当前位置:文档之家› 天线综述

天线综述

天线综述
天线综述

引言:

在之前的学习过程中,我们学习了电磁波在无界空间的传播以及电磁波在不同媒质分界面上的折射与反射问题,本次的综述就是针对电磁波的产生与辐射做一些基本的说明。而恰恰天线是电子系统中辐射或接收的基本装置,它是无线电通信、导航、雷达、测控、遥感、电子对抗及信息战等各种军用或民用系统必不可少的组成部分之一,地位十分重要。

空间电磁波场源是天线上的时变电流和电荷。严格的说天线上的电流和由此电流激发的电磁场是相互作用的。天线上的电流激发电磁场,电磁场反过来作用于天线,影响天线上电流的分布,所以求解天线辐射问题本质上就是求解一个边值问题,但根据麦克斯韦方程组求解比较困难,所以在实际问题处理中都是采用近似解法:把她处理成一个分布型问题,即先近似得出天线上的场源分布,在根据场源分布球外场。

天线的形式可大致分成线天线与面天线两大类。本次只针对天线的参数与对称阵子天线作简要介绍。

一、天线的参数

1.1辐射方向图

1.1.1方向性函数与方向图

天线的方向性函数,是指以天线为中心,在远区相同距离r的条件下,天线辐射场与空间方向的关系,是天线辐射场的相对值,用f(θ,φ)表示。根据方向性函数绘制的图形,称为方向图。

为了便于比较不同天线的方向特性,常采用归一化方向性函数,归一化方向性函数定义为:

上式中,∣E(θ,φ)∣和∣E

∣分别为与天线为同一距离的、指定方向为(θ,φ) 的、

max

为方向性函数的最大值。

电场强度值和电场强度最大值,f(θ,φ)∣

max

例如,电基本振子的电场为,方向性函数为f(θ,φ)=sinθ,

f(θ,φ)∣max =1 ,归一化方向性函数为:F(θ,φ)=sin θ。

由此方向性函数绘制的E 面方向图、H 面方向图和立体方向图如下图:

天线的方向图由一个或多个波瓣构成。天线辐射最强方向所在的波瓣称为主瓣,主瓣宽度是衡量主瓣尖锐程度的物理量。

主瓣宽度分半功率波瓣宽度和零功率波瓣宽度。在主瓣最大值两侧,主瓣上场强下降为最大值

的两点矢径之间夹角,称为半功率波瓣宽度,记为

,半功率波瓣宽度

是主瓣半功率点间的夹角。场强下降为零的两点矢径之间夹角,称为零功率波瓣宽度,记为

。主瓣宽度如图1.5所示:

半功率波瓣宽度越窄,说明天线辐射的能量越集中,定向性越好。电基本振子E 面方向图的半功率波瓣宽度为90°。有些面天线的半功率波瓣宽度小于1°。 旁瓣电平:

主瓣以外其他的瓣,称为旁瓣或副瓣。旁瓣最大值与主瓣最大值之比,称为旁瓣电平,

记为FSLL。

上式中,为旁瓣电场最大值。

1.1.2方向性系数

在离开天线某一距离处,天线在最大辐射方向上产生的功率密度,与天线辐射出去的能量被均匀分到空间各个方向(即理想无方向性天线)时的功率密度之比,称为天线的方向性系数。天线的方向性系数定义为:

对于无方向性天线,D=1 ,无方向性天线也称为理想点源辐射,它是一种抽象的数学模型。实际天线均有方向性,方向性系数越大,天线的方向性越强。

根据归一化方向性函数的定义,天线在任意方向的辐射场强和功率密度分别为:

天线的辐射功率为:

理想无方向性天线的辐射功率为:

根据方向性系数的定义,有:

1.2辐射效率

天线在工作时,并不能将输入天线的能量全部辐射出去。天线的效率定义为天线的辐射功率与输入功率的比值,即:

上式中,是天线的总损耗能量,包括天线导体的损耗和天线介质的损耗。如果引

入天线的辐射电阻和损耗电阻,上式成为:

1.3增益系数

增益定义为当天线与理想无方向性天线的输入功率相同时,两种天线在最大辐射方向上辐射功率密度之比。增益同时考虑了天线的方向性系数和效率,为:

一个增益为10、输入功率为1W的天线,与一个增益为2、输入功率为5W的天线,在最大辐射方向上具有相同的效果,所以工程应用上常将GPin称为天线的有效辐射功率。增益也常用分贝表示,在通信系统中,常希望天线有较大的增益。

1.4输入阻抗

天线的输入阻抗定义为天线输入端电压与电流的比值,即:

上式中,表示天线的输入电阻,表示天线的输入电抗。

天线的输入阻抗是一个重要的参数,它决定于天线本身的结构和尺寸,并与激励方式、工作频率、周围物体的影响等有关。只有极少数简单的天线才能准确地计算出输入阻抗,多数天线的输入阻抗通过近似计算或测量的方法得以确定。

天线的输入端是指天线与馈线的连接处。天线作为馈线的负载,通常要求做到阻抗匹配。

当天线与馈线不匹配时,馈线上的入射功率部分会被天线反射,馈线传输系统的效率将小于1。整个天馈线系统的效率为:

1.5极化形式

天线的极化是指在天线最大辐射方向上,电场矢量的方向随时间变化的规律。在波的极化中,我们已经讨论过,极化是在空间固定点上电场方向随时间变化的轨迹。通常,在偏离最大辐射方向时,天线的极化随之改变。

按轨迹形状,极化分为线极化、圆极化和椭圆极化。圆极化、椭圆极化又有右旋和左旋两种存在方式。

二、对称线天线的概念

2.1对称阵子

对称振子天线的结构如图5.8所示,它由两个臂长为L半径为a的直导线构成,两个内端点为馈电点。对称振子是一种应用广泛的基本线形天线,它即可以单独使用,又可以作为天线阵的单元。

2.2对称阵子的电参数

2.2.1.对称振子的辐射场

因为观察点足够远,每个电流元到观察点的射线近似平行,所以辐射场叠加是可以的。电流元在观察点的辐射电场为:

上式中,振幅项,相位项中取,于是对称振子的辐射电场为:

对称振子的辐射磁场为:

由此可见,对称振子的辐射场有如下特性。

(1)电场只有分量,磁场只有分量,为TEM波。

(2)辐射场的大小与离开天线的距离成反比。

(3)辐射场的等相位面为球面,辐射球面电磁波。

(4)辐射场的方向性函数仅与有关,而与无关,立体方向图为以天线轴为中心轴的回旋体,H面方向图为圆。

对称振子的辐射电阻:

电基本振子的辐射功率,我们曾用一个等效电阻的消耗来等效,这个等效电阻称为辐射

电阻。对称振子的辐射电阻,我们是以波腹处的电流为参考,定义为二倍的天线辐射功率与波腹处电流强度振幅值平方的比值,为:

其中:

