当前位置:文档之家› 聚类分析(Q型,R型聚类)算法

聚类分析(Q型,R型聚类)算法

聚类分析(Q型,R型聚类)算法
聚类分析(Q型,R型聚类)算法

信息与计算科学专业课程设计

信息与计算科学专业实验报告

图一(R型聚类)>> T =

4

图2 (各对象聚类树形图)划分成2类的结果如下:

PAM聚类算法的分析与实现

毕业论文(设计)论文(设计)题目:PAM聚类算法的分析与实现 系别: 专业: 学号: 姓名: 指导教师: 时间:

毕业论文(设计)开题报告 系别:计算机与信息科学系专业:网络工程 学号姓名高华荣 论文(设计)题目PAM聚类算法的分析与实现 命题来源□√教师命题□学生自主命题□教师课题 选题意义(不少于300字): 随着计算机技术、网络技术的迅猛发展与广泛应用,人们面临着日益增多的业务数据,这些数据中往往隐含了大量的不易被人们察觉的宝贵信息,为了得到这些信息,人们想尽了一切办法。数据挖掘技术就是在这种状况下应运而生了。而聚类知识发现是数据挖掘中的一项重要的内容。 在日常生活、生产和科研工作中,经常要对被研究的对象经行分类。而聚类分析就是研究和处理给定对象的分类常用的数学方法。聚类就是将数据对象分组成多个簇,同一个簇中的对象之间具有较高的相似性,而不同簇中的对象具有较大的差异性。 在目前的许多聚类算法中,PAM算法的优势在于:PAM算法比较健壮,对“噪声”和孤立点数据不敏感;由它发现的族与测试数据的输入顺序无关;能够处理不同类型的数据点。 研究综述(前人的研究现状及进展情况,不少于600字): PAM(Partitioning Around Medoid,围绕中心点的划分)算法是是划分算法中一种很重要的算法,有时也称为k-中心点算法,是指用中心点来代表一个簇。PAM算法最早由Kaufman和Rousseevw提出,Medoid的意思就是位于中心位置的对象。PAM算法的目的是对n个数据对象给出k个划分。PAM算法的基本思想:PAM算法的目的是对成员集合D中的N个数据对象给出k个划分,形成k个簇,在每个簇中随机选取1个成员设置为中心点,然后在每一步中,对输入数据集中目前还不是中心点的成员根据其与中心点的相异度或者距离进行逐个比较,看是否可能成为中心点。用簇中的非中心点到簇的中心点的所有距离之和来度量聚类效果,其中成员总是被分配到离自身最近的簇中,以此来提高聚类的质量。 由于PAM算法对小数据集非常有效,但对大的数据集合没有良好的可伸缩性,就出现了结合PAM的CLARA(Cluster LARger Application)算法。CLARA是基于k-中心点类型的算法,能处理更大的数据集合。CLARA先抽取数据集合的多个样本,然后用PAM方法在抽取的样本中寻找最佳的k个中心点,返回最好的聚类结果作为输出。后来又出现了CLARNS(Cluster Larger Application based upon RANdomized

聚类分析算法解析.doc

聚类分析算法解析 一、不相似矩阵计算 1.加载数据 data(iris) str(iris) 分类分析是无指导的分类,所以删除数据中的原分类变量。 iris$Species<-NULL 2. 不相似矩阵计算 不相似矩阵计算,也就是距离矩阵计算,在R中采用dist()函数,或者cluster包中的daisy()函数。dist()函数的基本形式是 dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 其中x是数据框(数据集),而方法可以指定为欧式距离"euclidean", 最大距离"maximum", 绝对值距离"manhattan", "canberra", 二进制距离非对称"binary" 和明氏距离"minkowski"。默认是计算欧式距离,所有的属性必须是相同的类型。比如都是连续类型,或者都是二值类型。 dd<-dist(iris) str(dd) 距离矩阵可以使用as.matrix()函数转化了矩阵的形式,方便显示。Iris数据共150例样本间距离矩阵为150行列的方阵。下面显示了1~5号样本间的欧式距离。 dd<-as.matrix(dd)

二、用hclust()进行谱系聚类法(层次聚类) 1.聚类函数 R中自带的聚类函数是hclust(),为谱系聚类法。基本的函数指令是 结果对象 <- hclust(距离对象, method=方法) hclust()可以使用的类间距离计算方法包含离差法"ward",最短距离法"single",最大距离法"complete",平均距离法"average","mcquitty",中位数法 "median" 和重心法"centroid"。下面采用平均距离法聚类。 hc <- hclust(dist(iris), method="ave") 2.聚类函数的结果 聚类结果对象包含很多聚类分析的结果,可以使用数据分量的方法列出相应的计算结果。 str(hc) 下面列出了聚类结果对象hc包含的merge和height结果值的前6个。其行编号表示聚类过程的步骤,X1,X2表示在该步合并的两类,该编号为负代表原始的样本序号,编号为正代表新合成的类;变量height表示合并时两类类间距离。比如第1步,合并的是样本102和143,其样本间距离是0.0,合并后的类则使用该步的步数编号代表,即样本-102和-143合并为1类。再如第6行表示样本11和49合并,该两个样本的类间距离是0.1,合并后的类称为6类。 head (hc$merge,hc$height)

