当前位置:文档之家› 高公变差动-2

高公变差动-2

高公变差动-2
高公变差动-2

高公变比率制动原理纵差保护

一、保护原理:

保护采用比率制动原理,见图一。为防止变压器空投及其他异常情况时变压器励磁涌流导致差动误动,比较各相差流中二次谐波分量对基波分量比(即I2ω/I1ω)的大小,当其大于整定值时,闭锁差动元件。当差流很大,达到差动速断定值时,直接出口跳闸。同时设置专门的TA断线判别环节,若判别差流是TA断线所致,发TA断线信号,并可选择是否闭锁差动保护出口。

图一变压器纵差保护逻辑框图

二、一般信息

只发信,不出口跳闸。

2.7投入保护

开启液晶屏的背光电源,在人机界面的主画面中观察此保护是否已投入。(注:该保护投入时其运行指示灯是亮的。)如果该保护的运行指示灯是暗的,在“投退保护”的子画面点击投入该保护。

2.8 参数监视

点击进入高公变差动保护监视界面,可监视差动保护的整定值,差流和制动电流计算值,以及二次谐波计算值等信息。

2.9 通道平衡测试

本保护将高公变低压侧作为基准侧,设定基准侧电流,根据变压器各侧CT变比参数计算出其他各侧平衡电流,并加入平衡电流进行调试(一般出厂前厂家已完成此项)

三、启动电流定值测试

在高公变高压侧、高公变低压侧任一侧任一相中加入电流,外加电流达出口灯亮。

出口方式是否正确(打“√”表示):正确 □ 错误 □ 信号指示是否正确(打“√”表示):正确 □ 错误 □

四、差流越限告警信号定值测试

当差流超过启动电流的1/3时,一般预示差动回路存在某种异常状态,需发信告警,提示运行人员加以监测。在高公变低压侧、高公变高压侧任一侧任一相中加入电流,外加电流

信号指示是否正确(打“√”表示):正确 □ 错误 □

五、比率制动特性测试

5.1比率动作方程测试:

()?????z d z d I I I I ;;q

I g I g

I +-q g z z I I I K >>><

其中: Id ――动作电流(即差流),LII

LI H d I I I I ++=

Iz ――制动电流, ),,max(LII LI H z I I I I =

点击进入差动保护监视界面,监视差流和制动电流。在高公变低压侧的A 相(或B 相、C 相)加电流(0度),在高公变高压侧A 相(或B 相、C 相)加反向电流(180度),差流为两侧折算电流的差值(数值差),制动电流为最大侧电流。固定基准侧电流,缓慢改变高公变高压侧A 相(或B 相或C 相)的电流幅值,直至高公变差动出口灯亮,按下表记录各电流。连续做六组数据即可。(注意:各侧电流的折算系数)

如果变压器的接线方式为Y/Δ-11,可由CT 接线方式Δ/Y 来校相位,也可由保护软件校相位。软件校相位时差流算法为:A YB YA dA I I I I ?+-=.

.

.

.

,B YC YB dB I I I I ?+-=.

.

.

.

C YA YC dC I I I I ?+-=.

...。以A 相差动比率制动特性测试为例,在低压侧和高压侧A 相加入

电流,除了A 相有差流,C 相也有差流,则需要在Δ侧的C 相加入相应的平衡电流来消除C 相差流对A 相差动比率制动特性测试的影响。

z I q

图二 变压器纵差比率制动特性曲线

5.2 二次谐波制动特性测试

动作方程: ??

?>≥

N N I I I I I I I I 1.01.01.011212ωω

ωωωηη

其中: I 2ω、I 1ω——某相差流中的二次谐波电流和基波电流 η——整定的二次谐波制动比

I N 为二次CT 额定电流

模拟空投变压器状态,在高公变低压侧A 相(或B 相、C 相)同时迭加基波和二次谐波电流;亦可在高公变高压侧加基波,在高公变低压侧加二次谐波,此时要注意平衡系数和变压器的接线方式。二次谐波制动有“闭锁三相”制动方式和“闭锁单相”制动方式,如果二次谐波制动方式选择为“闭锁三相”制动方式,还需要在高公变高压侧相应相加平衡作用的基波电流,这是因为软件校Y/Δ相位时,在异相差流中会派生相当的二次谐波,先将测试相闭锁。以A 相二次谐波制动特性为例,在高公变高压侧A 相加基波,在高公变低压侧A 相加二次谐波,那么我们还需要在高公变高压侧C 相加一个平衡作用的基波,且

C

A I I ωωη12<,保证C 相不会抢先A 相被制动。

外加基波电流 (A )(必须大于启动电流),差动出口灯亮;增加二次谐波电流

5.3比率动作时间定值测试

六、速断特性测试 6.1速断电流定值测试

将比率制动系数K z 整定值暂时整定为1.5(一个大于1的数值),减小拐点电流,增大启动电流,即增大当前的制动区,在任一侧任一相加电流,差流一直处于制动情况,继续加

