当前位置:文档之家› 地热能及其直接利用和发电技术

地热能及其直接利用和发电技术

地热能及其直接利用和发电技术
地热能及其直接利用和发电技术

1绪论 (2)

2 地热能的直接利用技术 (7)

2.1地源热泵技术 (7)

2.2地热务农技术 (9)

2.3地热医疗技术 (10)

3 地热发电技术 (10)

3.1地热发电原理与技术 (10)

3.1.1地热蒸汽发电 (10)

3.1.2地下热水发电 (11)

3.1.3联合循环发电 (12)

3.1.4利用地下热岩石发电 (12)

3.2地热发电循环系统 (13)

3.2.1单机扩容系统 (13)

3.2.2两级扩容系统 (14)

3.2.3双循环系统 (15)

3.3地热发电的技术关键 (15)

3.3.1地热田的回灌 (15)

3.3.2地热田的腐蚀 (16)

3.3.3地热田的结垢 (16)

4 地热能开发产生的问题 (18)

4.1利用率低 (18)

4.2过量开采导致地面下降 (18)

4.3环境污染 (18)

参考文献 (19)

1

地热能及其直接利用和发电技术

摘要:地热资源有节能减排、高效利用和价廉量稳的三大优势,20世纪70年代以来,国内外都在大规模地利用地热资源来发电、供暖。本文基于对国内外地热能及其应用技术的调研,总结了地热能的直接利用技术和地热能发电技术的发展和亟待解决的技术问题,以及地热能应用带来的影响。重点讨论了地热发电技术的原理和应用。

关键词:地热资源;开发;现状;发电技术;前景

1绪论

地热能〔Geothermal Energy〕是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地热能是蕴藏于地球深处的热能。按照现有开发技术的可能性,地热能资源的范围一般指在地壳表层以下5000米以内岩石和地热流体所含的热量。

地球内部的温度高达7000℃,而在80至100公英里的深度处,温度会降至650至1200℃。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。地热能是可再生资源。

地球内部蕴藏着的热能称为地热能,来自(1)高温岩浆,(2)岩石中放射性元素衰变;在地球上所有的能源中,地热能仅次于太阳辐射能,排在第二位(火山爆发、地震和其他地壳变动);

世界地热资源主要分布于以下5个地热带:(1)环太平洋地热带。世界最大的太平洋板块与美洲、欧亚、印度板块的碰撞边界,即从美国的阿拉斯加、加利福尼亚到墨西哥、智利,从新西兰、印度尼西亚、菲律宾到中国沿海和日本。世界许多地热田都位于这个地热带,如美国的盖瑟斯地热田,墨西哥的普列托、新西兰的怀腊开、中国台湾的马槽和日本的松川、大岳等地热田。(2)地中海、喜马拉雅地热带。欧亚板块与非洲、印度板块的碰撞边界,从意大利直至中国的滇藏。如意大利的拉德瑞罗地热田和中国西藏的羊八井及云南的腾冲地热田均属这个地热带。(3)大西洋中脊地热带。大西洋板块的开裂部位,包括冰岛和亚速尔群岛的一些地热田。(4)红海、亚丁湾、东非大裂谷地热带。包括肯尼亚、乌干达、扎伊尔、埃塞俄比亚、吉布提等国的地热田。(5)其他地热区。除板块边界形成的地热带外,在板块内部靠近边界的部位,在一定的地质条件下也有高热流区,可以蕴藏

2

一些中低温地热,如中亚、东欧地区的一些地热田和中国的胶东、辽东半岛及华北平原的地热田。

地热资源是指在当前技术经济和地质环境条件下,能够从地壳中科学、合理的开发出来的岩石中的热能量和地热流体中的热能量及其伴生的有用组成。地热能是通过漫长的地质作用而形成的集热、矿、水为一体的矿产资源。地热资源按它在地下的储存形式可分为五大类:蒸汽型、热水型、地压型、干热岩型和岩浆型。

(1)蒸汽型地热资源:指以温度较高的蒸汽为主的地下对流水热系统,这类地热资源由于需要特殊的地质条件才能形成,因此储量较少。一般蕴藏在1.5 km左右的地表深度。

(2)热水型地热资源:指地下以水为主的对流水热系统,是存在于地热区的水从周围储热岩体中获得能量形成的,包括喷出地面的热水和湿蒸汽。这类资源分布广泛,储量丰富,是当前重点研究对象。

(3)地压型地热资源:蕴藏深度为2km~3km,以高压水形式存在,溶解大量碳氢化合物,开发时可同时得到压力能,热能,化学能。

(4)干热岩型地热资源:在地壳深处,岩石具有很高的温度,储存大量得热能,干热岩型地热资源主要指地表下10km左右深处的干燥无水的热岩石。这类资源十分丰富,是未来开发的重点。

(5)岩浆型地热资源:指蕴藏在地层深处的呈完全熔融状态或半熔融状态的岩浆中所具有的巨大能量。

据2010年4月25~30日在印度尼西亚巴厘岛召开的世界地热会议报告,到2010年

世界地热发电所的设备总容量为10715MW

e ,1980年以后,每5年约增加1000MW

e

,但

从2005年的8902MW

e 增加了1813MW

e

,增加稍为迅速。年间发电量,IGA从1995年

开始统计,在2010年约为67246GWh,从2005年起增加约1 l537GWh。有地热发电所的24个国家的设备容量和年间发电量如表1.1所示。

3

图1.11950~2010年世界地热发电所的设备总容量、发电量及2015年预测2005~2010年的地热直接利用的进展,据Lnnd先生的论文和78个国家的报告汇总,2000年热利用国家为58个,2005年增至72个,其设备容量从2005年的28269MW e增

,增加约80%。据IGA1995年以后的调查,每5年约增加1.8至2010年的50583 MW

e

倍,年间能量利用量也从2005年的273372 TJ/a,增至2010年的438071TJ/a,约增~n60%,利用领域的年间能量利用率变化如图1.2示。在直接利用中,有利用中低温地热水和浅部地中热的情况(GHP)。

图1.2直接利用各领域年间能量利用率的变化

4

表1.1各国的地热发电设备容量和发电量(2010)

5

表1.2直接利用量在2000GWh/a以上的前15国情况

表1.3 GHP(地中热利用)前9国

中国是以中低温为主的地热资源大国,全国地热资源潜力接近全球的8%中国地热资源遍布全国各地。据估算,中国深度2000米以内的地热资源所含的热能相当于2500万亿吨标准煤,初步估计可以开发其中的500亿吨。中国地热资源主要分为三类:(1)高温对流型地热资源,主要分布在滇藏及台湾地区,其中适用于发电的高温地热资源较少,主要分布在藏南、川西、滇西地区,可装机潜力约为1000万千瓦;(2)中低温对流型地热资源,

6

主要分布在东南沿海地区包括广东、海南、广西,以及江西、湖南和浙江等地;t3)中低温传导型地热资源,主要埋藏在华北、松辽、苏北、四川、鄂尔多斯等地的大中型沉积盆地之中。

目前,中国经正式勘察并经国土资源主管部门审批的地热田为103处,全国已打成地热井2000多眼,提交的B+C级可采地热资源量每年3.3亿立方米;经初步评价的地热田214个,D+C级地热可开采资源量每年约5亿立方米。

2 地热能的直接利用技术

地热能的利用可分为地热发电和直接利用两大类,而对于不同温度的地热流体可利用的范围如下:(1)200~400℃,直接发电及综合利用;(2)150~200℃,可用于双循环发电、制冷、工业干燥、工业热加工等;(3)100~150℃,可用于双循环发电、供暖、制冷、工业干燥、脱水加工、回收盐类、制作罐头食品等;(4)50~100℃,可用于供暖、温室、家庭用热水、工业干燥;(5)20~50℃,可用于沐浴、水产养殖、饲养牲畜、土壤加温、脱水加工等。

2.1地源热泵技术

(1)原理:地源热泵系统是一种利用地球(土壤、地表或地下水体)所储藏的太阳能资源为冷热源,进行能量转换的供暖制冷空调系统,由地能换热系统、热泵机组和室内采暖空调末端系统所组成。热泵是先进的热能利用设备,能有效地利用空气、水体和土壤中蕴藏的低温热能。利用热泵,可以从低温地热尾水中提取热量,从而降低地热尾水的排放温度,增大地热利用温差。

图2.1地源热泵原理图

(2)分类:根据地热能交换系统形式的不同,地源热泵系统分为地埋管地源热泵系统、地下水地源热泵系统和地表水地源热泵系统。

7

图2.2地源热泵分类

(3)特点:①绿色清洁。地球表面的水源和土壤是一个巨大的太阳能集热器,收集了约47%的太阳辐射能量,是人类每年所利用能量的500多倍。地源热泵利用地球所储藏的太阳能资源作为冷热源,是可再生能源利用技术。②经济高效。地源热泵通过消耗少量电能,可从土壤、地表水、地下水等浅层地热中提取4-6倍于自身所消耗电能的能量进行利用。与常规冷热源系统相比,地源热泵系统的能量利用效率整体可提高30%左右,大大减少了系统运行能耗和费用,而且除实现制冷、制热功能外,可一套系统同时实现生活热水的制取。③低碳环保。地源热泵系统在使用中利用清洁能源,减少煤、石油等化石能源的利用,并提高了能源使用效率,可大大减少二氧化碳等温室气体的排放,缓解城市热岛效应,并避免由于使用锅炉和冷却塔而引发的空气污染和噪声污染。④运行稳定。由于浅层地热的温度相对稳定,热泵机组吸热或放热受外界气候影响小,其运行工况比其它空调设备更稳定,可避免常规空调当外界气温过高或过低运行时不稳定的问题。

