当前位置:文档之家› 第十三章 衍射衬度

第十三章 衍射衬度

第十三章 衍射衬度
第十三章 衍射衬度

第十三章衍射衬度

第一节衍射衬度的类型及其特点

1.1 TEM中电子显微像的衬度类型

I.振幅衬度

1. 质量厚度衬度

2. 衍射衬度

II.相位衬度

3.高分辨像

质量厚度衬度

质量厚度衬度本质上是一种散射吸收衬度,即衬度是由散射物不同部位对入射电子的散射吸收程度有差异而引起的,它与散射物体不同部位的密度和厚度的差异有关;

衍射衬度

衍射衬度是由于晶体薄膜的不同部位满足布拉格衍射条件的程度有差异而引起的衬度;相位衬度

相位衬度是多束干涉成像,当我们让透射束和尽可能多的衍射束,携带它们的振幅和相位信息一起通过样品时,通过与样品的相互作用,就能得到由于相位差而形成的能够反映样品真实结构的衬度(高分辨像).

1.2 衍射衬度的来源

衍射衬度是一种振幅衬度,它是电子波在样品下表面强度(振幅)差异的反映,衬度来源主要有以下几种:

1.两个晶粒的取向差异使它们偏离布拉格衍射的程度不同而形成的衬度;

2.缺陷或应变场的存在,使晶体的局部产生畸变,从而使其布拉格条件改变而形成的衬度;

3.微区元素的富集或第二相粒子的存在,有可能使其晶面间距发生变化,导致布拉格条件的改变从而形成衬度,还包括第二相由于结构因子的变化而显示衬度;

4.等厚条纹,完整晶体中随厚度的变化而显示出来的衬度;

5.等倾条纹,在完整晶体中,由于弯曲程度不同(偏离矢量不同)而引起的衬度. 1.3 衍射衬度成像的特点

1.衍衬成像是单束、无干涉成像,得到的并不是样品的真实像,但是,衍射衬度像上衬度分布反映了样品出射面各点处成像束的强度分布,它是入射电子波与样品的物质波交互作用后的结果,携带了晶体散射体内部的结构信息,特别是缺陷引起的衬度;

2.衍衬成像对晶体的不完整性非常敏感;

3.衍衬成像所显示的材料结构的细节,对取向也是敏感的;

4.衍衬成像反映的是晶体内部的组织结构特征,而质量厚度衬度反映的基本上是样品的形貌特征。

第二节衍射衬度的成像方式

2.1 明场像

让透射束通过物镜光阑所成的像就是明场像。成明场像时,我们可以只让透射束通过物镜光阑,而使其它衍射束都被物镜光阑挡住,这样的明场像一般比较暗,但往往会有比较好的衍射衬度;也可以使在成明场像时,除了使透射束通过以外,也可以让部分靠近中间的衍射束也通过光阑,这样得到的明场像背景比较明亮。

a 明场像示意图

2.2 暗场像

仅让衍射束通过物镜光阑参与成像得到的衍衬像称之为暗场像。暗场像又可以分为一般

暗场像、中心暗场像和弱束暗场像等。

b 普通暗场像示意图

A、一般暗场像

不倾转光路,用物镜光阑直接套住衍射斑所得到的暗场像,就是一般暗场像。

B、中心暗场像

为了消除物镜球差的影响,借助于偏转线圈倾转入射束,使衍射束与光轴平行,然后用物镜光阑套住位于中心的衍射斑所成的的暗场像称之为中心暗场像;中心暗场像能够得到较好的衬度的同时,还能保证图像的分辨率不会因为球差而变差。

中心暗场像示意图

C、弱束暗场像

弱束暗场像严格地讲也是属于中心暗场像,所不同的是:中心暗场像是在双光束条件下用g:-g的成像条件成像;而弱束暗场像是在双光束的条件下用g:3g的成像条件成像。

2.3 明暗场像实例

下图为明场像和普通暗场像的实例。这是在钢铁材料的研究中拍下的奥氏体的明场像和暗场像,其中图a和图c是奥氏体在[011]晶带轴下的电子衍射衍射花样;图b是用物镜光阑直接套住射斑以后成像得到的明场像,图d是在不倾转光路的前提下,直接用物镜光阑套住衍射花样中的一个{200}衍射斑成像得到的普通暗场像,由暗场像可以看出,与衍射花样对应的晶粒应该是变亮的部分。我们看到有两个晶粒同时变亮,表明这两个晶粒的位向应该是比较接近的。另外需要指出来的是,由于在进行明场像和暗场像操作时,并没有特意倾转到双光束条件,因而所得到的明场像和暗场像的衬度并不完全互补。

接下来的图是中心暗场像的实例。它是在研究镁合金中的一种CaMgSi相时通过暗场成像来显示CaMgSi的显微组织特点时得到的显微像。其中图a是CaMgSi析出相的形貌像,图b是与之对应的电子衍射花样,从电子衍射花样可以看出来CaMgSi相中存在二重孪晶,为了显示出二重孪晶的形貌特点,对它进行了中心暗场成像操作。由于电子衍射花样斑点较密,该暗场像也不是在双光束条件下进行的,而是直接将白圈里的斑点用倾转扭移到中心位置,然后后物镜光阑套住该衍射斑成像得到的。图c是与之对应的中心暗场像,从中心暗场像中可以看出来CaMgSi相中实际上存在三个小的孪晶块,不过非常小的那块与右边孪晶的位向完全相同(通过倾转后证实)。中心暗场像的特点是其分辨率由于球

差较小所以要好于普通暗场像。

2.4 明场像和暗场像的衬度问题

2.4.1. 双光束条件

假设电子束穿过样品后,除了透射束以外,只存在一束较强的衍射束精确地符合布拉格条件,而其它的衍射束都大大偏离布拉格条件。作为结果,衍射花样中除了透射斑以外,只有一个衍射斑的强度较大,其它的衍射斑强度基本上可以忽略,这种情况就是所谓的双光束条件。反映在衍射几何条件中就是晶体的倒易点阵中,只有一个倒易阵点与反射球相交,其它的阵点都与反射球相去甚远。由衍射的尺寸效应可知,双光束条件应该在试样较厚的地方比较容易实现。下图即是双光衍射示意图。

双光束衍射几何示意图

2.4.2. 操作反射

在用双光束成像时,参与成像的衍射斑除了透射斑以外,只有衍射斑hkl,因此无论是在明场成像还是暗场成像时,如果该衍射斑参与了成像,则图像上的衬度在理论上来讲就与该衍射斑有非常密切的关系,所以我们经常将该衍射斑称为操作反射,记为ghkl.

2.4.

3. 明场像的衬度

假设入射电子束的总的强度为I0, 双光束下成像时,如果透射束的强度和衍射束的强度分别用IT和Id来表示的话,则有:

Id +IT= I0

由上式可以看出,在理想的双光束条件下,明暗场强度是互补的。也就是在明场下亮的衬度,在暗场下应该是暗了,反之亦然。

需要指出来的是,在非双光束条件下,比如存在多个衍射斑点的情况下,用任意斑点所成的暗场像与明场像显然不会是完全互补的。

如右图所示,假设样品中A部分完全不满足衍射条件,而样品B只有(hkl)面满足衍射条件(双光束条件)。则在明场下,A部分的像的单位强度为:IA=I0,

而B部分的像的单位强度则为:

IB=I0-Ihkl.

以A晶粒的亮度为背景强度,则B晶粒的衬度可以表示为:

2.4.4. 暗场像的衬度

而对于暗场像来讲,双光束条件下A晶粒的强度为0,而B晶粒的强度为Ihkl, 以亮的晶粒B为背景时A晶粒的衬度为:

由此可见,暗场成像时的衬度要比明场成像时要好得多。

暗场像的衬度实例

a) CaMgSi相中的二重孪晶暗场像; b) CaMgSi相中的三重孪晶暗场.