大电流,当差流大于速断定值时,高公变差动保护出口灯亮。

出口方式是否正确(打“√”表示):正确□错误□

信号指示是否正确(打“√”表示):正确□错误□

6.2速断动作时间定值测试

在高公变低压侧电流某一相端子突然外加1.5Is电流,记录动作时间。

七、TA断线

7.1高公变低压侧、高公变高压侧中加入电流模拟变压器正常运行(即各侧各相均有电流,

且各相无差流)。

7.2在任一相将CT短接(模拟CT开路),速度要快、短接要可靠(检查短接相电流是否约

为0,否则短接不可靠)。TA断线灯亮

是否正确(打“√”表示):正确□错误□

7.3在同一侧任两相CT同时短接(模拟CT开路),速度要快、短接要可靠(检查短接相电

流是否约为0,否则短接不可靠)。TA断线灯亮

是否正确(打“√”表示):正确□错误□

八、差动保护出厂前例行调试

8.1测试高公变低压侧、高公变高压侧中两两同名相反极性加入5倍平衡电流,监视每相差

流小于0.02 I e 。

是否正确(打“√”表示):正确□错误□

8.2测试AB相一侧同时加电流,保护动作无异常

是否正确(打“√”表示):正确□错误□

8.3测试BC相一侧同时加电流,保护动作无异常

是否正确(打“√”表示):正确□错误□

8.4测试CA相一侧同时加电流,保护动作无异常

是否正确(打“√”表示):正确□错误□

8.5测试ABC相一侧同时加电流,保护动作无异常

是否正确(打“√”表示):正确□错误□

8.6根据设计要求,测试二次谐波制动逻辑:一相制动闭锁三相差动(即“或”门制动)□

一相制动闭锁单相差动(即分相制动)□8.7检查保护压板是否正确投退保护(打“√”表示):正确□错误□

保护调试完,将定值恢复。

1主变差动保护动作

运行方式:焦东1112带110kV乙母经1100母联带110kV甲母,1号2号主变并列运行,10kVⅠⅡ段母线分段运行。 现象:警铃、喇叭响、1101、101绿灯闪光,有功、无功、电流指示为零,10kVⅠ段母线失压及所有运行出线有功、无功、电流指示为零,监控机一次图上1101、101开关为绿色闪光,发出#1主变差动保护动作信号。 处理:将1101、101开关放至对应位置,经检查#1主变保护装置上显示差动保护动作信号,对#1主变差动保护范围内检查发现#1主变高压侧A相套管闪络有放电痕迹。将保护动作情况,开关跳闸时间记录好,恢复装置信号,将10kVⅠ段所有运行出线开关由运行转热备用,汇报有关领导及金调。 将101小车开关摇至试验位置,断开1101、101开关储能空开,拉开1101丙刀闸、甲刀闸,断开1101、101控制电源空开,合上1101丙丁1刀闸,通知检修人员对A相套管进行检修,经检修好后恢复#1主变运行。 恢复:#1主变检修转运行,拉开1101丙丁1刀闸,合上1101、101控制电源空开,合上1号主变中丁刀闸,合上1101甲刀闸、丙刀闸,将101小车开关摇至工作位置,合上1101、101开关储能空开,将10kVⅠ段所有运行出线开关由热备用转运行。检查全站设备运行正常。汇报有关领导及金调。

运行方式:焦东1112带110kV乙母经1100母联带110kV甲母,1、2号主变并列运行,10kVⅠⅡ段母线分段运行。100分段备自投投入。现象:警铃、喇叭响、1101、101绿灯闪光,有功、无功、电流指示为零,监控机一次图上1101、101开关为绿色闪光,发出#1主变差动保护动作信号。100分段备自投动作。 处理:将1101、101开关放至对应位置,经检查#1主变保护装置上显示差动保护动作信号,对#1主变差动保护范围内检查发现#1主变高压侧A相套管闪络有放电痕迹。将保护动作情况,开关跳闸时间记录好,恢复装置信号,汇报有关领导及金调。 将101小车开关摇至试验位置,断开1101、101开关储能空开,拉开1101丙刀闸、甲刀闸,断开1101、101控制电源空开,合上1101丙丁1刀闸,通知检修人员对A相套管进行检修,经检修好后恢复#1主变运行。 恢复:#1主变检修转运行,拉开1101丙丁1刀闸,合上1101、101控制电源空开,合上1号主变中丁刀闸,合上1101甲刀闸、丙刀闸,将101小车开关摇至工作位置,合上1101、101开关储能空开,断开100分段开关,检查全站设备运行正常。汇报有关领导及金调。

主变投运差动保护动作的原因分析

2013年第03期?总第310期 主变投运差动保护动作的原因分析 (汝南县电业公司,河南…汝南…463300) 王永慧 差动保护做为变压器主保护,其保护范围是变压器各侧电流互感器之间的一次设备,当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流正比于故障点电流,差动继电器动作,其主要反映以下故障:变压器引线及内部线圈的匝间短路,线圈的层间短路,大电流接地系统中线圈及引线的接地故障。它能迅速而有选择地切除保护范围内的故障,但往往却因接线错误而导致差动保护误动。 1 保护动作情况 汝南县35 kV 三桥变电站通过增容改造后进行试送电,两台主变的冲击、核相等工作均顺利正常,在进行三桥#1主变带负荷时,三桥#1主变差动保护动作跳闸,现场调度随即令三桥#1主变停止运行,解除备用,做安全措施,并安排保护人员准备进行检查试验,同时又对三桥#2主变进行了带负荷试验,三桥#2主变差动保护也出现动作跳闸情况。 2 保护动作现场试验分析 针对两台主变均出现相同的保护动作情况,现场运行验收人员认为有以下几种可能:两台变压器的差动保护范围内均存在故障; 电流互感器二次接线极性端有接反现象或接线有不正确情况;保护定值输入出现错误。 现场运行及保护人员立即对两台主变进行了检查试验,经测量两台变压器直流电阻均正常,变压器与电流互感器之间也无任何异物,变压器内部未发现气体产生,冲击试验时变压器声音均正常,可以排除变压器差动保护范围内存在故障而导致动作。 保护人员又将两台主变两侧的电流互感器二次线重新核对了变比、用万用表进行点极性、核对线号,接线变比、极性端、接线均正确。为避免使用万用表点极性过程 出现错误,保护人员将极性反接后,两台主变带负荷时仍然出现差动保护动作跳闸,这也说明不是电流互感器二次线极性端存在问题。行保护人员向验收专家组提出这样一个问题:35 kV 三桥变电站在20世纪90年代建设时期,由于受当时设计技术影响,35 kV 三桥变电站设计为小型化末端变电站,室外布局较为紧凑,35 kV 进线间隔只有一组刀闸,且安装在35 kV 母线门型构架上,三桥351母刀闸与35 kV 母线的A 相跳线,距离35 kV 进线刀闸与母线的跳线较近,缺少安全距离,为了保证安全距离,当时将A 相与C 相的跳线进行了互换,这样三桥351母线A 相跳线在空间上距离缩短,减少了跳线的摆动幅度,保证了与35 kV 母线跳线的安全距离;本次增容改造,由于受资金限制,室外设备构架均未改动,只对一次设备进行了增容和更换,并将常规继电器保护更换为综合自动化保护。主变的一次进线侧A 相与C 相仍按原来的方式进行跳线,是否问题就出在这里。 3.1 主变接线组别的变化 在电力系统中,35 kV 主变压器常采用Yd11接线方式,35 kV 三桥#1、#2主变压器也是Yd11接线方式,当A 相与C 相接反后,实际接线方式已发生了变化,由Yd11变化为Yd1。即低压侧按ax–cz–by–ax 顺序接成三角形,变化为ax–by–cz–ax 顺序接成三角形。变化情况如图1、图2所示。 i A'2 i C'2 i B'2 i B'2 i C'2 i A2 i B2 i C2 i A'2 i C'2 i B'2 i A'2 i B'2 i C'2 i A2i B2 i C2 i B2 i C2 i A2 图1 Yd11接线图 图2 Yd1接线图