通过计算可以得到对称振子的辐射电阻如下。

(1)半波对称振子的辐射电阻为。

(2)全波对称振子的辐射电阻为。

2.2.2对称振子的方向图

对称振子的归一化方向性函数为:

图1.7画出了4种不同长度对称振子上的电流分布及E面方向图。

对称振子的方向图有如下特点:

(1)图1.7(a)所示对称振子总长,称为半波对称振子,半波对称振子半功率波瓣宽度为78°,方向性系数为1.64。

(2)图1.7(b)所示对称振子总长,称为全波对称振子。全波对称振子半功率波瓣宽度为47°,方向性系数为2.4。

(3)图1.7(c)所示对称振子总长,主辐射方向发生改变,不能使用。

(4)图1.7(d)所示对称振子总长,主辐射方向发生改变,不能使用。

总结:

经过一个星期的自主学习,我初步掌握了有关天线的简要基本理论。在自学的过程中,遇到了不少的困难,因为这门学科与数学的关联很大,在定理的推导与证明的过程中会用到大量的数学计算,特别是积分的应用。不过好在书本上都给出了具体的计算过程,是学习有更加轻松一点。

天线包括很多种类,按天线的结构来分类,天线可以分为线状天线、面状天线、缝隙天线和微带天线等。而按天线适用的波段来分类,天线又可以分为长波天线、中波天线、短波天线、超短波天线和微波天线等。我们所学习的只不过是其中的一个分支,当然这也是一个研究方向,需要专门的高级技术人员去仔细研究开发。

当然,这次的自主学习过程中也体会到了很多的乐趣。自己遇到困难自己解决,锻炼了自己的文献搜索能力的同时也提高了自主学习的能力。

天线极化综述

天线极化综述 班级:09电子(1)班 姓名:周绕 学号:0905072024 完成时间:2011年11月15日

目录 一、天线的极化概念描述 0 二、天线的极化分类 0 1、线极化 0 (1)、线极化描述 0 (2)、线极化的数学分析 0 2、天线的馈源系统 (1) 3、极化波 (2) (1)、极化波的简介与分类 (2) (2)、极化波的应用 (2) 4、圆极化 (2) (1)、圆极化的描述 (2) 5、椭圆极化 (4) 三、总结 (5)

一、天线的极化概念描述 天线的极化特性是以天线辐射的电磁波在最大辐射方向上电场强度矢量的空间取向来定义的,是描述天线辐射电磁波矢量空间指向的参数。由于电场与磁场有恒定的关系,故一般都以电场矢量的空间指向作为天线辐射电磁波的极化方向。 二、天线的极化分类 天线的极化分为线极化、圆极化和椭圆极化。线极化又分为水平极化和垂直极化;圆极化又分为左旋圆极化和右旋圆极化。 1、线极化 (1)、线极化描述 电场矢量在空间的取向固定不变的电磁波叫线极化。有时以地面为参数,电场矢量方向与地面平行的叫水平极化,与地面垂直的叫垂直极化。电场矢量与传播方向构成的平面叫极化平面。垂直极化波的极化平面与地面垂直;水平极化波的极化平面则垂直于入射线、反射线和入射点地面的法线构成的入射平面。 (2)、线极化的数学分析

(a)垂直极化 (b) 水平极化 在三维空间,沿Z轴方向传播的电磁波,其瞬时电场可写为: = + 。 若=ExmCOS(wt+θx),=EymCOS(wt+θy) ,且与的相位差为nπ(n=1,2,3,…) ,则合成矢量的模为: 这是一个随时间变化而变化的量,合成矢量的相位θ为: 合成矢量的相位为常数。可见合成矢量的端点的轨迹为一条直线。 与传播方向构成的平面称为极化面,当极化面与地面平行时,为水平极化,如图(a);当极化面与地面垂直时,为垂直极化波,如图(b)。 2、天线的馈源系统 馈源是天线的心脏,它用作高增益聚集天线的初级辐射器,为抛物面天线提供有效的照射。 (1)有合适的方向图。馈源初级方向图不能太窄,否则抛物面不能被全部照射;但也不能太宽,以免功率泄漏过多。另外,初级方向图应接近于旋转对称,最好没有旁瓣和尾瓣。 (2)有理想的波前。圆抛物面天线要求馈源的波前为球面,以确保该相位中心与焦点重合时抛物面口径场的相位均匀分布。否则,会引起天线方向图畸变、增益下降、旁瓣升高。 (3)无交叉极化。即无干扰主极化的交叉分量,要求馈源辐射场的交叉化分量尽可能小。 (4)阻抗变化平稳。要求在工作频段内,馈源的输入阻抗不应变化过大,以保证和馈线匹配。 (5)尺寸尽量小。完整的馈源系统主要由馈源喇叭、90°移相器和圆矩变换器几部分组成。馈源按使用的方式可分为前馈馈源和后馈馈源。按卫星频段可分为C频段馈源和Ku频段馈源;目前已开发出C和Ku频段的共用馈源。前馈馈源一般应用于普通的抛物面天线,后馈馈源一般应用于卡塞格伦天线。 抛物面天线常用馈源形式有角锥喇叭、圆锥喇叭、开口波导和波纹喇叭等。前馈馈源中使用最多的是波纹槽馈源;再有一种叫带扼流槽的同轴波导馈源。后馈馈源喇叭常用的是介质加载型喇叭,它是在普通圆锥喇叭里面加上一段聚四氟乙烯衬套构成的。偏馈天线要选用偏馈馈源,偏馈馈源盘的波纹呈漏斗状,而正馈馈源的波纹盘为水平状。

基于无线通信的点菜系统软件设计【文献综述】

毕业设计开题报告 电子信息工程 基于无线通信的点菜系统软件设计 1、前言部分 人类利用无线通信方法的历史已经有几千年了,古时候用的烽火就是最原始无线通信的影子。但那时候的无线通信技术还只是处于萌芽阶段,只有到19世纪末意大利人马可尼发明无线电报开始,人类才开始真正大规模使用无线通信技术[1]。近数十年来随着计算机技术和电子通信技术的发展,无线通信技术更是以日新月异的速度向前发展,它也成为了通信领域的重点研究方向之一。 现代的无线通信技术是建立在硬件电路基础上的,因此微电子技术的发展就直接制约着无线通信技术的发展。回顾集成电路的发展历程,我们可以发现,自发明集成电路至今40多年以来,“从电路集成到系统集成”这句话是对IC产品特大规模集成电路发展过程的最好总结,即整个集成电路产品的发展经历了从传统的板上系统(System-on-board)到片上系统(System-on-a-chip)的过程[2-5]。随着集成程度的不断提高,芯片的体积能耗和成本在逐步的降低。这也促使电子产品向便携式和低端市场发展。 虽然微电子的发展历史已经有半个多世纪,但是射频芯片的发展却是近几年的事。从分类上来看,射频芯片属于专用集成电路。目前国际上有很多专门生产射频芯片的公司,例如Nordic公司和Chipcon公司。这些芯片一般工作在免费频段,采用专门的调制解调技术,内部集成了很多的电路[6-9]。例如Nordic公司的NRF2401芯片,它是单片射频收发芯片,工作于2.4~2.5GHz ISM(Industry Science medicine,工业、科学、医学)频段,芯片内置了频率合成器、功率放大器、晶体振荡器和调制器等功能模块,输出功率和通信频道可通过程序进行配置。芯片能耗非常低,以-5dBm的功率发射时,工作电流只有10.5mA,接收时工作电流只有18mA,有多种低功率工作模式使节能设计更为方便。 无线电子点菜系统是无线通信技术的一个典型的应用。近些年来,随着人民生活水平的不断提高和生活方式的转变,餐饮业具有巨大的投资市场,被称为中国的黄金产业之一。如今人们在消费过程中对服务质量产生了更高的要求,同时

