当前位置:文档之家› 专题14:数学思想方法之化归探讨

专题14:数学思想方法之化归探讨

专题14:数学思想方法之化归探讨
专题14:数学思想方法之化归探讨

【2013年中考攻略】专题14:数学思想方法之化归探讨

化归是一种重要的解题思想,也是一种最基本的思维策略,更是一种有效的数学思维方式。“化归”是转化和归结的简称。数学问题的解决过程就是一系列化归的过程,中学数学处处都体现出化归的思想,在数学问题的解决过程中,常用的很多数学方法实质就是化归的方法。化归思想是指在解决问题的过程中,有意识地对所研究的问题从一种对象在一定条件下转化为另一对象的思维方式。通常有从未知——已知;复杂——简单;抽象——具体;一般——特殊;综合——单一;高维——低维;多元——一元;困难——容易,以及数学表现形式之间的转化、将实际问题转化为数学问题等。说到底,化归的实质就是以运动变化发展的观点,以及事物之间相互联系,相互制约的观点看待问题,善于对所要解决的问题进行变换转化,使问题得以解决。体现上述化归思想的有换元法、消元法、配方法、降次法、待定系数法、几何三大变换法、几何问题代数化法、代数问题函数化法、数形结合法等等。

例如,当1,1-==y x 时,求22222345x y xy x y xy -+-的值。该题可以采用直接代入法,但是更简易的方法应为先化简再求值,此时原式14118)1(168622-=??--??=-=xy y x 。这就是由复杂——简单的化归。

又如,解一元二次方程232=0x x -+。我们可以将左边分解因式,应用降次化为两个一元一次方程求解,这就是由高维——低维的化归;也可以将方程配方成为一个整式的平方等于一个数的形式,应用平方根的性质求解,这就是由未知——已知的化归。

再如,如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,求PE+PB 的最小值。

连接DE ,交BD 于点P ,连接BD 。因为点B 与点D 关于AC 对称,所以DE 的长即为PE+PB 的最小值。从而将求PE+PB 的最小值变为求DE 的长。这就是应用轴对称的性质的从困难——容易的化归。 化归的基本思想是:将待解决的问题A ,在一定条件下转化为问题B ,再把问题B 转化为已经解决或较易解决的问题C ,而通过对C 的解决,达到原问题的解决,可用框图表示如下:

化归应遵循的原则:(1)化归目标的简单化原则,即化归的方面是由复杂到简单,对复杂总是采用分 解或变更的方法,使目标简单化。(2)化归的熟悉化原则,即化归的方向是由不熟悉到熟悉,把要解决的(不熟悉)问题转化为自己熟悉会解的问题,使所要解决的问题熟悉化。(3)化归的具体化原则,即化归的方向一般是由抽象到具体。在分析问题时,尽力将问题具体化。(4)化归的和谐化原则,即化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。(5)化归的正难则反原则,即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

结合2012年全国各地中考的实例,我们从下面四方面探讨化归思想的应用:(1)代数问题之间的化归;(2)代数问题与函数问题之间的化归;(3)几何问题之间的化归;(4)代数问题与几何问题之间的化归。

一、代数问题之间的化归:

典型例题:例1. (2012江苏宿迁8分)求代数式()()()2a 2b a 2b a 2b 4ab +-++-的值,其中a = 1,b =

110. 【答案】解:原式=()()()222222a 2b a 2b a 2b 4ab=a 4b a 4ab 4b 4ab=2a +-++--+++-,

当a = 1,b =110

时,原式=2。 【考点】代数式求值,完全平方公式和平方差公式。

【分析】应用完全平方公式和平方差公式展开后合并同类项,最后代入求值。

【点评】先化简后求值体现了由复杂——简单的化归。

例2. (2012四川凉山4分)已知

b 5a 13=,则a b a b -+的值是【 】 A .23 B .32 C .94 D .49

【答案】D 。

【考点】比例的性质。

【分析】∵b 5a 13=,∴设出b=5k ,得出a=13k ,把a ,b 的值代入a b a b

-+,得,

a b 13k 5k 8k 4===a b 13k 5k 18k 9

--++。故选D 。 【点评】应用待定系数法求值体现了由复杂——简单的化归。

例3. (2012广西柳州3分)你认为方程x 2+2x -3=0的解应该是【 】

A .1

B .-3

C .3

D .1或-3

【答案】D 。

【考点】因式分解法解一元二次方程。

【分析】利用因式分解法,原方程可变为(x+3)(x-1)=0,即可得x+3=0或x-1=0,解得:x 1=-3,x 2=1。 故选D 。

【点评】应用因式分解法解一元二次方程体现了由高维——低维的化归。

例4. (2012福建宁德4分)二元一次方程组???x +y =32x -y =6

的解是【 】 A .???x =6y =-3 B .???x =0y =3 C .???x =2y =1 D .???x =3y =0

【答案】D 。

【考点】解二元一次方程组。

【分析】3x 3x y 33x=9x=3y 0y 02x y 6=+=??????→?????→????→=???=-=?? ①+②得两边除以得代入①得①②

。故选D 。 【点评】应用加减消元法(代入消元法)解二元一次方程组体现了由多元——一元的化归。

例5. (2012湖北襄阳3分)如果关于x 的一元二次方程2kx 10+=有两个不相等的实数根,那么k 的取值范围是【 】

A .k <12

B .k <12且k≠0

C .﹣12≤k <12

D .﹣12≤k <12

且k≠0 【答案】D 。

【考点】一元二次方程定义和根的判别式,二次根式有意义的条件。

【分析】由题意,根据一元二次方程二次项系数不为0定义知: k≠0;根据二次根式被开方数非负数的条件得:2k+1≥0;根据方程有两个不相等的实数根,得△=2k+1﹣4k >0。三者联立,解得﹣

12≤k <12

且k≠0。 故选D 。

【点评】应用一元二次方程定义和根的判别式,二次根式的概念将求k 的取值范围的问题转化为求不等式组的解体现了由抽象——具体的化归。

例6. (2012湖北荆州3分)|x ﹣y ﹣3|互为相反数,则x+y 的值为【 】

A.3 B.9 C.12 D.27

【答案】D。

【考点】相反数,非负数的性质,算术平方根的性质,绝对值的性质。

【分析】|x﹣y﹣3|﹣y﹣3|=0,

x2y+9=0

x y3=0

-

?

?

--

?

,解得

x=15

y=12

?

?

?

。∴x+y=12+15=27。故选D。

【点评】应用二次根式和绝对值的非负数性质将求x+y的问题转化为求不等式组的解体现了由抽象——具体的化归。

练习题:

1. (2012河北省3分)已知y=x-1,则(x-y)2+(y-x)+1的值为▲ 。

2. (2012北京市5分)已知a b

=0

23

≠,求代数式

5a2b

(a2)

(a+2b)(a2b)

b

?-

-

的值。

3. (2012贵州铜仁4分)一元二次方程2x2x30

--=的解是▲ .

4. (2012福建漳州4分)二元一次方程组

x y2

2x y1

+=

?

?

-=

?

的解是【】

A.

x0

y2

=

?

?

=

?

B.

x1

y1

=

?

?

=

?

C.

x1

y1

=-

?

?

=-

?

D.

x2

y0

=

?

?

=

?

5. (2012湖南常德3分)若一元二次方程2x2x m0

++=有实数解,则m的取值范围是【】

A. m1

≤- B. m1

≤ C. m4

≤ D.m

1 2≤

6. (2012四川攀枝花3分)已知实数x,y满足x4

-,则以x,y的值为两边长的等腰三角形的周长是【】

A. 20或16 B.20 C.16 D.以上答案均不对

7. (2012广西河池6分)解分式方程5x416x5 x333x9

-+

+=

--

.