(4)地源热泵技术在中国的发展:中国浅层地热能应用潜力巨大,初步估算,287个地级以上城市每年浅层地热能可利用资源量相当于3.56亿吨标准煤,扣除开发消耗的电能,净节能量相当干2.48亿吨标准煤,减少二氧化碳排放6.13亿吨。目前,中国地源热泵技术的建筑应用面积已超过1.4亿平方米,全国地源热泵系统年销售额已超过50亿元,并以30%以上的速度在增长,单体地源热泵系统应用面积高达80万平方米。

(5)地源热泵有关利用技术:20世纪90年代以来,中国地源热泵系统取得许多突破性新技术,并广泛应用于地热工程领域,地源热泵技术是实现地热能梯级利用、地温能利用和污水热能利用的有效手段,热泵技术、低温地板辐射技术和信息技术的有机结合与应用给地热能在供暖、制冷、环保等方面存在的问题提供了有效解决方法,整体提高了资源的利用率,保护了资源与环境。

①低温地板辐射技术。低温地板辐射采暖是将地暖专用塑管埋于地下,在管道内通入30℃~60℃的热水,使地面达到一定的温度,靠地面和围护结构、家具、人体等实体的辐射换热来维持房间需要的温度和人体的舒适性,具有高效节能等优点。

②信息技术。信息技术的应用有效提高了地热资源开发利用技术与管理水平。中国成

8

功研制出地热资源数据库,建立了部分省市的地热资源开发利用评价设计系统和地热井远程监控系统,可实现对地热井的水温、流量、水位等动态数据进行远程监控,有效进行地热资源的开发管理。

③地热梯级利用技术。地热梯级利用就是多级次地从地热水中提取热能,多层次地利用,以达到“能尽其用”的目的。通常情况下,可以将地热能要供暖的总负荷分成高温供暖部分与低温供暖部分,高温部分一般可以采用管网方式供暖,低温部分可以采用地板辐射采暖等。

④混合水源联动运行空调技术。混合水源联动运行空调技术是一项新的能源利用技术,利用处理后的工业废水与城市污水、湖水、地热尾水等低品位的能源作为空调系统的热、冷源,利用水源热泵提取热能与冷能进行供热与制冷。

⑤回灌技术。地热资源是在漫长的地质历史时期内形成的,其补给来源十分有限。地热水的大量集中开采会因其理藏深度大、补偿缓慢、再生速度不快而使地热水水位下降形成地面沉降和人为的资源“医乏”,而且地热水的随意排放对水土及大气造成污染。回灌是解决上述问题的根本方法口天津市塘沽区于220世纪80年代初开始进行基岩热储回灌,近几年回灌量是同期开采量的63%,有效遏制了水位下降过快的势头。

⑥增强型地热系统。增强型地热系统是国际上最为关注的两个发展趋势之一。增强型地热系统也叫干热岩地热,原理是从地表往干热岩中打一眼井(注入并),封闭井孔后向井中高压注入温度较低的水,高压水在岩体致密无裂隙的情况下,会使岩体大致沿垂直于最小地应力的方向产生许多裂缝,注入的水会沿着裂隙运动并与周边的岩石发生热交换,可以产生温度高达200℃~300℃的高温高压水或水汽混合物,然后再通过人工热储构造的生产井将这些高温蒸汽提取用于地热发电和综合利用,利用后的温水又通过注入井回灌到干热岩中,从而达到循环利用的目的。

图2.3发展中的干热岩发电系统

2.2地热务农技术

地热在农业中的应用范围十分广阔。如利用温度适宜的地热水灌溉农田,可使农作物早熟增产;利用地热水养鱼,在28℃水温下可加速鱼的育肥,提高鱼的出产率;利用地

9

热建造温室,育秧、种菜和养花;利用地热给沼气池加温,提高沼气的产量等。将地热能直接用于农业在我国日益广泛,北京、天津、西藏和云南等地都建有面积大小不等的地热温室。各地还利用地热大力发展养殖业,如培养菌种、养殖非洲鲫鱼、鳗鱼、罗非鱼、罗氏沼虾等。

2.3地热医疗技术

地热在医疗领域的应用有诱人的前景,目前热矿水就被视为一种宝贵的资源,世界各国都很珍惜。由于地热水从很深的地下提取到地面,除温度较高外,常含有一些特殊的化学元素,从而使它具有一定的医疗效果。如合碳酸的矿泉水供饮用,可调节胃酸、平衡人体酸碱度;含铁矿泉水饮用后,可治疗缺铁贫血症;氢泉、硫水氢泉洗浴可治疗神经衰弱和关节炎、皮肤病等。由于温泉的医疗作用及伴随温泉出现的特殊的地质、地貌条件,使温泉常常成为旅游胜地,吸引大批疗养者和旅游者。在日本就有1500多个温泉疗养院,每年吸引1亿人到这些疗养院休养。我国利用地热治疗疾病的历史悠久,含有各种矿物元素的温泉众多,因此充分发挥地热的医疗作用,发展温泉疗养行业是大有可为的。

除此之外,地热直接利用还包括地热用于娱乐和旅游等诸多方面。

3地热发电技术

3.1地热发电原理与技术

地热发电的过程就是把地下热能首先转变为机械能,然后再把机械能转变为电能的过程,原理和火力发电的基本原理是一样的.所不同的是,地热发电不像火力发电那样需要备有庞大的锅炉,也不需要消耗燃料,它所用的能源是地热能。根据可利用地热资源的特点以及采用技术方案的不同,地热发电主要分为地热蒸汽、地下热水、联合循环和地下热岩4种方式。

3.1.1地热蒸汽发电

1)背压式汽轮机发电。工作原理:把干蒸汽从蒸汽井中引出,先加以净化,经过分离器分离出所含的固体杂质,然后使蒸汽推动汽轮发电机组发电,排汽放空(或送热用户)。这是最简单的发电方式,大多用于地热蒸汽中不凝结气体含量很高的场合,或者综合利用于工农业生产和生活用水.

2)凝汽式汽轮机发电。为了提高地热电站的机组输出功率和发电效率,做功后的蒸汽通常排入混合式凝汽器,冷却后再排出。在该系统中,蒸汽在汽轮机中能膨胀到很低的压力,所以能做出更多的功,系统原理见图3.1。该系统结构简单,适用于高温(160℃以上)地热

10

田的发电。

图3.1地热发电系统

3.1.2地下热水发电

1)闪蒸地热发电。工作原理:将地热井口引来的地热水,先送到闪蒸器中进行降压闪蒸(或称扩容),使其产生部分蒸汽,再引到常规汽轮机做功发电. 汽轮机排出的蒸汽在混合式凝汽器内冷凝成水,送往冷却塔.分离器中剩下的含盐水排入环境或打入地下,或引入作为第二级低压闪蒸分离器中,分离出低压蒸汽引入汽轮机的中部某一级膨胀做功. 用这种方法产生蒸汽来发电叫做闪蒸法地热发电. 它又可以分为单级闪蒸法、两级闪蒸法和全流法等.采用闪蒸法的地热电站,热水温度低于100℃时,全热力系统处于负压状态.这种电站设备简单,易于制造,可以采用混合式热交换器. 缺点是设备尺寸大,容易腐蚀结垢,热效率较低. 由于是直接以地下热水蒸汽为工质,因而对于地下热水的温度、矿化度以及不凝气体含量等有较高的要求。

2)中间介质法地热发电。工作原理:通过热交换器利用地下热水来加热某种低沸点的工质,使之变为蒸汽,然后以此蒸汽推动气轮机并带动发电机发电. 在这种发电系统中采用2种流体,一种是以地热流体作热源,它在蒸汽发生器中被冷却后排入环境或打入地下;另一种是以低沸点工质流体作为工作介质(如氟里昂、异戊烷、异丁烷、正丁烷、氯丁烷等). 这种工质在蒸汽发生器内由于吸收了地热水放出的热量而汽化,产生的低沸点工质蒸汽送入汽轮机发电机组发电.做完功后的蒸汽,由汽轮机排出,并在冷凝器中冷凝成液体,然后经循环泵打回蒸汽发生器再循环工作。该方式分为单级中间介质法系统和双级(或多级)中间介质法系统。

这一系统的优点是能够更充分地利用地下热水的热量,降低发电的热水消耗率,缺点是增加了投资和运行的复杂性。

11

3.1.3联合循环发电

联合循环地热发电系统就是把蒸汽发电和地热水发电2种系统合二为一,它最大的优点就是适用于高于150℃的高温地热流体发电,经过一次发电后的流体,在不低于120℃的工况下,再进入双工质发电系统,进行二次做功,充分利用了地热流体的热能,既提高了发电效率,又将经过一次发电后的排放尾水进行再利用,大大节约了资源。该机组目前已经在一些国家安装运行,经济效益和环境效益都很好。

该系统从生产井到发电,再到最后回灌到热储,整个过程都是在全封闭系统中运行的,因此,即使是矿化程度很高的热卤水也可以用来发电,且不存在对环境的污染. 同时,由于系统是全封闭的,即使在地热电站中也没有刺鼻的硫化氢味道,因而是100%的环保型地热系统. 这种地热发电系统采用100%的地热水回灌,从而延长了地热田的使用寿命。