主变压器差动保护动作的原因及处理示范文本

主变压器差动保护动作的原因及处理示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

主变压器差动保护动作的原因及处理示 范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 主变压器差动保护动作跳闸的原因是: (1)主变压器及其套管引出线发生短路故障。 (2)保护二次线发生故障。 (3)电流互感器短路或开路。 (4)主变压器内部故障。 处理的原则是: (1)检查主变压器外部套管及引线有无故障痕迹和异 常现象。 (2)如经过第(1)项检查,未发现异常,但本站 (所)曾有直流不稳定接地隐患或曾带直流接地运行,则 考虑是否有直流两点接地故障。如果有,则应及时消除短

路点,然后对变压器重新送电。 (3)如果进行第(2)项检查,未发现直流接地故障,但出口中间继电器线圈两端有电压,同时差动继电器接点均已返回,则可能是差动跳闸回路和保护二次线短路所致,应及时消除短路点,然后试送电。 (4)检查高低压电流互感器有无开路或接触不良现象,发现问题及时处理,然后向变压器恢复送电。 (5)如果上述检查未发现故障或异常,则可初步判断为变压器内部故障,应停止运行,等待试验;如果是引出线故障,则应及时更换引出线。 (6)如果差动保护和瓦斯保护同时动作跳闸,应首先判断为变压器内部故障,按重瓦斯保护动作处理。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

DMP300型微机变压器差动保护测控装置说明书

一、简介 1.概述 DMP300型微机变压器差动保护测控装置,适用于110KV及以下电压等级的三圈变或两圈变,具有开入采集、脉冲电度量采集、遥控输出、通讯功能。其中DMP321适用于三圈变,DMP322适用于两圈变。 保护功能:a)差电流速断保护 b)二次谐波制动的比率差动保护 c)CT断线识别和闭锁功能 d)过负荷告警 e)过载启动风冷 f)过载闭锁有载调压 遥信量采集:a)本体轻、重瓦斯信号 有载轻、重瓦斯信号 压力释放信号 变压器超温告警 b)主变一侧开关的弹簧未储能、压力异常闭锁、报警 c)从主变一侧开关操作箱中采集开关跳、合位,手跳、手合开关量脉冲电量:一路有功脉冲电度、一路无功脉冲电度 遥控:遥控主变一侧开关 2.特点: 1)差动保护中各侧电流平衡补偿由软件完成,中低压侧电流不平衡系数均以高压侧为基准。变压器各侧CT二次电流相位也由软件自动校正,即变压器各侧CT二次回路可接成丫型(也可选择常规接线),这样简化了CT二次接线,增加了可靠性。 1)变压器保护的差动保护与后备保护完全独立,各侧后备也完全独立,独立的工作电 源、CPU实现真正意义上的主、后备保护,极大地提高了主变保护的可靠性。 2)通过菜单可直接查看主变各侧电流值的大小、相位关系,差电流大小,方便用户调 试与主变投运。 3)选用高性能、高可靠性的80C196单片机,高度集成的PSD可编程外围芯片;宽温军 用、工业级芯片;高精度阻容元件;进口密封继电器。 4)抗干扰、抗震动的结构设计

全封闭金属单元机箱,箱内插板间加装隔离金属屏蔽板;高可靠性的进口接插件,加装固定挡条。 5)独到的多重抗干扰设计 单元装置采取了隔离、软硬件滤波、看门狗电路、智能诊断各种开放闭锁控制,ALL IN ONE的主板电路设计原则,新型结构设计等多种抗干扰措施,取得了良好的效果。 6)体积小、模块化,既可安装于开关柜,构成分散式系统,又可集中组屏。 7)大屏幕液晶汉字显示运行参数、菜单,具有极好的人机界面,操作简单、直观、易 学、易用。 8)所有保护功能均可根据需要直接投退,操作简单。 9)软件实现交流通道的模拟量精度调整,取消了传统的采保通道的误差补偿电位器, 不但简化了硬件,更方便了现场调试、校验,还提高了精度。 10)独到的远动试验菜单功能。装置中设有“远动试验”菜单,通过菜单按钮进行远动信息 传输试验,如“差动速断动作”、“高压侧CT断线告警”等,无需试验接点真正闭合,可在线试验,方便了远动调试。 11)多层次的PASSWORD:运行人员口令、保护人员口令、远动人员口令。 12)事件记录分类记录32条故障信息,32条预告信息,8条自检信息,并具掉电保持功 能。

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理 一、变压器差动保护范围: 变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障: 1、变压器引出线及内部绕组线圈的相间短路。 2、变压器绕组严重的匝间短路故障。 3、大电流接地系统中,线圈及引出线的接地故障。 4、变压器CT故障。 二、差动保护动作跳闸原因: 1、主变压器及其套管引出线发生短路故障。 2、保护二次线发生故障。 3、电流互感器短路或开路。 4、主变压器内部故障。 5、保护装置误动 三、主变压器差动保护动作跳闸处理的原则有以下几点: 1、检查主变压器外部套管及引线有无故障痕迹和异常现象。 2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。如果有,则应及时消除短路点,然后对变压器重新送电。差动保护和瓦斯保护共同组成变压器的主保护。差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。 差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。 四、变压器差动保护动作检查项目: 1、记录保护动作情况、打印故障录波报告。 2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。 3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。 4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。 5、差动保护范围外有无短路故障(其它设备有无保护动作)差动保护二次回路有无接地、短路等现象,跳闸时是否有人在差动二次回路上工作。 五、动作现象及原因分析: 1、差动保护动作跳闸的同时,如果同时有瓦斯保护动作,即使只报轻瓦斯信号,变压器内部故障的可能性极大。 2、差动保护动作跳闸前如变压器套管、引线、CT有异常声响及其它故障现