二、代数问题与函数问题之间的化归:

典型例题:

例1. (2012浙江衢州3分)函数x的取值范围在数轴上可表示为【】

A.B.C.D.

【答案】D。

【考点】函数自变量的取值范围,二次根式有意义的条件,在数轴上表示不等式的解集。

【分析】

数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。

x10

-≥x1

?≥。故在数轴上表示为:。故选D。

【点评】根据二次根式有意义的条件,把函数自变量的取值范围问题转化为不等式求解体现了由抽象——具体的化归。

例2. (2012山西省2分)如图,一次函数y=(m﹣1)x﹣3的图象分别与x轴、y轴的负半轴相交于A.B,则m的取值范围是【】

A. m>1 B. m<1 C. m<0 D. m>0

【答案】B。

【考点】一次函数图象与系数的关系。

【分析】根据一次函数图象与系数的关系,∵函数图象经过二、三、四象限,∴m ﹣1<0,解得m <1。故选B 。

【点评】根据一次函数图象与系数的关系,把m 的取值范围问题转化为不等式求解体现了由抽象——具体的化归。

例3. (2012陕西省3分)在同一平面直角坐标系中,若一次函数y x 3=-+与y 3x 5=-图象交于点M ,则点M 的坐标为【 】

A .(-1,4)

B .(-1,2)

C .(2,-1)

D .(2,1)

【答案】D 。

【考点】两条直线的交点问题,解二元一次方程组 【分析】联立 y=x+3y=3x 5-??-?,解得x=2y=1???

。∴点M 的坐标为(2,1)。故选D 。 【点评】根据直线上点的坐标与方程的关系,把求点M 的坐标问题转化为二元一次方程组求解体现了由抽象——具体的化归。

例4. (2012浙江台州4分)点(﹣1,y 1),(2,y 2),(3,y 3)均在函数6y=

x 的图象上,则y 1,y 2,y 3的大小关系是【 】

A .y 3<y 2<y 1

B .y 2<y 3<y 1

C . y 1<y 2<y 3

D .y 1<y 3<y 2 【答案】D 。

【考点】曲线上点的坐标与方程的关系,有理数的大小比较。

【分析】由点(﹣1,y 1),(2,y 2),(3,y 3)均在函数6y=

x

的图象上,得y 1=-6,y 2=3,y 3=2。根据有理数的大小关系,-6<2<3,从而y 1<y 3<y 2。故选D 。

【点评】根据曲线上点的坐标与方程的关系,把求坐标值的大小问题转化为有理数的大小比较求解体现了由未知——已知的化归。

例5. (2012湖南株洲3分)如图,已知抛物线与x 轴的一个交点A (1,0),对称轴是x=﹣1,则该抛物线与x 轴的另一交点坐标是【 】

A .(﹣3,0)

B .(﹣2,0)

C .x=﹣3

D .x=﹣2

【答案】A 。

【考点】抛物线与x 轴的交点,二次函数的对称性。 【分析】设抛物线与x 轴的另一个交点为B (b ,0),

∵抛物线与x 轴的一个交点A (1,0),对称轴是x=﹣1, ∴1+b 2

=﹣1,解得b=﹣3。∴B (﹣3,0)。故选A 。 【点评】根据曲线上点的坐标与方程的关系,把求抛物线与x 轴的交点坐标问题转化为解方程问题求解体现了由抽象——具体的化归。

例6. (2012四川内江3分)函数1y x

= 】 A 第一象限 B.第一、三象限 C.第二象限 D.第二、四象限

【答案】A 。

【考点】函数的图象,函数的定义域和值域,平面直角坐标系中各象限点的特征。

【分析】∵函数1y x

=0x >,∴0y >,∴根据面直角坐标系中各象限点的特征知图像在第一象限,故选A 。

【点评】根据二次根式和分式有意义的条件,把函数图象所在象限问题转化求函数的定义域和值域问题求解体现了由抽象——具体的化归。

练习题:

1. (2012湖北荆门3分)已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是【 】

A .

B .

C .

D .

2. (2012江苏苏州3分)若点(m ,n )在函数y=2x+1的图象上,则2m-n 的值是【 】

A.2

B.-2

C.1

D. -1

3. (2012江西南昌3分)已知一次函数y=kx+b (k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过【 】

A . 第一象限

B . 第二象限

C . 第三象限

D . 第四象限 4. (2012江苏南通3分)已知点A(-1,y 1)、B(2,y 2)都在双曲线y =

3+2m x

上,且y 1>y 2,则m 的取值范围是【 】 A .m <0 B .m >0 C .m >- 3 2 D .m <- 3 2

5. (2012江苏常州2分)已知二次函数()()2

y=a x 2+c a 0>-,当自变量x 3,0时,对应的值分别为123y y y ,,,则123y y y ,,的大小关系正确的是【 】

A. 321y y y <<

B. 123y y y <<

C. 213y y y <<

D. 312y y y <<

6. (2012山东滨州3分)抛物线234y x x =--+ 与坐标轴的交点个数是【 】

A .3

B .2

C .1

D .0 三、几何问题之间的化归:

典型例题:例1. (2012北京市4分)如图,直线AB ,CD 交于点O ,射线OM 平分∠AOD ,若∠BOD=760,则∠BOM 等于【 】

A .38?

B .104?

C .142?

D .144?

【答案】C 。

【考点】角平分线定义,对顶角的性质,补角的定义。

【分析】由∠BOD=760,根据对顶角相等的性质,得∠AOC=760,根据补角的定义,得∠BOC=1040。 由射线OM 平分∠AOD ,根据角平分线定义,∠COM=380。

∴∠BOM=∠COM +∠BOC=1420。故选C 。

【点评】经过等量代换,把未知角化为已知角的和求解体现了由未知——已知的化归。

例2. (2012山东泰安3分)如图,AB ∥CD ,E ,F 分别为AC ,BD 的中点,若AB=5,CD=3,则EF 的长是【 】

A.4B.3C.2D.1

【答案】D。

【考点】三角形中位线定理,全等三角形的判定和性质。

【分析】连接DE并延长交AB于H,

∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE。

∵E是AC中点,∴DE=EH。∴△DCE≌△HAE(AAS)。

∴DE=HE,DC=AH。

∵F是BD中点,∴EF是△DHB的中位线。∴EF=1

2 BH。

∴BH=AB﹣AH=AB﹣DC=2。∴EF=1。故选D。

【点评】作辅助线:连接DE并延长交AB于H,把EF变换成△DHB的中位线,使问题易于解决体现了由未知——已知、综合——单一的化归。

例3. (2012重庆市6分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.

【答案】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC。

在△EAD和△BAC中,∠B=∠E,AB=AE,∠BAC =∠EAD,

∴△ABC≌△AED(ASA)。∴BC=ED。

【考点】全等三角形的判定和性质。

【分析】由∠1=∠2可得:∠EAD=∠BAC,再由条件AB=AE,∠B=∠E可利用ASA证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=ED。

【点评】经过等量代换,把∠1=∠2变换∠EAD=∠BAC,结合已知的∠B=∠E,AB=AE,构成两三角形全等,使问题得到解决体现了由困难——容易的化归。

例4. (2012湖北天门、仙桃、潜江、江汉油田3分)如图,△ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.若△ABC的边长为4,AE=2,则BD的长为【】

A .2

B .3

C D

【答案】A 。

【考点】全等三角形的判定和性质,等腰三角形的性质,平行线分线段成比

例,等边三角形的性质。

【分析】延长BC 至F 点,使得CF=BD ,

∵ED=EC ,∴∠EDB=∠ECF 。∴△EBD ≌△EFC (SAS )。∴∠B=∠F 。

∵△ABC 是等边三角形,∴∠B=∠ACB 。∴∠ACB=∠F 。

∴AC ∥EF 。∴AE=CF=2。

∴BD=AE=CF=2。故选A 。

【点评】作辅助线:延长BC 至F 点,使得CF=BD ,构成全等三角形,使问题易于解决体现了由综合——单一的化归。

例5. (2012四川南充3分)如图,四边形ABCD 中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD 的面积是24cm 2.则AC 长是 ▲ cm.