机载天线综述

直升机平台机载天线研究综述 李雪健 摘要:直升机作为一种快速灵活的机动装备,近几年在城市反恐处突及应急灾害救援等场合作用明显。机载天线作为通信系统的重要一环,它的性能好坏对直升机通信效果影响极大。本文介绍了机载天线的分类及特点,综述国内外当前对机载天线的主要研究方向和研究进展。介绍了以FEKO和HFSS软件为基础的直升机平台天线研究方法。 关键词:直升机平台;机载天线;研究现状 0、引言 自1907年法国人保罗·科尔尼发明直升机以来,直升机就作为人造飞行器中重要一支在人类历史上扮演着重要角色。机动灵活和起落条件要求低等特点使直升机在现代社会得到广泛应用。 机载天线是飞机系统与其它系统进行电磁能量交换的转换设备,是飞机感知系统的一部分[1]。从广义角度而言,以载机为工作平台的天线均可称为机载天线。机载天线在现代飞行器上应用十分广泛,如飞机上的通信、导航、敌我识别、电子战、雷达等。机载天线的好坏决定着整个系统通信的质量,研究机载天线有着重要的意义[2]。 关于机载天线的研究的文献众多,从事相关研究的专家学者和科研院所也非常之多。但大部分研究都是基于固定翼飞机作为平台研究的,专门以直升机作为平台研究机载天线的文章较少。但固定翼飞机与直升机所处的通信环境及对天线的要求相似,可以进行类比研究。本文以机载天线的主要研究方向及发展情况为主结合直升机平台特点进行综述。 一、机载天线研究背景 1.1机载天线的国内外研究现状 近一个世纪以来,无线电通信技术发展迅速,天线作为无线电波的入口与出口,是一切无线系统中必不可少的组成部分。天线性能的好坏直接影响整个无线系统的性能。飞机作为一种高新科技集成的载体,飞机上通信设备的数量和种类都达到了前所未有的程度,并且现代社会对各种载人、载物飞行器的功能的要求越来越高。并且随着新一代飞机的飞行速度高度等的提高以及现代社会电磁环境的日益复杂,实现飞机通信的顺畅难度变大。这就对机载天线的性能提出来更高的要求。 飞机上有很多天线,如:各式各样的导航通信系统、着陆系统、测高雷达等系统的天线。机载天线按照工作频段分类,可以分为机载中波天线、机载短波天线、机载超短波(VHF/UHF)通信天线、飞机导航天线,还有机载共形微带天线及飞机通信用的自适应阵天线等。如图1.1所示,是一个典型军用飞机上具有多达70多副天线[3]。

基于单片机的无线遥控小车设计【文献综述】

毕业论文文献综述 机械设计制造及其自动化 基于单片机的无线遥控小车设计 1、国内外研究现状 无线电遥控是利用无线电信号来对远方的各种机构进行控制的技术,这些信号被远方的接收设备接收后,可以指令或驱动其它各种相应的机械,去完成各种操作,已经广泛运用于机械领域,不但提高机械的自动化程度和操作性,还改善了操作人员的工作环境啊。并且与我们的生活也越来越接近,比如遥控门窗,遥控风扇、遥控座椅、遥控小车等都是无线电技术的成功应用于生活的例子。 2、研究主要成果 智能小车,也称轮式机器人,是一种以汽车电子为背景,涵盖控制、模式识别、传感技术、电子、电气、计算机、机械等多学科的科技创意性设计。从普通的玩具遥控车到无限工业控制车辆,从短程控制到外太空探险小车的控制,可以预见今后无线智能遥控小车的应用将更加广泛。在最近几年,随科学技术的进步,智能化和自动化技术的普及,各种高科技广泛应用于玩具制造领域,使其娱乐性和互动性不断提高。根据美国玩具协会的调查统计,近年来全球玩具销量增幅与全球平均GDP增幅大致相当。而全球玩具市场的内在结构比重却发生了重大变化:传统玩具的市场比重在逐步缩水,高科技含量的电子玩具则蒸蒸日上。美国玩具市场的高科技电子玩具的年销售额2004年较2003年增长52%,而传统玩具的年销售额仅增长3%。英国玩具零售商协会选出的2001年圣诞最受欢迎的十大玩具中,在七款玩具配有电子元件。从这些数字可以看出,高科技含量的电子互动式玩具已经成为玩具行业发展的主流。普通的无线遥控车大家都很熟悉,市场里有很多提供小孩子玩玩的遥控小车,还有神奇的天堂电玩WII。 3、发展趋势 无论是简单的还是难的,熟悉的还是不熟悉的,智能无线遥控小车最基本的功能就是无线控制和启动两方面,在这个基础上,可以再加上更多的复杂功能,比如: ①测速:由单片机定时器根据高低电平计数脉冲与车轮周长通过算法得出车速,再根据车速和行驶时间得出行驶里程。 ②红外避障:红外发射管通过三极管和电阻接到一从单片机的PB口,红外接受管的数据口接到它的PC口,当检测到有障碍物时,接受管的数据口输出为低电平并送