2.4.5. 中心暗场像成像原理与操作

中心暗场的操作要领:

在双光束条件下将与亮的衍射斑(ghkl)相对的暗衍射斑(g-h-k-l)用倾转旋扭移动到透射斑位置,然后用物镜光阑套住中心位置的斑点成像,得到的就是中心暗场成像。在移动的过程中间,本来暗的衍射斑会越来越亮,而本来亮的衍射斑会越来越暗。这个就是g: (-g)操作。

2.4.6. 弱束暗场像成像原理与操作

弱束暗场的操作要领:

在双光束条件下将亮的衍射斑(ghkl)用倾转旋扭移动到透射斑位置,然后用物镜光阑套住中心位置的斑点成像,得到的就是弱束暗场成像。在移动的过程中间,本来亮的衍射斑会越来越暗。这个就是g: (3g)操作。

弱束暗场像主要用于显示缺陷,比如位错像,无论是在明场还是暗场像下,其背底都会是亮的,也就是说位错的衬度不会太好,但是在弱束暗场像下,位错像是亮的,而背景是暗的,这时位错的衬度会更好。另外在弱束暗场像下,位错像的分辨率会更高。下图是位错像的明场像和弱束暗场像的实例,从图中可以看出在弱束暗场下位错看起来更加清楚。

第三节衍射衬度的运动学公式的推导

3.1 运动学理论假设

当晶体中存在缺陷或者第二相时,衍射衬度像中会出现和它们对应的衬度,即使是在完整晶体中,也会出现等厚条纹和等倾条纹;晶体中缺陷和衍射衬度之间在尺度和位置上具有怎样的对应性完整晶体中的衬度又是怎样来的?要回答这些问题,必须从理论上来予以解释。要解释清楚TEM下观察到的电子显微像,最理想、也是最直接的方法就是直接算出样品下表面处的电子波分布函数,得出每一点的强度,则无论是衍射衬度还是相衬度都不再成为问题!但是我们知道对于求电子束与样品相互作用后的电子波函数的表达式这样一个实践的问题,根本就不可能解出来。因此,我们必须对问题进行简化。衍射衬度的运动学和动力学理论就是基于这样思想提出的用以解释衍射衬度的两种理论。其中衍射衬度的运动学理论是在以下近似的基础上提出来的:

双束近似

倾转晶体选择合适的晶体位向,使得只有一组晶面(hkl)接近布拉格衍射位置,所有其它晶面都远离各自的衍射位置;

运动学近似

又称为一级Born近似或单散射近似,认为衍射波的振幅远小于入射波的振幅,因而在试样内各处入射电子波振幅和强度都保持不变(常设为单位1),只需计算衍射波的振幅和强度变化;

柱体近似

假设晶体在理论上可以分割成平行于电子波传播方向的一个个小柱体,这些小柱体在衍射过程中相互独立,电子波在小柱体内传播时,不受周围晶柱的影响,即入射到小晶柱

内的电子波不会被散射到相邻的晶柱上去,相邻晶柱内的电子波也不会散射到所考虑的晶柱上来,柱体出射面处衍射强度只与所考虑的柱体内的结构内容和衍射强度有关,一个像点对应一个小晶柱下表面;

除了以上近似外,运动学和动力学还涉及到一些近似处理,如:向前散射近似和高压近似等。

3.2 运动学公式的推导

在以上假设的基础上,如果我们能够求出每个小柱体下表面的电子波振幅,则整个像的衬度应该就能表示出来。由于衍射衬度主要用来解释大于1nm的显微组织结构,而我们选取的小晶柱的尺度大约是纳米级,因此我们在求下表面的电子波振幅时可以将整个下表面当成一个点来处理。经过详细地推导后可以得出,如果将每个小晶柱分成无数个小的薄层,则每一个小薄层对下表面的衍射波函数的总的贡献可以表示成:

Ψ0是入射波函数的振幅,在运动学理论中,它总为单位1;

λ:衍射波的波长;

Fg:晶体单胞的结构因子;

Vc:晶体单胞的体积;

θ:衍射波波矢与水平小薄层之间的夹角。

3.3 消光距离的导出:

引入消光距离这一物理参量实际上已经属于动力学衍射理论范畴了。它是指由于透射束与衍射束之间不可避免地存在动力学交互作用,透射振幅及透射束强度并不是不变的。衍射束和透射束的强度是互相影响的,当衍射束的强度达到最大时,透射束的强度最小。而且动力学理论认为,当电子束达到晶体的某个深度位置时,衍射束的强度会达到最大,此时它透射束的强度为0,衍射束的强度为1.

所谓消光距离,是指衍射束的强度从0逐渐增加到最大,接着又变为0时在晶体中经过的距离。这个距离可以从理论上推导出来。

上式中,Ψ0是入射束的振幅,取单位1,所以衍射束每穿过一个晶柱的小薄层dz,对P

点衍射贡献的振幅就可以写为:

那么每穿过一个单胞的厚度振幅可以写成:

可以将上面的振幅值设为常数q。

由上面的结果可以知道,衍射波函数对小晶柱下表面的贡献,每穿过一个单胞的厚度,

都可以用dΨg表达出来,每两个单胞厚度之间,振幅是相同的,但相位存在一个很小的差别,那个经过n个单胞厚度以后,电子波函数对下表面总的衍射波振幅的贡献我们可以用振幅相位图表示出来,如下图所示。

上图中,L是经过n个单胞后总的振幅,由前面的动力学讨论,衍射束的强度最大只能等于入射束的强度(1),而上图中衍射束的总的结构振幅最大时是圆的直径,假设衍射波函数经过m个单胞厚度后它对晶柱下表面的贡献值达到最大,也就是说它的总的振幅达到最大,那么此时它应该等于上面圆的直径,由前面的讨论可知,直径的大小应该等于1.由于q的值非常小,每个q值接近等于上图中对应的圆弧,因此有:mq=π*1/2(半径)。代入q的值马上可以得到m的值,所以消光距离就等于2m个单胞的长度,所以消光距离可以表示成:

3.4 衍射衬度运动学理论推导过程中存在的问题:

上式中,其相位因子(Kg-K0).r一般表示两束波的程差,很容易让人误以为衍衬成像是一个干涉成像过程,但事实并非如此,衍衬成像是一个非相干的单束成像过程;在衍衬运动学的推导过程中,f和Fg都是表示单位体积的散射因子(结构因子),实际上暗示着薄层中每一处的散射因子都是相同的,这与事实是不相符的,实际上晶体中只有有原子的地方才有散射;在衍衬运动学的推导过程当中,实际上是假设右图中小晶柱中的小薄层的面积是无穷大的,因为只有这样,这一薄层对P点的总的散射振幅贡献才能等于第一半波带的一半,这一假设显然是不合理的;在衍衬运动学理论的推导过程中,实际

上是把小晶柱的下表面当成一个点P来处理的,看起来很不合理,但考虑到衍衬成像的分辨率极限是1.5nm,而小晶柱的尺度在1nm以内,因而这样处理还是可以的.

第四节完整晶体的衍衬运动学分析

4.1 完整晶体的衍衬运动学公式推导

由电子衍射的几何关系有:Kg-K0=g+s,因此小晶柱里每个薄层对下表面的散射贡献又可以表示成:

对于完整晶体而言,每个薄层的厚度可以取成一个单胞的厚度,而位置矢r的位置可以取在单胞的平移矢处,这时有g.r=整数,这时上式等于:

为了积分出整个晶柱对下表面的散射贡献,先将s和r写成标量的形式,由图可知,s 总是平行小晶柱,并指向下,所以一般取正值(为了积分方便,一般取向下为正);对于r来讲,由于它是由P点指向小薄层的位矢,方向向上,所以一般取负值,又因为r 与厚度方向基本平行,可以将其写成-z;这时的散射波函数公式可写为:

对整个小晶柱积分,最柱体下表面处总的散射波函数为:

积分后得到:

因此理想晶体中,电子波与小晶柱相互作用后,对下表面总的散射强度可以表示为:

4.2 等厚条纹产生的原理

将上式稍微变形可以得到:

由上式可知,在理想晶体中,当偏离矢量为常数时,电子衍射衬度的强度随厚度t而变化,这就是等厚条件产生的理论依据。由上式我们可以得到等厚条纹应该具有如下特点:等厚条纹是当偏离矢量为恒定值时,衍射强度随传播深度的变化而按余弦函数周期的变化,在衬度像上观察到的明暗相间的条纹,同一条纹对应的厚度是相同的,条纹的深度周期为1/s ;

衍衬像中的等厚条纹与可见光中的等厚干涉条纹的形成原理是完全不同的;可见光中的等厚干涉条纹是由楔形样品的上下表面的反射波互相干涉而形成的,其衬度来自于两束波的相位差角,而电子衍衬像中的等厚条纹则是单束、无干涉成像,其衬度来自于衍射波的振幅;

