入射点的测试值与标称值的偏差不大于±1mm; 3.2.2 用于缺欠定位的斜探头折射角的测试值与标称值的偏差不大于±2o; 3.2.3 灵敏度余量、分辨力和盲区,视实际应用需要而定。 系统性能的测试项目、时机、周期及其性能要求,应在书面检测工艺规程中予以详细规定。 3.3 探头 3.3.1 检测频率应在2MHz~5MHz范围内,同时应遵照验收等级要求选择合适的频

管座角焊缝超声波探伤工艺规程

管座角焊缝超声波探伤工艺规程 1 通用部分 a)主题内容与适用范围 本规程规定了检验焊缝及热影响区缺陷,确定缺陷位置、尺寸和缺陷评定的一般方法及探伤结果的分级方法。 本规程适用于母材厚度不小于8mm的铁素体类钢全焊透熔化焊管座角焊缝脉冲反射法手工超声波检验。 本规程不适用于铸钢及奥氏体不锈钢焊缝;内径小于等于200mm的管座角焊缝。b)文件控制 本规程为XX公司受控文件,未经允许不得复制、转让或使用。 c)引用标准 ZBY 344 超声探伤用探头型号命名方法 ZBY 231 超声探伤用探头性能测试方法 ZBY 232 超声探伤用1号标准试块技术条件 ZBJ 04 001 A型脉冲反射式超声探伤系统工作性能测试方法 GB 11345—1989 钢焊缝手工超声波探伤方法和探伤结果分级 2 检验人员 2.1从事焊缝探伤的检验人员必须掌握超声波探伤的基础技术,具有足够的焊缝超声波探伤经验,并掌握一定的材料、焊接基础知识。 2.2焊缝超声检验人员应按有关规程或技术条件的规定经严格的培训和考核,并持有相应考核组织颁发的等级资格证书,从事相对应考核项目的检验工作。 2.3超声检验人员的视力应每年检查一次,校正视力不得低于1.0。 3 探伤仪、探头及系统性能 3.1探伤仪 使用A型显示脉冲反射式探伤仪,其工作频率范围至少为1~5MHz,探伤仪应配备衰减器或增益控制器,其精度为任意相邻12dB误差在±1dB内。步进级每档不大于2dB,总调节量应大于60dB,水平线性误差不大于1%,垂直线性误差不大于5%。 3.2探头 3.2.1探头应按ZBY 344标准的规定作出标志。 3.2.2晶片的有效面积不应超过500mm2,且任一边长不应大于25mm。 3.2.3声束轴线水平偏离角应不大于2°。 3.2.4探头主声束垂直方向的偏离,不应有明显的双峰,其测试方法见ZBY 231。 3.2.5斜探头的公称折射角β为45°、60°、70°或K值为1.0、1.5、2.0、2.5,折射角的实测值与公称值的偏差应不大于2°(K值偏差不应超过±0.1),前沿距离的偏差应不大于1mm。如受工件几何形状或探伤面曲率等限制也可选用其他小角度的探头。 3.2.6当证明确能提高探测结果的准确性和可靠性,或能够较好地解决一般检验时的困难而又确保结果的正确,推荐采用聚焦等特种探头。 3.3系统性能 3.3.1灵敏度余量 系统有效灵敏度必须大于评定灵敏度10dB以上。