线圈天线设计经验总结

线圈天线设计经验总结 线圈天线设计经验总结 做了三四个月的线圈天线了,从刚开始的什么都不懂,到现在的知道自己什么不懂, 也算是一个成长的过程,做了这么久,有点经验,写在这里与大家分享一下。 需求是13.56MHz 的天线,就像刷公交卡的那种天线一样,但不知道用什么形式的天 线做,看了一两个礼拜的微带天线,参考教程在HFSS 中做出了第一个微带天线的仿真, 正觉得有点进展的时候,老师一句话,用线圈天线做,我不得不改做线圈天线。然后就是 各种资料的搜索与学习。 线圈天线是一种很简单的天线,复杂点说的话,就是用铜线(当然可以是其他材料) 按照一定的形状绕几圈,ok ,这就是线圈天线了,铜线的两头加上激励源就可以发射了。(有兴趣的同学可以把你手中的公交卡打开,会发现它就是用的线圈天线,网上有这种教程,可以让你把公交卡拆开,然后把完成公交卡功能的天线和芯片拿出来贴在手机后盖和 电池之间,这样就可以很潇洒的实现手机刷卡了,哈哈,不过要怎么充值就要自己想办法了)当然,这个时候的线圈天线是不好用的,因为你对它的特性什么的都不了解。所以, 打算先进行理论方面的研究。 理论分析与Matlab 仿真 因为做的是类似于RFID 的NFC 的13.56MHz 的线圈天线,天线在这个频率一般都是 使用磁场耦合来实现能量的传递,那么我们就对在这个时候线圈的磁场进行分析。网上 关于矩形线圈的磁场分析有很多论文了,但我们还是自己做一下会理解的比较深刻,先复 习一下电磁场的知识,正好书上有一道例题讲的就是长度为l 的导线在周围空间任意点产生的磁场公式,这里引入了矢量磁位A ,因为矢量磁位A 的方向与电流I 的方向是相同的,而且对矢量磁位求旋度就是磁感应强度B ,这种性质对线天线来讲是很有用的。 矩形线圈 我们先来研究单圈的矩形线圈天线。 根据有限长导线周围磁感应强度的公式,算出四条边在空间某一点的矢量磁位A ,由于两两方向相同,叠加之后就剩下了两个方向的向量相加,这样利于后面求旋度的处理; 对空间某一点总矢量磁位A 求旋度就得到了磁感应强度B ,只取B 的Z 方向大小Bz 就 得到了我们所关心的垂直方向磁感应强度(因为刷卡的时候算磁通量只有垂直方向的是有 效的)。这样得到的是一个巨复杂的公式,用人的肉眼直接观察看不出来任何规律,于是 借助Matlab 的画图功能得到直观的感受。 Matlab 的m 文件内容与图片如下: clear all; clc;

螺旋天线综述

螺旋天线综述 1 引言 螺旋天线(helical antenna)是用导电性良好的的金属做成的具有螺旋形状的天线。螺旋天线具有圆极化,波束宽度宽的优点,因此被广泛在卫星通讯,个人移动通信中。 同轴线馈电是螺旋天线的常用馈电方式,可以采用底馈或者顶馈,此时同轴线的内导线和螺旋线的一端相连接,外导线则和接地板(金属圆盘或矩形板状等)相接,螺旋线的另一端是处于自由状态。 螺旋天线既可用做反射镜或透镜的辐射器,也可用做单独的天线(由一个或几个螺旋线组成)。 2 螺旋天线的发展 螺旋天线的辐射能力是美国科学家 JohnD.Kraus于1947年在实验中发现的,自此之后,螺旋天线以其在宽频带上具有近乎一致的电阻性输入阻抗和在同样的频带上按“超增益”端射阵的波瓣图工作特点很快在各领域得到了广泛的应用。许多学者对螺旋天线的辐射特性进行了研究,给出了螺旋天线辐射设计多经验公式。 20世纪70年代,苏联科学家尤尔采夫和鲁诺夫对各种形式的螺旋天线进行了比较系统的理论分析和设计研究。此后各国学者进行了这方面的研究,延伸出了很多变种,尤其是四臂螺旋天线因其高增益,方向性好,圆极化的特点,得到了深入的发展和实际应用,如图1所示。 2008年弗吉尼亚大学的Warren Stutzman教授制成了一种六臂螺旋天线,如图2所示。天线实现了几乎最优化的UWB性能,通过采用围绕一个金属中心核而卷绕的臂来维持与臂之间相对不变的距离,几乎完整的利用了天线罩内的整个三维空间。该天线具有10:1的瞬间带宽,它可以被用于频域、多带宽、多信道应用以及时域或脉冲应用。在低成本的应用中,该设计可以被蚀刻在天线罩的内部,或由曲线或曲管构建。

WIFI文献综述

WIFI技术的应用 由于互联网在全球的快速普及与发展.人们的工作与生活越来越依赖互联网。人们随时随地都有可能需要上网,产生了大量的WLAN 服务需求。随着智能天线技术的发展,笔记本电脑、手机、掌上电脑等支持WI兀的移动终端越来越普及。进一步增加了人们对WLAN 服务的需求。 基于WIFI标准的WLAN网络是目前最为普及的无线网络形式。由于WIFI技术无线接入和高速传输的技术优势,在一定条件下可以作为对3G网络的补充。而且基于WIFl标准的WLAN网络相对基于3G 标准的3G网络成本低廉。对于正在抢占3G市场的中国各大电信运营商来说.WIFI技术无疑是具有强大吸引力的。 1、WIFI及其技术特点 WIFI全称Wireless Fidelity。实质上是一种商业认证,具有此认证的产品符合IEEE802.11系列无线网络协议。该系列协议属于短距离无线传输技术,该技术使用2.4GHz或5GHz附近频段。 WIFI网络是由AP(Access Point)和无线网卡组成的无线网络。AP 一般称为网络桥接器或接入点,它是当作传统的有线局域网络与无线局域网络之间的桥梁,因此任何一台装有无线网卡的PC均可透过AP去分享有线局域网络甚至广域网络的资源,其工作原理相当于一个内置无线发射器的HUB或者是路由,而无线网卡则是负责接收由AP所发射信号的CLIENT端设备。 WIFI(Wireless Fidelity)技术即IEEE802.11协议.无线接入和高速传输是WIFI的主要技术优点.其中IEEE802.11b最高速度为11Mbps,IEEE802.11a与IEEE802.119的最高速度为54Mbps。现在多用的IEEE802.11b与IEEE802.11g设备使用的频段为2.4~2.4835GHz的免许可频段。在频率资源上不存在限制,因此使用成本低廉也成为了WIFI技术的又一大优势。WIFI无线网络是由 AP(Access Point)和无线网卡组成的无线网络。组网方式较为简单。我们通常将AP称为网络桥接器或接入点,将能搜索到WIFI网络的地方称为热点区域。任何一个装有无线网卡的终端(现在主要的终端是笔记本电脑和带WIFI功能的智能手机)进入WI兀覆盖区域均可以通过AP来无线高速接入英特网。另外IEEE802.11规定的发射功率不超过100毫瓦,实际发射功率大约为60-70毫瓦。而手机的

