当前位置:文档之家› 二次雷达波束控制系统设计

二次雷达波束控制系统设计

二次雷达波束控制系统设计
二次雷达波束控制系统设计

第10卷 第3期 信息与电子工程Vo1.10,No.3 2012年6月 INFORMATION AND ELECTRONIC ENGINEERING Jun.,2012

文章编号:1672-2892(2012)03-0266-04

二次雷达波束控制系统设计

夏勇,张浩,李晓娟,尤路

(中国电子科技集团第38研究所,安徽合肥 230031)

摘 要:传统的二次雷达通常采用机械扫描的工作方式。基于无源相控阵天线体制的二次雷达作为一种新体制的雷达,是为了适应重点空域警戒功能而发展起来的。波束控制系统是该二次

雷达的重要组成部分,其基本功能包括:相位控制、同步控制、数据传输以及信号自检。二次雷

达波束控制系统采用了基于嵌入式计算机和网络的集中式波控方案设计。在波控处理流程中,作

者采取了软件和硬件的双重同步手段。在波控数据的布相方法上,采用二级缓存同步布相的方法。

在实践过程中证明,基于嵌入式计算机和网络的二次雷达波束控制系统具有工作方式灵活多样、

波束调度方便、可靠性高等优点。

关键词:二次雷达;波束控制;嵌入式计算机;网络;同步

中图分类号:TN958.96文献标识码:A

Design of beam steering system for secondary surveillance radar

XIA Yong,ZHANG Hao,LI Xiao-juan,YOU Lu

(The 38th Research Institute,China Electronics Technology Group Corporation,Hefei Anhui 230031,China)

Abstract:Mechanical scanning mode is often used in traditional secondary surveillance radar. As a new kind of radar concept, passive phased array based secondary surveillance radar is developed to suit

the function of vital airspace surveillance. The basic function of the beam steering system, which is an

important component of secondary surveillance radar, includes phase steering, synchronous processing,

data transmission and signal self-checking. In this paper, the centralized design scheme based on

embedded computer and network for beam steering system of secondary surveillance radar is adopted.

Dual synchronous process method of software and hardware is employed in the flow of beam steering. The

secondary cache is adopted for synchronous beam distribution. Proved in the course of practice, embedded

computer and network-based secondary radar beam steering system features a flexible way of working,

beam scheduling convenience, and higher reliability.

Key words:secondary surveillance radar;beam steering;embedded computer;network;

synchronization

二次雷达(Secondary Surveillance Radar,SSR)在航空交通管制、敌我识别等方面得到了广泛的应用,是大型雷达系统的重要组成部分。从工作原理来说,二次雷达是一种通过发射信号并接收应答信号以获得合作目标信息的电子设备[1]。传统的二次雷达通常采用机械扫描的工作方式。

相控阵体制的一次雷达通常具有重点空域监视功能,即在阵面天线不动的状态下,天线波束在方位及仰角上能够进行两维扫描[2]。因此需要设计一种新体制的二次雷达以适应一次雷达的这种要求。这种新体制的二次雷达,天线采用无源相控阵体制。在二次雷达天线静止的状态下,二次雷达波束可以在方位角上进行扫描,其方位扫描范围一般要求覆盖一次雷达波束的方位扫描范围。采用相控阵天线体制的二次雷达,其天线波束的控制具有很大的灵活性,波束在空间的扫描几乎是无惯性的。这种特性克服了机械扫描天线波束指向转换的惯性以及由此给雷达性能带来的限制[3]。

收稿日期:2011-08-22;修回日期:2011-10-10

第3期 夏 勇等:二次雷达波束控制系统设计 267

1 工作原理

1.1波控原理

如图1所示,二次雷达天线属于一维相位扫描天线,在方位方向上为窄波束,而在仰角方向上则为宽波束。将平面相控阵天线放置在(y ,z )平面上,天线各相邻单元的间距在水平和垂直方向上分别为1d 和2d [4]。这一水平线阵如果由N 个单元组成,第i 单元的波束控制码()C i 为:

(), 0,1,,1C i i i N α==?"

