当前位置:文档之家› 电力电缆故障诊断及定位毕业论文

电力电缆故障诊断及定位毕业论文

毕业设计(论文)题目名称:电力电缆故障诊断及定位

电力电缆故障诊断及定位

Power cable fault diagnosis and

orientation

就读学校:中原工学院

专业:工业自动化

学生姓名:侯志飞

指导老师:万留杰肖俊明

2015年4月

目录

摘要............................................................ 绪论............................................................

第1章电力电缆故障分析........................................

1.1 电缆易出故障部位............................................

1.2 电缆故障原因................................................

1.3 电缆故障的发生机理 ......................................... 第2章电力电缆故障的测试方法..................................

2.1 研究方法..................................................

2.2 测距的理论方法........................................ .... 第3章电缆故障的定点方法......................................

3.1 电缆路径检测................................................

3.2 故障定点....................................................

3.3 其他方法.................................................... 第4章展望..................................................... 致谢............................................................ 参考文献........................................................

绪论

随着社会经济的发展和现代化建设步伐的加快,工农业生产及人民生活的用电量日益增加,对电力的需求量越来越大,要求电网的安全运行也越来越高。而作为连接各种电气设备、传输和分配电能的电力电缆,以其安全、维护工作量少,稳定性高,有利于提高电能的质量并且美化城市等优点,已经得到越来越广泛的应用。在城市市区220kV、110kv、10kv电网建设中有逐渐取代了架空线的趋势。在我国一些经济发达地区,如广州、深圳,城市10kv配网电缆化率已高达95%以上。即便象在南宁这样的经济欠发达地区,已投入运行了1IOkVXLPE(交联聚乙烯)电缆20km,10kv电缆570km,10kv城市配网电缆化率也达到了55%的水平。由此可见,电力电缆的可靠运行直接关系到社会的稳定、经济的发展和人们的生活水平。

电力电缆线路故障和多数电力设备一样,投入运行初期(1~5年内)容易发生运行故障,主要原因是电缆及附件产品质量和电缆敷设安装质量问题;运行中期(5~25年内),电缆本体和附件基本进入稳定时期,线路运行故障率较低,故障主要原因是电缆本体绝缘树枝状老化击穿和附件呼吸效应进潮而发生沿面放电;运行后期(25年后),电缆本体绝缘树枝状老化、电热老化以及附件材料老化加剧,电力电缆运行故障率大幅上升。随着时间的推移,如今运行的110kV及以上高压的XLPE电缆,有些己逐渐进入电缆及其附件预期寿命的“中年期”。电缆系统在实际使用状况下,能够继续长时期可靠工作或因绝缘老化加速而缩减使用寿命是运行管理部门十分关注的问题。

根据运行经验表明,电缆运行了一定的年限,故障率有逐年长升的趋势。电缆发生故障时,由于埋在地下,查找比架空线困难,若故障测距不准,电缆路径不清楚,耽误了大量时间,造成无法估量的损失。所以有必要对电力电缆故障探测方法进行深入的研究。从二战前提出的,发展到今天已经出现了诸如:电桥法,驻波法等经典理论方法,以及基于行波理论产生的:五十年代的低压脉冲法,七十年代的脉冲电压法,八十年代的脉冲电流法等的现代行波法。理论是方法的依据,尤其是现代行波理论所采用的均匀传输线中的导行电磁波,完全应用了麦克斯韦的电磁理论,分析电磁波在传输线上的波动过程,以此来定位故障点的位置。这些理论都是建立在对长距离传输线路模型的简化基础上,即经过特殊处理,简化为现在应用普遍的均匀传输线路的电报方程。但应用实际中非均匀传输线的非均匀性我们是要必须考虑的,即没有对传输线进行特殊处理,并

且也不需要对耦合的电报方程进行解耦处理。应用数值分析方法得到更加精确的传输线路波动方程,对于线路故障的探测也将更准确,其意义和价值都是难以想象的。

综上所述,通过从电力电缆的发展,优越性,故障危害,理论方法的创新等方面我们可以得出对电力电缆的故障探测的研究有着重要的理论意义和应用价值。对于电力系统是一个非常迫切需要解决的问题。