手机双频天线设计论文综述

通信工程专业实训 题目:手机内置天线的设计 专业:通信2班 学号:1167119226 姓名:李盼 指导老师:杜永兴 分数:_________________

目录 摘要: 关键字: 第一章:背景介绍 第二章:实训过程记录第三章:实训结论 第四章:实训总结 第五章:参考文献

摘要:现在的电子通讯技术飞速发展,随着技术可经济的推进,人们对手机的要求越来越高,然而手机的基本功能就是打电话,而对手机的内置天线要求就更高难度更大,小型化,并且能工作在不同的频段下,文中主要研究双频手机PIFA天线。采用了开槽的的设计方法实现了天线的双频,工作性能良好,易于实现,现在大多数手机都使用这种天线。 关键字:PIFA天线,双频,GSM,DCS,HFSS 第一章:背景介绍 1.1 移动通信对手机天线的要求 天线最主要的功能在于转换两种不同传播介质中的电磁波能量。在能量转换的过程中,会出现收发信机与天线及天线与传播介质之间的不连续接口。在无线通讯系统中,天线必须依照这两个接口的特性来做适当的设计,以使得收发信机、天线以及传播介质之间形成一个连续的能量传输路径。 移动通信手机对天线的要求: 外在要求: 天线尺寸小,重量轻,剖面低,携带方便,机械强度好 电性能要求: 水平面要求有全向辐射方向图,频带宽,效率高,增益高,受周围环境影响小,对人体辐射伤害小 1.2 手机天线的指标意义 天线输入阻抗: 天线的输入阻抗是以收发机与天线间的接口往天线端看入所得到的阻抗值。这一数值对天线的辐射效率,天线的带内增益波动,天线前端的功率容量有很大的影响。手机天线是一种驻波天线,,天线的阻抗不匹配,将导致大量的信号反射,使天线的辐射效率降低,同时由于反射的影响使得天线在宽频带内的增益有抖动,如果天线的驻波为6,手机前端的击穿电压将降为原来的1/6,而功率容量就会下降。 手机天线驻波对天线效率的影响不可不慎。 天线的驻波要求,我们目前统一要求为小于3。

无线加速度传感器文献综述

无线加速度传感器文献综述 一、研究现状 无线加速度传感器是传感器技术、MEMS技术、微处理器和无线通信技术相结合的产物,由加速度传感器、微处理器、射频收发芯片及电源构成。目前,国内外无线加速度传感器,包括其他类型的无线传感器,按体系结构可分为三大类: (1)COTS( Commercial Off The Shelf)节点,该类节点中的传感器、微处理器、通信模块等使用的都是现成的商用产品。典型代表有美国伯克利大学加州分校(UCB)的MICATelos节点,欧洲传感器研究项目小组开发的EyesIFX节点,中科院研究的GAIN系列也属于该类节点。这种节点除了无线传感器的共同特点外还具有低成本、短周期、技术门槛相对较低等优势,被各高校和研究机构广泛采纳,所以该类型的节点是最多的。 (2)SOC(System On Chip)节点,该类节点只使用一个芯片,就可实现节点的数据采集、控制和通信功能。SOC节点通常都为特定的应用而开发,由于需要芯片设计能力,因此开发门槛较高,成果相对较少。典型代表有Rockwell科学实验室的WINS节点、麻省理工开发的uAMPS-III等。 (3)Smart Dust节点,又称微型节点或尘埃节点。该类节点使用了业界最尖端的技术,体积只有几个平方毫米,通常为军事应用而开发,微型节点的代表为Smart Dust节点和SPEC节点,都由UCB研制。内嵌微处理器是无线加速度传感相比于传统传感器的又一特点,微处理器负责控制传感器进行数据的采集、处理和收发。 二、无线加速度传感器的工作原理 无线加速度传感器实际上就是将以加速度传感器为核心的数据采集模块、微处理器为核心的数据预处理模块、射频芯片为核心的无线传输模块,以及以微电池能量模块集成并封装在一个外壳内的系统。无线加速度传感器工作时,加速度传感器检测加速度信号(模拟信号),然后送入A/D转换器使其转换为数字信号,在作A/D转换之前,一般会设置信号调理电路,用来放大和滤波(如对建筑结构的检测,由于大跨度桥梁等大型建筑结构的自振频率较低,而桥面振动、桥梁负荷冲击等对振动信号的影响又相对较大,因此,在A/D采样之前需对模拟信号作抗混滤波处理,以滤除或降低高频干扰)。A/D的输出传送给微处理器进行预处理并存储数据,得到的预处理加速度数据将送给无线收发模块进行无线传输。最后,接受装置接收并数据传输给PC机作进一步的分析处理与显示。典型的无线加速度传感器节点结构由以下几个部分组成: (1)数据采集模块:用于对检测区域进行数据采集与信号调理。 (2)数据处理模块:微处理器对整个传感器节点的操作进行控制,对数据进行预处理并存储。 (3)无线传输模块:以射频芯片为核心,根据IEEE802.15.4协议进行无线通信,传输控制信息并首发数据信息。 (4)能量模块:为另三大模块提供电源,一般为微电池 三、无线加速度传感器存在的问题

手机天线测试

浅谈实践中的手机天线测试 随着移动通信的飞速发展和应用,中国的手机行业也不断发展壮大,当然中国的手机用户也在迅猛增长。而手机的射频器件中,手机天线是无源器件,手机天线作为手机上面唯一的一个“量身定做”的器件,它的特殊性和重要性必然要求其研发过程对天线性能的测试要求非常严格,这样才能确保手机的正常用。 现在就简单的介绍一下手机天线的研发过程中的几种常见的手机天线测试方法: 1、微波暗室(Anechonic chamber) 波暗室又叫无反射室、吸波暗室简称暗室。微波暗室由电磁屏蔽室、滤波与隔离、接地装置、通风波导、室内配电系统、监控系统、吸波材料等部分组成。它是以吸波材料作为衬面的屏蔽房间,它可以吸收射到六个壁上的大部分电磁能量较好的模拟空间自由条件。暗室是天线设计公司都需要建造的测试设备,因为对于手机天线的测试比较精确而且比较系统,其测试指标可以用来衡量一个手机天线的性能的好与坏。主要是天线公司使用,但其造价昂贵。 2、TEM CELL测试 用TEM CELL测试天线有源指标,因为微波暗室和天线测试系统造价比较昂贵,一般要百万以上,一般的手机设计和研发公司没有这种设备,而用TEM CELL(也较三角锥)来代替测试。和微波暗室的测试目的一样,TEM CELL也是一个模拟理想空间的天线测试环境,金属箱能够提供足够的屏蔽功能来消除外部干扰对天线的影响,而内部的吸波材料也能吸收入射波,减小反射波。TEM CELL不能对天线进行无源测试,只能对有源指标进行测试。由于空间限制,TEM CELL的吸波材料比较薄,而对于劈状吸波材料,是通过劈尖间的多次反射增加对入射波进行吸收,因此微波暗室里的吸波材料都比较厚,而TEM CELL的吸波材料都不购厚,因此对入射波的吸收都不是很充分,因此会导致测试的结果不精确。 另外,TEM CELL的高度也不够,这也是TEM CELL不能进行定量测试的一个原因。根据天线辐射的远场测试分析,对于EGSM/DCS频段的手机天线,被测手机与天线的距离至少大于1米;因此,我们可以看几乎所有的2D暗室都是远大于这个距离。而TEM CELL比这个距离小一些,所以这也是TEM CELL相对于微波暗室来讲测量不准的一个原因。 所以,TEM CELL只能对天线做定性的分析而不能做定量的分析。在实验室可以定性分析几种样机的差异,比较其性能的优劣,但不能作为准确的标准值来衡量天线的性能,只能通过与其他的“金鸡”(Golden sample ) 对比,大致来判断手机天线的性能。TEM CELL一般只找最佳方值,使测试结果对手机摆放的位置比较敏感。