各种聚类算法及改进算法的研究

论文关键词:数据挖掘;聚类算法;聚类分析论文摘要:该文详细阐述了数据挖掘领域的常用聚类算法及改进算法,并比较分析了其优缺点,提出了数据挖掘对聚类的典型要求,指出各自的特点,以便于人们更快、更容易地选择一种聚类算法解决特定问题和对聚类算法作进一步的研究。并给出了相应的算法评价标准、改进建议和聚类分析研究的热点、难点。上述工作将为聚类分析和数据挖掘等研究提供有益的参考。 1 引言随着经济社会和科学技术的高速发展,各行各业积累的数据量急剧增长,如何从海量的数据中提取有用的信息成为当务之急。聚类是将数据划分成群组的过程,即把数据对象分成多个类或簇,在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。它对未知数据的划分和分析起着非常有效的作用。通过聚类,能够识别密集和稀疏的区域,发现全局的分布模式,以及数据属性之间的相互关系等。为了找到效率高、通用性强的聚类方法人们从不同角度提出了许多种聚类算法,一般可分为基于层次的,基于划分的,基于密度的,基于网格的和基于模型的五大类。 2 数据挖掘对聚类算法的要求(1)可兼容性:要求聚类算法能够适应并处理属性不同类型的数据。(2)可伸缩性:要求聚类算法对大型数据集和小数据集都适用。(3)对用户专业知识要求最小化。(4)对数据类别簇的包容性:即聚类算法不仅能在用基本几何形式表达的数据上运行得很好,还要在以其他更高维度形式表现的数据上同样也能实现。(5)能有效识别并处理数据库的大量数据中普遍包含的异常值,空缺值或错误的不符合现实的数据。(6)聚类结果既要满足特定约束条件,又要具有良好聚类特性,且不丢失数据的真实信息。(7)可读性和可视性:能利用各种属性如颜色等以直观形式向用户显示数据挖掘的结果。(8)处理噪声数据的能力。(9)算法能否与输入顺序无关。 3 各种聚类算法介绍随着人们对数据挖掘的深入研究和了解,各种聚类算法的改进算法也相继提出,很多新算法在前人提出的算法中做了某些方面的提高和改进,且很多算法是有针对性地为特定的领域而设计。某些算法可能对某类数据在可行性、效率、精度或简单性上具有一定的优越性,但对其它类型的数据或在其他领域应用中则不一定还有优势。所以,我们必须清楚地了解各种算法的优缺点和应用范围,根据实际问题选择合适的算法。 3.1 基于层次的聚类算法基于层次的聚类算法对给定数据对象进行层次上的分解,可分为凝聚算法和分裂算法。 (1)自底向上的凝聚聚类方法。这种策略是以数据对象作为原子类,然后将这些原子类进行聚合。逐步聚合成越来越大的类,直到满足终止条件。凝聚算法的过程为:在初始时,每一个成员都组成一个单独的簇,在以后的迭代过程中,再把那些相互邻近的簇合并成一个簇,直到所有的成员组成一个簇为止。其时间和空间复杂性均为O(n2)。通过凝聚式的方法将两簇合并后,无法再将其分离到之前的状态。在凝聚聚类时,选择合适的类的个数和画出原始数据的图像很重要。 [!--empirenews.page--] (2)自顶向下分裂聚类方法。与凝聚法相反,该法先将所有对象置于一个簇中,然后逐渐细分为越来越小的簇,直到每个对象自成一簇,或者达到了某个终结条件。其主要思想是将那些成员之间不是非常紧密的簇进行分裂。跟凝聚式方法的方向相反,从一个簇出发,一步一步细化。它的优点在于研究者可以把注意力集中在数据的结构上面。一般情况下不使用分裂型方法,因为在较高的层很难进行正确的拆分。 3.2 基于密度的聚类算法很多算法都使用距离来描述数据之间的相似性,但对于非凸数据集,只用距离来描述是不够的。此时可用密度来取代距离描述相似性,即基于密度的聚类算法。它不是基于各种各样的距离,所以能克服基于距离的算法只能发现“类圆形”的聚类的缺点。其指导思想是:只要一个区域中的点的密度(对象或数据点的数目)大过某个阈值,就把它加到与之相近的聚类中去。该法从数据对象的分布密度出发,把密度足够大的区域连接起来,从而可发现任意形状的簇,并可用来过滤“噪声”数据。常见算法有DBSCAN,DENCLUE 等。[1][2][3]下一页 3.3 基于划分的聚类算法给定一个N个对象的元组或数据库,根据给定要创建的划分的数目k,将数据划分为k个组,每个组表示一个簇类(<=N)时满足如下两点:(1)每个组至少包含一个对象;(2)每个对

聚类算法总结

聚类算法的种类:

--------------------------------------------------------- 几种常用的聚类算法从可伸缩性、适合的数据类型、高维性(处理高维数据的能力)、异常数据的抗干扰度、聚类形状和算法效率6个方面进行了综合性能评价,评价结果如表1所示:

--------------------------------------------------------- 目前聚类分析研究的主要内容: 对聚类进行研究是数据挖掘中的一个热门方向,由于以上所介绍的聚类方法都 存在着某些缺点,因此近些年对于聚类分析的研究很多都专注于改进现有的聚 类方法或者是提出一种新的聚类方法。以下将对传统聚类方法中存在的问题以 及人们在这些问题上所做的努力做一个简单的总结: 1 从以上对传统的聚类分析方法所做的总结来看,不管是k-means方法,还是CURE方法,在进行聚类之前都需要用户事先确定要得到的聚类的数目。然而在 现实数据中,聚类的数目是未知的,通常要经过不断的实验来获得合适的聚类 数目,得到较好的聚类结果。 2 传统的聚类方法一般都是适合于某种情况的聚类,没有一种方法能够满足各 种情况下的聚类,比如BIRCH方法对于球状簇有很好的聚类性能,但是对于不 规则的聚类,则不能很好的工作;K-medoids方法不太受孤立点的影响,但是 其计算代价又很大。因此如何解决这个问题成为当前的一个研究热点,有学者 提出将不同的聚类思想进行融合以形成新的聚类算法,从而综合利用不同聚类 算法的优点,在一次聚类过程中综合利用多种聚类方法,能够有效的缓解这个 问题。 3 随着信息时代的到来,对大量的数据进行分析处理是一个很庞大的工作,这 就关系到一个计算效率的问题。有文献提出了一种基于最小生成树的聚类算法,该算法通过逐渐丢弃最长的边来实现聚类结果,当某条边的长度超过了某个阈值,那么更长边就不需要计算而直接丢弃,这样就极大地提高了计算效率,降 低了计算成本。 4 处理大规模数据和高维数据的能力有待于提高。目前许多聚类方法处理小规 模数据和低维数据时性能比较好,但是当数据规模增大,维度升高时,性能就 会急剧下降,比如k-medoids方法处理小规模数据时性能很好,但是随着数据 量增多,效率就逐渐下降,而现实生活中的数据大部分又都属于规模比较大、 维度比较高的数据集。有文献提出了一种在高维空间挖掘映射聚类的方法PCKA (Projected Clustering based on the K-Means Algorithm),它从多个维度中选择属性相关的维度,去除不相关的维度,沿着相关维度进行聚类,以此对 高维数据进行聚类。 5 目前的许多算法都只是理论上的,经常处于某种假设之下,比如聚类能很好 的被分离,没有突出的孤立点等,但是现实数据通常是很复杂的,噪声很大, 因此如何有效的消除噪声的影响,提高处理现实数据的能力还有待进一步的提高。

聚类分析K-means算法综述

聚类分析K-means算法综述 摘要:介绍K-means聚类算法的概念,初步了解算法的基本步骤,通过对算法缺点的分析,对算法已有的优化方法进行简单分析,以及对算法的应用领域、算法未来的研究方向及应用发展趋势作恰当的介绍。 关键词:K-means聚类算法基本步骤优化方法应用领域研究方向应用发展趋势 算法概述 K-means聚类算法是一种基于质心的划分方法,输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。 评定标准:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算。 解释:基于质心的划分方法就是将簇中的所有对象的平均值看做簇的质心,然后根据一个数据对象与簇质心的距离,再将该对象赋予最近的簇。 k-means 算法基本步骤 (1)从n个数据对象任意选择k 个对象作为初始聚类中心 (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分 (3)重新计算每个(有变化)聚类的均值(中心对象) (4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2) 形式化描述 输入:数据集D,划分簇的个数k 输出:k个簇的集合 (1)从数据集D中任意选择k个对象作为初始簇的中心; (2)Repeat (3)For数据集D中每个对象P do (4)计算对象P到k个簇中心的距离 (5)将对象P指派到与其最近(距离最短)的簇;

(6)End For (7)计算每个簇中对象的均值,作为新的簇的中心; (8)Until k个簇的簇中心不再发生变化 对算法已有优化方法的分析 (1)K-means算法中聚类个数K需要预先给定 这个K值的选定是非常难以估计的,很多时候,我们事先并不知道给定的数据集应该分成多少个类别才最合适,这也是K一means算法的一个不足"有的算法是通过类的自动合并和分裂得到较为合理的类型数目k,例如Is0DAIA算法"关于K一means算法中聚类数目K 值的确定,在文献中,根据了方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分嫡来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵RPCL算法,并逐步删除那些只包含少量训练数据的类。文献中针对“聚类的有效性问题”提出武汉理工大学硕士学位论文了一种新的有效性指标:V(k km) = Intra(k) + Inter(k) / Inter(k max),其中k max是可聚类的最大数目,目的是选择最佳聚类个数使得有效性指标达到最小。文献中使用的是一种称为次胜者受罚的竞争学习规则来自动决定类的适当数目"它的思想是:对每个输入而言不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。 (2)算法对初始值的选取依赖性极大以及算法常陷入局部极小解 不同的初始值,结果往往不同。K-means算法首先随机地选取k个点作为初始聚类种子,再利用迭代的重定位技术直到算法收敛。因此,初值的不同可能导致算法聚类效果的不稳定,并且,K-means算法常采用误差平方和准则函数作为聚类准则函数(目标函数)。目标函数往往存在很多个局部极小值,只有一个属于全局最小,由于算法每次开始选取的初始聚类中心落入非凸函数曲面的“位置”往往偏离全局最优解的搜索范围,因此通过迭代运算,目标函数常常达到局部最小,得不到全局最小。对于这个问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法GA进行初始化,以内部聚类准则作为评价指标。 (3)从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大 所以需要对算法的时间复杂度进行分析,改进提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的候选集,而在文献中,使用的K-meanS算法是对样本数据进行聚类。无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