等厚条件形成的示意图及实例

等厚条件形成的示意图

等厚条纹明场像等厚条纹暗场像

4.3 等倾条纹产生的原理

当衍衬成像时,如果试样的厚度基本不变,而晶体的取向由于变形等原因而有微小的变化时,相当于偏离矢量s有微小的变化,这时衍射波对小晶柱下表面的强度贡献公式可写为:

这时电子衍射衬度的表达式是偏离矢量的函数,随着偏离矢量的改变,衬度改变,这是等倾条纹产生的原因。由上面的表达式可以知道,等倾条纹具有如下的特点:

试样下表面处的强度将随偏离参量s变化而呈单缝衍射函数的形式变化,衍射强度在s=0处有强度的主极大主极大的半宽高为1/t ,在s=n/2t 中,当n为奇数时,分别对应次极大、三极大等等,当n为偶数时,强度值将为零;

等倾条纹的形成示意图及实例:

第五节非完整晶体的衍衬运动学分析

5.1 非完整晶体的衍衬运动学公式推导

对于非完整晶体,描述散射元位置的矢量为:r′=r+R

因此整个畸变后的晶柱对下表面的散射贡献为:

上式中,g.r=整数,s.R是一个无穷小项,因此畸变后的晶柱对下表面的散射贡献最终为:

缺陷的存在引进了一个附加相位因子项2πg.R,正是由于有相位因子项的存在,使得不同的缺陷会具有不同特点的衬度。

5.2 层错引起的衬度

所谓层错是指晶体中具有某种堆垛次序的原子面,由于错排而引入的缺陷;

层错总是发生在密排的晶体学平面上,层错面两侧分别是位向相同的两块理想晶体,它们之间相互错动了位移矢R ;

对于面心立方晶体的{111}层错,R可以是±1/3〈111〉或者± 1/6〈112〉,它们分别代表着层错生成的两种机制。

层错是晶体缺陷中最简单的平面缺陷,其位移矢是一个恒定的值,因而由其产生的相位差角2πg.R将为一恒定的值,当g.R为一整数时,由上式可知,积分号后的第一项将为1,层错引起的衬度将不存在,层错将不可见。

对于层错而言,晶体一和晶体二具有完全相同的位向,它们之间仅仅是在层错面上相差一个滑移矢,在有层错的区域任选一个小晶柱,设该小晶柱中,层错在深度t1处,则整个小晶柱对下表面散射波振幅的总的贡献为:

积分之后得:

与之对应的强度表达式为:

由上式可以看出,当偏离矢量为常数时,如果层错可见(g.R不为整数),则小晶柱下表面的电子衍射波强度,只取决于层错所在位置样品的厚度,也就是说层错的衬度是样品厚度的函数。有鉴于此,层错的衬度应该具有如下的特点:

对于确定的层错,当操作反射确定时,则g.R确定,在样品厚度t和偏离矢量s都确定的前提下,Ig将随层错所在位置的深度t1周期变化,周期为1/s ,与层错的类型无关,其周期函数与等厚条纹一样,都是余弦函数;

当层错在样品中的深度相同时,会具有相同的强度,故层错的衍衬象表现为一组平行于样品表面和层错交线的明暗相间的条纹;

当衍射矢量偏离布拉格位置的程度增加时,s增大,层错条纹间的间距变小(条纹变密),层错的衍衬强度锐减;

由层错强度的周期函数特点,cos[2πs(t1-t/2)],可知层错条纹的强度总是中心对称的,(这一点才是层错条纹区别于等厚条纹的最本质特点);

由周期函数特点可知,当层错面平行样品表面时将不显示衬度。

层错衍衬像示意图及实例

层错像实例

5.3 螺型位错引起的衬度

螺型位错的几何模型

由上图可知,由于螺位错的存在而引入的位移矢可以表示成:

其中z是小晶柱中薄层所在的位置,而z0是位错距样品表面的距离,而x则是位错到小晶柱的距离。

因此由于螺位错的存在而引起的相位差角的变化可以表示成:

其中α是由于螺位错的位移矢引起的相位角改变;n=g.b

在位错附近处某一小晶柱对其下表面处的总的衍射贡献为:

由上面的表达式可以看出来,要使由于螺位错的存在而引入的附加项的值为1,则n必须等于0,即g.b=0时,才不会出现衬度,因此g.b=0是螺位错不可见的判据。

5.4 刃型位错和混合型位错引起的衬度

刃型位错的几何模型

刃位错的应变场可以写为:R=R1+R2。应变场可以表示为:

其中其中R1平行于柏式矢量,R2垂直于位错所在的滑移面,σ为泊淞比,φ是从柏式矢量到散射元的极角,r0是柱体内散射元关于位错核心的径向座标.

混合型位错的应变场矢量可以写成:

将这些应变场引起的位移矢代入公式:

会得到一个附加位向因子非常复杂的表达式,经过详细分析后可以得出,刃位错和混合位错有如下特点:

刃位错和混合位错不可见判据是: g.b =0且同时要

g.(b * u)=0;但是由于g.b =0时,即使另外一项不为零,其衬度也会非常低,因此实际上对于所有的位错,都采用g.b =0作为不可见判据。

5.5 位错衬度像偏离真实位置的解释

5.6 位错像的特点:

如上图所示,当衍射条件使基体偏离布拉格条件时(存在偏离矢量时),刃位错中多余半原子面的位向应该与基体相同,因而它并不满足布拉格条件。而在位错的应变场中,有一个相当宽的范围内,晶面接近满足布拉格条件,接近产生衍射带。因此在明场像下,这一个宽的衍射带实际上就是我们看到的暗的位错线。因此这样的位错线往往看起来是很粗的,大约有80~120埃。另外,位错像距离位错的真实位置也会比较远,大约在80~100埃。

用弱束暗场的方法可以使位错的分辨率提高,而且可以使其像与真实位置更加接近。这是因为弱束暗场是在大的偏离矢量下成像,在大的偏离矢量下,只有畸变量大的晶面才能接近满足布拉格条件,我们知道只有在靠近位错的地方,才存在大的畸变区,因此在弱束暗场下,只有在靠近位错线的很近部分才能显示衬度,而且这个宽度也会比较小。在弱束暗场下位错线的分辨率可以达到15埃,位错像距位错的真实位置的距离大约为20埃。

这是从衍射几何来解释位错像的形成原因。当从理论上来分析时,根据动力学原理,位错线的宽度约为有效消光距离ξgeff的1/2~1/5。而有效消光距离可以表示成:

由上式可以看出,在大偏离矢量下(弱束暗场),位错线像的宽度要窄得多。

5.7 位错衬度像实例

高中沪科版高二(下)第十四章A.光的干涉和衍射课后练习[答案解析]

沪科版高二(下)第十四章A.光的干涉和衍射课后练习学校:___________姓名:___________班级:___________考号:___________ 一、填空题 1.英国物理学家__________首先在实验室观察到光的干涉现象,做了著名的__________实验,同一装置中红光条纹比紫光__________. 2.空间两列光相遇能发生干涉的条件是__________,干涉条纹的特点是____________ ________. 3.能发生明显衍射现象的条件是____________________,衍射条纹的特点是 ____________________. 4.在研究光的干涉实验中,当保持双缝的间隙不变,光屏到缝的距离越大,屏上明暗相间的条纹的间距__________;当保持光屏到缝的距离不变,双缝的间隙越小,屏上条纹的间距__________. 5.在研究光的衍射实验时,当保持狭缝到光屏的距离不变,屏上明暗相间的条纹间距随缝宽的减小而__________. 6.如图所示,竖直放置的肥皂膜上呈现的彩色条纹正确图示应该是图__________(选填“A”或“B”). 7.光在真空中的传播速度是_________m/s. 8.如图所示两种条纹中,图_______所示是双缝干涉条纹,图_______所示是单缝衍射条纹. 9.太阳光照射到肥皂膜上可看到彩色条纹是______________现象,白光通过双缝可以在光屏上得到______________光带. 10.如图所示利用激光完成“双缝干涉”实验,双缝的作用是______________,观察到的