电动汽车无线充电技术文献综述

电动汽车无线充电技术的现状与展望 王利军(合肥工业大学,合肥230000) 刘小龙(合肥工业大学,合肥230000) 端木沛强(合肥工业大学,合肥230000) 景池(合肥工业大学,合肥230000) 【摘要】介绍了无线充电技术的分类、电动汽车无线充电技术的工作原理以及电动汽车无线充电技术的应用情况,对比分析电动汽车传统能源供给方式及无线充电方式的优缺点。分析电动汽车用无线充电技术的特点,并介绍应用于电动汽车的无线充电技术的研发现状。然后以行驶中的充电技术为重点,对将来电动汽车用无线充电技术的发展进行展望。Abstract:The categories, operating principles and applications of wireless charging technology are introduced in this paper. The advantages and disadvantages are analyzed by comparing traditional energy supply mode and wireless charging mode. The characteristic of wireless charging technology for EV is analyzed. And then the development present of wireless charging technology is introduced. Finally,the future of wireless charging technology for EV is described with focus on charging of a moving vehicle on road. 【关键词】电动汽车无线充电无线电力输送电磁感应 Key words:electric vehicle; wireless charging technology; wireless power transmission; electromagnetic induction; 0 引言 随着社会的进步、科技的发展、环境和能源问题的日益突出,发展和普及电动汽车等新能源汽车的呼声日趋高涨,国内外纯电动汽车( EV) 和插电式混合动力汽车( PHEV) 的量产和销售也已开始。然而当前电动汽车的普及还面临着诸多问题。其中充电技术方面,现在电动汽车的充电方式全部是接触式充电(无论是充电模式还是换电模式) ,非接触式的无线充电技术尚处于起步阶段。然而,从便利性来看,非接触式无线充电技术更适用。由于电动汽车二次电池的能量密度远不及汽油,必须经常进行充电作业,且每次充满电都需要数小时。而利用无线充电技术可以省却繁琐的充电作业,甚至可以在汽车行驶中自动进行充电,实现智能化和人性化,同时解决了接触式充电在安全和维护方面的问题。 1 无线充电技术 无线充电技术引源于无线电力输送技术。无线电力传输也称无线能量传输或无线功率传输,主要通过电磁感应、电磁共振、射频、微波、激光等方式实现非接触式的电力传输。根据在空间实现无线电力传输供电距离的不同,可以把无线电力传输形式分为短程、中程和远程传输三大类。 1.1 短程传输 通过电磁感应电力传输(ICPT)技术来实现,一般适用于小型便携式电子设备供电。ICPT 主要以磁场为媒介,利用变压器耦合,通过初级和次级线圈感应产生电流,电磁场可以穿透一切非金属的物体,电能可以隔着很多非金属材料进行传输,从而将能量从传输端转移到接收端,实现无电气连接的电能传输。电磁感应传输功率大,能达几百千瓦,但电磁感应原理的应用受制于过短的供电端和受电端距离,传输距离上限是10 cm 左右。 1.2 中程传输 通过电磁耦合共振电力传输(ERPT)技术或射频电力传输(RFPT)技术实现,中程传输可为手机、MP3 等仪器提供无线电力传输。ERPT 技术主要是利用接收天线固有频率与发射场电磁频率相一致时引起电磁共振,发生强电磁耦合的工作原理,通过非辐射磁场实现电能的高

FPC类天线设计要求(天珑资料)

F P C类天线设计要求 综述:FPC类天线最主要的问题是:1.起翘问题2.成本问题3.生产操作问题4.断裂问题 §1FPC类天线主要的结构组装方式 一.FPC+支架 FPC直接粘贴在支架表面,金手指一般设计到支架底面,在PCB板上SMT小弹片,小弹片的弹脚连接到天线金手指,天线(支架加FPC)固定在PCB上,或者PCB固定在下图右图的支架中间。 二.FPC+机壳 FPC直接粘贴在机壳表面,金手指部分穿过机壳预留的间隙,延伸到机壳另一面,PCB板上SMT小弹片,小弹片的弹脚连接到天线金手指。 此类天线特殊要求: a所有的转角都至少金手指所粘贴部位不能有顶针. c不能打脱模剂,做好不使用自带脱模剂的材料. 2.如果机壳表面有喷油工艺,则FPC的粘胶面尽量远离喷油面的边缘,喷油区常有飞油导致FPC粘帖不良. §2FPC类天线塑胶部件设计技术要求 一.贴FPC的塑胶件表面要设计得尽量平缓,避免R值1mm--4mm之间的小圆弧面,大于5mm的圆弧尽量改为斜平面组合模拟大圆弧,其中每个斜平面的宽度尽量大于等于4mm。 二.在塑胶件表面的合适位置设计加一些定位柱或热熔柱,以帮忙FPC粘贴时的定位和预防FPC的起翘,每个平面上的定位柱不得超过2个。柱子为直径高。如设计为热熔柱,则柱子为直径,高。 三.塑胶件开模时要求在贴FPC的表面顶针印痕和和其他印痕,断差应控制在以内,以免表面起台阶和披峰导致FPC起翘起皱,同时表面抛光处理或DVI-27或花纹,以便FPC跟塑胶件粘贴更牢固. 四.金手指部位所贴的面为一个平面,并且不准在此平面设置顶针,尽量为光面或细火花纹,必须 实心,不准为中空的结构. 五.FPC所要贴到的面都要求有圆角,一般以上(不超过,特殊部位以上(不超过,不能为尖角. 如下图紫色位置是准备贴FPC的部位,红色位置是要求到圆角的位置。 六.机壳上的缝隙设计要求其长度和宽度要能穿过相应FPC金手指的长度和宽度(根据金手指尺寸而定,两者相差单边以上). 七.塑胶件在注塑生产时,要求不能打脱模剂,同时在图纸中注明. 八.塑胶件(支架和机壳)生产可选用ABS和普通PC或是PC+ABS等原材料,但避免选用PC141R和PC241R等型号原材料,因为此类带”R”型号的原材料本身带脱模剂. §3FPC的设计技术要求和选材参考 一.普通FPC的结构 普通的单面板FPC由以下5层材料构成: 背胶+基材+AD+铺铜+油墨 背胶厚度一般为, 基材厚度(普通Pi和PET基材为,Pi半对半基材为 AD厚度一般为. 铜箔的厚度一般为. 油墨的厚度一般为和. 所以普通的单面板FPC的总厚度在左右. 二、FPC基材的选材 基材: 这种基材耐高温,可焊接,能制作双面板或是多面板的FPC,可用于须制作双面板或多面板的FPC天线项目中,也可以用于FPC金手指需要焊接的项目中. 根据Pi基材的厚度可分为Pi半对半基材(T=和Pi一对半基材(T=25um)等, Pi半对半基材是目前较薄且较柔软的一种基材,这种基材贴服性好,可用于弯折面多,圆弧面陡峭的天线项目中.背胶基层胶层AD铜箔油墨镀镍层镀金层基材.