【答案】

【考点】等腰直角三角形的性质,旋转的性质,勾股定理。

【分析】如图,将△ADC 旋转至△ABE 处,则△AEC 的面积和四边

形ABCD 的面积一样多为24cm 2,,这时三角形△AEC 为等腰直角三

角形,作边EC 上的高AF ,则AF=

12EC=FC, ∴ S △AEC= 12

AF·EC=AF2=24 。∴AF 2=24。

∴AC2=2AF2=48

【点评】作旋转变换,构成等腰直角三角形,使问题易于解决体现了由复杂——简单的化归。

例6. (2012广西南宁3分)如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是【】

A.2cm<OA<5cm B.2cm<OA<8cm C.1cm<OA<4cm D.3cm<OA<8cm

【答案】C。

【考点】平行四边形的性质,三角形三边关系。

【分析】∵平行四边形ABCD中,AB=3cm,BC=5cm,

∴OA=OC=1

2

AC(平行四边形对角线互相平分),

BC-AB<AC<BC+AB(三角形三边关系),即2cm<AC<8cm。

∴1cm<OA<4cm。

故选C。

【点评】将已知条件转换到一个三角形内,应用三角形三边关系,使问题易于解决体现了由复杂——简单的化归。

例7. (2012江苏徐州2分)如图,菱形ABCD的边长为2cm,∠A=600。 BD是以点A为圆心、AB长为半径的弧, CD是以点B为圆心、BC长为半径的弧。则阴影部分的面积为▲ cm2。

【考点】菱形的性质,等边三角形的判定和性质,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,连接BD。

∵菱形ABCD中∠A=600,

∴△ABD 和△BCD 是边长相等的等边三角形。

∴BD 与 BD

围成的弓形面积等于CD 与 CD 围成的弓形面积。 ∴阴影部分的面积等于△B CD 的面积。

由菱形ABCD 的边长为2cm ,∠A=600得△BCD 的高为2sin600

∴△BCD

的面积等于122?cm 2)

2。

【点评】作辅助线:连接BD ,进行等面积代换,将求阴影部分的面积变为求△BCD 的面积,使问题易于解决体现了由复杂——简单的化归。

例8. (2012海南省3分)如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧 AmB 上的一点,则tan APB ∠的值是【 】

A .1 B

C

D

【答案】A 。

【考点】圆周角定理,勾股定理,锐角三角函数定义。

【分析】如图,连接AO 并延长交⊙O 于点P 1,连接AB ,BP 1。设网格的边长为a 。

则由直径所对圆周角是直角的性质,得∠ABP 1=900。

根据勾股定理,得AB=BP 1

根据正切函数定义,得11AB tan AP B=BP ∠。 根据同弧所对圆周角相等的性质,得∠ABP=∠ABP 。∴1tan APB=tan AP B=1∠∠。故选A 。

【点评】作辅助线:连接AO 并延长交⊙O 于点P 1,连接AB ,B P 1,应用圆周角定理将A PB ∠转换为直角三角形内的角,使问题易于解决体现了由复杂——简单的化归。

例9. (2012四川凉山8分)在学习轴对称的时候,老师让同学们思考课本中的探究题。

如图(1),要在燃气管道l 上修建一个泵站,分别向A 、B 两镇供气.泵站修在管道的什么地方,P 1

可使所用的输气管线最短?

你可以在l上找几个点试一试,能发现什么规律?你可以在l上找几个点试一试,能发现什么规律?

聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:

①作点B关于直线l的对称点B′.

②连接AB′交直线l于点P,则点P为所求.

请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC 边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.

(1)在图中作出点P(保留作图痕迹,不写作法).

(2)请直接写出△PDE周长的最小值:

【答案】解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求。

(2)8.

例10. (2012山东滨州10分)如图,在平面直角坐标系中,抛物线y=ax 2

+bx+c 经过A (﹣2,﹣4),O (0,0),B (2,0)三点.

(1)求抛物线y=ax 2+bx+c 的解析式;

(2)若点M 是该抛物线对称轴上的一点,求AM+OM 的最小值.

【答案】解:(1)把A (﹣2,﹣4),O (0,0),B (2,0)三点的坐标代入y=ax 2

+bx+c 中,得 4a+2b+c=04a 2b+c=4c=0??--???,解这个方程组,得1a=2b=1c=0?-??????

∴抛物线的解析式为y=﹣12

x 2+x 。 (2)由y=﹣12x 2+x=﹣12(x ﹣1)2+12

,可得 抛物线的对称轴为x=1,并且对称轴垂直平分线段OB 。

∴OM=BM 。∴OM+AM=BM+AM 。

连接AB交直线x=1于M点,则此时OM+AM最小。

过点A作AN⊥x轴于点N,

在Rt△ABN中,

因此OM+AM最小值为

【考点】二次函数综合题,曲线上点的坐标与方程的关系,解方程组,二次函数的性质,线段中垂线的性质,三角形三边关系,勾股定理。

【分析】(1)已知抛物线上不同的三点坐标,利用待定系数法可求出该抛物线的解析。

(2)根据O、B点的坐标发现:抛物线上,O、B两点正好关于抛物线的对称轴对称,那么只需连接A、B,直线AB和抛物线对称轴的交点即为符合要求的M点,而AM+OM的最小值正好是AB的长。

对x=1上其它任一点M′,根据三角形两边之和大于第三边的性质,总有:

O M′+A M′= B M′+A M′>AB=OM+AM,

即OM+AM为最小值。

【点评】作轴对称变换,根据三角形两边之和大于第三边的性质,使问题易于解决体现了由复杂——简单的化归。

练习题:

1. (2012重庆市4分)已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD 的度数为【】

A.60°B.50°C.40°D.30°

2. (2012广东佛山6分)如图,已知AB=DC,DB=AC

(1)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.

(2)在(1)的证明过程中,需要作辅助线,它的意图是什么?

3. (2012江苏常州5分)如图,在△ABC中,AB=AC,AD平分∠BAC,

求证:∠DBC=∠DCB。

4. (2012贵州铜仁4分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 交AB于M,交AC于N,若BM+CN=9,则线段MN的长为【】

A.6B.7C.8D.9

5. (2012四川绵阳4分)如图,正方形的边长为2,以各边为直径在正方形内画半圆,则图中阴影部分的面积为▲(结果保留两位有效数字,参考数据π≈3.14)。

6. (2012湖北鄂州3分)如下图OA=OB=OC且∠ACB=30°,则∠AOB的大小是【】

A.40°

B.50°

C.60°

D.70°

7. (2012四川内江3分)如图,AB是⊙O的直径,弦CD⊥A,∠CDB=300,CD=

形的面积为【】

A.4π

B.2π

C.π

D.2 3π

8. (2012山东青岛3分)如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点

C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为▲ cm.

9. (2011甘肃天水4分)如图,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,对角线AC平分∠BAD,点E在AB上,且AE=2(AE<AD),点P是AC上的动点,则PE+PB的最小值是▲ .