现象是______________. 二、解答题 11.杨氏双缝干涉实验中,双缝的一条缝前放一块绿色滤光片,另一条缝前放一块黄色滤光片,还能看到干涉现象吗?为什么? 三、单选题 12.两块玻璃叠在一起,一端压紧,另一端垫一张纸片,用单色光照射,可以看到明暗相间的条纹,这是光的(). A.干涉现象B.衍射现象C.色散现象D.折射现象13.如图中所示是用于干涉法检查某块厚玻璃的上表面是否平的装置,所用单色光是用普通光源加滤光片产生的,检查中所观察到的干涉条纹,是由下列哪个表面反射的光线叠加而成的. A.a的上表面和b的下表面 B.a的上表面和b的上表面 C.a的下表面和b的下表面 D.a的下表面和b的上表面 14.在双缝干涉实验装置中,正确的说法是(). A.光源必须发出单色光 B.光经过单缝成为单色光

第5章 透射电镜的图像衬度及其应用

第5章透射电镜的图像衬度及其应用 透射电镜的图像衬度是指荧光屏或照相底板上图像的明暗程度. 又叫黑白反差, 或叫对比度。由于图像上不同区域衬度的差别,才使得材料微观组织分析成为可能。只有了解图像衬度的形成机制,才能对各种图像给予正确解释。透射电子显微像有三种衬度类型,分别为质厚衬度,衍射衬度和相位衬度。 5.1 质厚衬度原理 试样各部分质量与厚度不同造成的显微像上的明暗差别叫质厚衬度。 复型和非晶态物质试样的衬度是质厚衬度. 质厚衬度的基础: 1.试样原子对入射电子的散射 2.小孔径角成象。把散射角大于α的电子挡掉,只允许散射角小于α的电子通过物镜光阑参与成象。 相位衬度 衍射衬度是一种振幅衬度,它是电子波在样品下表面强度(振幅)差异的反映,衬度来源主要有以下几种: 1.两个晶粒的取向差异使它们偏离布拉格衍射的程度不同而形成的衬度; 2.缺陷或应变场的存在,使晶体的局部产生畸变,从而使其布拉格条件改变而形成的衬度; 3.微区元素的富集或第二相粒子的存在,有可能使其晶面间距发生变化,导致布拉格条件的改变从而形成衬度,还包括第二相由于结构因子的变化而显示衬度; 4.等厚条纹,完整晶体中随厚度的变化而显示出来的衬度; 5.等倾条纹,在完整晶体中,由于弯曲程度不同(偏离矢量不同)而引起的衬度.

1.3 衍射衬度成像的特点 1.衍衬成像是单束、无干涉成像,得到的并不是样品的真实像,但是,衍射衬度像上衬度分布反映了样品出射面各点处成像束的强度分布,它是入射电子波与样品的物质波交互作用后的结果,携带了晶体散射体内部的结构信息,特别是缺陷引起的衬度; 2.衍衬成像对晶体的不完整性非常敏感; 3.衍衬成像所显示的材料结构的细节,对取向也是敏感的; 4.衍衬成像反映的是晶体内部的组织结构特征,而质量厚度衬度反映的基本上是样品的形貌特征。 2.1 明场像 让透射束通过物镜光阑所成的像就是明场像。成明场像时,我们可以只让透射束通过物镜光阑,而使其它衍射束都被物镜光阑挡住,这样的明场像一般比较暗,但往往会有比较好的衍射衬度;也可以使在成明场像时,除了使透射束通过以外,也可以让部分靠近中间的衍射束也通过光阑,这样得到的明场像背景比较明亮 衍射衬度样品微区晶体取向或者晶体结构不同,满足布拉格衍射条件的程度不同,使得在样品下表面形成一个随位置不同而变化的衍射振幅分布,所以像的强度随衍射条件的不同发生相应的变化,称为衍射衬度。 ?衍射衬度对晶体结构和取向十分敏感,当样品中存在有晶体缺陷时,该处相对于周围完整 晶体发生了微小的取向变化,导致缺陷处和周围完整晶体有不同的衍射条件,形成不同的衬度,将缺陷显示出来。这个特点在研究晶体内部缺陷时很有用.所以广泛地用于晶体结构研究。 ?晶体样品,薄膜样品(金属,陶瓷)的衬度来源于衍射衬度。 ?衍射衬度通常是单束成像衬度.成像时用透射束或者用衍射束 ?

第十四章 光的衍射(单章答案)

习题十四 光的衍射 14-3 衍射的本质是什么?衍射和干涉有什么联系和区别? 答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成. 14-4 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动? 答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动. 14-5 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗条纹,单缝处波面各可分成几个半波带? 答:半波带由单缝A 、B 首尾两点向?方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带. ∵由2 72)132(2)12(sin λλλ??=+?=+=k a 2 84sin λλ??==a 14-6 在单缝衍射中,为什么衍射角?愈大(级数愈大)的那些明条纹的亮度愈小? 答:因为衍射角?愈大则?sin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小. 14-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样说明? 答:不矛盾.单缝衍射暗纹条件为k k a 2sin ==λ?2 λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向?方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.

TEM_透射电镜习题答案与总结

电子背散射衍射:当入射电子束在晶体样品中产生散射时,在晶体向空间所有方向发射散射电子波。如果这些散射电子波河晶体中某一晶面之间恰好符合布拉格衍射条件将发生衍射,这就是电子背散射衍射。 二、简答 1、透射电镜主要由几大系统构成? 各系统之间关系如何? 答:三大系统:电子光学系统,真空系统,供电系统。 其中电子光学系统是其核心。其他系统为辅助系统。 2、照明系统的作用是什么?它应满足什么要求? 答:照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成。它的作用是提供一束亮度高、照明孔经角小、平行度好、束流稳定的照明源。它应满足明场和暗场成像需求。 3、成像系统的主要构成及其特点、作用是什么? 答:主要由物镜、物镜光栏、选区光栏、中间镜和投影镜组成. 1)物镜:强励磁短焦透镜(f=1-3mm),放大倍数100—300倍。 作用:形成第一幅放大像 2)物镜光栏:装在物镜背焦面,直径20—120um,无磁金属制成。 作用:a.提高像衬度,b.减小孔经角,从而减小像差。C.进行暗场成像3)选区光栏:装在物镜像平面上,直径20-400um, 作用:对样品进行微区衍射分析。 4)中间镜:弱压短透镜,长焦,放大倍数可调节0—20倍 作用a.控制电镜总放大倍数。B.成像/衍射模式选择。 5)投影镜:短焦、强磁透镜,进一步放大中间镜的像。投影镜孔径较小,使电子束进入投影镜孔径角很小。 小孔径角有两个特点: a.景深大,改变中间镜放大倍数,使总倍数变化大,也不影响图象清晰度。 焦深长,放宽对荧光屏和底片平面严格位置要求。 4、分别说明成像操作与衍射操作时各级透镜(像平面与物平面)之间的相对位置关系,并 画出光路图。 答:如果把中间镜的物平面和物镜的像平面重合,则在荧光屏上得到一幅放大像,这就是电子显微镜中的成像操作,如图(a)所示。如果把中间镜的物平面和物镜的后焦面重合,则在荧光屏上得到一幅电子衍射花样,这就是电子显微镜中的电子衍射操作,如图(b)所示。

工程光学习题解答第十二章光的衍射

第十二章 光的衍射 1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会 聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。 解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0a λθ?= ∴亮纹半宽度29 0035010500100.010.02510 r f f m a λ θ---???=??===? (2)第一亮纹,有1sin 4.493a π αθλ = ?= 9 13 4.493 4.493500100.02863.140.02510 rad a λθπ--??∴===?? 2 1150100.02860.014314.3r f m mm θ-∴=?=??== 同理224.6r mm = (3)衍射光强2 0sin I I αα?? = ??? ,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0I I 0 0 1 1 2 . . . . . . . . . 2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为

2 0sin[(sin sin )](sin sin )a i I I a i πθλπθλ??-??=????-?? 式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a i λ θ?= 证明:(1))即可 (2)令 ()sin sin a i πθ πλ ==± ∴对于中央亮斑 sin sin i a λ θ-= 3. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。问细丝直径是多少? 解:设直径为a ,则有 f d a λ = 93 632.8100.03 0.01261.510f a mm d λ--??===? 4.利用第三节的结果导出外径和内径分别为a 和b 的圆环(见图12-51)的夫琅和费衍射强度公式,并求出当2 a b = 时,(1)圆环衍射与半径为a 的圆孔衍射图样的中心强度之比;(2)圆环衍射图样第一个暗环的角半径。 图 12-50 习题3图