短距离无线通信技术综述[文献综述]

文献综述 通信工程 短距离无线通信技术综述 摘要:近年来,数字家庭,无线通信,无线控制,无线定位,无线组网和移动连接等词语频频映入我们的眼帘,短距离无线通信技术才逐渐进入我们的生活。正是由于IT产业的高速发展,网络的普及,家电的智能化以及单片机强有力的功能拓展,才使得它们逐渐来到我们身边,进入我们的生活。有增无减的相关信息报道足以预测这些新事物必将具有强大的生命力和广阔前景。 关键词:WirelessUSB技术;UWB;Bluetooth;Zigbee 1.引言 短距离无线通信技术的范围很广,在一般意义上,只要通信收发双方通过无线电波传输信息,并且传输距离限制在较短的范围内,通常是几十米以内,就可以称为短距离无线通[1]。人们注意到在同一幢楼内或在相距咫尺的地方,同样也需要无线通信。因此,短距离无线通信技术应运而生。目前,便携式设备间的网络连接使用的短距离无线通信技术主要有UWB超带宽、wrielessUSB技术、蓝牙(Bluetooth) 技术、zigbee等。下面叙述几种主要的短距离无线通信及其应用技术[2]。 2.短距离无线通信技术的特征 低成本、低功耗和对等通信,是短距离无线通信技术的三个重要特征和优势[3]。 首先,低成本是短距离无线通信的客观要求,因为各种通信终端的产销量都很大,要提供终端间的直通能力,没有足够低的成本是很难推广的。 其次,低功耗是相对其它无线通信技术而言的一个特点,这与其通信距离短这个先天特点密切相关,由于传播距离近,遇到障碍物的几率也小,发射功率普遍都很低,通常在1毫瓦量级[4]。 最后,对等通信是短距离无线通信的重要特征,有别于基于网络基础设施的无线通信技术。终端之间对等通信,无须网络设备进行中转,因此空中接口设计和高层协议都相对比较简单,无线资源的管理通常采用竞争的方式如载波侦听[5]。

天线设计毕业汇报总结

第一章绪论 一、绪论 1.1课题的研究背景及意义 自古至今,通信无时无刻不在影响着人们的生活,小到一次社会交际中的简单对话;大到进行太空探索时,人造探测器与地球间的信息交换。可以毫不保留地说,离开了通信技术,我们的生活将会黯然失色。近年来,随着光纤技术越来越成熟,应用范围越来越广。在广播电视领域,光纤作为广播电视信号传输的媒体,以光纤网络为基础的网络建设的格局已经形成。光纤传输系统具有的传输频带宽,容量大,损耗低,串扰小,抗干扰能力强等特点,已成为城市最可靠的数字电视和数据传输的链路,也是实现直播或两地传送最经常使用的电视传送方式。随着全球通信业务的迅速发展,作为未来个人通信主要手段的现代通信技术引起了人们的极大关注,我国在移动通信技术方面投入了巨大的人力物力,我国很多地区的电力通信专用网也基本完成了从主干线向光纤过度的过程。目前,电力系统光纤通信网已成为我国规模较大,发展较为完善的专用通信网,其数据、语音,宽带等业务及电力生产专业业务都是由光纤通信承载,电力系统的生产生活,显然,已离不开光纤通信网。 无线通信现状另一非常活跃的通信技术当属,无线通信技术了。无线通信技术包括了移动通信技术和无线局域网(WLAN)技术等两大主要方面。移动通信就目前来讲是3G 时代,数字化和网络化已成为不可逆转的趋势。目前,移动通信已从模拟通信发展到了数字移动通信阶段。无线局域网可以弥补以光纤通信为主的有线网络的不足,适用于无固定场所,或有线局域网架设受限制的场合,当然,同样也可以作为有线局域网的备用网络系统。WLAN,目前广泛应用IEEE802.11 系列标准。其中,工作于2.4GHZ 频段的820.11 可支持11Mbps 的共享接入速率;而802.11a 采用5GHZ频段,速率高达54Mbps,它比802.11b 快上五倍,并和820.11b兼容。给人们的生活工作带来了很大的方便与快捷。 在整个无线通信系统中,用来辐射或接收无线电波的装置成为天线,而通信、雷达、导航、广播、电视等无线电技术设备都是通过无线电波来传递信息的,均需要有无线电波的辐射和接收,因此,同发射机和接收机一样,天线也是无线电技术设备的一个重要组成部分,其性能的优良对无线通信工程的成败起到重要作用。天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或

基于无线网络文献综述

成绩: 西安建筑科技大学华清学院 毕业设计 (论文)文献综述 院(系):信息与控制工程系 专业班级: 毕业设计 :开发类 论文方向 综述题目:基于无线网络的火灾探测报警传感节点 学生姓名: 学号: 指导教师: 2015年 03 月27日

基于无线网络火灾探测报警系统传感节点 设计 摘要:随着我国经济迅速发展,现代建筑不断涌现,同时由于人口的密集程度增加,因此一旦发生火灾将造成巨大生命和财产损失。火灾自动报警系统所具有的早期发现并通知火灾和启动灭火设备灭火的功能,使大量火灾在起初阶段就被扑灭,避免了重大经济损失,成为现代消防不可缺少的安全技术措施。预防和消除火灾引起了消防部门和社会各方面的高度重视,因此使火灾自动报警设备的设计、生产、应用有了较大的发展。火灾自动报警系统是在保护对象发生火灾的情况下自动探测、显示火灾警报的装置。它广泛应用于高层建筑、物资仓库、计算中心、现代化工厂等建筑物内。安装火灾自动报警系统的目的,就是及时发现火灾、及时采取灭火、疏散等措施,最大限度的降低因火灾带来的损失。为了更好地进行人机交互,把与火灾有关的各种信息以文字或图形方式显示在液晶屏和CRT 上。 火灾自动报警系统是由火灾报警控制器、火灾报警探测器及其它现场报警器组成。 按照消防规范,火灾报警探测器主要有感烟探测器、感温探测器、手动报警按钮另一方面,随着人们生活水平的提高和安全防范意识增强,急需开发面向普通居民价格低廉、运行可靠的自动报警系统。这次毕设利用单片机Zigbee模块,利用传感器信息融合技术,完成语音报警的实用、可靠的单片机语音自动报警系统,着重阐述了该系统的组成形式及工作原理。基于该系统原理的相关产品已在线使用。实践表明,单片机技术在系统报警和其它一些自动控制领域中有着广泛的应用前景。 本文介绍了一种基于无限网络的火灾报警探测传感系统,该系统由至少一个无线采样点和记录无线采样点的烟雾、温度、报警数据。并包含系统的硬件和软件的设计,利用传感器、CC2530单片机的原理完成设计理念。实现报警功能。针对当前火灾自动报警系统存在的误报漏报频繁、智能化和化程度低、特殊恶劣条件下火灾探测报警抗干扰能力弱等问题,本设计采用烟雾传感器作为火灾信号检测器,实现多种火灾情况的监控报警,无线收发模块可自动编码和接收火灾信号。系统采用智能识别算法,主机与各终端设备间通过中继实现200m以上的远距离无线信号传输,主机可数字显示火灾发生的位置、对终端被测点的温度检测、备用电池的电压监控和喇叭发声报警。除此之外,为了增加系统的应用范围,PC的COM口可通过