3.1.4利用地下热岩石发电

1)热干岩过程法。与那些只从火山活动频繁地区的温泉中提取热能的方法相比,热干岩过程法将不受地理条件限制,可以在任何地方进行热能开采. 首先将水通过压力泵压入地下4~6km深处,此处岩石层的温度大约在200℃左右.水在高温岩石层被加热后,通过管道加压被提取到地面并输入到热交换器中,热交换器推动汽轮发电机将热能转化成电能. 同时推动汽轮机工作的热水经冷却后可重新输入地下供循环使用.这种地热发电的成本与其他再生能源的发电成本相比是有竞争力的,而且这种方法在发电过程中不产生废水、废气等污染,所以它是一种未来的新能源。

利用干热岩发电与传统的热电站发电的区别主要是采热方式不同(如图3.2)。干热岩地热发电的流程为:注入井将低温水输入热储水库中,经过高温岩体加热后,在临界状态下以高温水、汽的形式通过生产井回收发电。发电后将冷却水排至注入井中,重新循环,反复利用。在此闭合回流系统中不排放废水、废物、废气,对环境没有影响。

图3.2干热岩地热发电系统

12

天然的干热岩没有热储水库,需在岩体内部形成网裂缝,以使注入的冷水能够被干热岩体加热形成一定容量的人工热储水库。人工网裂缝热储水库可采用水压法、化学法或定向微爆法形成。其中,水压法应用最广,它是向注水井高压注入低温水,然后经过干热岩加热产生非常高的压力。在岩体致密无裂隙的情况下,高压水会使岩体在垂直最小地应力方向上产生许多裂缝。若岩体中本来就有少量天然节理,则高压水会先向天然节理中运移,形成更大的裂缝,其裂缝方向受地应力系统的影响。随着低温水的不断注入,裂缝持续增加、扩大,并相互连通,最终形成面状的人工热储水库,而其外围仍然保持原来的状态。由于人工热储水库在地面以下,可利用微震监测系统、化学示踪剂、声发射测量等方法监测,并反演出人工热储水库构造的空间三维分布。

从生产井提取到高温水、蒸汽等中间介质后,即可采用常规地热发电的方式发电,包括直接蒸汽法、扩容法以及中间介质法等。由于直接蒸汽法要求从井下取出高温蒸汽,效率较低,因此应用较少。扩容法是将生产井中的热水先输送至扩容器,通过减压扩容产生的蒸汽推动汽轮机发电。我国西藏羊八井地热电站即属扩容法地热发电。目前研究较多的是应用中间介质法地热发电,例如有机兰金循环和卡里纳循环等。蒸发器是中间介质法干热岩发电的关键设备,地热水通过蒸发器把低沸点物质加热,使其产生高压蒸汽并通过汽轮机发电,做完功的排气在冷凝器中被还原成液态低沸点物质。

2)岩浆发电。在现在的地热发电中,地热储层中的热源是地下深部的融熔岩浆。所谓岩浆发电就是把井钻到岩浆处,直接获取那里的热量. 这一方式在技术上是否可行,是否能把井钻至高温岩浆处,人们一直在研究中. 到目前为止,在夏威夷进行了钻井研究,想用喷水式钻头把井钻到岩浆温度为1020~1170℃的岩浆中,并深入岩浆29m,但就这也只是浅地表的个别情况. 如果真正钻到地下几千米才能钻到岩浆,采用现有技术也是很难实现的. 另外,对从岩浆中提取热量,目前也只是进行了理论上的研究。

3.2地热发电循环系统

3.2.1单机扩容系统

例如西藏羊八井地热电站1号机(1977-10^} 1984),铭牌出力1MW。这些机组的长期运行经验表明,单级扩容发电系统具有一些明显的优点:系统和结构简单,运行可靠,操作方便。现以广东丰顺邓屋地热电站为例说明。该机是示范性的,铭牌出力300kW,1982年建成,1994年4月正式移交当地使用。十多年来,机组一直并网运行。该机的热力系统如图3.3所示。由地热井抽取的91℃的热水,在扩容器内产生32kPa的蒸汽推动地热汽轮发电机组发电。排汽(< 7. 8kPa )在混合式凝汽器中凝结并与冷却水一同排出。整个系统在负压下运行,其真空由射水抽气器维持。通过多台单级扩容地热发电机组的运行实践证明,这类低参数、小容量的地热电站在技术上是成熟的,但在经济上,只有在缺油、

13

缺煤、缺电,或电力以小水电为主而无法解决枯水期用电的边远山区,在西藏的某些地区,与小柴油发电机比,才有竟争能力。

图3.3 300KW地热机组的热力系统

3.2.2两级扩容系统

西藏羊八井地热电站使用的二级扩容地热发电系统,从1981年至1991年间,先后投产了8台300 kW机组。其中7台汽轮机由青岛汽车轮机厂生产,1台由富士公司引进。国产3MW机组的热力系统如图3.4所示。汽轮机为混压式,有两个进汽口相应引入第1级和第2级扩容蒸汽,其压力分别为167±20kPa和49±5kPa,排汽压力为8.8kPa。凝汽器为混合式。电站南部的冷却水直接取自藏布曲,北部机组采用冷却塔冷却,地热流体输送方式采取汽、水分别用母管输送。热水经过2级扩容后排入回灌池,用泵加压回灌地下。到1993年底,这些机组累计毛发电量已达134GW·h,净发电量约558GW·h,在冬季占拉萨电网供电量的60%。机组经受了许多严重的考验,例如,负荷在600至3500kW 波动,电网周波在47至54Hz变化等。这些实绩表明,电站采用二级扩容系统是成功的,它可以在汗发热储温度为150至170℃(井口温度125至145℃,井口压力0.3至0.45 MPa)的类似。

图3.43MW地热机组的热力系统

14

3.2.3双循环系统

西藏那曲地热电站采用的是ORMAT公司生产的双循环发电系统(见图3.5)。该机组于1994年8月投入运行,到12月底由于井内电潜泵电缆损坏而被迫长期停机。机组尚未达到铭牌出力,一般情况下毛出力800 kW左右,扣除空冷风机电耗100kW,介质泵37 kW,井内电潜泵320~330 kW,净输出仅300多kW。此外,井下电潜泵的维修十分困难,按规定每年要大修一次,提升井下泵是一件费力、费时,造价很高的工作,需花约100万元,这对充分发挥电站的经济和社会效益造成很大影响。

图3.51MW地热机组的热力系统

3.3地热发电的技术关键

目前,有3个重大技术难题阻碍了地热发电的发展,即地热田的回灌、腐蚀和结垢。3.3.1地热田的回灌

地热水中含有大量的有毒矿物质。例如我国羊八井的地热水中含有硫、汞、砷、氟等多种有害元素,地热发电后大量的热排水直接排放,会对环境产生恶劣影响.地热回灌是把经过利用的地热流体或其他水源,通过地热回灌井重新注回热储层段的方法. 回灌不仅可以很好地解决地热废水问题,还可以改善或恢复热储的产热能力,保持热储的流体压力,维持地热田的开采条件。但回灌技术要求复杂, 且成本高, 至今未能大范围推广使用,如果不能有效解决回灌问题,将会影响地热电站的立项和发展.因此,地热回灌是亟需解决的关键问题。

如果地热流体是在开放系统里利用,则废水一般在回灌之前必须先在水塘或水箱之中沉降,以除去悬浮状固体物质。有时,可以用过滤装置达到这一目的。为了减少腐蚀性,废水可能还需要进行化学或物理法脱气,最后通过回灌井注入地热储。回灌有时单靠重力即可实现,因为较凉和密度较大的地热废水具有较高的重力压头.如果资源属于以液体水为主的性质,则流体尚可以在分离器(闪蒸器)压力下回灌,或者在一次换热器(双工质系统)

15

地热流体压力下回灌。

对地热储回灌的可行性评价要考虑以下几个重要方面: ①最优地点的选择;②钻井和井孔运行费用与其他排放方法费用之比较;③某一速率回灌所要求的压力,以及回灌量随时间的衰减等运行方面的问题。回灌系统的设计应能使回灌井和生产井间的走行路径和流动时间实现最大化,只有这样才能防止生产层的水发生快速冷却. 同时,水又应当充分地注入生产热储,以尽量减小热储压力的衰减。确定最优回灌方案的关键因素是热储水温和渗透率的空间变化.热储地质对回灌的适应是需要研究的问题。热储必须有一个能够阻止废水向上流动并污染地下水含水层的不透水的盖岩层。如果存在破碎带或者断裂,废水就会向上流动并产生污染。由于废水和地层、废水和热储流体之间存在相互作用,回灌井周围的孔隙空间就有可能出现各种类型的堵塞。引起结垢和堵塞的原因有:二氧化硅和硅酸盐类的沉淀和聚合;碱土类发生不溶性碳酸盐、硫酸盐和氢氧化物形式的沉淀;重金属发生硫化物形式的沉淀;氧化还原反应沉淀,如铁的化合物等。所以,在建立回灌井之前都会进行实验性生产,需要进行示踪剂试验,并对地热田进行全面的监测。