小径管对接焊接接头超声波探伤探讨

小径管对接焊接接头超声波探伤探讨 发表时间:2018-10-31T16:39:00.027Z 来源:《建筑学研究前沿》2018年第18期作者:李胤张金玲吴春婷[导读] 由于小径管焊接接头具有管壁较薄、曲率半径大、规格多等特点,超声波检验时存在诸多困难及需要注意的问题。中车青岛四方机车车辆股份有限公司山东青岛 266111 摘要:小径管焊接接头的超声波探伤检验是代替射线检验的最佳方法,它具有检验周期短、成本低、劳动生产率高等优点。在实际生产中,小径管超声波探伤技术得到了空前的应用,取得了很好的效果,本文从分析超声波对小径管对接焊焊缝探伤的特点入手,对其探伤机理进行分析并提出一些需要注意的问题,对于提升.小径管对接焊接接头超声波探伤水平有一定的借鉴作用。 关键词:小径管对接焊;超声波;探伤;缺陷波;声能损失 引言:由于小径管焊接接头具有管壁较薄、曲率半径大、规格多等特点,超声波检验时存在诸多困难及需要注意的问题。实践证明,只要在实际探伤工作中注意小径管焊接接头超声波探伤的特有问题,根据工件实际情况选好探头,正确调节整扫描速度,是完全能够准确快捷地检验小径管焊接接头的焊接质量,保证电力生产的安全。另外,从现检验仪器的发展来看,若有小径管探伤时使数字式超声波探伤仪器,由于数字式探伤仪具有定位准确等特点,能使检验结果更加准确可靠。 一、小径管对接焊缝超声波探伤的特点 一是小径管焊缝宽,当壁厚较薄时,焊缝宽度往往大于管壁厚度。用1、2次波探伤时要选择大的探头入射角,而用2、3次波探伤时要选择小的探头入射角,且扫描比例扩大,超声波形拉宽,这样易发生近场区干扰,给缺陷定性、定量带来了相当大的困难。二是管壁曲率大,声能传输损失大,探头通过曲率大的圆弧面接触。由于曲率大接触不良对定量有影响,且声波入射到管壁外表面为凸面,使声束发散。在2、3次波探伤中,声束传输路径更复杂,经过多次发散、聚集,声压反射异于常规,声压计算也相当困难,降低了探伤灵敏度。因此,小径管超声波探伤应提高探伤灵敏度进行,以补偿曲率大、声能发散及藕合不良的影响。三是焊缝焊波高度、焊瘤尺寸与管壁厚度为同一数量级,在较高灵敏度探伤时杂波多,这样给缺陷波的识别增加难度,需要操作人员熟练掌握焊缝中各种缺陷反射波的静、动态波形,准确测量焊缝处管壁厚度,以准确区分缺陷波与杂波的特点,以免发生误判。 二、小径管对接焊缝超声波探伤应注意的问题 一是关于探头的选用。小径管对接焊缝探伤时,应尽可能选择较大角度的探头,使声束能扫查到整个焊缝断面,但当探头角度较大时,声束易扩散,易产生变形波,干扰对缺陷的正确判定。另外,要求一次波的主声束至少应扫查到焊缝下部占壁厚1/ 4 的范围,因此要求探头有一定的移动区域。为满足这一要求,除增大声束入射角外,还应缩短探头声束入射点至探头前沿的距离。因此,选用大K值,短前沿的探头是进行准确探伤的前提条件。 二是关于探伤灵敏度的调整。由于小径管对接焊缝是利用一次波和二次波进行探伤,因此一次波和二次波探伤灵敏度的调整很重要。根据DL/ T5048- 95 中的小径管焊接接头探伤距离-波幅曲线进行检测时,由于反射杂波较多,因此需对探伤灵敏度重新进行调整。在超声波探伤中,探伤灵敏度调整的准确性,直接影响到对缺陷的定位准确以及对缺陷的判断。对于壁厚较大的焊缝,探伤灵敏度调整有少许误差可能影响还不是很明显,但对于小径管来说,由于其壁厚较薄,影响就相当对来说要大得多。一般来说,在小径管探伤时,我们调整仪器的探伤灵敏度是在小径管焊接接头超声波探伤专用试块上进行,使对比试块Ⅰ上深度5mm∮2横孔反射波达60%,然后在提高6dB作为探伤灵敏度。另一种是利用对比试块Ⅱ来调整,前后移动探头,利用一、二、三次波探测试块上竖孔∮2,找到三者最高回波,在连成一条∮2竖孔距离----波幅曲线。然后以∮2-ΔdB 作为探伤灵敏度。 三是声能损失问题。在超声波检验中,若不对声能损失进行补偿,那么缺陷的回波高度必然要小于实际的回波高度,容易在检验中引起漏检或误判。小径管焊接接头超声波探伤时,不仅要考虑声波的耦合损失,还要考虑到由于小径管的特点而引起界面扩散损失。由超声波的传播特点知道,当超声波入射到凸界面时,声束扩散;而在凹界面反射时,声束也是扩散的,扩散程度随界面的率半径增加而增加。在小径管焊接接头超声波探伤时,声波要经过入射到凸界面而进入工件,当使用一、二次反射波探伤时声波又要在凹界面进行反射,加上小径管的曲率半径都较大,所以声能的扩散损失较大,引起回波大幅降低。所以在实际工作中,应充分考虑到这一点,必要时应采用DL/T5048 - 95 附录H的方法进行小径管内、外壁声能损失测量,再在实际探伤时加以补偿。另外,由于小径管曲率半径大,探伤面与探头的接触好坏也直接影响到声能传入工件。若探头接触面与管子外表面接触不好,缝隙较大,必然引起声能的重大损失。所以,DL/ T5048 -95标准指出,若探头边缘与管子外表面间隙大于 0.11mm 时,可以通过在管子表面铺上细砂纸沿轴向轻轻研磨,使探头表面与管子的外表面紧密接触。 四是焊缝根部的检测。小径管对接焊缝中,如裂纹、未熔合、未焊透等危害性缺陷大都容易产生在根部,因此根部缺陷的检测很重要。检测过程中根部裂纹、未焊透缺陷形成端角反射,回波较强,从焊缝两侧探测,位于焊缝中心,沿焊缝方向有一定的游动范围;未熔合:一般出现在坡口面上,一般二次波探伤容易检出,位置位于探头一侧,另一侧难检出;气孔:气孔可出现在焊缝任何位置,气孔回波幅度较低。据以上特征可做一定的判定,但是小径管由于壁厚变化较大,管子实际壁厚与公称壁厚有一定差距,所以根部的缺陷及近根部的缺陷回波与错口、焊瘤等干扰波区分困难,因此对根部的反射波一定要认真分析,准确判定,防止误判和漏判。结束语: 实践证明,小径管焊接接头的超声波探伤检验是代替射线检验的最佳方法,它具有检验周期短、成本低、劳动生产率高等优点。只要在实际探伤工作中注意小径管焊接接头超声波探伤的特有问题,根据工件实际情况选好探头,正确调节整扫描速度,是完全能够准确快捷地检验小径管焊接接头的焊接质量,保证电力生产的安全。另外,从现检验仪器的发展来看,若有小径管探伤时使数字式超声波探伤仪器,由于数字式探伤仪具有定位准确等特点,能使检验结果更加准确可靠。 参考文献: [1]周林.电厂小径管焊口质量的现场射线检验经验[J].无损探伤,2015,28(6):43-44. [2]白佑平.小径管超声波探伤时探头K值选择的探讨[J].河北电力技术,2015,4(20):39-40.