目前,电缆线路故障测距方法,主要为离线进行,但在线故障测距方法也已出现。例如,日本学者采用脉冲电流法,由光纤电流互感器感应出故障时产生的浪涌电流信号,利用采集速度为16MHZ的快速A/D技术实现测距,目前他们只实现了不带分支出线电缆的在线故障测距。下一步目标是带分支出线系统的在线故障定位。

美国学者为克服高压脉冲法有可能对电缆的健全部分进一步造成危害的缺陷,也提出了在线故障测距方法。但其出发点是将环形线路开路或在线路末端设置开路点,利用故障时产生的浪涌电压或电流在开路点发生正或负的全反射,通过设于开路点附近的传感器得到脉冲信号,测出其脉冲间隔时间实现测距。但这种方法在实际电网中存在局限性。

另外,日本学者还提出了利用分布式光纤温度传感器(FODT),通过检测故障点附近温度变化情况来实现电缆故障定位的新方法。英国学者则提出了利用基于脉冲电流法的实时专家系统来实现电缆的故障定位。随着计算机技术的应用,微机保护和故障录波装置的开发及大量投放,更加速了故障测距的实用化进程。基于微机或微处理机装置的故障测距方法研究也为国内外的热门课题之一。

综观现有的行波测距方法,特别是新型测距方法,国内外学者作了大量的研究,并取得了一定的成果。总而言之,行波方法有很多独特的优点,今后将在测距和距离保护中得到更为广泛的应用。

电缆线路的故障测距方式有离线理论和在线理论两大类。其中离线理论按原理来分类主要有五大类:电桥法,驻波法,低压脉冲反射法(又称雷达法),脉冲电压法(又称闪络法)、脉冲电流法。其中低压脉冲法,脉冲电压/流法是基于理想模型的现代行波理论。本文通过对于这几种测试电缆故障的方法的分析来解决日常应用中所遇到的问题。

第1章电力电缆故障分析

1.1电力电缆易出现故障部位

根据河南电业局相关运行检修的实践统计,电缆易出现故障的部位主要有绝缘、附件和外护套。

1.1.1 绝缘问题

电缆的绝缘老化主要出现在电缆投入运行的后期,导致运行后期故障率大幅上升;绝缘老化主要分为树枝状老化、电热老化及附件材料老化。电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。当绝缘介质电离时,气隙中产生臭氧、硝鼓等化学生成物,腐蚀绝缘层:绝缘层中的水分使绝缘纤维产生水解,造成绝缘程度下降。

过热会引起绝缘层老化变质。电缆绝缘内部气隙产生电游离造成局部过热,使绝缘层碳化。电缆过负荷是电缆过热重要的因素。安装于电缆密集地区、电缆沟及电缆隧道等通风不良处的电缆、穿在干燥管少的电缆以及电缆与热力管道接近的部分等都会使电缆绝缘本身过热而使绝缘层加速损坏。

电缆绝缘长期在电和热的作用下运行,其物理性能会发生变化,从而导致其绝缘强度降低或介质损耗增大而最终引起绝缘崩溃者为绝缘老化,绝缘老化故障率约为19%。运行时间特别久(30.40年以上1的则称为正常老化。如属于运行不当而在较短年份内发生类似情况者,则认为是绝缘过早老化。可引起绝缘过早老化的主要原因有:

1.电缆选型不当,致使电缆长期在过电压下工作。

2.电缆线路周围靠近热源,使电缆局部或整个电细线路长期受热而过早老化。

3.电缆工作在具有可与电缆绝缘起不良化学反应的环境中而过早老化。

1.1.2 附件问题

理论上认为,电力电缆受外界环境因数和人为因数影响较小,安全运行可靠性高,但是电缆的中间接头和终端通常在电缆敷设现场人工制作安装,容易出现纸漏。电缆附件故障占电缆故障的27%。其宏观主要表现为复合界面放电和附件材质早期老化。其中复合介质沿面放电占电缆附件故障的73%,附件材质早期老化占附件故障的27%。

电缆附件故障往往是由制作工艺不精,在制作过程中,使附件出现气泡、水分、杂

质等缺陷,导致局部放电而引起绝缘击穿,主要体现在:

1.电缆的中间接头、终端头制作质量不高

(1)剥离半导体时,损坏内绝缘或绝缘表面有微粒、灰尘等杂质,或者半

导电层爬电距离处理不够,在投入运行后,都将使其中的杂质在强大的电场作用下发生游离,产生电树枝。

(2)制作过程中,如果导线压接质量不好,使接头接触电阻过大而发热,或热收缩过渡等造成了绝缘老化,从而使绝缘层老化击穿,导致电缆接地短路或相间短路,使电缆头产生“放炮"现象,同时伤及附近的其他电缆。

(3)电缆接头工艺不标准,密封不规范,投入运行后使绝缘内部受潮气、水分的侵蚀,引起中间接头绝缘受潮劣化。严重时使电缆主绝缘内部大面积进水,导致主绝缘整体性受潮,最终发生电缆击穿故障。

(4)导体连接管压接不良。电缆中间接头导体连接管压接不良,打磨不平整,特别是在压接管口边缘处,局部有尖角、毛刺,易造成接头内部电场不均匀,运行中产生了局部放电,绝缘老化,绝缘性能下降,发生击穿事故。

(5)电缆终端或中间接头金属屏蔽层接地电阻过大。对于电缆的金属屏蔽层而言。在一般交联电缆上要有两点接地,且接地电阻要小于规定值。若接地电阻值超标很多,当电缆及接头受到过电压时,会感应产生更高的过电压。进而引起绝缘部分的老化击穿。同时电缆接地故障引起的系统过电压造成电缆的再次故障的可能性也仍然存在,后果也是比较严重的。

2.电缆本体在运行过程中因负荷的变化,环境因素的变化而热胀冷缩,特别是热收缩型电缆附件不能够随之弹性变形而丧失密封作用,在电缆附件与电缆XLPE绝缘层之间形成呼吸效应,将大气中的水分和潮气带入电缆附件中,引发电缆附件内部相间或相对地短路故障。

3.环境湿度、潮气偏大。制作电缆头时因环境潮气、湿度偏大,绝缘局部受潮,使绝缘性能下降,发展成贯穿性通道,导致电缆击穿事故。为了尽量避免电缆中间接头、电缆终端故障,电力部门应制订有效措施防范电缆接头故障,具体措施如下:

(1)进一步建立与规范电缆及附件的设计、选型、施工、监理、交接与验收的标准与规范,保证产品质量和施工质量的全程控制。

(2)应尽可能减少电缆中间接头,对于隧道、槽架与直埋混合方式敷设的电缆,接

头应尽量设置在隧道或槽架中。

(3)对于电缆中间接头的制作人员,应进行必要的业务资质与技术评定,持证上岗。

(4)在剥削护套、绝缘屏蔽层、半导体要细心,绝缘表面应彻底打磨,押解后必须去尖角、毛刺,清除金属粉末,防止杂质颗粒遗留。

除此之外,技术人员应严格按照有关操作技术规程进行,以确保电缆中间头和终端头的制作质量。在选用电缆头时,逐步改用橡胶预制式接头。它是总结并克服热收缩电缆头缺点的基础上专门研制使用的,适用于交联电缆接头,并且达到了国际IEC标准。制作全过程要求均应在现场完成,要选择合理适当时机,设法避免环境温度、湿度、灰尘、甚至工作人员汗液对电缆接头制作的不良影响,消除制作环节本身的事故隐患。

1.1.3 电缆外护层问题

在城市电网的改造中,中低压和高压电缆被广泛使用,电力电缆外护套是保护电缆的第一道防线,其完好与否对电缆的使用寿命关系重大。

1. 电缆外护层故障的原因主要有3种:

(1)电缆旁边的硬物损伤;

(2)施工遗留缺陷;

(3)白蚁蛀蚀;

调查表明第1、2种原因对电缆的损害并不严重,严重的是白蚁腐蚀。

2.防范措施

对于运行中的电缆,只能从提高测寻效率方面采取措施。例如采用较好的仪器、工具,熟练掌握测寻技术等。

防止外护套故障根本的对策,应采用系统工程的方法,实行全过程控制。从电缆的

选型和安装开始就要制定防止故障的目标:

(1)电缆的选型。选择硬度较高和防蚁性能好的外护套,目前己有一种工艺,可以在

外护套上挤压一层防蚁护套,其防蚁性能较佳。其次,可考虑选用耐腐蚀的金属护套,

即使电缆受到蚁害,也可减低金属护套被腐蚀的程度。

(2)提高电缆敷设安装质量。采用先进的敷设方法,电缆在敷设过程中不受到大的侧

压力,防止外护套受到损伤。严格电缆装置环境要求,如直埋电缆周围必须有不含石块和硬物等的细砂保护。

1.2 电力电缆故障原因

了解电缆故障的原因,对减少电缆的损坏,快速判定故障点十分重要。电缆故障的原因大致分为以下几类:

机械损伤:机械损伤类故障比较常见,所占的故障率最大,约为57%。其故障形式比较容易识别,大多造成停电事故。一般造成机械损伤的原因有以下几种;

直接受外力破坏。如进行城市建设,交通运输,地下管线工程施工、打桩、起重、转运等误伤电缆。

施工损伤。如机械牵引力过大而拉损电缆;电缆弯曲过度而损伤绝缘层或屏蔽层;在允许施工温度以下的野蛮施工致使绝缘层和保护层损伤;电缆剥切尺寸过大,刀痕过深等损伤。

自然损伤。如中间头或终端头的绝缘胶膨胀而涨裂外壳或附近电缆护套;因自由行程而使电缆管口、支架处的电缆外皮磨破:因土地沉降、滑坡等引起的过大拉力而拉断中间接头或电缆本体;因温度太低而冻裂电缆或附件;大型设备或车辆的频繁振动而损坏电缆等。

绝缘受潮:绝缘受潮是电缆故障的又一主要因素,所占的故障率约为13%,绝缘受潮一般可在绝缘电阻和直流耐压试验中发现,表现为绝缘电阻降低,泄漏电流增大。一般造成绝缘受潮的原因有以下几种:主要有接头盒或终端盒结构不密封或安装不良导致进水、电缆制造不良有小孔或裂缝、金属护套被外物刺伤或腐蚀穿孔等。

绝缘老化变质:电缆绝缘长期在电和热的作用下运行,其物理性能会发生变化,从而导致其绝缘强度降低或介质损耗增大而最终引起绝缘崩溃者为绝缘老化,绝缘老化故障率约占19%。运行时间特别久(30一40年以上)的则称为J下常老化。如属于运行不

当而在较短年份内发生类似情况者,则认为是绝缘过早老化。引起绝缘过早老化的主要原因有:

电缆选型不当,致使电缆长期在过电压下运行。

电缆线路周围靠近热源,使电缆局部或整个电缆线路长期受热而过早老化。

电缆工作在与电缆绝缘起不良化学反应的环境中而过早老化。

绝缘介质内部气息在电场的作用下产生游离使绝缘下降,电缆运行过热时也会引起绝缘层的老化变质。

过电压。电力电缆因雷击或其他冲击过电压而损坏的情况在电缆线路上并不多见。因为电缆绝缘在正常运行电压下所承受的电应力,约为新电缆所能承受的击穿试验时承受电应力的十分之一。因此,一般情况下,3—4倍的大气过电压或操作过电压对于绝缘良好的电缆不会有太大的影响。但实际上,电缆线路在遭受雷击时被击穿的情况并不罕见。从现场故障实物的解剖分析可以确认,这些击穿点往往早已存在较为严重的某种缺陷。雷击仅是较早地激发了该缺陷。容易被过电压激发而导致电缆绝缘击穿的缺陷主要有:

绝缘层内含有气泡,杂质或绝缘油干枯。

电缆内屏蔽层上有结疤或遗漏。

电缆绝缘己严重老化。

大气过电压与内部过电压的作用,使电缆绝缘层击穿,形成故障,击穿点一般存在材料缺陷。

过热。电缆过热有多方面的因素,从近几年各地运行情况的统计分析上来看,主要有以下原因:

电缆长期过负荷运行。

火灾或邻近电缆故障的烧伤。

靠近其他热源,长期接受热辐射。

过负荷是电缆过热的重要原因,会使电缆发生过热。例如在电缆比较密集的区域,电缆沟及隧道通风不良处,电缆穿在于燥的管中部分等,都会因电缆本身过热而加速绝缘损坏。橡塑电缆长期过热后,绝缘材料发生变硬、变色、失去弹性、出现裂纹等物理变化;另外,过负荷也会加速电缆铅包晶粒再结晶而造成铅包疲劳损伤。

产品质量缺陷。电缆及电缆附件是电缆线路中不可缺少的两种重要材料。它们的质

相关主题
文本预览
相关文档 最新文档