10. (2012广西贵港2分)如图,MN为⊙O的直径,A、B是O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+P B的最小值是▲。

四、代数问题与几何问题之间的化归:

典型例题:

例1. 例5. (2012广东广州3分)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是【】A.B.C.D.

【答案】A。

【考点】勾股定理,点到直线的距离,三角形的面积。

【分析】根据题意画出相应的图形,如图所示。

在Rt△ABC中,AC=9,BC=12,

根据勾股定理得:15。

过C作CD⊥AB,交AB于点D,

则由S△ABC=1

2

AC?BC=

1

2

AB?CD,得

AC BC91236

CD

AB155

??

===。

∴点C到AB的距离是36

5

。故选A。

【点评】应用勾股定理和三角形面积公式,将几何问题转换为代数计算问题使问题易于解决体现了由综合——单一的化归。

例2. (2012北京市5分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=900,∠CED=450,

∠DCE=900,CD的长和四边形ABCD的面积.

【答案】解:过点D 作DH ⊥AC ,

∵∠CED=45°,DH ⊥EC ,EH=DH=1。

又∵∠DCE=30°,∴DC=2,

∵∠AEB=45°,∠BAC=90°,

∴AB=AE=2。∴

∴ABCD 11S 231322=??+??+四形((边 。 【考点】勾股定理,含30度角的直角三角形的性质,等腰直角三角形的性质,

【分析】利用等腰直角三角形的性质得出EH=DH=1,进而得出再利用直角三角形中30°所对边等于斜边的一半得出CD 的长,求出AC ,AB 的长即可得出四边形ABCD 的面积。

【点评】应用三角形面积公式,将几何问题转换为代数计算问题使问题易于解决体现了由综合——单一的化归。

例3. (2012浙江绍兴12分)小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索。

【思考题】如图,一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时B 到墙C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B 将向外移动多少米?

(1)请你将小明对“思考题”的解答补充完整:

解:设点B 将向外移动x 米,即BB 1=x ,

则B 1C=x+0.7,A 1C=AC ﹣AA 10.42=

而A 1B 1=2.5,在Rt △A 1B 1C 中,由2221111B C A C A B +=得方程

解方程得x 1= ,x 2= ,

∴点B 将向外移动 米。

(2)解完“思考题”后,小聪提出了如下两个问题:

【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?

【问题二】在“思考题”中,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离,有可能相等吗?为什么?

请你解答小聪提出的这两个问题。

例4. (2012四川广元3分)若以A(-0.5,0),B(2,0),C(0,1)三点为顶点要画平行四边形,则

第四个顶点不可能在【】

A. 第一象限

B. 第二象限

C. 第三象限

D. 第四象限

【答案】C。

【考点】平行四边形的判定,坐标与图形性质。

【分析】根据题意画出图形,如图所示:

分三种情况考虑:①以CB为对角线作平行四边形ABD1C,

初中数学教学论文 浅谈化归思想方法在数学教学中的应用

浅谈化归思想方法在数学教学中的应用 内容摘要:所谓化归法,是指通过数学内部的联系和矛盾运用,在转化中实现问题的规范化,即将待解问题转化为规范问题,从而使原问题得到解决的一种方法.这里的规范问题是指已经具有确定的解决方法和程序的问题,即运用原有知识已能解决的问题.而将一个问题化为规范问题的过程叫做问题的规范化.因此,简而言之,所谓化归就是问题的规范化、模式化。“化归”方法很多,但有一个原则是和原来的问题相比,“化归”后所得出的问题,应是已经解决或是较为容易解决的问题。在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 关键词:化归法简述运用操作实现化归 随着数学课程改革的深入,教师们已经认识到学生学习方法转变的必要性。数学教学是教师按照学生的认识规律和新课标特点,通过最优途径,指导学生掌握科学的学习方法,并获得具有选择和运用恰当有效学习方法的能力。重视方法指导是坚持“以学生为主体”和培养学生创新素养这一现代教育观念的体现,它能使学生主动参与认识过程,既能调动学生的积极性,又能向教师提出改进教法的反馈信息,有效发挥教法和学法的整体功能,最大限度地使用好教材。在数学方法论中有一种重要的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 一.化归法简述 在学习数学的各个环节中,解题的训练占有十分重要的地位。它既是掌握所学数学知识的必要手段,也是培养和提高数学能力的重要途径。解题的实质就是把数学的一般原理运用于题目的条件或条件的推论而进行的一系列推理,直到求出题目解答为止的过程。这一过程是一种复杂的思维活动的过程。解决问题的过程,实际是转化的过程,即对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。如抽象转化为具体,未知转化为已知,立体转化为平面,高次转化为低次,多元转化为一元,超越运算转化为代数运算等等。这就是数学方法论中的一种新的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,假设有一个数学问题甲,一下子不能直接求解,于是人们将甲问题的求解化为乙问题的求解,然后通过乙问题的求解返回去得出甲问题的求解,这就是化归的基本想法。利用化归法解决问题的过程可以简单地用以下框图表示:

数学思想与方法——案例分析

数学思想与方法——案例分析 答:分析:1、本课的配题注重从学生亲身经历的活动、学生熟悉的事入手选题,有开放型题、变式题,有数学思想的渗透,从易到难,由浅入深,应该说配题的设置具有一定的挑战性,能够起到激活学生思维的作用。 2、本课的教学容量太大且选题具有一定的难度,对于基础好的学生也很难能够在有限的时间内从容地、完整地完成所有的学习任务;对于基础差的学生来说,由于太多的题不会做,课堂的时间等于空耗。 3、由于时间紧,不能给学生留有充分的思考空间和时间,学生对于习题所传达的知识、方法很难理解透彻。所以常常出现丬题做了很多,但是在遇见题还是有困难,小题的功能没有发挥 修改:1、可以结合学生的实际情况,分层次配题。对于基础差的学生习题的难度再降低些,使他们会用二元一次方程组解决最基本的实际问题。对于基础好的学生,可以删除(二)(四)两组题,使他们能有更多的时间去探究问题、去迎接挑战 2、将学生分成不同的学习小组,能力强、弱搭配。在上述习题中选出部分更容易激起学生对数学的兴趣,更适合学生探究的习题,充分发挥习题的功能,使学生在主动学习、探究学习的过程中获得知识,培养能力。对于“实际问题与二元一次方程组”,不等同于一般例题内容的教学,而是应该以探究学习的方式完成。从教材设置的“数学活动”及“拓广探索”栏目下的习题等都设置了带有探究性的问题。对于这些内容的教学,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,适时地追问,让学生在经过自己的努力来克服困难的过程中体验如何探究,而不要替代他们思考,不要过早给出答案。应鼓励探究多种不同的分析问题和解决问题的方法,使探究过程活跃起来,在这样的氛围中可以更好地激发学生积极思维,得到更大收获。所以教学中不能盲目地扩大习题量,而是要充分发挥习题的功能,给学生留有充分的思考时间与空间,引导学生更多的参与数学活动和相互交流,在主动学习探究学习的过程中获得知识,培养能力,使每一位学生都能获得良好的数学教育,不同的人在数学上有不同的发展。

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 向阳乡初级中学 周红林 【摘要】化归思想是中学数学最重要的思想方法之一。本文从化归的功能,化归的原则,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,力求比较全面地体现化归思想在初中数学解题中的作用和地位。 【关键词】化归思想 化归的原则 教学策略 化归思想要点 新课程标准指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础。”“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”从中我们可以看出新课程标准下的数学教学更加突出培养学生的数学思想的重要性,而数学思想同样离不开数学方法的支持。 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。