焊缝超声波探伤

焊缝手动超声波探伤 锅炉压力容器和各种钢结构主要采用焊接方法制造。射线探伤和超声波探伤是对焊缝进行无损检测的主要方法。对于焊缝中的裂纹、未熔合等面状危害性缺陷,超声波比射线有更高的检出率。随着现代科技快速发展,技术进步。超声仪器数字化,探头品种类型增加,使得超声波检测工艺可以更加完善,检测技术更为成熟。但众所周知:超声波探伤中人为因素对检测结果影响甚大;工艺性强;故此对超声波检测人员的素质要求高。检测人员不仅要具备熟练的超声波探伤技术,还应了解有关的焊接基本知识;如焊接接头形式、坡口形式、焊接方法和可能产生的缺陷方向、性质等。针对不同的检测对象制定相应的探伤工艺,选用合适的探伤方法,从而获得正确的检测结果。 射线检测局限性: 1.辐射影响,在检测场地附近,防护不当会对人体造成伤害。 2.受穿透力等局限影响,对厚截面及厚度变化大的被检物检测效果不好。 3.面状缺陷受方向影响检出率低。 4.不能提供缺陷的深度信息。 5.需接近被检物体的两面。 6.检测周期长,结果反馈慢。设备较超声笨重。成本高。 常规超声波检测不存在对人体的危害,它能提供缺陷的深度信息和检出射线照相容易疏漏的垂直于射线入射方向的面积型缺陷。能即时出结果;与射线检测互补。 超声检测局限性: 1.由于操作者操作误差导致检测结果的差异。 2.对操作者的主观因素(能力、经验、状态)要求很高。 3.定性困难。 4.无直接见证记录(有些自动化扫查装置可作永久性记录)。 5.对小的(但有可能超标的缺陷)不连续性重复检测结果的可能性小。 6.对粗糙、形状不规则、小而薄及不均质的零件难以检查。 7.需使用耦合剂使波能量在换能器和被检工件之间有效传播。