高压电机差动保护动作的几种原因

咼压电机差动保护动作的几种原因 时间:2016/1/30 点击数:526 高压电机在运行过程中特别是改造初次投产时会因接线不正确、变比选择不匹配及其他疏漏,引起电机、 变压器差动保护动作,这些问题如不能及时、准确的处理,便会影响到油气生产。我们在实践中找到了很多解决此类问题的办法,供大家共享。 1电机差动保护动作原因分析 1.1已经投产运行中的电机 已经投产运行的电机当岀现差动保护动作时,大都不是因为接线错误了,而是因为电机、电缆或保护装置岀现了问题。解决办法:对电机差动保护的定值和动作值进行比对,就能大致判断岀故障的主要原因并决定先对那些设备进行检查。一般来说,依次对电机、电缆进行绝缘测试、直阻测试,对差动回路包括电流互感器进行测试,检查是否有异常,对保护装置进行检查,也可分班同时进行检查。根据我们的经验,主要是电机内部短路、电缆短路特别是有中间接头的地方以及 CT和二次回路的问题。 投产后的电机也会因外界因素或运行方式的改变,造成电机差动保护动作。我单位卫二变电所就出现了这 种问题。卫二变高压622注水电机在正常运行时,由于给2号主变充电,造成622注水电机差动保护动作。 这个看似没有关联的操作却引起了差动保护动作。后经分析、查找、试验,发现差动电流互感器开关侧其 二次线错接在了测量级上,其电机两侧CT的特性不一致。当给 2号35kV主变充电时就会有直流分量和 谐波串到6kV电机保护回路中(具体分析不在这里赘述),造成差流过大(动作值 1.6A左右,动作整定 值1.02A )。更改后,再次启动电机并用钱形电流表(4只表)检测二次回路,其差流正常,保护不再误 动。 2改造或新设备第一次投产时,电机差动保护动作原因分析 由于安装人员技术水平不高或是粗心或是对设备了解不够、理解偏差,对电机、保护装置改造后或是新设 备第一次投产试运行时,往往会岀现差动保护动作的现象。下面就介绍我供电服务中心所管辖的变电所岀现过的几种情况。 ⑴郭村变624高压注水电机改造后,几乎每次启动都会出现差动保护动作(动作值 6.2A-7.2A。动作整定 值5.2A )。对装置的参数整定,CT的极性、接线进行反复检查均没问题,电机试验也正常。后来确认, 由于电机距离开关柜较远(1000m ),电机中心点CT的带负载能力不够,从而在电机直接启动时(启动电流是额定电流的4-6倍)造成差流岀现。测量电动机尾端到开关柜保护装置的接线直阻为 3.5欧,CT带 负载能力为2.2欧。我们从厂家制造了两只专用CT,二次绕组都制成保护级且变比相同,把其副边串接起 来,在不改变变比的情况下,提升了带负载能力。改造后正常。 ⑵郭村变624电机再次改造后,第一次试运行出现了差动速断跳闸,动作值30.2A,动作整定值21.7A。我们对电机、电缆、CT变比、极性及二次回路进行了检查,都没有问题。对差速的动作值与动作整定值进行比对分析,不该是电机差动CT极性接反(相角差180度),接反后其动作值应在 42A以上,更像是差 动回路或一次回路相序不对,其动作电流肯定大于 21.7A,一般小于42A。其动作值与启动电流 258 2015年9月下 的大小成正比,也可以每次启动时,用四只钳形电流表测得数据,再根据余玄定理大致算岀来理想状态下

对主变压器差动保护误动作造成事故分析

对主变压器差动保护误动作造成事故分析 【摘要】文章主要对主变压器差动保护定值计算、保护装置的试验、主变压器差动回路二次接线及可能引起保护动作的其它原因进行了全面、细致的分析,指出了保 护动作的原因并加以改正,使机组顺利的恢复了生产。 【关键词】变压器差动保护误动事故分析 1.概况 主变压器是发电厂中十分贵重也是重要的设备供电元件,它的故障将对电厂供电可靠性和正常运行带来严重影响。因此,必须根据主变压器容量和重要程度装设性能良好、工作可靠的继电保护装置。差动保护是主变压器重要保护之一,也是主变压器的主保护。某发电厂1#机组在进行切换给水泵时,引起主变压器差动保护动作,造成停机停炉的严重事故。 2.主变差动保护的说明 发变组保护采用许继生产的WFB—100微机型发变组保护装置,其中主变压器保护采用比率制动式差动保护,能反应主变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障等,保护采用二次谐波制动原理,用以躲过变压器空投时励磁涌流造成的保护误动作。 差动保护动作方式: I OP >I OP.0 (I res I res.o 时) 满足上述两个方程式差动元件动作,式中:I OP 为差动电流,I OP.O 为差动最小动作电 流整定值,I res 为制动电流,I res.o 为最小制动电流整定值,S为比率制动系数,各侧 电流指向变压器为正方向。 3.对可能引起主变压器差动保护动作原因的分析3.1首先对主变压器差动保护整定值计算的分析3.1.1差动最小动作电流计算