影响回灌系统投资费用的因素有:井孔与管道的直径、所需要的泵送系统、井孔深度、井孔数量以及回灌区的水文和地质情况等。在地质建造既定的情况下,回灌井的钻井成本随其深度的延伸而增加。运行和维修费用由井口设备、管道、泵的运行和定期维修的费用支出等组成。

3.3.2地热田的腐蚀

地热流体中含有许多化学物质,其中主要的腐蚀介质有溶解氧(O2)、H+、Cl-、H2S、CO2、NH3和SO42-,再加上流体的温度、流速、压力等因素的影响,地热流体对各金属表面都会产生不同程度的影响,直接影响设备的使用寿命。地热电站腐蚀严重的部位多集中于负压系统,其次是汽封片、冷油器、阀门等.腐蚀速度最快的是射水泵叶轮、轴套和密封圈。

常见的防腐措施如下:①使用耐腐蚀的材料,采用不锈钢材质的设备及部件,但这种措施往往成本较高;②对腐蚀部件的金属表面涂敷防腐涂料,但涂层一旦划破,会加速金属材料的腐蚀;③采取相应的密封措施,防止空气中的氧进入系统;④针对不同类型的局部腐蚀采取相应的防腐措施,例如选材时应尽量避免异种金属相互接触,以避免电偶腐蚀。

3.3.3地热田的结垢

由于地热水资源中矿物质含量比较高,在抽到地面做功的过程中,温度和压力会均发生很大的变化,进而影响到各种矿物质的溶解度,结果导致矿物质从水中析出产生沉淀结垢。如在井管内结垢,会影响地热流体的采量,加大管道内的流动阻力进而增加能耗;如换热表面结垢,则会增加传热阻力;垢层不完整处还会造成垢下腐蚀。

16

常用的防止或清除结垢的措施有: ①用HCl和HF等溶解水垢,为了防止酸液对管材的腐蚀必须加入缓蚀剂;②采用间接利用地热水的方式,在生产井的出水与机组的循环水之间加1个钛板换热器,可以有效防止做功部件腐蚀和结垢,但造价很高了;③采用深水泵或潜水泵输送井中的流体,使其在系统中保持足够的压力,在流体上升过程和输送过程中不发生气化现象,从而防止碳酸钙沉积;④选择合适的材料涂衬在管壁内,以防止管壁上结垢。

17

表3.1地热发电设备的腐蚀与结垢

4 地热能开发产生的问题

4.1利用率低

由于有些地热企业开发地热能源较早,技术单一且落管理粗放,片面追求经济利益,导致资源利用形式单一,梯度开发、综合利用程度较低,尾水排放温度较高等问题,造成了地热资源很大程度的浪费,很难真正的发挥地热资源效益,对环境也造成了很大的污染。

4.2过量开采导致地面下降

近几十年,由于人们对于石油、天然气、固体矿物、地下水等过度开采直接导致了地面沉降,其中地下水的过度开采是地面沉降的重要的原因。根据有效应力原理:在抽取地下水的过程中,地下水位下降引起隙水压力下降,而导致土的有效应力增加,从而使土固结压缩。随着开采强度的不断加大,以及地热水的大量集中开采,在一些区域形成了开采漏斗。

4.3环境污染

①热污染:由于较热的地下热水尾水的排放过程中,向周围的环境中排放一定的热量,是周围的环境中的温度升高,从而改变了生物的生活环境,从而使生物不能适应环境而不能生长。②大气污染:对于刚抽于地表的热水由于压力的降低,热水中的一些汽化体会被排放到大气中,从而影响周围的环境。由于地下热水中的硫化氢等有害气体的排放,

18

可能导致人们的嗅觉系统的麻痹,对人们的身体非常有害。③化学污染:由于有些地下热水中含有盐类和有害元素,从而使水有一定的腐蚀性,这样对于金属的取暖器材以及管道有很大的腐蚀,导致管材的利用时间严重减低。地下热水在与周边的岩石长期接触,从而溶解了一些的重金属甚至是放射性元素,使热水矿化度较高,导致热水不仅不能直接饮用而且还不能浇灌及随意排放。

参考文献

1.中国地热能利用技术及应用.北京.中华人民共和国科学技术部.201

2.

2.周支柱.地热能发电的工程技术.动力工程.2009.

3.李虞庚.我国应大力推展地热能发电与供热(制冷).地热能.2009.

4.吕太,高学伟,李楠.地热能发电技术及存在的技术难题.沈阳工程学报.2009.

5.王建波.地热能及地热能发电技术概述.应用方法论.2011.

6.刘志江,韩升良,施延州.我国的地热资源及地热发电技术的发展.中国电力.1996

7.李川,王时龙,张贤明,康玲.干热岩在发电中的应用.热力发电.2008.

8.郑克棪,潘小平.中国地热发电开发现状与前景.中外能源.2009.

9.章焕芬.世界地热发电和直接利用状况.太阳能.2011.

10.曲勇,骆超,龚宇烈.中低温地热发电系统的研究.可再生能源.2012.

11.韩再生.浅层地热能勘查评价.

12.张杰.地热能的利用.农村电工.2004.

13.沈敏子,李大心.地热勘探的新进展及地热能的利用.工程勘察.1986.

14.冯硕颖.地热能的利用及其前景.内蒙古科技与经济.2007.

19

地热能发展现状及市场前景分析

中国地热能行业现状分析与发展前景研究 报告(2015年版) 报告编号:15A2A15 行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容:

一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称:中国地热能行业现状分析与发展前景研究报告(2015年版) 报告编号:15A2A15 ←咨询时,请说明此编号。 优惠价:¥6300 元可开具增值税专用发票 咨询电话:4006-128-668、0、传真:0 Email 网上阅读: 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 地热能是贮存于地球内部的一种巨大的能源。地球内部热源来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。地热发电是地热利用的主要方式,地热能在采暖、供热、农业、医学等领域应用广泛。随着传统化石能源的日益紧缺,人们对能源安全、气候变化的担忧与日俱增,地热能源也越来越得到关注,在全球范围内激发了新一轮地热能开采热,欧、美、日等国纷纷加速地热能开发。 中国产业调研网发布的中国地热能行业现状分析与发展前景研究报告(2015年版)认为:我国拥有丰富的地热资源。全国地热可采储量是已探明煤炭可采储量的倍,其中距地表2000米内储藏的地热能为2500亿吨标准煤。全国地热可开采资源量为每年6 8亿立方米,所含地热量为973万亿千焦耳。在地热利用规模上,我国近些年来一直位居世界首位,并以每年近10%的速度稳步增长。 在我国的地热资源开发中,经过多年的技术积累,地热发电效益显著提升。除地热发电外,直接利用地热水进行建筑供暖、发展温室农业和温泉旅游等利用途径也得到较快发展。全国已经基本形成以西藏羊八井为代表的地热发电、以天津和西安为代表

(完整word版)地热能的应用及发展前景

地热能的应用及发展前景 班级: 姓名: 学号:

地热能的应用及发展前景 摘要:自18世纪60年代英国工业革命开始,人类社会进入到一个崭新的时代,能源动力逐步代替了传统的手工劳动。随着社会的不断发展,各国对能源的需求量不断加大,这使得世界上储存的能源资源不断减少,人类或将面临能源短缺的问题,加之人们以前对能源的认知程度较低,浪费现象较严重,导致我们现在不得不寻找新型能源来代替传统的能源,如今我们正逐渐向以天然气为主的转变,同时风能、核能、光能、地热能、太阳能等可再生能源也正得到广泛的利用,这显然会成为今后替代能源的主流。 前言:地热能开发利用对环境的有害影响小。因此,地热能作为替代能源不论是用于发电还是直接热利用,都能大幅度减轻对环境的不利影响。我国地热能开发利用兴起干70年代初,目前我国新能源和可再生能源发展纲要中地热能也被列为主要任务,进一步扩大地热直接利用和发电利用。 (一)地热能简介 地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达7000℃,而在80至100公英里的深度处,温度会降至650至1200℃。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量,为人们提供所需的能源。 (二)地热能的分布 世界地热资源主要分布于以下5个地热带: 1、环太平洋地热带。世界最大的太平洋板块与美洲、欧亚、印度板块的碰撞边界,即从美国的阿拉斯加、加利福尼亚到墨西哥、智利,从新西兰、印度尼西亚、菲律宾到中国沿海和日本。世界许多地热田都位于这个地热带,如美国的盖瑟斯地热田,墨西哥的普列托、新西兰的怀腊开、中国台湾的马槽和日本的松川、大岳等地热田。 2、地中海、喜马拉雅地热带。欧亚板块与非洲、印度板块的碰撞边界,从意大利直至中国的滇藏。如意大利的拉德瑞罗地热田和中国西藏的羊八井及云南

国内外地热能开发及利用现状介绍

国内外地热能开发及利用现状介绍 中国能源网研究中心王鸿雁张葵叶 地热资源是在当前技术经济条件和地质条件下,能够从地壳内科学、合理地开发出来的岩石热能量、地热流体热能量及其伴生的有用组分。地热资源既属于矿产资源,也是可再生能源。目前可利用的地热资源主要包括:天然出露的温泉、通过热泵技术开采利用的浅层地温能、通过人工钻井直接开采利用的地热流体以及干热岩体中的地热资源。在全球各国积极应对气候变化,努力减少温室气体排放的背景下,近年来,全球地热能开发及利用取得较快发展,也越来越引起我国政府及企业的重视。 一、全球地热资源分布及利用 (一)全球地热资源分布 全球地热储量十分巨大,理论上可供全人类使用上百亿年。据估计,即便只计算地球表层10km厚这样薄薄的一层,全球地热储量也有约1.45×1026J,相当于4.948×1015吨标准煤,是地球全部煤炭、石油、天然气资源量的几百倍。[1]世界上已知的地热资源比较集中地分布在三个主要地带:一是环太平洋沿岸的地热带;二是从大西洋中脊向东横跨地中海、中东到我国滇、藏地热带;三是非洲大裂谷和红海大裂谷的地热带。这些地带都是地壳活动的异常区,多火山、地震,为高温地热资源比较集中的地区。[2]图1所示为全球地热资源集中分布带:

图1 全球地热资源集中分布带 来源:鹿清华, 张晓熙, 何祚云. 国内外地热发展现状及趋势分析[J]. 石油石化节能与减 排, 2012, 2(1): 39-42 (二)全球地热资源利用 地热资源按赋存形式可分热水型、地压地热能、干热岩地热能和岩浆热能四种类型;根据地热水的温度,又可分为高温型(>l50℃)、中温型(90~150℃)和低温型(<90℃)三大类。地热能的开发利用可分为发电和非发电两个方面,高温地热资源主要用于地热发电,中、低温地热资源主要是直接利用,多用于采暖、干燥、工业、农林牧副渔业、医疗、旅游及人民的日常生活等方面。此外,对于25℃以下的浅层地温,可利用地源热泵进行供暖、制冷。 根据2010世界地热大会的最新数据,2010年,全球有24个国家开发了地热发电项目,总装机容量10715MWe,年发电利用总量为67246GWh,平均利用系数为0.72;有78个国家开展了地热直接利用活动,总设备容量为50583MWt,年利用热能121696GWh,平均利用系数0.27。 表1 地热发电排名前10的国家 国家装机容量 (MWe)运行能量 (MWe) 总生产能量 (GWh/y) 运行率 (%) 运行机组 (套) 美国3093 2024 16603 0.94 209 菲律宾1904 1774 10311 0.66 56 印尼1197 1197 9600 0.92 22 墨西哥958 958 7047 0.84 37 意大利843 843 5520 0.75 33 新西兰628 628 4055 0.74 43 冰岛575 575 4597 0.91 25 日本536 422 3064 0.83 20 萨尔瓦多204 192 1422 0.85 7 肯尼亚167 167 1131 0.78 6 表2 地热直接利用排名前10的国家国家总生产能量GWh/y 主要利用方式 中国20932 直接供热、地源热泵、洗浴 美国15710 地源热泵 瑞典12585 地源热泵 土耳其10247 直接供热 日本7139 洗浴 挪威7001 地源热泵

地热能及地热发电技术概述

地热能及地热发电技术概述 摘要文章主要介绍了地热资源及其分类,地热发电的原理,并对发展地热发电中需要解决的关键问题进行了简要的分析,最后对我国地热发电的发展前景做了一下展望。 关键词地热资源;类别;发电原理;关键问题;发展前景 随着人类对资源的过度开采,煤,石油等化石能源在几十年或一百多年后将被消耗殆尽;另一方面,这些能源的燃烧所造成的环境污染也日益凸显,严重威胁着人类社会的可持续发展。因此,开发可再生新能源已成为当前社会不容忽视的必由之路。我国地处欧亚板块,有着丰富的地热资源,太平洋地热带和地中海——喜马拉雅地热带经过我国版图。因此,开发地热能对解决我国能源短缺有着重大意义,具有美好的发展前景。 1地热资源及其分类 地热资源是指在当前技术经济和地质环境条件下,能够从地壳中科学、合理的开发出来的岩石中的热能量和地热流体中的热能量及其伴生的有用组成。地热能是通过漫长的地质作用而形成的集热、矿、水为一体的矿产资源。地热资源按它在地下的储存形式可分为五大类:蒸汽型、热水型、地压型、干热岩型和岩浆型。 1)蒸汽型地热资源:指以温度较高的蒸汽为主的地下对流水热系统,这类地热资源由于需要特殊的地质条件才能形成,因此储量较少。一般蕴藏在1.5 km 左右的地表深度。 2)热水型地热资源:指地下以水为主的对流水热系统,是存在于地热区的水从周围储热岩体中获得能量形成的,包括喷出地面的热水和湿蒸汽。这类资源分布广泛,储量丰富,是当前重点研究对象。 3)地压型地热资源:蕴藏深度为2km~3 km,以高压水形式存在,溶解大量碳氢化合物,开发时可同时得到压力能,热能,化学能。 4)干热岩型地热资源:在地壳深处,岩石具有很高的温度,储存大量得热能,干热岩型地热资源主要指地表下10km左右深处的干燥无水的热岩石。这类资源十分丰富,是未来开发的重点。 5)岩浆型地热资源:指蕴藏在地层深处的呈完全熔融状态或半熔融状态的岩浆中所具有的巨大能量。 2地热发电的原理及技术

地热开发与利用

关于中国地热资源及开发利用 一、我国地热资源概述 地热是指地球内部所蕴藏的热能,它来源于地球的熔融岩浆和放射性元素衰变时发出的热量。地热资源是在当前技术经济条件和地质条件下,能够从地壳内科学、合理地开发出来的岩石热能量、地热流体热能量及其伴生的有用组分,它与太阳能、风能、生物能、海洋能等统称为新能源,将太阳能、风能、潮汐能与地热能加以比较,地热能是新能源中最为现实的能源。地热资源按赋存形式可分4种类型:一是热水型,即地球浅处(地下100~4500m)所见到的热水或水蒸汽;二是地压地热能,即在某些大型沉积盆地深处(3~6 km)存在着高温、高压流体,其中含有大量甲烷气体;三是干热岩地热能,由于特殊地质构造条件造成高温但少水甚至无水的干热岩体;四是岩浆热能,即储存在高温(7001 200℃)熔融岩浆体中的巨大热能;根据地热水的温度地热能可分为高温型(>l50℃)、中温型(90~150℃)和低温型(<90℃)三大类,高温地热资源主要用于地热发电,中、低温地热资源主要用于地热直接利用。 我国是地热资源相对丰富的国家,地热资源总量约占全球的7.9%(表一),可采储量相当于4626.5亿t标准煤。我国的高温地热资源(热储温度≥150℃)主要分布在藏南、滇西、川西以及台湾省,环太平洋地热带通过我国的台

湾省,高温温泉达90处以上;地中海喜马拉雅地热带通过西藏南部和云南、四川西部。西藏高温热田主要集中在羊八井裂谷带,其中藏南西部、东部及中部约有108个高温热田,构成中国高温热田最富集的地带;云南是全国发现温泉最多的省,高温热田主要分布在怒江以西的腾冲-瑞丽地区,约2O处;川西分布着8个高温地热区,为藏滇高温地热带的一部分。我国主要以中低温地热资源为主,中低温地热资源分布广泛,几乎遍布全国各地,主要分布于松辽平原、黄淮海平原、江汉平原、山东半岛和东南沿海地区,其主要热储层为厚度数百米至数千米第三系砂岩、砂砾岩,温度在40~80℃左右,目前已发现全国共有地热温泉3000多个,其中高于25℃的约2200个。从温泉出露的情况来看,我国主要有四个水热活动密集带[1]:藏南-川西-滇西水热活动密集带;台湾水热活动密集带;东南沿海地区水热活动密集带;胶东、辽东半岛水热活动密集带。从地质构造上看,我国地热资源主要分布于构造活动带和大型沉积盆地中,主要类型为沉积盆地型和隆起山地型。 二、我国地热资源开发现状 我国地热资源的利用历史悠久,但真正大规模勘查和开发利用始于20世纪70年初期,尤其是20世纪90年代以来,在市场经济需求的推动下,地热资源的开发利用得到更加蓬勃的发展。近年来,随着社会经济发展、科学技术进

国内外地热发电技术发展现状及趋势

国内外地热发电技术发展现状及趋势 北极星火力发电网讯:地热资源是一种可再生的清洁能源,储量大、分布广,具有清洁环保、用途广泛、稳定性好、可循环利用等特点,与风能、太阳能等相比,不受季节、气候、昼夜变化等外界因素干扰,是一种现实并具有竞争力的新能源。 2017年2月,国家发展和改革委员会编制的《地热能开发利用“十三五”规划》已经正式印发。根据规划内容,“十三五”期间地热能开发将拉动总计2600亿元投资。在此过程中,将探索建立地热能开发的特许经营权招标制度和PPP模式,并且将放开城镇供热市场准入限制,引导地热能开发企业进入城镇供热市场。“十三五”期间,新增地热发电装机容量500兆瓦,到2020年,地热发电装机容量约530兆瓦。 在加快调整能源结构、强化雾霾治理、积极应对气候变化挑战的大格局中,基于地热资源的地位及其利用价值,相关产业将成为重要投资增长点。 全球地热资源分布情况 地球内部蕴藏着难以想象的巨大能量。根据估算,仅地壳最外层10公里范围内,就拥有1254亿焦热量,相当于全世界现产煤炭总发热量的2000倍。如果计算地热能的总量,则相当于煤炭总储量的1.7亿倍。有人估计,地热资源要比水力发电的潜力大100倍。可供利用的地热能即使按1%计算,仅地下3公里以内可开发的热能,就相当于2.9万亿吨煤的能量!