一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 ⒈熟悉化原则 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉简单化原则 简单化原则就是把比较复杂的问题转化为比较简单的易于确定

几种重要的数学思想方法

几种重要的数学思想方法 韩晓荣 数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。 《数学课程标准》在对初中阶段的教学建议中要求“对于重要的数学思想方法应体现螺旋上升的、不断深化的过程,不宜集中体现”。这就要求我们教师能在实际的教学过程中不断地发现、总结、渗透数学思想方法。 一、化归思想, 所谓“化归”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。我们也常把它称之为“转化思想”。例如:解分式方程转化为解整式方程,解“二元”方程转化为解“一元”方程,解多边形问题转化为解三角形问题等等。 二、数形结合的思想方法 数形结合思想是指将数与图形结合起来解决问题的一种思维方式。著名的数学家华罗庚曾经说过:“数缺形时少直观,形少数时难入微。”这就是在强调把数和形结合起来考虑的重要性。在教材《有理数》里面用数轴上的点来表示有理数,就是最简单的数形结合思想的体现。 三、分类讨论的思想方法 在渗透分类讨论思想的过程中,我认为首要的是分类。比如在《有理数》研究相反数、绝对值、有理数的乘法运算的符号法则等都是按有理数分成正数、负数、零三类分别研究的:在《平面图形的认识》一章中,用分类讨论思想进行了角的分类、点和直线的位置关系的分类、两条直线位置关系的分类。这种思想方法主要可以避免漏解、错解。 四、方程思想 方程思想指借助解方程来求出未知量的一种解题策略。我们知道方程是刻画现实世界的一个有效的数学模型。所以方程思想实际上就是由实际问题抽象为方程过程的数学建模思想。例如利用一元一次方程,一元二次方程能解决好多实际问题。 五、从特殊到一般的思想方法

数学思想与方法作业

一、简答题 1、分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。 答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。 代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。 它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。 2、比较决定性现象和随机现象的特点,简单叙述确定数学的局限。 二、论述题 1.论述社会科学数学化的主要原因。 2、论述数学的三次危机对数学发展的作用。 答:第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。 第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。 第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的 历史,斗争的结果就是数学领域的发展。 三、分析题 1.分析《几何原本》思想方法的特点,为什么? 2、分析《九章算术》思想方法的特点,为什么? 答:(1)开放的归纳体系 从《九章算术》的内容可以看出,它是以应用问题解法集成的体例编纂而成的书,因此它是一个与社会实践紧密联系的开放体系。 在《九章算术》中通常是先举出一些问题,从中归纳出某一类问题的一般解法;再把各类算法综合起来,得到解决该领域中各种问题的方法;最后,把解决各领域中问题的数学方法全部综 合起来,就得到整个《九章算术》。 另外该书还按解决问题的不同数学方法进行归纳,从这些方法中提炼出数学模型,最后再以数学模型立章写入《九章算术》。因此,《九章算术》是一个开放的归纳体系。 (2)算法化的内容 《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。因此,内容的算法化是《九章算术》思想方法上的特点之一。 (3)模型化的方法 《九章算术》各章都是先从相应的社会实践中选择具有典型意义的现实原型,并把它们表述成问题,然后通过“术”使其转化为数学模型。当然有的章采取的是由数学模型到原型的过程,即先给出数学模型,然后再举出可以应用的原型。

浅谈中学数学中的化归思想(精)

浅谈中学数学中的化归思想 作者:中原中学刘继华 不断地变换你的问题,我们必须一再地变化它,重新叙述它,变换它,直到最后成 功地找到某些有用的东西为止。 ————波利亚 化归是解决数学问题的一种重要思想方法.化归的思想贯穿于整个数学中,掌握这一思想方法,并学会用它分析问题、处理问题,有着十分重要的意义.匈牙利著名数学家路莎˙彼得以生动的比喻对这种思维方式作了如下风趣的描述:有人提出了这样一个问题:“假设在你面前有煤气灶、水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此某人回答说:“在壶中灌上水,点燃煤气,再把壶放到煤气灶上。”提问者肯定了这一回答;但是,他又追问道:“如果其它的条件都没有变化,只是水壶中已经有了足够多的水,那你又应当怎样去做?”这时被提问者往往会很有信心地说:“点燃煤气,再把水壶放到煤气灶上。”但是,提问者指出,这一回答并不能使他满意,因为,更好的回答应当是:“只有物理学家才会这样做,而数学家们则会倒掉壶中的水,并声称我把后一问题化归为前面所说的问题了。” 路莎˙彼得在这里说的就是化归方法。在数学教育中,化归思想是“问题解决”的一种重要手段和方法。 —、化归方法的基本思想 1、化归方法的含义:把待解决和未解决的问题,通过转化,或再转化,将原问题归结为一个已经能解决的问题,或者归结为一个比较容

易解决的问题甚至为人们所熟知的具有既定解决方法和程序的问题,最终求得原问题的解决.我们就把这种将未知转化归结为已知的解决数学问题的基本方法称之为化归方法. 2、化归方法是辨证思维在方法论上的反映 数学中充满着矛盾,有着极其丰富的辨证内容,例如,数学概念中一与多、正与负、常量与变量、有限与无限以及数学运算中的加与减、乘与除、乘方与开方、微分与积分等都表现为矛盾的对立统一的形式. 化归方法正是根据客观事物是普遍联系、永恒发展和矛盾的对立统一及其相互转化的观点,来实现问题解决的,它着眼于揭示联系实现转化.因此说化归方法是辨证思维在方法论上的反映. 3、化归方法的作用 我们知道整个中学数学内容,始终贯穿着数学知识和数学方法这两条线.中学数学问题的解决过程常常表现为不断发现问题、分析问题直到归结转化为熟悉的或已能解决的问题的过程,化归方法是中学数学中的重要数学方法之一. 例如 (1代数中解一般方程(或不等式的基本思路是多元向一元、高次向低次的化归;分式方程向整式方程的化归,无理方程向有理方程的化归.

论文:数学思想方法

数学思想方法 河南省虞城县李老家乡第二初级中学;高华增数学思想方法一般是指人们在数学的发生、形成、发展过程中总结概括出来的数学规律的本质认识,是利用数学知识去解决问题的思维策略和指导思想,它为数学知识的学习和运用提供了方向,是解决数学问题的“向导”,数学思想的产生并作用于数学学习的整个过程中,尤其是在解决复杂的综合题时,数学思想的合理运用起着关键性的决定作用,数学思想方法是数学思想的具体体现,不仅是学习和运用数学知识的解决数学问题应具备的、最基本的思想方法.而且是新课标改革的方向和中考试题解题特征 常见的数学思想方法有:化归思想方法、数形结合思想方法、分类讨论思想方法、数学建模思想方法、方程思想方法、函数思想方法、整体思想方法,对此类问题的突破,方法具体如下: 类型一:化归思想方法:重难点突破:解决问题的基本思想就是化未知为已知,把复杂的问题简单化,把生疏的问题熟悉化,把实际问题数学化,不同的数学问题相互转化,也体现了把不易解决的问题转化为有章可循,容易解决的问题的思想

【例1】 如下图中每个阴影部分是以多边形各顶点为圆心,1为半径 的扇形,并且所有多边形的每条边都大于2,则第n 个多边形中,所有扇形面积之和是______.(结果保留π) 分析:本题考察了扇形面积和n 边形内角和公式,解题关键是:是求第n 个图形中(n +2)个半径为1的扇形的面积之和 解析:[]ππ2n 1802-2)(n 3601S 2 =?+?=,答案;π2 n