材料分析部分的答案

TEM 部分: 1. 光学显微镜的分辨本领一般为所用光源波长的一半;而在透射电镜中当加速电压为100kV 时,电子波长为0.037埃,但其分辨本领却只能达到几个埃,这是为什么? 2. 什么是倒易矢量? 倒易矢量的基本性质是什么?一个晶带的倒易图象是什么?试用倒易矢量的基本性质和晶带定律绘出体心立方点阵(211)*倒易面、面心立方点阵(311)*倒易面。 A.由倒易原点指向任一倒易阵点hkl 的矢量,称为倒易矢量。记为:r* = ha* + kb* + lc* B.倒易矢量两个基本性质:a. r*hkl ⊥ 正点阵中(hkl)面;b. |r*hkl| = 1/dhkl C.零层倒易截面,是一个晶带的倒易图像 3. 为什么说单晶体的电子衍射花样是一个零层倒易平面的放大投影? 解:因为电子波λ很小,比d 小两个数量级,所以衍射角θ只有1~2度。 由电子衍射的Ewald 图解法可知,由于反射球半径相对于倒易阵点间距来说很大,在倒易原点附近可将反射球近似看成平面,所以,一个倒易平面上的倒易点可同时与反射球相截。 所以电子衍射花样就是倒易截面的放大。 4. 面心立方晶体单晶电子衍射花样如图所示,测得: R1=10.0mm; R2=16.3mm; R3=19.2mm 夹角关系见图。求: (1)先用R 2 比法标定所有衍射斑点 指数,并求出晶带轴指数[uvw]; (2)若L λ=20.0mm ??,求此晶体的点阵参数a=? 解:(1)R12:R22:R32=100:265.69:368.64 ≈ 3:8:11 (111)(220)(311) 5. α-Fe 单晶(体心立方,点阵常数a=2.86?)的选区电子衍射花样如图所示。 已测得A 、B 、C 三个衍射斑点距透射斑点O 的距离为: R A =10.0mm, R B =24.5mm, R C =2 6.5mm ,∠AOB =90?。试求: R 2 C HKL K k k g s '=-=+

第13章 光 单元综合试题及答案1

第十三章 光 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,试卷满分为100分.考试时间为90分钟. 第Ⅰ卷(选择题,共40分) 一、选择题(本题共10小题,每题4分,共40分.有的小题只有一个选项正确,有的小题有多个选项正确,把正确选项前的字母填在题后的括号内) 1.(2010·全国卷Ⅰ)某人手持边长为6cm 的正方形平面镜测量身后一棵树的高度.测量时保持镜面与地面垂直,镜子与眼睛的距离为0.4m.在某位置时,他在镜中恰好能够看到整棵树的像;然后他向前走了6.0m ,发现用这个镜子长度的5/6就能看到整棵树的像.这棵树的高度约为( ) A .5.5m B .5.0m C .4.5m D .4.0m 图1 解析:设初态树与镜面距离为L ,成像于像1位置,人向前走6 m 等效于人不动树向后退6 m ,则树成像于像2位置,设树高为h ,由图中几何关系有 0.4L +0.4=0.06h (①式)、0.4L +0.4+6=0.05 h (②式),由①②联立解得h =4.5 m ,所以本题只有选项C 正确. 答案:C 2.如下图所示,一束光线从折射率为1.5的玻璃内射向空气,在界面上的入射角为45°,下面四个光路图中,正确的是( )

解析:发生全反射的临界角 C =arcsin 1n =arcsin 23C ,故发生全反射,选A. 答案:A 图2 3.如图2所示,一束白光从左侧射入肥皂薄膜,下列说法正确的是( ) ①人从右侧向左看,可以看到彩色条纹 ②人从左侧向右看,可以看到彩色条纹 ③彩色条纹水平排列 ④彩色条纹竖直排列 A .①③ B .②③ C .①④ D .②④ 解析:因白光照射,各色光形成的明纹宽度不同,相互叠加,形成彩纹,由于薄膜干涉是等厚干涉,因此条纹是水平的. 答案:A 4. 图3 自行车的尾灯采用了全反射棱镜的原理,它虽然本身不发光,但在夜间骑车时,从后面开来的汽车发出的强光照到尾灯后,会有较强的光被反射回去,使汽车司机注意到前面有自行车,尾灯由透明介质做成,其外形如图3所示,下面说法中正确的是( ) A .汽车灯光应从左面射过来,在尾灯的左表面发生全反射 B .汽车灯光应从左面射过来,在尾灯的右表面发生全反射 C .汽车灯光应从右面射过来,在尾灯的右表面发生全反射

分析习题十答案

1、什么是衍射衬度?它与质厚衬度有什么区别? 衍射衬度主要是由于晶体试样满足布拉格反射条件程度差异以及结构振幅不同而形成电子图像反差。由于样品中各晶粒位向不同所形成的衬度。幅不同而形成电子图像反差。由于样品中各晶粒位向不同所形成的衬度。(属于晶体结构物质)属于晶体结构物质) 散射衬度又称质厚衬度,是由于试样上各部位对电子散射能力不同所形散射衬度又称质厚衬度,是由于试样上各部位对电子散射能力不同所形成的衬度称为散射衬度。属于非晶态物质)(属于非晶态物质成的衬度称为散射衬度。属于非晶态物质)( 答:由样品各处衍射束强度的差异形成的衬度称为衍射衬度。或是由样品各处满足布拉格条件程度的差异造成的。对于晶体薄膜样品而言,厚度大致均匀,原子序数也无差别,因此,不可能利用质厚衬度来获得图象反差,这样,晶体薄膜样品成像是利用衍射衬度成像,简称“衍射衬度”非晶(复型)样品电子显微图像衬度是由于样品不同微区间存在原子序数或厚度的差异而形成的,即质厚衬度,质厚衬度是建立在非晶样品中原子对电子的散射和透射电子显微镜小孔径成像的基础上的。 2、画图说明衍衬成像原理,并说明什么是明场像、暗明场像和中心暗场像。 衍射衬度成像原理如下图所示。 设薄膜有A、B两晶粒 B内的某(hkl)晶面严格满足Bragg条件,或B晶粒内满足“双光束条件”,则通过(hkl)衍射使入射强度I0分解为I hkl和IO-I hkl两部分 A晶粒内所有晶面与Bragg角相差较大,不能产生衍射。 在物镜背焦面上的物镜光阑,将衍射束挡掉,只让透射束通过光阑孔进行成像(明场),此时,像平面上A和B晶粒的光强度或亮度不同,分别为 I A≈ I0 I B≈ I0 - I hkl B晶粒相对A晶粒的像衬度为 明场成像:只让中心透射束穿过物镜光栏形成的衍衬像称为明场镜。 暗场成像:只让某一衍射束通过物镜光栏形成的衍衬像称为暗场像。

14《学习指南 试题精解》 第十四章 波动光学

第14章 波动光学 14.1 要求: 1 了解迈克尔干涉仪的原理、惠更斯-菲涅尔原理和双折射现象; 2 理解获得相干光的方法、单缝夫琅和费衍射暗纹分布规律的方法; 3 掌握光栅衍射公式、自然光和偏振光和布儒斯特定律和马吕斯定律; 4 熟练掌握光程、光程差和位相差之关系、分析和确定扬氏双缝干折条纹以及等厚干涉条纹的位置、分析缝宽和波长对衍射条纹分布的影响、分析光栅常数和波长对衍射条纹分布的影响。 14.2 内容摘要 1 光是电磁波 实验发现光是电磁波,X 、γ射线等都是电磁波。所有电磁波的本质都是相同的,具有所有电磁波的性质,只是它们的频率和波长不同而已。 2 光的相干现象 两列光波叠加时,产生的光强在空间内有一稳定分布的现象。 相干叠加的条件 振动方向相同、频率相同和有固定的相位差。 3 相干光强 02 04I I ),,2,1,0k (2k ,2 cos 4I I ==±=??= π??,最亮; 当 ,2,1,0k ,k =±=?π?时, I=0,最暗。 4 光程 光在某一媒质中所经历的几何路程r 与此媒质的折射率n 的乘积,称 为光程。数学表达 Ct nr t n C ut r n C u =∴===,,,C 为真空中的光速。 光程差 两束光的光程之差,称为光程差,用δ表示。 相位差 λ δπλπ?λπ?λννλ22,2,==?∴=?===rn r n n C u n n 光由光疏媒质射向光密媒质,在界面反射时,发生半波损失,等于 2λ的光程。 5 扬氏双缝实验 干涉加强条件 λλλδd D x d D k x k k D x d =?±==±==,,2,1,0,或 ; 干涉减弱条件 d D k x k k D x d 2)12(,2,1,0,2)12(λλδ-±==-±==或 6 薄膜干涉 光程差 2)(12λ δ+-+=AD n BC AB n 当 λδk ±=, k=1,2,3,……明条纹; 当 2 )12(λδ+±=k , k=0,1,2,3,……暗条纹。 劈尖干涉 空气劈尖(薄膜厚度不均匀时)产生的干涉。