就全球来说,地热资源的分布是不平衡的。明显的地温梯度每公里深度大于30℃的地热异常区,主要分布在板块生长、开裂-大洋扩张脊和板块碰撞,衰亡-消减带部位。环球性的地热带主要有下列4个: (1)环太平洋地热带:世界许多著名的地热田,如美国的盖瑟尔斯、长谷、罗斯福;墨西哥的塞罗、普列托;新西兰的怀腊开;中国的台湾马槽;日本的松川、大岳等均在这一带。 (2)地中海-喜马拉雅地热带:世界第一座地热发电站意大利的拉德瑞罗地热田就位于这个地热带中。中国的西藏羊八井及云南腾冲地热田也在这个地热带中。 (3)大西洋中脊地热带:冰岛的克拉弗拉、纳马菲亚尔和亚速尔群岛等一些地热田就位于这个地热带。 (4)红海-亚丁湾-东非裂谷地热带:包括吉布提、埃塞俄比亚、肯尼亚等国的地热田。

地热能发电

地热能发电 一、地热种类 开发的地热资源主要是蒸汽型和热水型两类,因此,地热发电也分为两大类。 地热蒸汽发电有一次蒸汽法和二次蒸汽法两种。 1、一次蒸汽法 一次蒸汽法直接利用地下的干饱和(或稍具过热度)蒸汽,或者利用从汽、水混合物中分离出来的蒸汽发电。 2、二次蒸汽法 二次蒸汽法有两种含义,一种是不直接利用比较脏的天然蒸汽(一次蒸汽),而是让它通过换热器汽化洁净水,再利用洁净蒸汽(二次蒸汽)发电。第二种含义是,将从第一次汽水分离出来的高温热水进行减压扩容生产二次蒸汽,压力仍高于当地大气压力,和一次蒸汽分别进入汽轮机发电。 二、地热蒸汽发电系统 利用地热蒸汽推动汽轮机运转,产生电能。本系统技术成熟、运行安全可靠,是地热发电的主要形式。西藏羊八井地热电站采用的便是这种形式。

1、双循环发电系统 也称有机工质朗肯循环系统。它以低沸点有机物为工质,使工质在流动系统中从地热流体中获得热量,并产生有机质蒸汽,进而推动汽轮机旋转,带动发电机发电。 2、全流发电系统 本系统将地热井口的全部流体,包括所有的蒸汽、热水、不凝气体及化学物质等,不经处理直接送进全流动力机械中膨胀做功,其后排放或收集到凝汽器中。这种形式可以充分利用地热流体的全部能量,但技术上有一定的难度,尚在攻关。 3、干热岩发电系统 干热岩发电系统是利用地下干热岩体发电的设想,由美国人莫顿和史密斯于1970年提出的。1972年,他们在新墨西哥州北部打了两口约4000米的深斜井,从一口井中将冷水注入到干热岩体,从另一口井取出自岩体加热产生的蒸汽,功率达2300千瓦。进行干热岩发电研究的还有日本、英国、法国、德国和俄罗斯,但迄今尚无大规模应用。 三、利用现状 1970年,我国在广东丰顺县邓屋村建成国内第一座地热电站,成为世界上第七个通过地热发电的国家。此后,湖南、河北、山东等

地热能(发电)研究现状与发展趋势(1)

地热能(发电)研究现状与 发展趋势 学院: 班级: 学号: 姓名: 指导老师:

地热能(发电)研究现状与发展趋势 摘要 地热能是来自地球深处的可再生热能,它起源于地球的熔融岩浆和放射性物质的衰变。地热能是一种环境友好型能源,与化石能源相比,几乎没有废气排放,并且是稳定,可靠的能源。地热发电是20世纪新兴的能源工业,至今已有100多年历史,现在世界很多国家都在用地热发电,它对建造环境友好型和资源节约型两型社会做了重大贡献,是新型能源研究的一个重要课题。地热电站的装机容量和经济性主要取决于地热资源的类型和品位。 关键词:地热能;地热资源;地热发电技术;发电厂

REREARCH STATUS AND DEVELOPMENT TREND OF GEOTHERMAL ENERGY ABSTRACT Geothermal energy is a renewable source of heat from the earth's interior, which originates from the melting of the earth's molten magma and the decay of radioactive material. Geothermal energy is an environmentally friendly energy, compared with fossil energy, almost no emissions, and is stable and reliable energy. Geothermal power generation is a new energy industry since the 20th century, has been 100 years of history, now many countries in the world are in the use of geothermal power, it for the construction of environment friendly and resource saving type society made a significant contribution to is an important subject in the research of new energy. The capacity and economy of the geothermal power station are mainly determined by the type and grade of the geothermal resources. Key words: Geothermal energy; geothermal resources; geothermal power generation technology; power plant

全面解读《地热能开发利用“十三五”规划》

全面解读《地热能开发利用“十三五”规划》 国家发展和改革委员会日前透露,《地热能开发利用十三五规划》已经正式印发。根据规划内容,十三五期间地热能开发将拉动总计2600 亿元投资。在此过程中,将探索建立地热能开发的特许经营权招标制度和PPP 模式,并且将放开城镇供热市场准入限制,引导地热能开发企业进入城镇供热市场。 发改委介绍,十三五期间,新增地热能供暖(制冷)面积11 亿平方米,新增地热发电装机容量500 兆瓦。到2020 年,地热供暖(制冷)面积累计达到16 亿平方米,地热发电装机容量约530 兆瓦。2020 年地热能年利用量7000 万吨标准煤,地热能供暖年利用量4000 万吨标准煤。京津冀地区地热能年利用量达到约2000 万吨标准煤。 同时,初步估算,十三五期间,浅层地热能供暖(制冷)可拉动投资约1400 亿元,水热型地热能供暖可拉动投资约800 亿元,地热发电可拉动投资约400 亿元,合计约为2600 亿元。此外,地热能开发利用还可带动地热资源勘查评价、钻井、热泵、换热等一系列关键技术和设备制造产业的发展。 据介绍,我国地热资源相对丰富,目前全国336 个地级以上城市浅层地热能年可开采资源量折合7 亿吨标准煤;全国水热型地热资源量折合1.25 万亿吨标准煤。到2015 年底,全国浅层地热能供暖(制冷)面积达到3.92 亿平方米,水热型地热能供暖面积达到1.02 亿平方米。但另一方面,地热能发展仍存在诸多制约,包括资源勘查程度低,管理体制不完善,缺乏统一的技术规范和标准等。 对此,在十三五时期,按照集中式与分散式相结合的方式推进水热型地热供暖,并将开展干热岩开发试验工作,建设干热岩示范项目。其中包括,大

地热能论文

摘要: 地热能的介绍,本质.储能.地热能发电的原理,并用于地热供暖.地热务农.地热行医。 相关字:机械能蒸汽地热水 地热能是来自地球深处的可再生性热能,它起于地球的熔融岩浆和放射性物质的衰变。地下水的深处循环和来自极深处的岩浆侵入到地壳后,把热量从地下深处带至近表层。其储量比目前人们所利用能量的总量多很多,大部分集中分布在构造板块边缘一带,该区域也是火山和地震多发区。它不但是无污染的清洁能源,而且如果热量提取速度不超过补充的速度,那么热能而且是可再生的。 离地球表面5000米深,15℃以上的岩石和液体的总含热量,据推算约为14.5×1025焦耳(J),约相当于4948万亿吨(t)标准煤的热量。地热来源主要是地球内部长寿命放射性同位素热核反应产生的热能。按照其储存形式,地热资源可分为蒸汽型、热水型、地压型、干热岩型和熔岩型5大类。 地热资源按温度的划分。中国一般把高于150℃的称为高温地热,主要用于发电。低于此温度的叫中低温地热,通常直接用于采暖、工农业加温、水产养殖及医疗和洗浴等。截止1990年底,世界地热资源开发利用于发电的总装机容量为588万千瓦,地热水的中低温直接利用约相当于1137万千瓦。

地热发电实际上就是把地下的热能转变为机械能,然后再将机械能转变为电能的能量转变过程或称为地热发电。目前开发的地热资源主要是蒸汽型和热水型两类,因此,地热发电也分为两大类。 地热蒸汽发电有一次蒸汽法和二次蒸汽法两种。一次蒸汽法直接利用地下的干饱和(或稍具过热度)蒸汽,或者利用从汽、水混合物中分离出来的蒸汽发电。二次蒸汽法有两种含义,一种是不直接利用比较脏的天然蒸汽(一次蒸汽),而是让它通过换热器汽化洁净水,再利用洁净蒸汽(二次蒸汽)发电。第二种含义是,将从第一次汽水分离出来的高温热水进行减压扩容生产二次蒸汽,压力仍高于当地大气压力,和一次蒸汽分别进入汽轮机发电。 地热水中的水,按常规发电方法是不能直接送入汽轮机去做功的,必须以蒸汽状态输入汽轮机做功。目前对温度低于100℃的非饱和态地下热水发电,有两种方法:一是减压扩容法。利用抽真空装置,使进入扩容器的地下热水减压汽化,产生低于当地大气压力的扩容蒸汽然后将汽和水分离、排水、输汽充入汽轮机做功,这种系统称“闪蒸系统”。低压蒸汽的比容很大,因而使气轮机的单机容量受到很大的限制。但运行过程中比较安全。另一种是利用低沸点物质,如氯乙烷、正丁烷、异丁烷和氟里昂等作为发电的中间工质,地下热水通过换热器加热,使低沸点物质迅速气化,利用所产生气体进入发电机做功,做功后的工质从汽轮机排入凝汽器,并在其中经冷却系统降温,又重新凝结成液态工质后再循环使用。这种方法称“中间工质法”,这种系统称“双流系统”或“双工质发电系统”。这