类型二:数形结合: 重难点突破: 根据数学问题的题设和结论之间的内在联系,分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙结合,充分利用这种结合探究解题思路,使问题得以解决; 【例2】(09重庆)如图,在矩形ABCD 中,A B =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是 ( ) 分析:本题考查点是运动变化为前提,根据几何图形的面积变化特征,通过分段讨论,确立相应函数关系,进而确定函数图象,这是一道典型的数形结合与分类讨论的综合题,是这几年中招试题常见题型,解题关键是能否充分利用分类的讨论思想,难点是能否把所有情况分别讨论,很多同学因考虑不全而丢分. 解析:当点P 在BC 上时,即0<x ≤1时 x x 2PB AB S 2121PAB =??=?=? 当点P 在CD 上时,即1<x ≤3时

浅谈化归思想方法在数学教学中的应用

浅谈化归思想方法在数学教学中的应用 墨红镇中学李慧连内容摘要:所谓化归法,是指通过数学内部的联系和矛盾运用,在转化中实现问题的规范化,即将待解问题转化为规范问题,从而使原问题得到解决的一种方法.这里的规范问题是指已经具有确定的解决方法和程序的问题,即运用原有知识已能解决的问题.而将一个问题化为规范问题的过程叫做问题的规范化.因此,简而言之,所谓化归就是问题的规范化、模式化。“化归”方法很多,但有一个原则是和原来的问题相比,“化归”后所得出的问题,应是已经解决或是较为容易解决的问题。在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 关键词:化归法简述运用操作实现化归 随着数学课程改革的深入,教师们已经认识到学生学习方法转变的必要性。数学教学是教师按照学生的认识规律和新课标特点,通过最优途径,指导学生掌握科学的学习方法,并获得具有选择和运用恰当有效学习方法的能力。重视方法指导是坚持“以学生为主体”和培养学生创新素养这一现代教育观念的体现,它能使学生主动参与认识过程,既能调动学生的积极性,又能向教师提出改进教法的反馈信息,有效发挥教法和学法的整体功能,最大限度地使用好教材。在数学方法论中有一种重要的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 一.化归法简述 在学习数学的各个环节中,解题的训练占有十分重要的地位。它既是掌握所学数学知识的必要手段,也是培养和提高数学能力的重要途径。解题的实质就是把数学的一般原理运用于题目的条件或条件的推论而进行的一系列推理,直到求出题目解答为止的过程。这一过程是一种复杂的思维活动的过程。解决问题的过程,实际是转化的过程,即对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。如抽象转化为具体,未知转化为已知,立体转化为平面,高次转化为低次,多元转化为一元,超越运算转化为代数运算等等。这就是数学方法论中的一种新的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,假设有一个数学问题甲,一下子不能直接求解,于是人们将甲问题的求解化为乙问题的求解,然后通过乙问题的求解返回去得出甲问题的求解,这就是化归的基本想法。利用化归法解决问题的过程可以简单地用以下框图表示:

数学思想与方法形成性考核册答案

一、简答题 1. 分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。 解答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。 代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。 它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。 2. 比较决定性现象和随机性现象的特点,简单叙说确定数学的局限。 解答:人们常常遇到两类截然不同的现象,一类是决定性现象,另一类是随机现象。决定性现象的特点是:在一定的条件下,其结果可以唯一确定。因此决定性现象的条件和结果之间存在着必然的联系,所以事先可以预知结果如何。随机现象的特点是:在一定的条件下,可能发生某种结果,也可能不发生某种结果。对于这类现象,由于条件和结果之间不存在必然性联系。 在数学学科中,人们常常把研究决定性现象数量规律的那些数学分支称为确定数学。用这些的分支来定量地描述某些决定性现象的运动和变化过程,从而确定结果。但是由于随机现象条件和结果之间不存在必然性联系,因此不能用确定数学来加以定量描述。同时确定数学也无法定量地揭示大量同类随机现象中所蕴涵的规律性。这些是确定数学的局限所在。 二、论述题 1. 论述社会科学数学化的主要原因。 解答:从整个科学发展趋势来看,社会科学的数学化也是必然的趋势,其主要原因可以归结为有下面四个方面:第一,社会管理需要精确化的定量依据,这是促使社会科学数学化的最根本的因素。 第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化。 第三,随着数学的进一步发展,它出现了一些适合研究社会历史现象的新的数学分支。 第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。 2. 论述数学的三次危机对数学发展的作用。 解答:第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。 第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。 第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。 由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。 三、分析题 2. 分析《九章算术》思想方法的特点,为什么? 解答:(1)开放的归纳体系 从《九章算术》的内容可以看出,它是以应用问题解法集成的体例编纂而成的书,因此它是一个与社会实践紧密联系的开放体系。 (2)算法化的内容 《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。因此,内容的算法化是《九章算术》思想方法上的特点之一 数学思想与方法作业参考解答(2)

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些? 1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。 2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 4、符号化思想方法 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化

及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。 5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

浅谈化归思想在中学数学中的应用

浅谈化归思想在中学数学中的应用 发表时间:2010-11-08T15:05:44.580Z 来源:《中小学教育》2010年第11期供稿作者:苏炳堂 [导读] 数与数之间的转化遵循着一些原则,例如具体化原则、简单化原则、和谐统一化原则等等。 苏炳堂广西柳州市第一中学545007 在中学数学中,化归思想不仅是一种重要的数学思想,也是一种最基本的思维策略。化归思想在中学数学中有着很广泛的应用,其关键就在于把原问题转化和归结。对于具体的数学问题,如何实行化归和选择有效的化归手段并没有固定的模式,中学数学常见的化归基本形式有以下三种: 一、数与数之间的转化 数与数之间的转化是中学数学中最常用的一种化归形式,通过转化可以使得原问题简单化、具体化、熟悉化,从而使问题迎刃而解。在中学数学中很多化归都是数与数之间的转化,例如变形所给出的方程求解,数学解法在于不断将高层次的解法化归为较低层次的解法,这就是我们常说的把问题“初等化”。 例1、关于x的方程cos2x+sinx+a=0在(0,π)内有解,求a的取值范围。 分析:假设由题意把x看作未知数,那么那就是一个复合的方程,很难下手,但若考虑以sinx为未知数,再由1-cos2x=sin2x,则问题转化为常见的一元二次方程了,原问题即可解决。所以由1-cos2x=sin2x,原式可化为:a=sin2x-sinx-1即a=(sinx- )2- 。因为x∈(0,π),所以0