基于k—means聚类算法的试卷成绩分析研究

基于k—means聚类算法的试卷成绩分析研 究 第39卷第4期 2009年7月 河南大学(自然科学版) JournalofHenanUniversity(NaturalScience) V o1.39NO.4 Ju1.2009 基于k—means聚类算法的试卷成绩分析研究 谭庆' (洛阳师范学院信息技术学院,河南洛阳471022) 摘要:研究_rk-means聚类算法,并将此算法应用于高校学生试卷成绩分析中.首先对数据进行了预处理,然后 使用k-means算法,对学生试卷成绩进行分类评价.用所获得的结果指导学生的学习和今后的教学工作. 关键词:数据挖掘;聚类;k-means算法;试卷成绩 中圈分类号:TP311文献标志码:A文章编号:1003—4978(2009)04—0412—04 AnalysisandResearchofGradesofExaminationPaper BasedonK—meansClusteringAlgorithm TANQing (Acaderny.l,InformationTechnologY,LuoyangNormalUniversity,LuoyangHenan47102 2,China) Abstract:Thispaperresearcheslhekmeansclusteringalgorithmandappliesittotheanalysiso fthegradedataof examinationpaperofhighereducationschoolSstudents.Firstly,itpreprocessesthedatabefor eminingThen,it usesthek—

聚类算法分析报告汇总

嵌入式方向工程设计实验报告 学院班级:130712 学生学号:13071219 学生姓名:杨阳 同作者:无 实验日期:2010年12月

聚类算法分析研究 1 实验环境以及所用到的主要软件 Windows Vista NetBeans6.5.1 Weka3.6 MATLAB R2009a 2 实验内容描述 聚类是对数据对象进行划分的一种过程,与分类不同的是,它所划分的类是未知的,故此,这是一个“无指导的学习” 过程,它倾向于数据的自然划分。其中聚类算法常见的有基于层次方法、基于划分方法、基于密度以及网格等方法。本文中对近年来聚类算法的研究现状与新进展进行归纳总结。一方面对近年来提出的较有代表性的聚类算法,从算法思想。关键技术和优缺点等方面进行分析概括;另一方面选择一些典型的聚类算法和一些知名的数据集,主要从正确率和运行效率两个方面进行模拟实验,并分别就同一种聚类算法、不同的数据集以及同一个数据集、不同的聚类算法的聚类情况进行对比分析。最后通过综合上述两方面信息给出聚类分析的研究热点、难点、不足和有待解决的一些问题等。 实验中主要选择了K 均值聚类算法、FCM 模糊聚类算法并以UCI Machine Learning Repository 网站下载的IRIS 和WINE 数据集为基础通过MATLAB 实现对上述算法的实验测试。然后以WINE 数据集在学习了解Weka 软件接口方面的基础后作聚类分析,使用最常见的K 均值(即K-means )聚类算法和FCM 模糊聚类算法。下面简单描述一下K 均值聚类的步骤。 K 均值算法首先随机的指定K 个类中心。然后: (1)将每个实例分配到距它最近的类中心,得到K 个类; (2)计分别计算各类中所有实例的均值,把它们作为各类新的类中心。 重复(1)和(2),直到K 个类中心的位置都固定,类的分配也固定。 在实验过程中通过利用Weka 软件中提供的simpleKmeans (也就是K 均值聚类算法对WINE 数据集进行聚类分析,更深刻的理解k 均值算法,并通过对实验结果进行观察分析,找出实验中所存在的问题。然后再在学习了解Weka 软件接口方面的基础上对Weka 软件进行一定的扩展以加入新的聚类算法来实现基于Weka 平台的聚类分析。 3 实验过程 3.1 K 均值聚类算法 3.1.1 K 均值聚类算法理论 K 均值算法是一种硬划分方法,简单流行但其也存在一些问题诸如其划分结果并不一定完全可信。K 均值算法的划分理论基础是 2 1 min i c k i k A i x v ∈=-∑∑ (1) 其中c 是划分的聚类数,i A 是已经属于第i 类的数据集i v 是相应的点到第i 类的平均距离,即