12-2 大学物理第十二章

光的衍射 习题解答 10-1 波长为()nm 600=λ的单色光垂直入射到宽度为()mm a 10.0=的单缝上,观察夫琅和费衍射图样,透镜焦距()m f 0.1=,屏在透镜的焦平面处,求: (1)中央衍射明条纹的宽度0x ?; (2)第二级暗纹到中央明纹中心的距离2x 。 解:(1)中央明纹的宽度指在屏上两第一级暗纹间距。由单缝衍射暗纹公式 λk a =?sin 1k = 得 λ=?s i n a 又 f x tg sin 1= ?=?,其中1x 为第一级暗纹到中央明纹中心的距离。也 是中央明纹的半宽度。根据对称性: 10x 2x =? 由上三式得 a f 2x 0λ=? 其中: ()()()nm 600;m m 10.0a ;m 0.1f =λ== ()()nm m x 1210 10 60.124 7 0=???= ?-- 10-2 波长为 A 5000=λ的单色光垂直入到宽度a=0.15mm 的单缝上,缝后放一焦距f=40cm 的凸透镜,观察屏在焦平面上,求屏上中央明纹两侧的两个第三级暗纹之间的距离。 解:由第k 级暗纹到中央明纹中心的间距公式 a fk x λ= a f 3x 3k 3λ==时,当 根据对称性 a f 6x 2x 33λ==? 其中 ()()cm 40f ;mm 15.0a ;A 5000===λ ()()mm 8cm 10 5.1105406x 2 5 3=????= ?-- 10-3 如单缝夫琅和费衍射的第一级暗纹发生在衍射角为 30=φ的方位上,所用单色光波长 为 A 5000=λ,求单缝的宽度。 解:由单缝衍射暗纹公式 ()() m cm A k k a μλ λλλ130 sin 10 5sin a 5000,30,1sin k a sin 5=?= ? = ==?=? = =?- 对有 10-4 白光形成的单缝夫琅和费衍射图样中,某光波的第三级明纹和 A 6000=λ的光波第二

沪科版 高二(下)第十四章 A.光的干涉和衍射 课后练习

沪科版 高二(下)第十四章 A.光的干涉和衍射 课后练习 一、填空题 1. 英国物理学家__________首先在实验室观察到光的干涉现象,做了著名的__________实验,同一装置中红光条纹比紫光__________. 2. 空间两列光相遇能发生干涉的条件是__________,干涉条纹的特点是____________________. 3. 能发生明显衍射现象的条件是____________________,衍射条纹的特点是____________________. 4. 在研究光的干涉实验中,当保持双缝的间隙不变,光屏到缝的距离越大,屏上明暗相间的条纹的间距__________;当保持光屏到缝的距离不变,双缝的间隙越小,屏上条纹的间距__________. 5. 在研究光的衍射实验时,当保持狭缝到光屏的距离不变,屏上明暗相间的条纹间距随缝宽的减小而__________.

6. 如图所示,竖直放置的肥皂膜上呈现的彩色条纹正确图示应该是图__________(选填“A”或“B”). 7. 光在真空中的传播速度是_________. 8. 如图所示两种条纹中,图_______所示是双缝干涉条纹,图_______所示是单缝衍射条纹. 9. 太阳光照射到肥皂膜上可看到彩色条纹是______________现象,白光通过双缝可以在光屏上得到______________光带. 10. 如图所示利用激光完成“双缝干涉”实验,双缝的作用是______________,观察到的现象是______________. 二、解答题

三、单选题 11. 杨氏双缝于涉实验中,双缝的一条缝前放一块绿色滤光片,另一条缝前放一块黄色滤光片,还能看到干涉现象吗?为什么? 12. 两块玻璃叠在一起,一端压紧,另一端垫一张纸片,用单色光照射,可以看到明暗相间的条纹,这是光的(). A.干涉现象B.衍射现象C.色散现象D.折射现象 13. 在双缝干涉实验装置中,正确的说法是(). A.光源必须发出单色光 B.光经过单缝成为单色光 C.光经过双缝成为两束振动情况完全相同的光 D.两束光只在屏上发生干涉 14. 关于双缝干涉实验,正确的说法是(). A.红光条纹间距比紫光小B.证明了光是一种波 C.所有单色光的干涉条纹间距都相等D.蓝光条纹间距比橙光大 15. 如图所示是用游标卡尺两测脚间的狭缝观察日光灯光源时所看到的四种现象.当游标卡尺两测脚间的狭缝宽度从逐渐变小时,所看到的四个图像的顺序是(). A . B . C . D . 16. 如图所示是一双缝干涉实验装置的示意图,其中S为单缝,S1、S2为双缝,P为光屏.实验时用白光从左边照射单缝S,可在光屏P上观察到彩色的干 涉条纹.现在S1、S2的左边分别加上红色和蓝色滤光片,则在光屏P 上可观察到()

材料分析方法 习题解答

1,当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生光电子和俄歇电子。 2,一组晶面间距从大到小的顺序:2.02A/1.43A/1.17A/1.01A/0.90A/0.83A/0.76A,用波长为λka=1.94A的铁靶照射时,产生衍射的晶面组有四条。 3,最常用的X射线衍射方法是粉末法 4,测定钢中的奥氏体含量,若采用定量X射线物相分析,常用方法是直接对比法 5,可以提高TEM的衬度光栏是物镜光栏 6,TEM样品的厚度一般为几百到几千埃,但人工磨样品一般只能磨到几十微米的厚度,再要减薄,对陶瓷样品应该用离子减薄方法 7,以下TEM的器件中不属于成像系统的是聚光镜 8,仅仅反映固体样品表面形貌信息的物理信号是二次电子 9,下列对布拉格方程公式理解不正确的是C A、当d和λ一定时,衍射线的数目是一定的,只能在几个方向“反射”X射线; B、只有特定波长范围的X射线才能产生衍射; C、λ一定时,产生衍射的镜面族也是有限的,必须满足d>λ/2; D、只有光程差为波长的整数倍时,相邻晶面的“反射波”才能干涉加强形成衍射线。10,下列仪器中可以精确测定样品化学成分及含量的是D A、X射线衍射仪; B、TEM; C、SEM; D、EPMA 11, 第一类内应力的衍射效应是使衍射线发生D. A强度降低B宽化C变形D位移 1,产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态。(√) 2,扫描电子显微镜的分辨率通常是指背散射电子像的分辨率。(×) 3,只考虑衍射效应,在照明光源和介质一定的条件下,孔径角α越小,电磁透镜的分辨本领越高。(×) 4,X射线物相定性分析可以告诉我们被测材料中哪些物相,而定量分析可以告诉我们这些物相中有什么成分。(√) 5,有效放大倍数与仪器可以达到的放大倍数不同,前者取决于仪器分辨率和人眼分辨率,后者仅仅是仪器的制造水平。(√) 6,电子衍射和X射线衍射一样必须严格符合布拉格方程。(×) 7,实际电镜样品的厚度很小时,能近似满足衍衬运动学理论的条件,这时运动学理论能很好地解释衬度像。(×) 8,扫描电子显微镜的衬度和透射电镜一样取决于质厚衬度和衍射衬度。(×) 9,质厚衬度就是样品中不同部位由于原子序数不同或者密度不同,样品厚度不同,入射电子被散射后能通过物镜光阑参与成像的电子数量不同,从而在图像上体现出的强度的差别。在原子序数越大的区域,图像上相应位置越暗。(×) 10,色差:电子的能量不同,从而波长不一致,使用薄试样和小孔径光阑将散射角大的非弹性散射电子束挡掉,有助于减小色差。(√) 11,背散射电子信息只能用于样品表面的形貌分析。(×) 12,球差:由于电子透镜中心区域和边缘区域对电子会聚能力不同而造成的,无法消除。 (√) 1,当X射线管电压低于临界电压仅产生连续X射线;当X射线管电压超过临界电压就可以产生连续X射线和特征X射线。 2,特征X射线的产生过程中,若K层产生空位,由L层和M层电子向K层跃迁产生的K系特征辐射按顺序称Kα射线和Kβ射线。 3,X射线在晶体中产生衍射的充分必要条件是:满足布拉格方程和结构因子F HKL≠0.