常用的数学思想和方法

不怕难题不得分,就怕每题扣点分! 常用的数学思想和方法 一.数学思想:1.数形结合的思想;2.分类与整合的思想;3.函数与方程的思想;4.转化与化归的思想; 5.特殊与一般的思想;6.有限与无限的思想;7.或然与必然的思想;8.正难则反的思想.二.数学基本方法:配方法、换元法、反证法、割补法、待定系数法;分析法、比较法、综合法、归纳法、观察法、定义法、等积法、向量法、解析法、构造法、类比法、放缩法、导数法、参数法、消元法、不等式法、判别式法、数形结合法、分类讨论法、数学归纳法、分离参数法、整体代换、正难则反、设而不求、设而求之.【解题时:方法多,思路广,运算准,化简快.】 三.数学逻辑方法:分析与综合、归纳与演绎、比较与类比、具体与抽象等.【也称数学思维方法.】 四.选择题的方法:四个选项有极大的参考价值!千万不要小题大做! ①求解对照法(直接法);②逆推代入法(淘汰法);③数形结合法(不要得意忘形);④特值检验法(定值问题); ⑤特征分析法(针对选项);⑥合理存在性法(针对选项);⑦逻辑分析法(充要条件);⑧近似估算法(可能性).五.填空题的方法:①直接法;②特例法(定值问题);③数形结合法;④等价转化法. 六.熟练掌握数学语言的三种形式:自然语言、符号语言、图形语言的相互转化. 七.计算与化简:这是一个值得十分注意的问题!平时的训练中,要多思考如何快速准确的计算和熟练的化简!八.学会自学!课堂上不可能把所有的题型都讲到!所以要多看例题,多思考!看之前一定要想自己会怎么做! 怎么看:一看解题思路【看完后要归纳步骤、总结方法】,二看规范表达【尽量学会使用数学语言、符号】.学会总结归类:①从数学思想上归类;②从知识应用上归类;③从解题方法上归类;④从题型类型上归类. 【特别提醒】 1.一道题有没有简便解法,关键就在于你能不能发现其中的一些条件的特殊性,并能加以灵活运用!(灵机一动)【转化、联想、换元等,另外,解题时有时对一些细节的处理也很关键,会起到峰回路转、柳暗花明的作用.】2.解函数、解析几何、立体几何的客观题,应特别注意数形结合思想的运用!但在解答题中,不能纯粹只凭借图象来解答问题;图象只起到帮助找到解题思路的作用【图象尽量画准,甚至在有时给出图象时也需要自己重新准确画一遍】;解题过程还是要进行严谨的理论推导【用数学语言表达】,不能纯粹以图象代替推理、证明.3.转化数量关系时,若是写不等式,则要注意是否可以取“”.特别是求取值范围时,端点一定要准确处理.4.平常做解答题应该做完整:解题过程的表达是否流畅、简洁.否则到考试时,还需为如何组织语言表达去思考而耽误时间.这是平时训练值得注意的【条理分明、言简意赅、字迹工整】!表达也是思维的一部分! 5.在解答题中,某些局部问题解答过程的书写的详略,取决于整个解题书写过程的长短:长则略写,可用易证、易知等字眼;短则详写.如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明. 6.在设置有几问的解答题中,后面问题的解决有时候依赖于如何灵活运用前面已解决的问题的结论.有些解答题某一问貌似与前面无关,实则暗【明】示你必须把它与前面联系起来,才能解决问题. 7.平常要多积累解题经验和解题技巧.熟记一些数学规律和数学小结论对解题也是很有帮助的. 8.数学总分上不上得去,很大程度上取决于选择题、填空题得分高不高.而选择题、填空题更注重对基础知识,基本数学思想、方法和技能的全面考察.因此,要熟练掌握解选择题、填空题的特有方法:在解选择题或填空题时,优秀的解题方法更显得重要.建议每天做一份选择、填空题,花大力气提高解选择、填空题的准确率和速度.【注意:选择题的四个选项中有且只有一个是正确的,是一个需要特别重视的已知条件.】 9.可以在专门的笔记本上,收集作业、考试中的错题,学习中遇到的经典题,便于日后考前复习巩固. ⒑作业本上的错题、试卷上的错题一定要及时更正!做错了不可怕,可怕的是做错了不去纠正!

初中数学专题复习(一) 化归思想

初中数学专题复习(一) 化归思想 本专题专门复习化归思想.所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等. 【典型例题剖析】 一、转化思想在代数中的应用。 1.已知:n m ,满足13,132 2 =-=-n n m m , 求n m m n +的值。 二、转化思想在函数问题上的应用: 1. 函数1 y x = 】 A .第一象限 B.第一、三象限 C.第二象限 D.第二、四象限 2.(2016成都)如图,在平面直角坐标系xOy 中,正比例函数的图象与反比例函数的图象都经过点A (2,2). (1)分别求这两个函数的表达式; (2)将直线OA 向上平移3个单位长度后与y 轴交于点B ,与反比例函数图象在第四象限的交点为C ,连接AB 、AC ,求点C 的坐标及△ABC 的面积. 三、转化思想在几何中的应用。 2、已知:如图6所示在中,,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。 求证:AC =AE +CD y kx =m y x =

四、代数问题与几何问题之间的化归: 1.如图,已知矩形ABCD 中,E 是AB 上一点, 沿EC 折叠,使点B 落在AD 边的B‘处,若AB=6, BC=10, 求AE 的长。 2、如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 的平分线分别交BC 、AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程x 2-kx+23=0的两个根(k 为正的常数)。 ⑴求证:PA ·BD=PB ·AE ; ⑵求证:⊙O 的直径为常数k ; ⑶求tan ∠FPA 的值。 【强化训练】 一、选择题与填空题 1、用换元法解方程x x x x += ++2 22 1时,若设x 2+x=y, 则原方程可化为( ) A 、y 2+y+2=0 B 、y 2-y -2=0 C 、y 2-y+2=0 D 、y 2+y -2=0 2、已知如图:ΔABC 中,∠C=90°,BC=AC ,以AC 为直径的圆交AB 于D ,若AD=8cm ,则阴影部分的 面积为( ) A 、64πcm 2 B 、64 cm 2 C 、32 cm 2 D 、48 πcm 2 E A B C D E F P

关于初中数学教学中化归思想的应用分析

关于初中数学教学中化归思想的应用分析 【摘要】数学思想是数学知识中最为重要的内容之一,化归思想是初中数学中数学思想的基石。本文结合实例研究了在初中数学教学中如何把化归思想落到实处,使学生真正理解并灵活运用化归思想。 【关键词】初中数学;化归思想;应用分析 一、化归思想在初中数学教学中的体现 1.化归思想方法体现的结构性 初级中学数学分为代数和几何,我们将这两部分内容教材知识进行整理归纳,可以将蕴含在其中的较为零散的化归思想提炼,得到有序的知识结构网络。 代数部分分为数的运算、式的运算和方程三部分,数的运算部分,利用化归思想在小学加法基础上使加、减法统一得到代数和的概念;利用化归思想在乘法的基础上使乘法、除法得到统一;利用化归思想引入绝对值将有理数化为算术数的运算。式的运算部分,利用化归思想用字母代替数,根号中含字母的无理式、根号中不含字母的有理式和分母中不含字母的整式均可通过已学知识掌握。而方程的运算部分,等号连结代数式得到方程,不等号连结代数式得到不等式,利用化归思想方法将其化为式的运算,从而得到整式方程、

分式方程和无理方程。利用化归思想可对整个初中代数知识有一个系统的了解,有利于学生把握知识间的关系,更好地掌握代数知识。 2.化归思想方法体现的条理性 初级中学数学教材中充分体现了化归思想的条理性。例如,新人教版七年级《数学》上册第一章中在小学数学的基础上引入了负数,开始进行有理数的运算。第二章在第一章的基础上利用字母表示数引入了代数式。此后,学习5x、-3a2b等数与字母的乘积的单项式,ab+3mn等单项式的和――多项式。只有学生明白字母代表数及代数式的意义后才能进行整式的学习。随后学习分式,而分式的运算思路正是通过化归思想把分式运算转化为整式运算。这样一环接一环的条理性在教材中还有很多,我们在教学中应充分整理帮助学生更好地理解化归思想。 3.化归思想方法体现的层次性 初中数学教材的安排体现了化归思想方法的层次性。教材的最基础内容包括有理数、代数式、平面图形及其位置关系和一元一次方程。平面图形首先是三角形的学习,随后学习了图形的旋转、平行四边形,平行四边形正是对三角形的进一步拓展。式的运算中,先是学习了整式,后又学习了分式,分式正是对整式的进一步深化。随后又学习了代数和几何的结合――函数,学习了反比例函数、二次函数,这正是