其中,最小计算相移量Bmin φΔ为2π/2k ,

1B 1B B Bmin Bmin

cos 2cos sin y

k d d ααφλαθφφφλΔ=

==ΔΔ 式中:k 为移相器位数;λ为雷达射频信号波长;B φ为球坐标系下波束指向方位角;B θ为波束指向俯仰角。

由于两坐标雷达只在方位上进行相控扫描,因此波束控制数码只根据方位角B φ来决定,即实际上α按下式计算:

1

B 2sin k d αφλ

=

1.2 幅相校准

相控阵天线中许多器件的制造以及组装都有公差,常常呈现出较大的相位误差,从而引起相控阵天线增益的

下降和旁瓣的升高,因此在工作过程中需要知道每一个阵元的辐射相位和幅度值,然后对通道相位误差进行补偿。

2 系统设计

2.1 波控方案

二次雷达波束控制系统应具备以下4个基本功能:

相位控制、同步控制、数据传输以及对信号的自检处理。相控阵雷达波控系统一般采用集中式波控和分布式波控2种方案[5]。结合二次雷达的系统规模和特点,采用集中式波控方案。该波控方案以嵌入式计算机为核心控制单元。嵌入式计算机标准模块在一块尺寸很小的单板机

上几乎集成了普通PC 机的所有功能,

标准的PC 兼容体系结构减少了软件开发工作量。波束控制计算机根据波束指向、形状要求对阵面各单元点的相位、幅度进行统一运算,算完后将相位、幅度等数据通过总线分别传输至阵面上的各个波控接口单元[6]。最后再根据不同地址将数据依次打入相应的存储单元。此方法的优点是硬件设备量少,控制灵活,幅相补偿简单。

Fig.2 Block diagram of beam steering system for secondary radar

图2 二次雷达波控系统框图

y

Fig.1 Coordination for phased array antenna 图1相控阵天线坐标关系

268

信 息 与 电 子 工 程 第10卷

2.2 布相方法

在二次雷达波束控制系统设计中,在波控数据的布相方法上,采用了二级缓存同步布相的方法,其工作原理框图见图3。

该方法由波控计算机对阵面各单元的相位进行统一运算,运算结束后由波控计算机单元以I/O 端口操作方式通过总线将数据(移相码和衰减码)依次锁存

在波控接口单元的一级缓存中,最后由波束切

换信号统一将数据打入二级缓存中。

2.3 处理流程

如图4所示,相控阵雷达系统中的设备如任务管理、波束调度、二次雷达主控器、波束

控制等单元统一采用了基于网络的设备架构,使用以太网以广播方式传输控制指令和数据。利用网络及相应的同步机制,把相控阵雷达系

统中各个功能独立的设备单元揉合成了一个

有机的整体[7]。

相控阵雷达系统的任务管理单元向波束调度单元发出扇区请求。波束调度单元收到指令后按工作需求编排波束队列,通过网络同时发送给二次雷达主控制单元和二次雷达波束

控制单元[8]。鉴于网络广播传输数据延时的不确定性,各个节点接收数据的时间存在差异,所以不仅需要在软件上进行同步,在硬件上也需要进行同步,来协调系统的工作,如图5所示。

波束控制单元接收到波束调度单元发出的波束队列,在完成相应相位的布相工作后,通过硬件端口向主控制单元发出波束准备好信号及波束序列代码。主控制单元在收到波束控制单元在硬件端口上发来的信号后,与网络发送的报文进行比对。在确认一致后,才发出波束切换信号和TR 收发时序信号,否则会向波束调度单元重新申请波束队列。

Fig.4 Flow chart of beam steering process

图4 波控处理流程

beam ready signal beam switch signal

beam serial code TR signal

Fig.5 Schedule of beam steering

图5 波控时序关系

T/R select

Fig.3 Sketch map of secondary cache 图3 二级缓存原理示意图

第3期夏勇等:二次雷达波束控制系统设计269 3 软件操作系统

VxWorks操作系统是现在最流行的嵌入式操作系统。

它属于实时操作系统,支持多任务进程,具有可靠性高、

网络功能完备等优点;同时它还可以根据实际使用的需要

进行灵活剪裁。因此选用VxWorks操作系统作为波控软

件的操作系统。如图6所示,波控软件主要通过中断方式

来截获外部数据,当数据进入消息通道后,在满足一定条

件时,软件才处理数据。软件通过时间片在不同任务间进

行切换的方法,实现多任务和实时处理的功能。

4 结论

在实践过程中证明,基于嵌入式计算机和网络的二次

雷达波束控制系统具有工作方式灵活多样、波束调度方

便、可靠性高等优点。采用相控阵天线体制的二次雷达丰

富了其传统工作模式和应用范围,但是如何充分发挥相控

阵雷达的特点和应用潜力,仍然需要在今后的工作中继续总结和挖掘。

参考文献:

[ 1 ] 张蔚. 二次雷达原理[M]. 北京:国防工业出版社, 2009. (ZHANG Wei. Secondary surveillance radar principle[M].

Beijing:National defense industry press, 2009.)

[ 2 ] 丁鹭飞. 雷达原理[[M]. 西安:西安电子科技大学出版社, 2006. (DING Lufei. Radar principle[M]. Xi’an:Xidian University publishing house, 2006.)

[ 3 ] 朱培斌. 相控阵雷达评述[J]. 雷达与对抗, 1992(2):1-7. (ZHU Peibin. Commentary on phased array radar[J]. Radar and ECM, 1992(2):1-7.)

[ 4 ] 张光义. 相控阵雷达系统[M]. 北京:国防工业出版社, 1994. (ZHANG Guangyi. Phased array radar system[M]. Beijing: National defense industry press, 1994.)

[ 5 ] 郑清,张健. 相控阵雷达分布式波控系统设计[J]. 现代雷达, 2001,23(6):49-51. (ZHENG Qing,ZHANG Jian. The design of phased array radar distributed beam steering system[J]. Modern radar, 2001,23(6):49-51.)

[ 6 ] 林桂道. 现代相控阵系统的波束控制设计分析[J]. 舰船科学技术, 2007,29(3):74-79. (LIN Guidao. Design of beam steering in modern phased array system[J]. Ship science and technology, 2007,29(3):74-79.)

[ 7 ] 高文辉. 基于嵌入式计算机和Ethernet的分布式波控系统[J]. 现代雷达, 2003,25(12):35-37. (GAO Wenhui.

Distributed beam steering system based on embedded computer and Ethernet[J]. Modern radar, 2003,25(12):35-37.)

[ 8 ] 赵洪涛,程婷,何子述. 数字阵列雷达波束驻留调度间隔分析算法[J]. 信息与电子工程, 2011,9(1):17-21. (ZHAO Hongtao,CHENG Ting,HE Zishu. Dwell scheduling algorithm based on analyzing scheduling interval for digital array radar[J]. Information and Electronic Engineering, 2011,9(1):17-21.)

作者简介:

夏勇(1972-),男,合肥市人,学士,高级工程师,主要研究方向为机载雷达任务电子系统、地面情报雷达监控系统.email: xiayong168@https://www.doczj.com/doc/ca655383.html,.

张浩(1970-),男,安徽省巢湖市人,硕士,高级工程师,主要研究方向为地面情报雷达监控软件、数据处理软件等.

李晓娟(1980-),女,黑龙江省双鸭山市人,学士,工程师,主要研究方向为机载雷达任务电子系统.

尤路(1984-),男,安徽省寿县人,硕士,助理工程师,主要研究方向为地面情报雷达监控系统.

图6 软件处理流程

智能化监控系统设计方案

智能化监控系统设计方案 一、系统组成 本项目智能化监控系统由视频监控子系统、智能门禁子系统、车辆出入管理子系统、可视对讲子系统、周界防卫子系统、公共广播子系统、巡更子系统7个子系统组成。 系统总体结构如下图所示: 二、多媒体综合监控系统整体设计方案 监控中心平台作为本监控系统的核心,是一个基于TCP/IP协议的监控管理系统,主要包括中心管理平台和业务应用平台。本监控中心平台具备媒体浏览、控制、存储等业务功能外,同时具有系统用户管理、设备管理、控制管理、存储管理、调度管理、告警管理等系统管理功能,实现区域综合监控系统集中、统一管理。 1、实现了权限的集中管理 2、所有子系统共用网络系统,在监控中心实现统一管理。 3、所有子系统全部信息(视频信息、车辆信息、门禁信息、告警信息、广播信息、巡更信息等)全部存储在监控中心,实现统一存储。