地热发电的原理技术

地热发电的原理技术 地热发电是地热利用的最重要方式。高温地热流体应首先应用于发电。地热发电和火力发电的原理是一样的,都是利用蒸汽的热能在汽轮机中转变为机械能,然后带动发电机发电。所不同的是,地热发电不象火力发电那样要备有庞大的锅炉,也不需要消耗燃料,它所用的能源就是地热能。地热发电的过程,就是把地下热能首先转变为机械能,然后再把机械能转变为电能的过程。要利用地下热能,首先需要有“载热体”把地下的热能带到地面上来。目前能够被地热电站利用的载热体,主要是地下的天然蒸汽和热水。按照载热体类型、温度、压力和其它特性的不同,可把地热发电的方式划分为蒸汽型地热发电和热水型地热发电两大类。 (1)蒸汽型地热发电 蒸汽型地热发电是把蒸汽田中的干蒸汽直接引人汽轮发电机组发电,但在引人发电机组前应把蒸汽中所含的岩屑和水滴分离出去。这种发电方式最为简单,但干蒸汽地热资源十分有限,且多存于较深的地层,开采技术难度大,故发展受到限制(参考《资源》栏目有关文章)。主要有背压式和凝汽式两种发电系统。 (2)热水型地热发电 热水型地热发电是地热发电的主要方式。目前热水型地热电站有两种循环系统: a、闪蒸系统。当高压热水从热水井中抽至地面,于压力降低部分热水会沸腾并“闪蒸”成蒸汽,蒸汽送至汽轮机做功;而分离后的热水可继续利用后排出,当然最好是再回注人地层。 b、双循环系统。地热水首先流经热交换器,将地热能传给另一种低沸点的工作流体,使之沸腾而产生蒸汽。蒸汽进人汽轮机做功后进人凝汽器,再通过热交换器而完成发电循环。地热水则从热交换器回注人地层。这种系统特别适合于含盐量大、腐蚀性强和不凝结气体含量高的地热资源。发展双循环系统的关键技术是开发高效的热交换器。 地热发电的前景是取决于如何开发利用地热储量大的干热岩资源。图3是利用干热岩发电的示意图。其关键技术是能否将深井打人热岩层中。美国新墨西哥州的洛斯阿拉莫科学试验室正在对这一系统进行远景试验。

地热能开发与应用技术

地热能开发与应用技术 内容简介 本书主要针对我国目前地热勘探开发及利用技术方面的需要,在写作中力求突出地热技术的“新”与“实”,很多章节为国家“九五”、“十五”攻关项目所取得的成果及近年地热领域研究成果和先进技术,是近年来较多突出地热开发及应用技术的一本实用性较强的专业参考书。 全书共分7篇21章,内容涉及水文地质、地球物理及地球化学、地热资源勘察及评价方法、地热钻井工艺及技术、 抽水试验工艺过程、回灌井口设备及技术、地热井口设备及系统选材、地热综合利用技术、经济评价方法、地热工程计算软件、自动监测系统的设计、网络化信息管理(GIS)及评价体系、地热开发的环境问题,几乎涵盖了地热开发与利用的所有内容。 可供地热资源勘察、开发、工程设计部门在实际工作中使用,具有一定的参考价值。也可作为科研、高校相关专业和本科生、研究生教学的参考用书。 编辑推荐 本书主要针对我国目前地热勘探开发及利用技术方面的需要,在写作中力求突出地热技术的“新”与“实”,很多章节为国家“九五”、“十五”攻关项目所取得的成果及近年地热领域研究成果和先进技术,是近年来较多突出地热开发及应用技术的一本实用性较强的专业参考书。 全书共分7篇21章,内容涉及水文地质、地球物理及地球化学、地热资源勘察及评价方法、地热钻井工艺及技术、 抽水试验工艺过程、回灌井口设备及技术、地热井口设备及系统选材、地热综合利用技术、经济评价方法、地热工程计算软件、自动监测系统的设计、网络化信息管理(GIS)及评价体系、地热开发的环境问题,几乎涵盖了地热开发与利用的所有内容。 可供地热资源勘察、开发、工程设计部门在实际工作中使用,具有一定的参考价值。也可作为科研、高校相关专业和本科生、研究生教学的参考用书。 目 录 第1篇 总论 第1章 能源危机与地热能的开发利用 1.1 能源危机 1.2 可再生能源及发展战略 1.3 地热能在可再生能源中的地位 1.4 世界地热能开发利用 1.5 我国地热开发利用

地热能及其直接利用和发电技术结题

地热能及其直接利用和发电技术结题

1绪论 (2) 2 地热能的直接利用技术 (7) 2.1地源热泵技术 (7) 2.2地热务农技术 (9) 2.3地热医疗技术 (10) 3 地热发电技术 (10) 3.1地热发电原理与技术 (10) 3.1.1地热蒸汽发电 (10) 3.1.2地下热水发电 (11) 3.1.3联合循环发电 (12) 3.1.4利用地下热岩石发电 (12) 3.2地热发电循环系统 (13) 3.2.1单机扩容系统 (13) 3.2.2两级扩容系统 (14) 3.2.3双循环系统 (15) 3.3地热发电的技术关键 (15) 3.3.1地热田的回灌 (15) 3.3.2地热田的腐蚀 (16) 3.3.3地热田的结垢 (16) 4 地热能开发产生的问题 (18) 4.1利用率低 (18) 4.2过量开采导致地面下降 (18) 4.3环境污染 (18) 参考文献 (19)

地热能及其直接利用和发电技术 摘要:地热资源有节能减排、高效利用和价廉量稳的三大优势,20世纪70年代以来,国内外都在大规模地利用地热资源来发电、供暖。本文基于对国内外地热能及其应用技术的调研,总结了地热能的直接利用技术和地热能发电技术的发展和亟待解决的技术问题,以及地热能应用带来的影响。重点讨论了地热发电技术的原理和应用。 关键词:地热资源;开发;现状;发电技术;前景 1绪论 地热能〔Geothermal Energy〕是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地热能是蕴藏于地球深处的热能。按照现有开发技术的可能性,地热能资源的范围一般指在地壳表层以下5000米以内岩石和地热流体所含的热量。 地球内部的温度高达7000℃,而在80至100公英里的深度处,温度会降至650至1200℃。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。地热能是可再生资源。 地球内部蕴藏着的热能称为地热能,来自(1)高温岩浆,(2)岩石中放射性元素衰变;在地球上所有的能源中,地热能仅次于太阳辐射能,排在第二位(火山爆发、地震和其他地壳变动); 世界地热资源主要分布于以下5个地热带:(1)环太平洋地热带。世界最大的太平洋板块与美洲、欧亚、印度板块的碰撞边界,即从美国的阿拉斯加、加利福尼亚到墨西哥、智利,从新西兰、印度尼西亚、菲律宾到中国沿海和日本。世界许多地热田都位于这个地热带,如美国的盖瑟斯地热田,墨西哥的普列托、新西兰的怀腊开、中国台湾的马槽和日本的松川、大岳等地热田。(2)地中海、喜马拉雅地热带。欧亚板块与非洲、印度板块的

地热能发电

新能源之地热能发电

目录 一、项目基本信息 (2) 1.1项目背景........................................................................................ 错误!未定义书签。 1.11地热能源利用背景 (3) 1.12地热能发电技术背景 (3) 1.13国家政策支持背景................................................................. 错误!未定义书签。 1.2地热发电原理 (4) 1.3地热能发电可行性分析 (4) 二、项目概况........................................................................................ 错误!未定义书签。 2.1地热能发电方案对比 (5) 2.2方案分析........................................................................................ 错误!未定义书签。 2.3 方案选择 ....................................................................................... 错误!未定义书签。 2.4 地热能生产工艺 (8) 2.41工作原理................................................................................. 错误!未定义书签。 2.42双循环式发电特点 (9) 2.43双循环式发电装置................................................................. 错误!未定义书签。 2.44工况变化对双循环式发电的影响......................................... 错误!未定义书签。 三、问题与建议...................................................................................... 错误!未定义书签。 3.1地热能发电技术约束 .................................................................. 错误!未定义书签。 3.2环保问题...................................................................................... 错误!未定义书签。 3.3能源利用率问题.......................................................................... 错误!未定义书签。 四、市场发展前景及相关政策............................................................ 错误!未定义书签。 4.1 市场发展前景 ............................................................................. 错误!未定义书签。 4.2相关政策 ...................................................................................... 错误!未定义书签。 五、厂址选择........................................................................................ 错误!未定义书签。 5.1我国地热资源分布 ...................................................................... 错误!未定义书签。 5.2厂址选择 ...................................................................................... 错误!未定义书签。 六、参考文献.......................................................................................... 错误!未定义书签。