主变压器有关参数及电流互感器变比:240000KVA/220KV 242+2 2.5%/15.75KV 接线方式 Y/Δ—11 各侧电流互感器变比如图一所示。 由此可以计算出:变压器低压侧一次额定电流为8798A,变压器低压侧二次电流3.66A。乘以低压侧平衡系数后为 4.13A。差动最小动作电流一般取变压器额定电流的30%—50%,本差动保护实际取额定电流的40%,所以,最小动作电流为1.652A ,实际整定为1.65A。 最小动作电流也可以通过高压侧计算,主变高压侧额定电流为573A,二次额定电流为 2.38A,由于电流互感器二次采用三角形接线,实际二次额定电流为4.12A,最小动作电流可计算出为1.648A,实际整定为1.65A。 3.1.2比率制动、谐波制动系数和最小制动电流整定 最小制动电流整定为 4.13A;比率制动系数整定为0.4;谐波制动系数整定为0.15均符合技术说明书要求。 3.1.3差动平衡系数的计算 主变压器高压侧(16LH)平衡系数计算:差动保护平衡系数可以以任意侧为基准,本保护以主变高压侧二次电流为基准,所以高压侧平衡系数为1。 主变压器低压侧(发电机出线侧5LH)平衡系数计算:由于主变压器低压侧二次额定电流为 3.66A,高压侧二次额定电流为 4.12A,可以计算出平衡系数为1.126,实际取平衡系数为1.13。 主变压器低压侧(厂变高压侧20LH):由于厂变高压侧和发电机侧通过封母一块接于主变压器低压侧,电流互感器变比又相同,所以平衡系数也相同,实际取平衡系数为1.13。 3.1.4差流速断计算 差流速断按躲过变压器的励磁涌流、最严重外部故障时的不平衡电流及电流互感器饱和等整定,实际保护速断动作电流整定值为30A。 由以上分析计算可知,主变压器差动保护整定值计算是正确的,不会引起保护动作。 3.2对保护装置的试验

主变差动保护动作的事故分析(原稿)

二期1#主变差动保护动作的事故分析 王俊强 (中海化学电仪部,海南东方 572600) 提要:外部电网的波动,引起二期1#主变的差动保护动作,导致了二期装置的跳车,本文对该事故的分析处理过程进行介绍,并对该事 故进行总结分析,也对差动保护综合保护继电器SPAD346C进行了 简要的分析。 关键字:变压器、差动保护动作、差动保护综合保护继电器、SPAD346C 一、事故简介 06年10月18日16时鹅毛岭至罗带110KV线路A相接地跳,重合闸成功,引起电网波动。二期1#主变差动保护继电器SPAD346C发出“1 d”跳闸信号,差动保护动作,110KV1#进线断路器及6KV进线断路器跳开,引起二期装置跳车。 二、事故确认 1.时间 一期故障录波时间是15:58:34,一期故障录波仪系统时间比标准时间慢3分21秒,所以事故时间应为16:01:55。 二期从ESD2000告警窗可以看到最早的欠压信号为直流屏输入欠压信号,时间16:01:55,110KV1#进线断路器1Q0跳闸时间为 16:01:58,从ESD2000巡检式实时告警的原理知应以最早的报警 时间为准,所以事故时间应为16:01:55。

2.ESD2000告警 如图: 图1 3.故障录波 如图: 图2

4.事故初步确认 电网的波动,引起差动保护继电器SPAD346C的动作,从而跳开1#110KV进线断路器及6KV断路器。 三、分析过程 1.有几个疑问 a)二期1#,2#进线的故障录波,还有一期的故障录波都完全相同, 为什么二期1#差动动作了,别的没问题? b)此前曾有过综合保护继电器内部故障损坏情况,有无可能是这 个差动保护继电器SPAD346C有问题?但是在今年3月份大修刚 做过差动保护继电器SPAD346C的校验,没有问题。 c)由差动保护的原理知,其保护的是变压器内部故障,当外部故 障时,它不应动作,差动保护继电器SPAD346C是靠变压器高低 压侧电流来判断内部故障还是外部故障,如果无其他原因,外 部故障引起变压器误跳,那么说明SPAD346C设定可能有问题, 需调整。 2.对SPAD346C记录的跳闸时刻数据进行分析 SPAD346C记录的1#主变跳闸时刻数据:

35kV变电站主变主保护动作及故障原因分析和解决对策 李煜舟

35kV变电站主变主保护动作及故障原因分析和解决对策李煜舟 发表时间:2019-07-22T14:47:41.143Z 来源:《基层建设》2019年第12期作者:李煜舟王俊慧 [导读] 摘要:35 kV变电站作为电力供电系统中的主要组成部分,它负责转换电能和重新分配电能任务,变电站的主变压器是主要设备之一,运作主变压器会关系到电网整体运行的安全性,其影响着电网运行的安全性和经济性。 丽水华阳电力有限公司浙江丽水 323400 摘要:35 kV变电站作为电力供电系统中的主要组成部分,它负责转换电能和重新分配电能任务,变电站的主变压器是主要设备之一,运作主变压器会关系到电网整体运行的安全性,其影响着电网运行的安全性和经济性。本文分析了雷击引起的变压器主保护动作以及变压器内部绕组故障等故障因素,并提出了相应的对策进行解决。 关键词:主变保护动作;接地电流;小型接地电流系统;单相接地故障 引言:大部分偏远山区的电力供电系统存在一系列突出问题,如较长的供电线路、较低的安全水平、高雷区部分穿越等。针对这样的情况,外部雷击导致主变压器的主要保护动作偶尔发生,接地电流穿透变压器内部的高压侧绕组绝缘层并导致绕组匝间短路,从而出现永久性的故障,导致整个地区的电源故障跳闸和停电,这给电力生产带来了极其严重的安全负面影响。为了将供电系统的可靠性和安全性进一步提高,对故障原因以及存在的问题进行积极分析,并在此基础上对解决方案和对策进行探讨,对供电安全和整个电网安全都有重要的价值和意义。 1 主变压器发生故障情况 1.1故障概况 某地35kV变电站遭遇强烈雷击,在14:50左右2#主变压器(3150kV A,35kV / 10kV)机体和开关重气动作、变压器差动保护动作造成两侧主变压器开关跳闸,导致整个变电站失压。主变压器保护测控装置表明主变压器差动电流0.58A(设定起始值0.5A),变压器体和开关重气保护启动,2#主变油温报警,启动减压阀,瓦斯轻没发生警报;操作人员还反映了变压器在保护跳闸前运行的明显异响。 1.2现场检查情况 检查2#主变压器外观无异常,高低压侧开关与避雷器完好无损,变电站内部避雷针的接地电阻为0.9欧姆;测试变压器绕组的直流电阻,有258-260毫欧低压侧相绕组,高压侧绕组的AB和BC都表明大于2千欧,超出范围,交流绕组电阻4.05欧姆;没有进行油色谱分析测试。最先判断变压器的高压侧B相绕组存在故障,两天后,利用吊罩检查了变压器。结果发现,变压器高压侧的B相绕组分别在上部导电杆连接与分接开关两处凸出,变压器绕组燃烧后有很明显的铜渣。 2分析故障原因 基于上述事故现象、变压器的吊罩检查以及保护数据,变压器高压部分B相绕组的初步分析是由于外线遇到强雷击,不仅避雷器放电,其还出现单相接地故障,变压器有接地电流侵入并产生电弧,电压会破坏高压侧B相绕组的绝缘,并导致绕组匝间短路,从而绕组烧毁。在这里,通过简单分析,接地电流在什么条件下会侵入变压器内部,并使变压器的主要保护动作均匀地烧毁内部绕组: (1)系统应该是一个小型的接地电流系统。如果此时雷击继续击中架空线的任何相位,通过避雷器放点变成单相接地故障,并且开关装置的保护将不起作用。由于在小型接地电流网格中发生单相接地是较小的接地电流,因此允许系统在少量接地的情况下继续运行一小段时间。雷电如果同时撞击外线的两相或三相,线路开关柜的过流保护将起到切断入侵接地电流路径的作用。 下图为接地故障的原理图 (2)外部架空线路应靠近避雷器安装位置遭到的雷击。线路的任何相位都被雷击,然后由避雷器放电,变成单相接地故障。不动作的开关设备保护接地电流沿着低压侧母线入侵变压器,形成单相接地故障回路。由于变压器的中性点未接地,因此接地电流会在变压器内发生电弧过电压。这种电弧过电会造成两种危害:一是引起变压器中相间短路故障,变压器产生主要保护动作;另一种是故障相绕组绝缘突破,然后发展成变压器的绕组匝间短路永久故障。这两种危险对变压器绕组绝缘都具极大破坏性,对安全运行变压器有严重的威胁。(3)线路避雷器的放电时间相较于变压器保护动作长是最关键的条件。 即使外部电路受到雷击,避雷器也会立即完成放电过程,并且放电速度会超过任何保护速度。因此,正常情况下的雷击不会出现接地故障,当避雷器有着较差的放电性能,接地网在不利条件下接地,避雷器不能立即完成放电,连续放电过程易于出现单相接地故障。 在上述条件得到满足之后,变压器可视为具有接地故障点的小型接地电流系统。在雷击中外部线路之后,接地电流入侵变压器,出现单相接地故障。接地电流过大会导致变压器产生电弧过电压,并导致相间短路故障,从而启动变压器主保护。 如果接地电流入侵变压器的内部电弧,则电弧过电压将继续损坏故障相绕组绝缘,这将导致击穿绕组绝缘并出现绕组匝间永久故障,接地电流的大小能决定电弧过电压的大小。 35kV变电站雷击后,2#变压器的出现主要保护动作,并导致内部高压方B相绕组击穿,出现匝间短路和烧毁绕组,表明应该是外部传输线的B相被雷击,并入侵变压器的内部。 3 解决对策 为了将在恶劣气象条件下系统运行的可靠性提高。当线路被雷击中,避雷器要可靠放电,防止雷电波入侵通道,这是消除上述故障的有效的解决方案和对策;如果避雷器不良放电形成单相接地故障,怎样能最小化乃至消除接地电流。以下几个因素会影响代接地点电流:(1)越近的雷击点距离,就会有越大的接地电流;(2)接地电阻,越小的系统接地电阻,越短的雷击时间,就会有越小的接地电流,容易入侵变压器。(3)由于地理条件,电源线不可避免地会穿过雷区。在电源线中遇到雷击是一种自然现象,雷击点不能改变,改善接地电阻应考虑地理、地形以及土壤等因素限制,因此最小化甚至消除地电流的对策是有限的,效果可能不好。 综上所述,解决问题的对策是:(1)根据周期更换35kV变电站的10kV输出杆避雷器,雷暴期间避雷器的在线监测要加强,放电性能

35kV主变差动保护误动作事故分析

35kV主变差动保护误动作事故分析 【摘要】文章介绍了35kV上马变电站10kV线路故障引起1#主变差动保护误动作跳闸事故,通过调阅现场保护装置事故记录、审查设备定值计算、保护装置特性试验、主变压器差动回路二次接线及电流互感器进行了全面的分析,指出了保护动作的原因并采取了纠正措施,保证了电网的安全稳定可靠运行。 【关键词】变压器;差动保护;误动;CT饱和;分析 35kV上马变电站发生一起由于10kV上水线线路三相金属性短路,10kV上水线瞬时电流速断保护动作跳闸,1#主变差动保护误动作出口,分别跳开1#主变高、低压侧开关,造成了全站停电的事故。 1.事故经过 35kV上马变电站事故时接线如下图所示。 2012年5月2日16时14分46秒,10kV上水线线路发生近端三相金属性短路,10kV上水线671开关线路保护装置瞬时电流速断保护动作跳闸,同时1#主变差动保护装置差动保护动作跳闸,分别跳开1#主变高、低压侧开关的差动保护误动作跳闸事故。 2.现场检查情况 2.1 10kV上水线671开关线路保护动作报告(CT变比:250/5) 瞬时电流速断保护动作 2012年5月2日16时14分46秒476 C:63.73A 00085ms A:65.42A 00085ms Ic:55.36A 2.2 1#主变差动保护动作报告(CT变比:高压侧300/5、低压侧500/5) 比率差动动作ABC 2012年5月2日16时14分46秒489 Idb:18.69A 录波:T00018 R00083(16时14分46秒477开始) 2.3 正常时差动保护差流及配置 (1)差流值 I1a=0.61A I1b=0.59A I1c=0.58A I3a=1.35A I3b=1.25A I3c=1.27A Ida=0.02A Idb=0.02A Idc=0.04A (2)主变差动单元箱内配置项条目: 主接线:Y/Y/△-11 调整系数:第一侧:1 第二侧:0.00001 第三侧0.82478 通过比对以上数据,上水线671开关瞬时电流速断保护动作时间早于1#主变差动保护动作时间13毫秒,上水线671开关保护属正确动作。 3.事故原因分析 3.1 对1#主变本体全面检查 对主变压器本体、套管及母线,主变高压侧开关、低压侧开关现场全面检查、