三、系统传输方案 选用LAN网络来进行监控的媒体信息传输,通过TCP/IP网络传输到监控中心。监控点采用多媒体接入单元实现对媒体信息进行编码压缩和远程管理。 组网方式如下图所示:

四、各子系统设计方案 1、视频监控子系统 以IP网络为基础,将分散、独立的现场采集点进行联网,实现跨区域、统一监控和统一管理。它由监控现场、网络设备及监控中心三部分组成。 (1)监控现场 监控现场的监控设备主要包括:多媒体接入单元、摄像机、各类报警探头等,主要负责监控现场现场视频及环境告警信息的采集,并且执行监控中心的控制指令。 监控现场的典型设备连接示意图如下:

在监控现场,由摄像机、报警探头等设备采集的所有现场信息,在多媒体接入单元经过数字化编码压缩处理后,直接上传至上级监控中心。监控中心将以IP单播/组播的方式实现一对多(一个业务/管理客户端同时连接监控多个监控现场内的监控目标)和多对一(多个业务/管理客户端同时监控一个监控现场内的监控目标)的远程实时监控功能。 当发生特定的报警情况时(如:人员非法入侵、设备状态变化及故障、消防报警等),系统将接收相应的报警信息,并根据预先设定的联动策略,联动相应的摄像机转动到指定的预置位,进行录像、抓图等相关操作。报警信息能与录像、抓图无缝结合,即可由报警信息检索回放相应的现场录像与抓拍图片,以便作为日后事故追忆和调查的有力辅助手段。 监控现场内同时发生多点报警时,系统将按报警级别高低和时间优先的原则进行处理:先上传严重报警点的视音频等告警信息,同等级别的报警将按时间优先顺序上传。 另外,根据实际需要,可配置话筒、扩音器、音箱、音柱等音频对讲设备,将它们通过多媒体接入单元的语音对讲接口与音频输入接口接入监控系统,以实现监控中心和监控现场的双向语音对讲与中心语音广播,以便在发生异常、设备故障时,进行及时的沟通、指导,满足调度指挥的需要。 (2)网络设备 监控现场与监控中心设备均部署在同一IP局域网下,如果采用

产品设计五性可靠性维修性安全性测试性和保障性

3 “五性”的定义、联系及区别 3.1 可靠性 产品在规定的条件下和规定的时间内完成规定功能的能力。可靠性的概率度量称为可靠度(GJB451-90)。 可靠性工程:为达到产品的可靠性要求而进行的一套设计、研制、生产和试验工作。 (GJB451-90) 显然,这个定义适用于各种装备、设备、系统直至零部件的各个产品层次。可靠性是产品的一种能力,持续地完成规定功能的能力,因此,它强调“在规定时间内”;同时,产品能否可靠地完成规定功能与使用条件有关,所以,必须强调“在规定的条件下”。 为了使产品达到规定的可靠性要求,需要在产品研制、使用开展一系列技术和管理活动,这些工程活动就是可靠性工程。即:可靠性工程是为了达到产品的可靠性要求而进行的一套设计、研制、生产和试验工作。(GJB451-90)。实际上,可靠性工程还应当包含产品使用、储存、维修过程中的各种保持和提高可靠性的活动。 3.1.1可靠性要求

3.1.1.1 定性要求 对产品的可靠性要求可以用定性方式来表达,满足这些要求使用中故障少、即使发生故障影响小即可靠。例如,耐环境特别是耐热设计,防潮、防盐雾、防腐蚀设计,抗冲击、振动和噪声设计,抗辐射、电磁兼容性,冗余设计、降额设计等。其中冗余设计可以在部件(单元)可靠性水平较低的情况下,使系统(设备)达到比较高的可靠性水平。比如,采用并联系统、冷储备系统等。除硬件外,还要考虑软件的可靠性。 3.1.1.2 定量要求 可靠性定量要求就是产品的可靠性指标。产品的可靠性水平用可靠性参数来表达,而可靠性参数的要求值就是可靠性指标。常用的产品可靠性参数有故障率、平均故障间隔时间以及可靠度。 故障率是在规定的条件下和规定的时间内,产品的故障总数与时间(寿命单位总数)之比。即平均使用或储存一个小时(发射一次或行驶100km)发生的故障次数。 平均故障间隔时间(MTBF)是在规定的条件下和规定的时间内,产品寿命单位(时间)总数与故障总次数之比。即平均多少时间发生一次故障。通常可以用故障率的倒数表示。 可靠度R(t)是可靠性的概率表示。即在规定的条件下和规定时间内,产品完成规定功能的概率。即:

智能雷达光电探测监视系统单点基本方案..