基于聚类分析的Kmeans算法研究及应用概要

第24卷第5期 2007年5月 计算机应用研究 Application Resea心h of Computers V01.24.No.5 Mav 2007 基于聚类分析的K—means算法研究及应用爿: 张建萍1,刘希玉2 (1.山东师范大学信息科学与工程学院,山东济南250014;2.山东师范大学管理学院,山东济南250014 摘要:通过对聚类分析及其算法的论述,从多个方面对这些算法性能进行比较,同时以儿童生长发育时期的数据为例通过聚类分析的软件和改进的K.means算法来进一步阐述聚类分析在数据挖掘中的实践应用。 关键词:数据挖掘;聚类分析;数据库;聚类算法 中图分类号:TP311文献标志码:A 文章编号:1001—3695(200705—0166-03 Application in Cluster’s Analysis Is Analyzed in Children DeVelopment Period ZHANG Jian—pin91,UU Xi—yu。 (1.coz比伊矿,咖mo砌n 5c掂Me&E蟛袱^增,|s胁础增Ⅳo丌mf‰洫瑙毋,五n 帆5^a蒯D昭250014,吼i胁;2.cozz学矿讹加舻删眦, s^0n幽凡g舳丌Mf‰i孵璐匆,^加n乩。砌。昭250014,傩iM Abstract: nis paper passed cluster’s analysis and its algorithm corTectly,compared

these algorithm perfbrnlances f}om a lot of respects,and explained that cluster analysis excavates the practice application of in datum further to come through software and impmved K—means aIgorithm,cIuster of analysis at the same time practise appIication. Key words:data mining; cluster analysis; database; cluster algorithm 随着计算机硬件和软件技术的飞速发展,尤其是数据库技 术的普及,人们面临着日益扩张的数据海洋,原来的数据分析工具已无法有效地为决策者提供决策支持所需要的相关知识, 从而形成一种独特的现象“丰富的数据,贫乏的知识”。数据挖掘…又称为数据库中知识发现(Knowledge Discovery from Database,KDD,它是一个从大量数据中抽取挖掘出未知的、有价值的模式或规律等知识的复杂过程。目的是在大量的数据中发现人们感兴趣的知识。 常用的数据挖掘技术包括关联分析、异类分析、分类与预测、聚类分析以及演化分析等。由于数据库中收集了大量的数据,聚类分析已经成为数据挖掘领域的重要技术之一。 1问题的提出 随着社会的发展和人们生活水平的提高,优育观念嵋一。逐渐渗透到每个家庭,小儿的生长发育越来越引起家长们的重视。中国每隔几年都要进行全国儿童营养调查,然而用手工计算的方法在大量的数据中分析出其中的特点和规律,显然是不现实的,也是不可行的。为了有效地解决这个问题,数据挖掘技术——聚类分析发挥了巨大的作用。 在数据挖掘领域,聚类算法经常遇到一些问题如聚类初始点的选择H J、模糊因子的确定‘5o等,大部分均已得到解决。现在的研究工作主要集中在为大型的数据库有效聚类分析寻找适当的方法、聚类算法对复杂分布数据和类别性数据聚类的有效性以及高维数据聚类技术等方面。本文通过对聚类分析算法的分析并重点

系统聚类分析方法

系统聚类分析方法 聚类分析是研究多要素事物分类问题的数量方法。基本原理是根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。 常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。 1. 聚类要素的数据处理 假设有m 个聚类的对象,每一个聚类对象都有个要素构成。它们所对应的要素数据可用表3.4.1给出。(点击显示该表)在聚类分析中,常用的聚类要素的数据处理方法有如下几种。 ①总和标准化 ②标准差标准化

③极大值标准化 经过这种标准化所得的新数据,各要素的极大值为1,其余各数值小于1。 ④极差的标准化 经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在0与1之间。 2. 距离的计算 距离是事物之间差异性的测度,差异性越大,则相似性越小,所以距离是系统聚类分析的依据和基础。 ①绝对值距离

选择不同的距离,聚类结果会有所差异。在地理分区和分类研究中,往往采用几种距离进行计算、对比,选择一种较为合适的距离进行聚类。

例:表3.4.2给出了某地区九个农业区的七项指标,它们经过极差标准化处理后,如表3.4.3所示。 对于表3.4.3中的数据,用绝对值距离公式计算可得九个农业区之间的绝对值距离矩阵:

3. 直接聚类法 直接聚类法是根据距离矩阵的结构一次并类得到结果。 ▲ 基本步骤: ①把各个分类对象单独视为一类; ②根据距离最小的原则,依次选出一对分类对象,并成新类;③如果其中一个分类对象已归于一类,则把另一个也归入该类;如果一对分类对象正好属于已归的两类,则把这两类并为一类;每一次归并,都划去该对象所在的列与列序相同的行;④那么,经过m-1次就可以把全部分类对象归为一类,这样就可以根据归并的先后顺序作出聚类谱系图。 ★直接聚类法虽然简便,但在归并过程中是划去行和列的,因而难免有信息损失。因此,直接聚类法并不是最好的系统聚类方法。 [举例说明](点击打开新窗口,显示该内容) 例:已知九个农业区之间的绝对值距离矩阵,使用直接聚类法做聚类分析。 解: 根据上面的距离矩阵,用直接聚类法聚类分析:

K-means聚类算法分析应用研究

K-means聚类算法分析应用研究 发表时间:2011-05-09T08:59:20.143Z 来源:《魅力中国》2011年3月上作者:李曼赵松林 [导读] 本文浅谈了数字图像处理的发展概况、研究背景并对彩色图像K-means算法进行分析。 李曼赵松林 (商丘职业技术学院河南商丘,476000) 中图分类号:TP39 文献标识码:A 文章编号:1673-0992(2011)03-0000-01 摘要:本文浅谈了数字图像处理的发展概况、研究背景并对彩色图像K-means算法进行分析.主要详细谈论了是对K-means算法的一些认识,并且介绍K-means聚类的算法思想、工作原理、聚类算法流程、以及对算法结果进行分析,得出其特点及实际使用情况。 关键字:数字图像处理;K-means算法;聚类 一、数字图像处理发展概况及边缘的概念 数字图像处理(Digital Image Processing)即计算机图像处理,就是利用计算机对图像进行去除噪声、增强、复原、分割、特征提取、识别等处理的理论、方法和技术[1]。最早出现于20世纪50年代,它作为一门学科大约形成于20世纪60年代初期。它以改善图像的质量为对象,以改善人的视觉效果为目的。在处理过程中,输入低质量图像,输出质量高图像,图像增强、复原、编码、压缩等都是图像处理常用的方法[1]。数字图像处理在航天、航空、星球探测、通信技术、军事公安、生物工程和医学等领域都有广泛的应用,并取得了巨大的成就。 边缘就是图像中灰度有阶跃变化或屋顶变化的像素的集合,边缘是图像最重要的特征之一,它包含了图像的大部分信息。实质上边缘检测就是采用算法提取图像中对象与背景间的交界线。在目标与背景、目标与目标、区域与区域、基元与基元之间都存在边缘,这是图像分割所依赖的最重要的特征之一。根据灰度变化的剧烈程度,边缘可以分为两种:一种是屋顶边缘,一种为阶跃性边缘。对于屋顶状边缘,二阶导数在边缘初取极值,而对阶跃性边缘,二阶导数在边缘处零交叉;。 二、彩色图像的K-means聚类算法 (一)K-means聚类 聚类就是把数据分成几组,按照定义的测量标准,同组内数据与其他组数据相比具有较强的相似性。K-means聚类就是首先从n个数据对象任选k个对象作为初始聚类中心;剩下的其它对象,则根据它们与这些聚类中心的距离(相似度),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);一直重复此过程直至标准测度函数收敛为止。通常都采用均方差作标准测度函数。k个聚类有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 聚类的用途是很广泛的。在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。 (二)算法思想分析 输入:聚类个数k,以及包含 n个数据对象的彩色图片。 输出:满足方差最小标准的k个聚类。 处理流程: (1)从 n个数据对象任意选择 k 个对象作为初始聚类中心; (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (3)重新计算每个(有变化)聚类的均值(中心对象); (4)循环(2)到(3)直到每个聚类不再发生变化为止。 首先设置K值,也就是确定若干个聚类中心。使用rand函数随机获得K个颜色值,存放在矩阵miu中,第一次对每个像素点中的K种颜色进行迭代运算,得到最小的颜色矩阵的2范数,同时标记该颜色,依次相加的到各点的颜色矩阵总值。再次迭代得到K中颜色的各个矩阵均值。最后提取出标记的各个颜色,依次对各个点进行颜色赋值,使每个像素点的颜色归类。得到聚类后的图像。 (三)算法的数学描述 (四)算法过程分析 设置K值为8,读入一幅图片后计算图像上所有的像素点个数为N,即令N=size(X,1)*size(X,2),令颜色矩阵R为矩阵[N,K]并清零。随机获得颜色聚类中心为Miu=fix(255*rand(K,3))。

聚类分析法总结

聚类分析法 先用一个例子引出聚类分析 一、聚类分析法的概念 聚类分析又叫群分析、点群分析或者簇分析,是研究多要素事物分类问题的数量,并根据研究对象特征对研究对象进行分类的多元分析技术,它将样本或变量按照亲疏的程度,把性质相近的归为一类,使得同一类中的个体都具有高度的同质性,不同类之间的个体都具有高度的异质性。 聚类分析的基本原理是根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。 描述亲属程度通常有两种方法:一种是把样本或变量看出那个p维向量,样本点看成P 维空间的一个点,定义点与点之间的距离;另一种是用样本间的相似系数来描述其亲疏程度。有了距离和相似系数就可定量地对样本进行分组,根据分类函数将差异最小的归为一组,组与组之间再按分类函数进一步归类,直到所有样本归为一类为止。 聚类分析根据分类对象的不同分为Q型和R型两类,Q--型聚类是对样本进行分类处理,R--型聚类是对变量进行分类处理。 聚类分析的基本思想是,对于位置类别的样本或变量,依据相应的定义把它们分为若干类,分类过程是一个逐步减少类别的过程,在每一个聚类层次,必须满足“类内差异小,类间差异大”原则,直至归为一类。评价聚类效果的指标一般是方差,距离小的样品所组成的类方差较小。 常见的聚类分析方法有系统聚类法、动态聚类法(逐步聚类法)、有序样本聚类法、图论聚类法和模糊聚类法等。 二、对聚类分析法的评价 聚类分析也是一种分类技术。与多元分析的其他方法相比,该方法较为粗糙,理论上还不完善,但应用方面取得了很大成功。与回归分析、判别分析一起被称为多元分析的三大方法。 聚类的目的:根据已知数据,计算各观察个体或变量之间亲疏关系的统计量(距离或相关系数)。根据某种准则(最短距离法、最长距离法、中间距离法、重心法),使同一类内的