我国地热资源开发利用优势对比

第6期水文地质工程地质·Ⅰ·我国地热资源开发利用优势对比分析 李悦,关锌 (中国地质大学(武汉),武汉430074) 摘要:新能源又称非常规能源,指传统能源之外的各种能源形式,包括太阳能、地热能、风能、生物质能等。随着全球气候变化日益受到人们的关注,新型能源逐渐应用于社会生产生活之中。相对于其他新型能源,地热在开发利用中有其自身的优势,本文在介绍我国新能源开发利用的基础上,提出了地热资源开发利用的独特优势。 关键词:新能源;地热;供暖;优势对比 1我国地热资源开发利用现状 1.1我国地热资源概况 中国位于欧亚大陆东部,处于环太平洋地震带,是火山爆发,地震和地热活动区域。在辽宁、山东、福建、广东、台湾和海南省分布着较多的温泉。中国西南边界位于地中海-喜马拉雅带东部,分布有很多高温地热,例如喷泉、沸腾泉和温泉。 中国有超过3000口地热井,大多分布在北部大中型盆地和东部平原地区,一些地热井井口水温可达95 120?,大部分地热井开采量为30 60m3/h,有的可达100 300m3/h。 50多年来,国土资源部(原地质矿产部)对大量的中高温地热田的基本情况和资源分布进行了初步的探索和评估。通过储备土地和资源的检验评估,目前,有103个地热田可利用资源达到B+C级(储量等级标准),产量达到332.83?106m3/a。经过详细的调查评估,有214个地热田可利用资源达到C+D级,产量达500?106m3/a。在当前的经济技术条件下,全国地热水总利用额估计为6845?106m3/a,总热能为972.28?1015J,相当于3284.8?104吨标准煤。这里的地热水量估计值不包括2000m以下的地热资源以及地温梯度小于3?/100m的地热资源和浅层地温能。 1.2我国地热资源开发利用现状 地热能分为浅层地温能和常规地热能两种,开发利用方式多种多样,包括地热发电和供暖、洗浴、农业养殖、温室、旅游、医疗等直接利用。 我国适用于地热能发电的资源较少,目前主要集中在西藏。高温湿蒸汽发电只有羊八井地热电厂仍在运行。中国的地热直接利用一直在稳定增长,并呈现进一步规模化、产业化的发展趋势,地热资源管理更趋成熟,减少了浪费,提高了能效,保护了资源。截至2009年底,我国常规地热直接利用设备能力达3688MWt,利用总热量为46313TJ/a;若连同地源热泵的应用,则设备能力和年利用总热量分别为8898MWt 和75348TJ/a。2009年末全国地热供暖总面积达3020?104m2,年均增长率约19%;地源热泵技术2009年增长供暖(部分制冷)面积1800?104 2300?104m2,至2009年末约达5210MWt;传统的温泉洗浴和医疗利用逐步向养生保健和休闲娱乐提升。 2地热与其他新能源利用优势分析 2.1新能源开发利用经济性比较 2.1.1地热资源利用的经济性 如果单纯考虑电站建设和运行的成本,国际地热发电成本在2 5美分/kWh左右,我国地热发电价格在0.5元/kWh左右,成本估计在0.40元/kWh左右。但是作为地热发电的前期重要工作的资源勘查和打井的费用是高昂的,如果将勘探、打井的费用考虑在内,地热发电成本将可能超过1.0元/kWh。在这样的成本水平下,高温地热的资源潜力为582?104kW,发电潜力300?108 400?108kWh/a。 与其他供热方式相比,地热的直接利用成本相对较低,初步估计,在目前的技术水平下,地热直接利用的热力价格折合0.25 0.45元/kWh,成本约为0.2 0.4元/kWh,具有一定的竞争力,在这样的成本和价格下,全国近期地热资源可利用量相当于1440?104kW的装机容量和864?108kWh/a的发电量。 2.1.2风电资源利用的经济性 风电设备所消耗的能源较少,在风电设备投产运行3 6个月后即可通过发电完全回收。风电对土地资源、水资源等要求小,对环境的影响有限。风电场运行过程中基本不消耗水源,也不排放各种污染物。风电场中风电机组布置面积较大,每万千瓦布机面积约

地热能的利用及发展

地热能的利用及发展 一、地热能概述 地热能〔Geothermal Energy〕是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达7 000℃,而在80至100公英里的深度处,温度会降至650至1 200℃。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。地热能是可再生资源。地球内部实际上是个大火球,但是我们生活在这个火球上却并不觉得灼热难忍,这得归功于组成地壳的岩石,它们是良好的热绝缘体,既有效地防止了地球内部的热量向太空散失,又很好的保护了我们免被地下高温烫伤。假定地球的平均温度是2000℃,地球的质量约为6×1024kg,地球内部的比热容为 1.05kJ/(kg·℃),那么整个地球内部的热含量大约是1.25×1031J。即便是在地球表面10km厚的薄薄一层里,所储存的热量就有1×1025J。地壳中的热主要靠导热传输,但地壳岩石的平均热流密度低,只有由于某种集热作用才能开发利用。大大盆地中深埋的含水层可大量集热,每当钻探到这种含水层时,就会流出大量高温热水,这是天然集热的常见形式:岩浆侵入地壳浅处,是地壳内最强的导热形式,侵入的岩浆体形成局部高强度热源,也成为地热能开发的有利条件。在地壳中,地热的分布可分为三个带,即可变温度带、常温带和增温带。可变温度带厚度一般为15~20m,它由于受到太阳辐射的影响,故温度有周期性变化的特点;常温带深度一般为20~30m,其温度变化幅度几乎等于零;增温带在常温带以下,温度随深度的增加而升高,其热量的主要来源是地球内部的热能。这种温度的变化称为地热增温率。各地的地热增温率差别很大,平均来说地热增温率为每加深100m,温度升高8℃,到达一定温度后,地热增温率由上而下逐渐减小。按照地热增温率的差别,把陆地上不同的地区划分为正常地热区和异常地热区。地热增温率接近3℃的地区,称为正常地热区;远超过3℃的地区,称为异常地热区。在正常地热区,较高温度的热水或蒸汽埋藏在地壳的深处;在异常地热区,由于地热增温率较大,较高温度的热水或蒸汽埋藏在地壳的较浅部位,有的甚至露出地表。按照地热资源的温度不同,通常把热储温度大于150℃的称为高温地热资源,小于90℃的称为低温地热资源。由于地热利用的范围越来越广,地热资源的温度分级也将随着利用价值而会有所改变。 二、世界各国地热能的利用 地热能的利用可分为地热发电和直接利用两大类,而对于不同温度的地热流体可能利用的范围如下: (1)200一400℃,直接发电及综合利用。 (2)150一200℃,双工质循环发电、制冷、干燥、工业热加工。

地热资源开发利用状况发展趋势问题与建议

地热资源开发利用状况发展趋势问题与建议 Last revision date: 13 December 2020.

我国地热资源开发利用状况、发展趋势、问题与建 议 作者:宾德智2010年05月28日 我国地热资源开发利用正处于快速发展的时期,地热资源作为绿色的清洁能源和可再生能源已普遍受到关注。为促进我国全面而科学合理的开发利用地热资源,笔者借此短文,就我国地热资源的开发利用状况、发展趋势及有关问题谈点个人的看法和建议,供讨论。 一、地热和地热资源的概念 地热是指地球内部所储存、产生的热量。能够经济的为人类所利用的地球内部热量,称地热资源,人们习惯简称为“地热”。地热资源的现代涵义包括:地热过程的全部产物,指天然蒸汽、热水和热卤水等;由人工引入(回灌)热储的水、气或其他流体所产生的二次蒸汽、热水和热卤水等;由上述产物带出的矿物质副产品。目前,可利用的地热资源有:天然出露的温泉地热资源;通过热泵技术可开采利用的浅层地热资源;通过人工钻井直接开采利用地热水(气)资源和干热岩体中的地热资源。 当前,我们所讨论的地热开发利用问题,实际上还限于天然温泉、通过热泵技术利用的浅层地热和通过人工钻井技术直接开采利用地热水(气)资源,尚未涉及干热岩中的地热资源利用问题。

上述四类可用地热资源,从总量及开采难易程度的角度分析,天然温泉资源量小、地域局限性较大,但开采容易,且无风险,是当前温泉旅游业开发利用的重点资源;浅层地热(指地表恒温带以下一定深度内地层中储存的热量)资源量丰富、分布普遍,易开采,风险低,主要利用热泵技术进行利用,但开采对环境有一定影响,是当前空调采暖开发利用的热点,发展较快;通过人工钻井直接开采利用的地热水(汽)资源,主要开采3000m深度以上地层热储中储存的地热水(汽)资源,资源量大,但开采的可行性主要取决于热储的分布与渗透条件,有较大风险,当前主要是直接开采热储中的地热水(汽),因地热水的补给有限而限制了其开发利用的规模,今后将逐渐转向仅利用热储中的“热量”的方向转化;干热岩中蕴含的地热资源量最大,主要通过地下换热技术开采,由于受当前开采技术条件的限制,国内尚没有投入实际利用,从发展的观点和未来能源需求考虑,这种地热资源将成为开发利用的重点。 二、我国地热资源勘查开发利用状况 (一)地热资源勘查 我国地热资源勘查活动始于计划经济体制下的50年代中期,当时地热资源的勘查与开发的范围仅限于天然出露的温泉等。在此期间,在全国主要省、自治区、直辖市都开展了地热资源普查。为配合国家医疗卫生保健事业的发展和建立矿泉水疗养院的需要,对一些重要的温泉如北京小汤山温泉等进行了地热资源的勘查评价.

相关主题
相关文档 最新文档