14第十四章光的衍射

第十四章光的衍射 班级:学号:姓名: 1.单项选择题(每题3分,共30分) (1)根据惠更斯-菲涅耳原理,如果光在某时刻的波阵面为S,那么S的前方某点P的光强度决定于S上所有面积元发出的子波各自传到P点的[] (A) 振动振幅之和;(B) 振动振幅之和; (C) 的平方光强之和;(D) 振动的相干叠加。 (2)在夫琅禾费单缝衍射实验中,如果入射的单色光确定,当缝宽度变小时,除了中央亮纹的中心位置不变以外,各级衍射条纹[] (A) 对应的衍射角也不变;(B) 对应的衍射角变大; (C) 对应的衍射角变小;(D) 光强也不变。 (3)在单缝夫琅禾费衍射实验中,如果增大缝宽,其他条件不变,则中央明条纹[] (A) 宽度变小;(B) 宽度不变,且中心强度也不变; (C) 宽度变大;(D) 宽度不变,但中心强度增大。 (4)波长一定的单色光垂直入射在衍射光栅上,屏幕上只出现了零级和一级主极大,如果想使屏幕上出现更高级次的主极大,应该 (A) 将光栅靠近屏幕;(B) 换一个光栅常数较小的光栅; (C) 将光栅远离屏幕;(D) 换一个光栅常数较大的光栅。 (5)波长为550nm的单色光垂直入射在光栅常数为2×10-3mm的衍射光栅上,这时可以观察到光谱线的最大级次为[] (A) 5;(B) 4;(C) 3;(D) 2。 (6)在双缝衍射实验中,如果保持双缝的中心间距不变,而把两条缝的宽度同时略微加宽相同的数值,则[] (A) 单缝衍射的中央明纹变窄,其中包含的干涉条纹数目变少; (B) 单缝衍射的中央明纹变宽,其中包含的干涉条纹数目变多; (C) 单缝衍射的中央明纹变窄,其中包含的干涉条纹数目变多; (D) 单缝衍射的中央明纹变宽,其中包含的干涉条纹数目变少。 (7)想用衍射光栅准确测定某单色可见光的波长,在下列各种光栅常数的光栅中,应该选用[] (A) 5.5×10-1 mm;(B) 0.5×10-3 mm;(C) 0.8×10-2 mm;(D) 1.5×10-3 mm。 2.填空题(每空2分,共30分) (1)波长为600nm的单色平行光垂直入射在缝宽为0.60mm的单缝上,该单缝后有一个焦距为60cm的透镜,在透镜焦平面上观察衍射图样,中央明纹的宽度为(),两个第四级暗纹之间的距离为()。 (2)平行单色光垂直入射在单缝上,观察夫琅禾费单缝衍射图样时,发现屏上P点处为第三级暗条纹,则单缝处的波面相应地可以划分为()个半波带。如果将单缝宽度缩小一半,P点处将是第()级()条纹. (3)波长为λ的单色光垂直入射在缝宽为4λ的单缝上。对应于30°的衍射角,单缝处的波面可划分为()个半波带。 (4)惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P的()决定了该点的合振动及光强。 (5)在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为5λ的单缝上。对应于衍射角?,如果单缝处的波面恰好可以划分成5个半波带,则衍射角?等于()。(6)测量未知单缝宽度a的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝距离为D(D>>a)处测出衍射图样的中央亮纹宽度为l,则由单缝衍射的原理可得a与λ、D、

工程光学习题解答第十二章光的衍射

第十二章光的衍射 1.波长为500nm 的平行光垂直照射在宽度为 0.025mm 的单缝上,以焦距为 50cm 的会 聚透镜将衍射光聚焦于焦面上进行观察,求( 1 )衍射图样中央亮纹的半宽度; (2) ???中央亮纹的角半宽度为 同理 r 2 24.6mm 2.平行光斜入射到单缝上,证明:(1 )单缝夫琅和费衍射强度公式为 第一亮纹和第二亮纹到中央亮纹的距离; (3) 亮纹和第二亮纹的强 度。 解:(1)零强度点有a sin n (n 1, 2, ?亮纹半宽度 50 10 2 500 10 9 0.01m 3 0.025 10 (2)第一亮纹,有 —a sin 1 4.493 4.493 1 4.493 500 10 9 3 0.0286 rad 0.025 10 3.14 2 1 50 10 2 0.0286 0.0143m 14.3mm (3)衍射光强 sin 1 其中 —a sin 当 asin 时为暗纹, tg 为亮纹 ?对应 级数

人 a ⑵ 令 sin sini 图12-50 习题3图 为30mm ,光波波长为632.8nm 。问细丝直径是多少? 解:设直径为a ,则有一 f d a a 度公式,并求出当b 时,(1)圆环衍射与半径为a 的圆孔衍射图样的中心强度之比; (2) 2 圆环衍射图样第一个暗环的角半径。 a sin[ (sin sin i)] 式中,I o 是中央亮纹中心强度;a 是缝宽; 是 -(sin sin i) 衍射角,i 是入射角(见图12-50 ) (2 )中央亮纹的角半宽度为 acosi ???对于中央亮斑 sin sin i — a 3. 在不透明细丝的夫琅和费衍射图样中, 测得暗条纹的间距为 1.5mm ,所用透镜的焦距 f 9 632.8 10 9 0.03 — a d 3 0.0126mm 1.5 10 3 4.利用第三节的结果导出外径和内径分别为 12-51 )的夫琅和费衍射强 证明:(1)与垂直入射相比 a 和b 的圆环(见图

第14章 光的衍射习题答案

思 考 题 1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住 答:只有当障碍物的大小比波长大得不多时,衍射现象才显著。对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显著。 2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样为什么 答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。由此可知,这时人眼看到的是夫琅和费衍射图样。 3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。 答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。 4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( ) (A)振动振幅之和。 (B)光强之和。 (C)振动振幅之和的平方。 (D)振动的相干叠加。 答:衍射光强是所有子波相干叠加的结果。选(D)。 5波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30o ,则缝宽的大小( ) (A) a =。 (B) a =。 (C)a =2。 (D)a =3。 答:[ C ] 6波长为的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30,则缝宽a 等于( ) (A) a = 。 (B) a =2。 (C) a =2 3 。 (D) a =3。 答:[ D ] 7在单缝夫琅和费衍射实验中波长为 的单色光垂直入射到单缝上,对应于衍射角为

第十三章 第5节 光的衍射

第十三章第5节光的衍射 知识点 一、光的衍射现象 在挡板上上安装一个宽度可调的狭缝,缝后放一个光屏(如上图所示)。用单色平行光照射狭缝,我们看到:当缝比较宽时,光沿着直线通过狭缝,在屏上产生一条与缝宽相当的亮条纹。但是,当缝调到很窄时,尽管亮条纹的亮度有所降低,但是宽度反而增大了。这表明,光没有沿直线传播,它绕过了缝的边缘,传播到了相当宽的地方。这就是光的衍射现象。 二、发生明显衍射现象的条件 缝、孔或障碍物的尺寸与波长相差不多,或者比波长更短。 三、衍射图样 1、单缝衍射 (1)中央条纹为亮条纹,离中央条纹越远,亮条纹的宽度变窄,亮度变暗. (2)狭缝越窄,中央亮条纹越暗. 单缝衍射规律 A、波长一定时,单缝窄的中央条纹宽,各条纹间距大. B、单缝不变时,光波波长的(红光)中央亮纹越宽,条纹间隔越大. C、白光的单缝衍射条纹为中央亮,两侧为彩色条纹,且外侧呈红色,靠近光源的内侧为紫色. 2、圆孔衍射 用点光源照射直径较大的圆孔时,在屏上会出现一个明亮的圆形光斑,这是光直线传播的结果;缩小圆孔直径至足够小时,在屏上会出现一些明暗相间的圆环,这是光发生衍射的结果. 圆孔衍射图样特点:明暗相间的环状条纹,中央为圆形亮斑.