编程实现聚类分析算法

编程实现聚类分析算法 调用函数: min1.m——求矩阵最小值,返回最小值所在行和列以及值的大小 min2.m——比较两数大小,返回较小值 std1.m——用极差标准化法标准化矩阵 ds1.m——用绝对值距离法求距离矩阵 cluster.m——应用最短距离聚类法进行聚类分析 print1.m——调用各子函数,显示聚类结果 聚类分析算法 假设距离矩阵为vector,a阶,矩阵中最大值为max,令矩阵上三角元素等于max 聚类次数=a-1,以下步骤作a-1次循环: (1)求改变后矩阵的阶数,计作c (2)求矩阵最小值,返回最小值所在行e和列f以及值的大小g (3)for l=1:c,为vector(c+1,l)赋值,产生新类 (4)令第c+1列元素,第e行和第f行所有元素为max,第e列和第f列所有元素 为max 5.1源程序 %std1.m,用极差标准化法标准化矩阵 function std=std1(vector) max=max(vector); %对列求最大值 min=min(vector); [a,b]=size(vector); %矩阵大小,a为行数,b为列数 for i=1:a for j=1:b std(i,j)= (vector(i,j)-min(j))/(max(j)-min(j)); end end %ds1.m,用绝对值法求距离 function d=ds1(vector); [a,b]=size(vector); d=zeros(a); for i=1:a for j=1:a for k=1:b d(i,j)=d(i,j)+abs(vector(i,k)-vector(j,k)); end end

聚类分析及算法研究

聚类分析及算法研究 公允价值计量属性的应用 ——以我国金融行业为例 赵婷 (重庆理工大学会计学院,重庆400054) 公允价值对金融行业的影响不容忽视。以我国金融行业A股上市公司2015年年报披露的信息为基础,分析了当前公允价值计量的应用意义;同时,阐述了金融行业运用公允价值计量的现状。结果表明,公允价值计量属性对金融行业资产的计量极其重要,可以帮助提高行业信息的相关性,有助于投资者了解金融市场动态。 标签:公允价值;金融行业;会计信息质量 1引言 随着经济的发展,国家在不断地修订会计准则,会计政策也随之产生巨大的变化,而会计政策的每一次变动,都对处于该经济背景下的企业产生了深远的影响。有学者认为,经济环境的变化将持续不断地影响着会计政策的选取,而如何在历次的变化中觉察会计政策变化的轨迹与特征,并利用其具有的特征和轨迹做出有利于企业经营管理的决策,应是我们重点关注的领域,而公允价值计量属性是会计政策的内容之一。 2公允价值计量属性的应用意义 公允价值计量属性对我国金融资产的计量影响深远。美国历史上著名的“储蓄与贷款危机”表明:企业若以公允价值对储蓄和贷款款项进行计量,能够及时的向大众传达企业已经资不抵债的现状,有助于减少投资者的损失,反之,企业若自欺欺人的认为自身资金实力雄厚,偿债能力较强,会误导外部投资者与政府监管部门而使企业和社会蒙受了巨大的损失。随着市场经济的发展,企业经营业务不断的扩张,越来越多的公司开展股票、债券等金融产品的交易,市场活跃程度加强,历史成本计量属性已不符合广大投资者的需求,急需“公允价值”入驻进行恰当的补充。 3金融行业公允价值计量属性应用现状 表12015年金融业A股上市公司年报披露公允价值变动损失最大的前十家公司及原因

大数据聚类算法研究(汽车类的)