第六讲 手机天线类型比较和结构射频规则

第六讲手机天线类型比较和结构射频规则 一、各种手机内置天线的特点和演变过程 在常见的手机天线结构中,陶瓷介质天线由于Q值很高,带宽窄,损耗大,并且易受环境的影响而产生频率漂移,因此不推荐作为手机主天线使用,但由于其尺寸小的优势,可以用作对接收灵敏度要求不高的蓝牙天线。PCB板天线也一般仅仅是通过将外置单极子天线通过PCB过孔和PCB走线将辐射体做在PCB板上,并利用介质板的介电常数在一定程度上减小天线尺寸的形式,这种天线也由于介质板的损耗常数而产生一定的损耗,所以在大多数高端机情况下也不推荐使用,仅在少数低端机和工作频点较少的情况下才为节约成本而使用。PCB天线可作外置天线也可作内置天线。 PIFA天线自产生以来,一直到今天都一直是内置天线的主要形式,因为它尺寸较小,可以充分利用PCB板作为接地面,并通过接地片将谐振长度缩小为四分之一波长。但是随着手机小型化和集成度更高的发展要求,原有PIFA天线逐渐显示出一些对结构方面的严格限制。于是有不少业界领先的手机制造商Motorola、Samsung、Sony-Ericsson等公司逐渐改变手机天线的设计风格,改用各种变形的单极子天线设计,这样就减小了结构对天线的依赖性,增加了手机外观的灵活性。比如索爱E908的菱形天线设计,Samsung E708的城墙线(Meander)天线设计,以及Motorola V3中使用的一个金属铜棒作为天线的设计。这些新型的天线设计显示了高超的设计技巧,它们往往不易被天线其他天线厂家和手机厂家模仿,并逐渐发展成手机天线厂家之间和手机厂商之间竞争的一项核心技术。 二、PIFA天线和单极子天线的性能比较 前面我们已经分别对单极子天线和PIFA天线的一般特性进行过分析,下面我们在几种重要的特性方面比较一下两种天线性能的优劣。 1.空间结构要求 两种天线的设计对空间的预留都必须考虑Chu极限定理,但在组成上,PIFA要求必须有一个辐射单元和一个大的接地面,两者互相平行,并且辐射体和接地面之间必须有一个不小的间距。接地面和辐射体都是物理实体,它们必须位于手机上,所以对结构限制较大。采用PIFA天线手机不可能做得很薄。 而采用单极子天线进行设计,则天线仅有一个辐射体而没有地面,因此它对辐射空间的要求就仅仅是天线辐射体周围的空间而没有地面的限制,天线占用的辐射空间可以不在手机体上而在手机周围的外界空间。因此对结构的限制较小。

天线近场测量的综述

天线近场测量的综述

内部☆ 天线近场测量的综述 An OutIine of Near Field Antenna Measurement 一引言 天线工程一问世.天线测量就是人们一直关注的重要课题之一,方法的精确与否直接关系到与之配套系统的实用与否。随着通讯设备不断更新,对天线的要求愈来愈高,常规远场测量天线的方法由于实施中存在着许多困难,有时甚至无能为力,于是人们就渴望通过测量天线的源场而计算出其辐射场的方法。然而由于探头不够理想和计算公式的过多近似,致使这种方法未能赋于实用。为了减小探头与被测天线间的相互影响,Barrett等人在50年代采用了离开天线口面几个波长来测量其波前的幅相特性,实验结果令人大为振奋,由此掀开了近场测量研究的序幕,这一技术的出现,解决了天线工程急待解决而未能解决的许多问题,从而使天线测量手段以新的面目出现在世人的面前。 四十多年过去了,近场测量技术已由理论研究进入了应用研究阶段,并由频域延拓到了时域,它不仅能够测量天线的辐射特性,而且能够诊断天线口径分布,为设计提供可靠、准确设计依据;与此同时,人们利用它进行了目标散射特性的研究,即隐身技术和反隐身技术的研究,从而使该技术的研究有了新的研究手段,进而使此项研究进入了用近场测量的方法对目标成像技术的探索阶段。 二、近场测量技术发展的过程 近场测量的技术研究从五十年代发展至今,其研究方向大致经历四个阶段,如表1所示。 表1 近场测量技术所经历的时间

各个时期的研究内容可概述为以下几个方面 1.理论研究 在Barrett等人的实验之后,Richnlond等人用空气和介质填充的开口波导分别测量了微波天线的近场,并把由近场测量所计算得到的方向图与直接远场法测得的结果相比较,其方向图在主瓣和第一副瓣吻合较好,远副瓣和远场法相差较大。于是人们就分析其原因,最终归结为探头是非理想起点源所致,因此,出现了各种方法的探头修正理论。直到1963年Karns等人提出了平面波分析理论才从理论上严格地解决了非点源探头修正的问题。与此同时,Paris和Leach等人用罗仑兹互易定理也推出了含有探头修正的平面波与柱面波展开表达式[1,2]。Joy 等人也给出了含有探头修正下的球面波展开式及其应用[3 ]。至此,频域近场测量模式展开理论已完全成熟,因此研究者的目光投向了应用领域。在随后的十年里,美国标准局(NBS)等研究机构进行大量的实验证明此方法的准确性[4],其中取样间隔、探头型式的选择以及误差分析是研究者们关心的热门问题。 2.取样间隔及取样间距 由于模式展开理论是建立在付里叶变换的基础上,根据付里叶变换中抽样定理[5],对带宽有限的函数。用求和代替积分,用增量代替积分元不引人计算误差,而平面、柱面、球面的模式展开式对辐射场而言都是带宽有限的函数,忽略探头与被测天线间的电抗耦合(取样间距选取的准则),取样间隔与取样间距按表2所示的准则进行选取(参看图1坐标系)。 表2 取样间隔与取样问距的准则 表中:λ—工作波长;d—探头距被测天线口径面的距离;a—完全包围教测天

相关主题
文本预览
相关文档 最新文档