3、圆盘衍射(泊松亮斑) 用平行光照射一个不透光的小圆盘时,在圆盘阴影中心出现一个亮斑. 衍射图样的特点:圆形阴影中心有一亮斑,与小孔衍射图样有明显区别. 四、衍射光栅 1.制造:在两个螺杆上绷上许多平行的金属丝或者在玻璃片上刻上许多均匀细槽.2.分类:透射光栅和反射光栅. 3.现象:平行光照射由许多平行的狭缝整齐地排列起来形成的光学仪器产生的衍射现象.

第13章 光的衍射习题

第13章 光的衍射习题 【13-1】衍射的本质是什么?衍射和干涉有什么联系和区别? 【答】波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成. (点评:波阵面上各点发出的无数子波相互叠加而产生,就是将这些子波当作相干光源,产生的相干光在空间相遇叠加,所以衍射的实质还是光的干涉。) 【13-2】在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动? 【答】把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动. 【13-3】什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗条纹,单缝处波面各可分成几个半波带? 【答】半波带由单缝A 、B 首尾两点向?方向发出的衍射线的光程差用2 λ 来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个 和8个半波带. ∵由2 72 ) 132(2 ) 12(sin λ λ λ ? ? =+?=+=k a

2 84sin λ λ?? ==a 【13-4】在单缝衍射中,为什么衍射角?愈大(级数愈大)的那些明条纹的亮度愈小? 【答】因为衍射角?愈大则?sin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小. 【13-5】若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式) ,2,1(2 ) 12(sin =+±=k k a λ ? 来测定光的波 长,问测出的波长是光在空气中的还是在水中的波长? 【解】当全部装置浸入水中时,由于水中波长变短,对应 = '='λ?k a sin n k λ,而空气中为λ ? k a =sin ,∴??'=sin sin n ,即n φφ'≈, 水中同级衍射角变小,条纹变密. 如用) 12(sin +±=k a ? 2 λ ) ,2,1(???=k 来测光的波长,则应是光在水中的波 长.(因?sin a 只代表光在水中的波程差). 【13-6】在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入射光波长变长;(3)入射平行光由正入射变为斜入射. 【解】(1)缝宽变窄,由λ ? k a =sin 知,衍射角?变大,条纹变稀; (2)λ变大,保持a ,k 不变,则衍射角?亦变大,条纹变稀;

材料分析测试复习题及答案

1、分析电磁透镜对波的聚焦原理,说明电磁透镜的结构对聚焦能力的影响。 解:聚焦原理:通电线圈产生一种轴对称不均匀分布的磁场,磁力线围绕导线呈环状。磁力线上任一点的磁感应强度B 可以分解成平行于透镜主轴的分量Bz 和垂直于透镜主轴的分量Br 。速度为V 的平行电子束进入透镜磁场时在A 点处受到Br 分量的作用,由右手法则,电子所受的切向力Ft 的方向如下图(b );Ft 使电子获得一个切向速度Vt ,Vt 与Bz 分量叉乘,形成了另一个向透镜主轴靠近的径向力Fr ,使电子向主轴偏转。当电子穿过线圈到达B 点位置时,Br 的方向改变了180°,Ft 随之反向,但是只是减小而不改变方向,因此,穿过线圈的电子任然趋向于主轴方向靠近。结果电子作圆锥螺旋曲线近轴运动。当一束平行与主轴的入射电子束通过投射电镜时将会聚焦在轴线上一点,这就是电磁透镜电子波的聚焦对原理。(教材135页的图9.1 a,b 图) 电磁透镜包括螺旋线圈,磁轭和极靴,使有效磁场能集中到沿轴几毫米的范围内,显著提高了其聚焦能力。 2、电磁透镜的像差是怎样产生的,如何来消除或减小像差? 解:电磁透镜的像差可以分为两类:几何像差和色差。几何像差是因为投射磁场几何形状上的缺陷造成的,色差是由于电子波的波长或能量发生一定幅度的改变而造成的。几何像差主要指球差和像散。球差是由于电磁透镜的中心区域和边缘区域对电子的折射能力不符合预定的规律造成的,像散是由透镜磁场的非旋转对称引起的。 消除或减小的方法: 球差:减小孔径半角或缩小焦距均可减小球差,尤其小孔径半角可使球差明显减小。 像散:引入一个强度和方向都可以调节的矫正磁场即消像散器予以补偿。 色差:采用稳定加速电压的方法有效地较小色差。 3、说明影响光学显微镜和电磁透镜分辨率的关键因素是什么?如何提高电磁透镜的分辨率? 解:光学显微镜的分辨本领取决于照明光源的波长。 电磁透镜的分辨率由衍射效应和球面像差来决定,球差是限制电磁透镜分辨本领的主要因素。 若只考虑衍射效应,在照明光源和介质一定的条件下,孔径角α越大,透镜的分辨本领越高。若同时考虑衍射和球差对分辨率的影响,关键在确定电磁透镜的最佳孔径半角,使衍射效应斑和球差散焦斑的尺寸大小相等。 4、电子波有何特征?与可见光有何异同? 解:电子波的波长较短,轴对称非均匀磁场能使电子波聚焦。其波长取决于电子运动的速度和质量,电子波的波长要比可见光小5个数量级。 5、电磁透镜景深和焦长主要受哪些因素影响?说明电磁透镜的景深长、焦长长,是什么因素影响的结果? 答:电磁透镜景深与分辨本领0r ?、孔径半角α之间关系:.2200ααr tg r Df ?≈?=表明孔径半角越小、景深越大。透镜集长L D 与分辨本领0r ?,像点所张孔径半角β的关系:ββM r M r D L 002t a n 2?≈?=,M αβ=,202M r D L α?=∴ ,M 为透镜放大倍数。当电磁透镜放大倍数和分辨本领一定时,透镜焦长随孔径半角减小而增大。

第13章 5 光的衍射 6 光的偏振

5光的衍射6光的偏振 一、光的衍射 1.定义:光通过很小的狭缝(或圆孔)时,明显地偏离了直线传播的方向,在屏上应该出现阴影的区域出现明条纹或亮斑,应该属于亮区的地方也会出现暗条纹或暗斑的现象. 2.衍射图样:衍射时产生的明暗条纹或光环. 3.单缝衍射:单色光通过狭缝时,在屏幕上出现明暗相间的条纹,中央为亮条纹,中央条纹最宽最亮,其余条纹变窄变暗;白光通过狭缝时,在屏上出现彩色条纹,中央为白条纹. 4.圆孔衍射:光通过小孔时(孔很小)在屏幕上会出现明暗相间的圆环. 5.泊松亮斑:障碍物的衍射现象. 在单色光传播途中,放一个较小的圆形障碍物,会发现在阴影中心有一个亮斑,这就是著名的泊松亮斑.6.衍射光栅(1)结构:由许多等宽的狭缝等距离排列起来形成的光学仪器. (2)衍射图样特点:与单缝衍射相比,衍射条纹的宽度变窄,亮度增加.增加狭缝的个数,衍射条纹的宽度变窄,亮度增加. (3)种类:透射光栅和反射光栅. 二、光的偏振 1.偏振片:由特定的材料制成,每个偏振片都有一个特定的方向,只有沿着这个方向振动的光波才能顺利通过偏振片,这个方向叫做“透振方向”. 2.自然光和偏振光 (1)自然光:太阳、电灯等普通光源发出的光,包含着在垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同.这种光是“自然光”. (2)偏振光:在垂直于传播方向的平面上,沿着某个特定的方向振动,这种光叫做偏振光. 3.光的偏振现象说明光是一种横波. (1)白光通过盛水的玻璃杯,在适当的角度,可看到彩色光,是光的衍射现象.( ) (2)菜汤上的油花呈现彩色,是光的折射现象.( ) (3)用两支圆柱形铅笔并在一起,形成一个狭缝,使狭缝平行于日光灯,会看到彩色的衍射条纹.( ) (4)凡是波都有偏振现象.( ) (5)反射可以引起自然光的偏振.( ) 2.在单缝衍射实验中,下列说法正确的是() A.将入射光由黄光换成绿光,衍射条纹间距变窄B.使单缝宽度变小,衍射条纹间距变窄

相关主题
文本预览
相关文档 最新文档