主变压器差动保护动作的原因及处理修订稿

主变压器差动保护动作的原因及处理 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

主变压器差动保护动作的原因及处理 一、变压器差动保护范围: 变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障: 1、变压器引出线及内部绕组线圈的相间短路。 2、变压器绕组严重的匝间短路故障。 3、大电流接地系统中,线圈及引出线的接地故障。 4、变压器CT故障。 二、差动保护动作跳闸原因: 1、主变压器及其套管引出线发生短路故障。 2、保护二次线发生故障。 3、电流互感器短路或开路。 4、主变压器内部故障。 5、保护装置误动 三、主变压器差动保护动作跳闸处理的原则有以下几点: 1、检查主变压器外部套管及引线有无故障痕迹和异常现象。 2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。如果有,则应及时消除短路点,然后对变压器重新送电。差动保护和瓦斯保护共同组成变压器的主保护。差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。 差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。 四、变压器差动保护动作检查项目: 1、记录保护动作情况、打印故障录波报告。 2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。 3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。 4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。 5、差动保护范围外有无短路故障(其它设备有无保护动作)差动保护二次回路有无接地、短路等现象,跳闸时是否有人在差动二次回路上工作。 五、动作现象及原因分析: 1、差动保护动作跳闸的同时,如果同时有瓦斯保护动作,即使只报轻瓦斯信号,变压器内部故障的可能性极大。

主变差动保护调试宝典

主变差动保护调试方法 主变差动保护是我们平时调试频率最高,难度最大,过程最复杂的一种保护类型,在调试过程中经常会遇到各种各样的问题,这里介绍一个主变差动保护的调试方法,以武汉豪迈电力继保之星6000C(传统保护用继保之星1600)为调试工具来做南瑞继保RCS-978和国电南自PST-1200主变差动保护试验,相信大家看了之后会觉得差动保护其实很简单很明了,将那些繁杂的公式转换都抛之脑后。 一、加采样 来到现场第一步别急着开始做试验,首先我们要看保护装置的采样信息。 数字保护我们要先导取模型文件,一般后台厂家会给我们全站SCD文件,在继保之星6000C上按照步骤导入配置文件,配置通道时最好按照高中低通道1、2、3,通道映射为ABC、abc、UVW的顺序,以免弄错弄糊涂了,正确设置三侧变比信息。然后按照通道接好光纤,在接光纤的时候可以先接保护装置侧,然后接继保仪RX光口,如果指示灯点亮表示接的正确,如果没有亮表示接反了换另一根光纤接RX。南瑞继保RCS-978用的是方口(LC口),国电南自PST-1200用的是圆口(ST口)。 准备工作做好之后可以按照图1所示设置参数: 图1 传统继保可以先接线接线时按照黄绿红ABC相的顺序,只有六路电流先接上高中侧(或者高低侧)电流,接好线后开机可以按照图2所示设置参数:

图2 每相设置不同的电压电流量方便检查采样值。在加采样值时以防保护动作产生报文不方便看采样信息最后先将主保护功能退掉。 在加采样值时如果不正确可检查以下情况。 数字继保:确保模型文件导入正确;通道设置与所用的实际光口通道一致;通道映射与交流试验所用的相别对应;CT 、PT 变比设置与保护装置内部变比一致;高中低三侧SMV 接受压板均打开状态;波形监测是否有实时波形输出状态。 传统继保:电流开路指示灯是否处于点亮状态;两根电流测试线是否接反;测试线是否接对位置;CT 二次侧划片是否与保护侧断开以防产生分流。 二、 看差流 采样值信息无误后第二步可以看差流信息,在此以江西鹰潭洪桥220kV 变电站两套保护装置配置信息为例来完成下面的操作。 PST-1200保护定值如下:高中低压侧额定容量为100MV A ,电压等级为220kV/110kV/10kV ,CT 变比分别为300/1、600/1、3000/1,差动电流0.2Ie ,速断电流2Ie ,拐点1制动电流Ie ,拐点2制动电流3Ie ,斜率分别为0.5、0.7,(Ie 为高压侧二次额定电流)制动公式为Ir = ( | Ih | + | Il | ) / 2,主变接线方式为Y/Y0-△11。 以上参数在“差动保护试验模块设备参数设置”项目里输入可自动计算出各侧二次额定电流。计算结果为高压侧Ihn=0.875A ,中压侧Imn=0.875A ,低压侧Iln=1.925A 。其中Ie=0.875A 。也可手动计算,以高压侧为基准,则各侧流入差动保护某相的电流分别为 m l m m l l 333N N N h h h I I I U n U n U n ===