小径管射线透照

小径管射线透照 双壁双影法主要用于外径小于或等于100mm的小径管对接焊缝。按照被检焊缝在底片的影象特征,又分椭圆成象和重迭成象两种方法。 (1)椭圆成象法透照布置 椭圆成象法,胶片暗袋平放,视线焦点偏离焊缝中心平面一定距离 (称偏心距S o), 以射线束的中心部分或边缘部分透照被检焊缝(图5-17)。 偏心距应适当,可按椭圆开口宽度(g)的大小算出,其用计算式表示为: S0=L1(b+g)/L2(5.10) 式中:b——焊缝宽度,g——椭圆开口宽度。 偏心距的大小影响底片的评定。太大根部缺陷(裂纹、未焊透等) 可能漏检,或者因影象畸变过大,难于测评;太小又会使源侧焊缝与片 侧焊缝热影响区不易分开。图5—17双壁双影法透照(2)重迭成象法 特殊情况下,为重点检测根部裂纹和未焊透,可使射线垂直透照焊缝,此时胶片宜弯曲贴合焊缝表面,以尽量减小缺陷到胶片距离。当发现不合格缺陷后,由于不能分清缺陷是处于射源侧或胶片侧焊缝中。一般多作整圈返修处理。 (3)象质计的放置 双壁双影法透照时,可采用通用或专用象质计,一般应横跨焊缝放置。 小径管透照在源侧焊缝附近必须放置中心定位标记和片号等识别 标记。 小径管环向对接焊接接头的透照布置 斜透照方式椭圆成像: T(壁厚)≤8mm; g(焊缝宽度)≤D o /4 椭圆成像时,应控制影像的开口宽度(上下焊缝投影最大间距)在 1倍焊缝宽度左右。 不满足上述条件或椭圆成像有困难时可采用垂直透照方式重叠成 像。

小径管环向对接接头的透照次数 小径管环向对接焊接接头100%检测的透照次数:采用倾斜透照椭圆成像时,当T/ Do≤0.12时,相隔90°透照2次。当T/ Do>0.12时,相隔120°或60°透照3次。垂直透照重叠成像时,一般应相隔120°或60°透照3次。 由于结构原因不能进行多次透照时,可采用椭圆成像或重叠成像方式透照一次。鉴于透照一次不能实现焊缝全长的100%检测,此时应采取有效措施尽量扩大缺陷可检出范围,并保证底片评定范围内黑度和灵敏度满足要求。 理解: (1)双壁双影椭圆成像的实施原则,即T(壁厚)≤8mm、g(焊缝宽度)≤Do /4 (2)椭圆成像有困难一般是指焦距不满足要求。 (3)小径管的透照次数与管外径和壁厚有关,与检测技术级别无关(4)规定小径管的透照次数的主要目的是控制透照厚度比 (5)结构:一般系指排管或盘管 应用: (1)为控制影像的开口宽度应采用偏心法 (2)扩大缺陷可检出范围的有效措施一般包括:双胶片技术、适当提高管电压、窗口加滤波板 注意:当Do ≤20mm、T≥8mm 、g >Do /4 重点检查根部裂纹或未焊透时应采用垂直透照

焊缝探伤超声波探头的选择方案参考

焊缝探伤超声波探头的选择方案参考 编号被测工件厚度选择探头和斜率选择探头和斜率 14—5mm6×6 K3 不锈钢:1.25MHz 铸铁:0.5—2.5 MHz 普通钢:5MHz 26—8mm8×8 K3 39—10mm9×9 K3 411—12mm9×9 K2.5 513—16 mm9×9 K2 617—25 mm13×13 K2 726—30 mm13×13 K2.5 831—46 mm13×13 K1.5 947—120 mm13×13( K2—K1) 10121—400 mm18×18 ( K2—K1) 20×20 ( K2—K1) 超声波探伤在无损检测焊接质量中的作用 焊缝检验方法: 1,外观检查. 2,致密性试验和水压强度试验. 3,焊缝射线照相. 4,超声波探伤. 5,磁力探伤. 6,渗透探伤.关于返修规定:具体情况具体对待,总之要力争减少返修次数在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。 无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。 那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20千赫兹高的声波叫超声波。用于探伤的超声波,频率为0.4-25兆赫兹,其中用得最多的是1-5兆赫兹。利用声音来检测物体的好坏,这种方法早已被人们所采用。例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。由于超声波探伤具有探测距离大,探伤装置体积小,重量轻,便于携带到现场探伤,检测速度快,而且探伤中只消耗耦合剂和磨损探头,总的检测费用较低等特点,目前建筑业市场主要采用此种方法进行检测。