中考数学专题39数学思想方法问题

学科教师辅导讲义 年 级: 辅导科目:数学 课时数:3 课 题 数学思想方法问题 教学目的 教学内容 一、【中考要求】 1. 利用建模思想准确选择方程、不等式、函数解决问题; 2. 利用分类讨论思想解决数学问题,确保结论不重复、不遗漏。 3. 利用转化思想准确在实际问题、数学问题间相互转化; 4. 利用数形结合思想解决数学问题。 二、【考点知识梳理】 数学思想方法是学习数学知识的精髓,是培养数学分析问题、解决问题能力提升的有效途径,在数学学习过程中,如果经常反思总结一些数学思想方法,能达到触类旁通的解题目的,而且能节省审题时间,因此,在中考冲刺阶段一定要多进行题后反思的环节,力争通过反思数学思想方法达到“做一题,会一类”的目的. 初中数学思想主要有:①转化思想;②数形结合思想;③整体思想;④分类讨论思想;⑤函数与方程的思想;⑥统计思想;⑦特殊到一般的思想等. 现就常用数学思想方法举例说明如下: 1.转化思想 数学中考题是千变万化的,而其中蕴含的数学思想方法是不变的,如新知识问题转化为旧知识问题,较复杂问题转化为简单问题等,都要用到转化的思想方法. 2.数形结合思想 数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决途径,或用数量关系研究几何图形的性质去解决几何图形的问题,使数量关系和几何图形巧妙地结合起来,使问题得以解决的一种数学思想. 在初中阶段涉及数形结合思想的内容有:数轴、函数、三角形、四边形、圆、列方程(组)解应用题等.数形结合思想方法的应用,可帮助我们理解题意,分清已知量未知量,理顺题中的逻辑关系. 3.分类讨论思想 分类讨论思想是指当被研究的问题存在一些不确定的因素,无法用统一的方法或结论给出统一的表述时,按可能出现的所有情况来分别讨论,得出各种情况下相应的结论.分类的原则是:(1)分类中的每一部分是相互独立的;(2)一次分类必须是同一个标准;(3)分类讨论应逐级进行.分类思想有利于学会完整地考虑问题,化整为零地解决问题. 一般把握一个原则:遇到模棱两可的情况时往往采用分类讨论的思想.比如,遇到“等腰三角形、圆”等相关知识时常用分类讨论的思想. 三、【中考典例精析】 类型一 转化思想 (1)解方程:x x +1=2x 3x +3 +1. 【点拨】解分式方程时,应去分母“转化”为整式方程再求解,最后注意验根.

数学思想与方法模拟考试卷1

一、填空题(每题5分,共25分) 1.算法的有效性是指(如果使用该算法从它的初始数据出发,能够得到这一问题的正确解 3.所谓数形结合方法,就是在研究数学问题时,(由数思形、见形思数、数形结合考虑问题)的一种思想方法。 5.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以(《九章算术》)为典范。 7.数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为(数学的各个分支相互渗透和相互结合 )的趋势。 9.学生理解或掌握数学思想方法的过程一般有三个主要阶段:(潜意识阶段、明朗化阶段、深刻理解阶段)。 1.在数学中建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得的(《几何原本》)。 2.随机现象的特点是(在一定条件下,可能发生某种结果,也可能不发生某种结果 )。 3.演绎法与(归纳法 )被认为是理性思维中两种最重要的推理方法。 4.在化归过程中应遵循的原则是(简单化原则、熟悉化原则、和谐化原则)。 5.(数学思想方法)是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。 6.三段论是演绎推理的主要形式,它由(大前提、小前提、结论)三部分组成。 7.传统数学教学只注重(形式化数学知识,)的传授, 而忽略对知识发生过程中(数学思想方法)的挖掘。 8.特殊化方法是指在研究问题中,(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。 9.分类方法的原则是(不重复、无遗漏、标准同一、按层次逐步划分)。 10.数学模型可以分为三类:(概念型、方法型、结构型)。 二、判断题(每题5分,共25分。在括号里填上是或否) 1.计算机是数学的创造物,又是数学的创造者。 (是 2.抽象得到的新概念与表述原来的对象的概念之间一定有种属关系。 (否 3.一个数学理论体系内的每一个命题都必须给出证明。 (否 4.贯穿在整个数学发展历史过程中有两个思想,一是公理化思想,一是机械化思想。 (是) 5.提出一个问题的猜想是解决这个问题的终结。 (否 1.数学模型方法在生物学、经济学、军事学等领域没应用。 (否 2.在解决数学问题时,往往需要综合运用多种数学思想方法才能取得效果。 (是 ) 3.如果某一类问题存在算法,并且构造出这个算法,就一定能求出该问题的精确解。( 否) 4.分类可使知识条理化、系统化。 ( 是 ) 5.在建立数学模型的过程中,不必经过数学抽象这一环节。 (否) 三、简答题(每题10分,共50分) 1.为什么说《几何原本》是一个封闭的演绎体系? ①因为在《几何原本》中,除了推导时所需要的逻辑规则外,每个定理的证明所采用的论据均是公设、公理或前面已经证明过的定理,并且引入的概念(除原始概念)也基本上是符合逻辑上对概念下定义的要求,原则上不再依赖其它东西。因此《几何原本》是一个封闭的演绎体系。②另外,《几何原本》的理论体系回避任何与社会生产现实生活有关的应用问题,因此对于社会生活的各个领域来说,它也是封闭的。③所以,《几何原本》是一个封闭的演绎体系。 2.为什么说最早使用数学模型方法的是中国人? ①因为在中国汉代的古算书《九章算术》中就已经系统地使用了数学模型。《九章算术》将246个题目归结为九类,即九种不同的数学模型,分列为九章。②它在每一章中所设置的问题,都是从大量的实际问题中选择具有典型意义的现实原型,然后再通过“术”(即算法)转化成数学模型。其中有些章就是专门探讨某种数学模型的应用,③例如“勾股”、“方程”等章。这在世界数学史上是最早的。因此,我们说最早使用数学模型方法的是中国人。 3.什么是类比猜想?并举一个例子说明。 ①人们运用类比法,根据一类事物所具有的某种属性,得出与其类似的事物也具有这种属性的一种推测性的判断,即猜想,这种思想方法称为类比猜想。②例如,分式与分数非常相似,只不过是用字母替代数而已。因此,我们可以猜想,分式与分数在定义、基本性质、约分、通分、四则运算等方面都是对应相似的。 4.简述表层类比,并用举例说明。 ①表层类比是根据两个被比较对象的表面形式或结构上的相似所进行的类比。这种类比可靠性较差,结论具有很大的或然性。 ②例如,从ac ab c b a +=+)(类比出βαβαsin sin )sin(+=+是错误的,而类比出 n n n n n n n b a b a ∞→∞→∞→+=+lim lim )(lim 在数列极限存在的条件下是正确的。③又如,由三角形内角平分线性质,类比得到三角形外角平分线性质,就是一种结构上的类比。 5.数学思想方法教学为什么要遵循循序渐进原则?试举例说明。 ①数学思想方法的形成难于知识的理解和一般技能的掌握,它需要学生深入理解事物之间的本质联系。②学生对每种数学思想方法的认识都是在反复理解和运用中形成的,是从个别到一般,从具体到抽象,从感性到理性,从低级到高级的沿着螺旋式方向上升的。③例如,学生理解数形结合方法可从小学的画示意图找数量关系着手孕育;在学习数轴时,要求学生会借助

相关主题
文本预览
相关文档 最新文档