变电站主变差动保护动作故障分析_刘爱兵

变电站主变差动保护动作故障分析 Fault Analysis of Main Transformer Differential Protection Mal-operation 刘爱兵 (泰安供电公司,山东泰安271000) 摘要:分析国内外差动保护原理特点及对零序电流的处理原则,阐述国外保护如果设置不当,将造成变压器差动保护在区外线路发生单相接地跳闸且重合后误动作机理,提出了在能够保证差动保护灵敏度的前提下保护设置原则,以降低误动作风险。 关键词:差动保护;误动;保护整定 Abstract:This paper takes domestic and international main transformer differential protection as an example,it analysed the principle and characteristics of the domestic and international main transformer differential protection,and the processing principle of zero sequence current,it expound the mechanism of transformer differential protection’s mal-operation because of setting unsuitable,when an single-phase earth protection fault happen out of protection area,this paper provide an protection setting principles to reduce the risk of mal-operation,which still guaranteed the sensitivity of the differential protection Key words:differential protection;mal-operation;protection setting 中图分类号:TM774文献标志码:B文章编号:1007-9904(2012)03-0046-02 0引言 变压器差动保护是变压器主保护之一,在区内故障时应满足灵敏度要求快速动作,切除故障点,在区外故障时应躲过干扰且不应动作,主变差动保护运行应不受运行方式的影响。对中德保护主变差动误整定引起区外故障进行原因分析,并提出保护整定建议。 1故障前系统运行方式 220kV甲变电站提供给110kV乙变电站供电电源(进线一)。故障前,电网运行方式为,甲变电站1号、2号主变110kV中性点接地运行,110kV 母联开关在合位。110kV乙变电站,主变差动保护为中德西门子保护,配置7UT512微机型二次谐波制动装置。该站其运行方式为110kV进线一带全站负荷,110kV内桥开关在合位,10kV分段开关在分位(备投投入),1号、2号主变分列运行。由于乙变电站无低压侧并网线,运行方式应为1号、2号主变110kV侧中性点均在分位。实际运行中,2号主变110kV侧中性点未分开。 2故障情况介绍 2007年11月7日13时43分,220kV甲变电站110kV丁线路出口3km处发生A相金属性接地故障,其距离I段、零序过流I段保护动作,经延时后重合成功。保护动作过程中,110kV乙变电站2号主变比率差动保护动作,主变高低压侧跳闸,具体数据为: 差动电流:I A=62.6%I n I B=63.5%I n I C=61.7%I n 制动电流:I A=89.9%I n I B=64.8%I n I C=91.8%I n I n为2号主变高压侧额定电流,I n=2.066A,主变高压侧CT变比为400/5。 开关跳闸后,经延时,10kV分段备投动作,10kV分段开关合闸成功。 110kV乙变电站2号主变比率差动保护定值为:差动启动电流0.3I n,斜率为0.5,二次谐波制动系数为0.15。 46

主变压器差动保护动作的原因及处理(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 主变压器差动保护动作的原因及 处理(最新版)

主变压器差动保护动作的原因及处理(最新 版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 主变压器差动保护动作跳闸的原因是: (1)主变压器及其套管引出线发生短路故障。 (2)保护二次线发生故障。 (3)电流互感器短路或开路。 (4)主变压器内部故障。 处理的原则是: (1)检查主变压器外部套管及引线有无故障痕迹和异常现象。 (2)如经过第(1)项检查,未发现异常,但本站(所)曾有直流不稳定接地隐患或曾带直流接地运行,则考虑是否有直流两点接地故障。如果有,则应及时消除短路点,然后对变压器重新送电。 (3)如果进行第(2)项检查,未发现直流接地故障,但出口中间继电器线圈两端有电压,同时差动继电器接点均已返回,则可能是差动跳闸回路和保护二次线短路所致,应及时消除短路点,然后试送

电。 (4)检查高低压电流互感器有无开路或接触不良现象,发现问题及时处理,然后向变压器恢复送电。 (5)如果上述检查未发现故障或异常,则可初步判断为变压器内部故障,应停止运行,等待试验;如果是引出线故障,则应及时更换引出线。 (6)如果差动保护和瓦斯保护同时动作跳闸,应首先判断为变压器内部故障,按重瓦斯保护动作处理。 XX设计有限公司 Your Name Design Co., Ltd.

引起变压器差动保护动作的原因及解决方法

引起变压器差动保护动作的原理及误动作和解决方法 1、原理 变压器差动保护是按照循环电流的原理构成的,双绕组变压器的两侧装设了电流互感器。正常情况下或外部故障时,两侧的电流互感器产生的二次电流流入差继电器的电流大小相等,方向相反,在继电器中电流等于零,因此差动继电器不动作。当变压器内部或保护区域内的供电线路发生故障时,流入差动继电器的电流就会产生变化,当电流值达到设定值时,继电器就会动作。一般来说,在电力变压器中有电流流过时,通过变压器两侧的电流不会正好相等,这是和变压器和电流互感器的变比和接线组别有关的。变压器在投入时,会产生高于额定电流6~8倍的励磁涌流,同时产生大量的高次谐波,其中以二此谐波为主。由于励磁涌流只流过变压器的某一侧,因此通过电流互感器反应到差动回路中将形成不平衡电流,引起差动保护动作。 2、误动作原因及其解决方法 (1)变压器差动保护按照有关规定在保护投运前要严格检查电流互感器的极性、相序和连接,确保变压器差动保护的正确性。由于各种原因,现场确有电流互感器三相电路的错误接线,导致相序和极性的错误,造成变压器差动保护动作。 差动保护接线示意图 1)电流互感器的极性:

变压器差动继电器动作的条件就是一次电流与变压器二次电流之差,电流互感器的极性决定瞬时电流的方向,因此对电流互感器的极性应引起重视,只有保证了电流互感器的极性正确,才能保证继电器的正确动作。在工程中电流互感器的极性应按减极性原则进行。既在一、二次绕组中,同时由同极性端子同入电流时,他们在铁芯中所产生磁通方向应相同。在实际工作中一般利用楞次定律进行判别(即直流判断法)。 2)电流互感器接线: 变压器差动继电器的CT回路接线,首先必须通过对CT接线形式的选择进行外部的“相位补偿”,消除变压器接线组别不同造成的高、低压侧电流相位差和差动保护回路不平衡电流。例如对于Y/d11接线的变压器,由于三角形侧电流的相位比星形侧同一相电流超前30°,必须将变压器星形侧的CT二次侧接成三角形,而三角形侧的CT接成星形,从而将流入差动继电器的CT二次电流相位校正过来。目前相当多的继电器可以通过本身的设定对相位进行转化,CT只要接成Y/Y型即可,如SIEMENS 7UT51差动继电器等。 (2)变压器中的二次谐波: 变压器投入运行时,由于励磁涌流的作用,在变压器回路中产生大量的谐波分量,其中以二次谐波为主。其最大值高于额定电流的几倍,因此引起差动保护动作。 1)谐波产生的原因 谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为lOOHz,3次谐波则是150Hz。 2)利用二次谐波制动 保护装置在变压器空载投入和外部故障切除电压恢复时,利用二次谐波分量进行制动;内部故障时,利用基波进行保护;外部故障时,利用比例制动回路躲过不平衡电流。 上文的分析,探讨了变压器差动保护中的部分问题,而这些问题对于变压器差动保护的正确工作影响十分大。如果不能够很好的解决这些问题,就会直接影响变压器差动保护的性能,甚至造成变压器差动保护的误动或不动作。

相关主题
文本预览
相关文档 最新文档