大数据聚类算法研究(汽车类的) 摘要:本文分析了汽车行业基于不同思想的各类大数据聚类算法,用户应该根 据实际应用中的具体问题具体分析,选择恰当的聚类算法。聚类算法具有非常广 泛的应用,改进聚类算法或者开发新的聚类算法是一件非常有意义工作,相信在 不久的将来,聚类算法将随着新技术的出现和应用的需求而在汽车行业得到蓬勃 的发展。 关键词:汽车;大数据;聚类算法;划分 就精确系数不算太严格的情况而言,汽车行业内对各种大型数据集,通过对 比各种聚类算法,提出了一种部分优先聚类算法。然后在此基础之上分析研究聚 类成员的产生过程与聚类融合方式,通过设计共识函数并利用加权方式确定类中心,在部分优先聚类算法的基础上进行聚类融合,从而使算法的计算准度加以提升。通过不断的实验,我们可以感受到优化之后算法的显著优势,这不仅体现在 其可靠性,同时在其稳定性以及扩展性、鲁棒性等方面都得到了很好的展现。 一、汽车行业在大数据时代有三个鲜明的特征 1、数据全面数字化,第一人的行为数字化,包括所有驾驶操作、每天所有的行为习惯,甚至是座椅的习惯等等都将形成相应的数字化。以车为中心物理事件 的数字化,车况、维修保养、交通、地理、信息等等都会形成数字化,全面数字 化就会形成庞大的汽车产业链,汽车的大数据生态圈。这是第一个特点。 由于大数据拥有分析和总结的核心优势,越来越多的品牌厂商和广告营销机 构都在大力发展以数据为基础的网络营销模式,这些变化也在不断地向传统的汽 车营销领域发起进攻。从前品牌做营销仅能凭主观想法和经验去预估,而现在大 数据的出现则可以帮助客户进行精准的客户群定位。 2、第二个特点是数据互联资源化。有一个领导人讲过:未来大数据会成为石油一样的资源。这说明大数据可以创造巨大的价值,甚至可能成为石油之外,更 为强大的自然资源。 大数据首先改变了传统调研的方式。通过观察Cookie等方式,广告从业者可 以通过直观的数据了解客观的需求。之前的汽车市场调研抽样的样本有限,而且 在问题设计和角度选取过程中,人为因素总是或多或少地介入,这就可能会影响 到市场调研的客观性。大数据分析不只会分析互联网行为,也会关注人生活的更 多纬度。数据可以更加丰富,比如了解到消费者的习惯和周期、兴趣爱好、对人 的理解会更加深刻。这些因素综合在一起就会形成一笔无形且珍贵的数据资源。 有了大数据的支持,便可以实现曾经很多只能“纸上谈兵”的理论。 3、第三个特点则是产生虚拟的汽车,人和汽车可以对话,更具有智慧的新兴产业。这个就是未来在大数据时代,汽车行业会呈现的特点。 在这个情况下,我们以人、车、社会形成汽车产业大数据的生态圈,现实生 活中每个有车一族所产生的数据都对整个生态圈有积极的影响。车辆上传的每一 组数据都带有位置信息和时间,并且很容易形成海量数据。如果说大数据的特征 是完整和混杂,那么车联网与车有关的大数据特征则是完整和精准。如某些与车 辆本身有关的数据,都有明确的一个用户,根据不同用户可以关联到相应的车主 信息,并且这些信息都是极其精准的,这样形成的数据才是有价值的数据。 二、汽车行业大数据下聚类算法的含义 汽车行业大数据是指以多元形式,由许多来源搜集而组成的庞大数据组。电 子商务网站、社交网站以及网页浏览记录等都可以成为大数据的数据来源。同时,

聚类分析算法解析

聚类分析算法解析 一、不相似矩阵计算 1. 加载数据 data(iris) str(iris) > data (iris) > str(iris) 1 data .fizame :": 150 oba.. of 5 var iato les : $ Sepal. Length: num 5,. 1 电?9 屯?=4.6 5 5.4 4, E S 4?4 4?9 ■■甲 S Sepal. Width : num 3<5 3 3*2 3.1 3.6 3*9 3.4 3.1 2 ,9 3*1 $ Petal .Length: nuio 1?4 1?4 1?3 1.5 1?4 1,4 1 ■理 1?5??? $ Petal. Width. : num 0..2 0). 2 0.2 0.2 0.2 0.4 0?3 0.2 0.2 0.1 ■… $ Species : Factor w/ 3 levels ^setosa^-j -?verslcolor **, ■八 1 1 分类分析是无指导的分类,所以删除数据中的原分类变量。 iris$Species<-NULL 2. 不相似矩阵计算 不相似矩阵计算,也就是距离矩阵计算,在 R 中采用dist()函数,或者cluster 包中 的daisy()函数。dist()函数的基本形式是 dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 其中x 是数据框(数据集),而方法可以指定为欧式距离 "euclidean", 最大距离 "maximum",绝对值距离"manhattan", "canberra", 二进制距离非对称 "binary" 和明氏距 离"mi nkowski"。默认是计算欧式距离,所有的属性必须是相同的类型。 比如都是连续类型, 或者都是二值类型。 dd<-dist(iris) str(dd) > str(dd) Class 'disf atomic [1: 11175] CL 539 Cl ?£l 0.6^18 D ? 1^11 0.616 **? ??—attr (*z *r Size F,J = lnt 150 .attr= logi FALSE .atvr ^Vpper**) = logi FALSE ■ +— attr ( *, fr methcd r,) = chr fF euclidean F, ?* 一 attr ( *t *r calldist (x = ir is) 距离矩阵可以使用 as.matrix() 函数转化了矩阵的形式,方便显示。 例样本间距离矩阵为 150行列的方阵。下面显示了 1~5号样本间的欧式距离。 dd<-as.matrix(dd) > str(dd) -attr (*y ^diimnames"] =List of 2 ..$ : chr [1:150] H l ,f ”旷 ”3” "4” : chr [1:150] n l rr "2n Iris 数据共150 0.51 0.648 0?141 num [1:150, 0 0.539

相关主题
文本预览
相关文档 最新文档