小径管超声

电站锅炉小径管超声波检测技术 内容摘要小径管是电站锅炉广泛应用的一种材料,其焊接质量关系到锅炉的安全运行。对其焊接质量的内部检验主要依赖于无损检测技术。本文分析了小径管超声波检测的困难,分析了解决这些困难的方法,制订了有针对性的检测工艺,较好地满足了检验要求。 一、引言 小径管是指壁厚4~14mm,外径32~89mm的管子。小径管在锅炉和压力容器制造安装过程中应用较广,承受较高的压力。特别是火力发电厂的水冷壁管、过热器管、再热器管等大都属于小径管。 小径管其对接接头的无损检测,常用的方法为射线检测和超声波检测。射线检测时,采用双壁双投影椭圆成像。此时为了提高透照的宽容度,往往采用较高的射线能量。因此,这种情况下,缺陷的检出率是很低的,特别是危害严重的裂纹常常发生漏检。此外,很多小径管在安装过程中,管子密集排列,处于困难位置,给射线探伤带来很大的难度。而采用超声波检测,不仅检测速度快,检测成本低,而且由于超声波检测固有的特点,对面积型缺陷(裂纹、未熔合)等敏感,检测灵敏度高,检测的安全可靠性大大提高。但是由于小径管其管壁曲率大,声波耦合困难,其反射面声能损失较大,壁厚薄,探头的前沿长度对检验的影响大,因而,对小径管对接接头中的危害性缺陷较难判定,影响了超声波在小径管检测中的应用。 二、小径管超声波探伤的困难

(一)、壁厚和焊缝宽度影响 小径管管壁薄,焊缝宽,如用普通斜探头探伤,因前沿距离长,用一次波探伤时,主声束扫查不到小径管焊缝根部,如改用三次波探伤,则因探头发射的声束宽,声束扩散,加之小径管曲率大的影响,造成声束严重散射,使得回波游动范围大,反射回波杂乱,给缺陷的判定和定位带来很大的困难,影响到探测的可靠性。 (二)、曲率半径影响 小径管曲率半径小,普通探头探测接触面小,曲面耦合损失大;超声横波在小径管内表面反射,发散严重,探伤灵敏度低;小径管壁薄,超声横波声程短,容易在近场区内检测,对缺陷判定带来很多困难。 综上所述,用常规超声波探伤方法对小径管焊缝的检验存在很大的困难,必须采用专用的探伤工艺,探头和仪器。 三、超声波探伤条件的选择 (一)、探伤仪器 小径管曲率半径小,壁薄,超声波探伤时杂波较多,为了便于判伤,要求探伤仪器的主要性能指标除应满足ZBY230-84标准规定的各项要求外,还应具有较高的分辨力和较窄的始脉冲宽度,最好使用数字式超声波探伤仪。 (二)、探头 1、斜锲 为了解决小径管焊缝因壁薄,曲率半径小、焊缝余高宽等因素对

小径管射线检测专用工艺

小径管射线检测专用工艺 1. 适用范围 本工艺规定了外径小于或等于100mm ,壁厚小于或等于8mm 钢管透照工艺。 2. 编制依据 2.1.《承压设备无损检测 通用要求》 NB/T47013-2015 2.2. NB/T47013-2015《承压设备无损检测》 2.3.GB/T3323—2005《金属熔化焊焊接接头射线照相》 2.4.DL/T821-2002《钢制承压管道对接焊接接头射线检测技术规程》 2.5.SY4109-2013《石油天然气钢质管道无损检测》 3. 透照布置 3.1.双壁双影椭圆成像法(如图1) 图1 小径管椭圆透照布置 3.2.胶片暗袋平放,射源焦点偏离焊缝中心平面一定距离L 0(称为偏心距),以射线束的中心部分或边缘部分透照被检焊缝。偏心距应适当,可按椭圆开口宽度(b )的大小算出: L 0=21L L (g+b )=()()b g h Do h Do F +?+?+- 式中:△h —焊缝余高

g—焊缝宽度 b—椭圆开口宽度 3.3.椭圆开口宽度按NB/T47013-2015标准通常取一个焊缝宽度左右,偏心距太大,窄小的根部缺陷(裂缝未焊透等)可能漏检,或者因影像畸变过大,难于评判。偏心距太小,又会使源侧焊缝与片侧焊缝根部缺陷不易分开。 4. 重叠成像法 4.1.有的情况下可采用射线垂直透照焊缝,使焊缝影像重叠显现在底片上的透照布置。此时胶片宜弯曲贴合焊缝表面,以尽量减小缺陷到胶片的距离。当发现不合格缺陷后,由于不能分清缺陷是处于射源侧或胶片侧焊缝中,一般应作整圆返修处理。 4.2.椭圆成像与重叠成像的条件与透照次数 小径椭圆成像与重叠成像的条件与透照次数见表1: 表1

相关主题
文本预览
相关文档 最新文档