智能雷达光电探测监视系统单点基本方案
一、 系统概述
根据监控需求: 岸基对海 3~10 公里范围内主要大小批量目标; 主动雷达光电探测和识别; 多目标闯入和离去自动报警智能职守; 系统接入指挥中心进行远程监控管理; 目标海图显示管理; 系统能够自动发现可疑目标、跟踪锁定侵入目标、根据设定条件进行驱散、 同时自动生成事件报告记录,可以实现事故发生后的事件追溯,协助事故调查。 1. 项目建设主要目的 ? 为监控区域安全提供综合性的早期预警信息; ? 通过综合化监测提高处置和应对紧急突发事件的指挥能力。 2. 基本需求分析: 需配置全自动、全量程具备远距离小目标智能雷达探测监视和光电识别系 统,系统具备多目标自动持续稳定跟踪、多种智能报警功能、支持雷达视频实 时存储、支持留查取证的雷达视频联动回放功能等;同时后期系统需具备根据 用户需求的功能完善二次开发能力。同时支持后续相关功能、扩点组网应用需 求。 根据需求和建设主要目的,选型国际同类技术先进水平,拥有相关技术自 主知识产权,具备二次技术深化开发的北京海兰信数据科技股份有限公司 (2001 年成立,2010 年国内创业板上市,股票代码:300065,致力于航海智 能化与海洋防务/信息化的国内唯一上市企业)的智能监视雷达光电系统。该系 统在国内外有众多海事相关成熟应用案例,熟悉国内海事、海监、海警、渔政

公务执法及救捞业务需求特点等。同时,该系统近期成功中标国内近年来相关 领域多套(20 套)雷达光电组网项目,充分说明该系统的技术领先及成熟应 用的市场广泛接受度。
3. 项目建成后的主要特点 ? 全天候、全覆盖、全自动的立体化监控。该系统具备对多传感器信息 融合的能力,确保对探测范围内雷达信息源、光电、AIS、GPS 等设备信号源 进行有机的融合和整合。 ? 系统具备了预警、报警、实时录取回放的综合功能。任何目标物进入 雷达视距时,系统即开始进行监测。目标物触碰警报规则后,指挥室获得报警 信号,同时联动设备综合光电锁定警报目标,以便驱离。整个过程系统实时记 录、方便随时调用回放。 ? 系统技术水平国内领先。该系统中创新地采用了国际先进的“先跟踪 后探测”算法技术对目标进行探测和跟踪,保证了在严苛条件下满足对目标地 探测与持续跟踪能力。 ? 该系统采用先进的设计思想,开放灵活的系统网络架构,能够根据需 求进行不同的组合和配置,系统可扩展性强。 ? 维护便捷,由于采用网络架构,获得用户授权后能连接到用户网络, 可以远程支援维修维护系统,从而提高维护效率,减少维护成本。 ? 可靠性高,充分适应不同的海洋环境。
二、 系统设备清单
序号 1
2
材料名称
规格型号
X 波段雷达,IP65(含安装支架) HLD800/900;8ft,25kw
小目标雷达数据处理器及显示 HLD-STTD-1000
终端软件
Radpro V1.6.0.0
数量 1套
1套

智能化监控系统设计方案样本

智能化监控系统设 计方案

智能化监控系统设计方案 一、系统组成 本项目智能化监控系统由视频监控子系统、智能门禁子系统、车辆出入管理子系统、可视对讲子系统、周界防卫子系统、公共广播子系统、巡更子系统7个子系统组成。 系统总体结构如下图所示: 二、多媒体综合监控系统整体设计方案 监控中心平台作为本监控系统的核心,是一个基于TCP/IP协议的监控管理系统,主要包括中心管理平台和业务应用平台。本监控中心平台具备媒体浏览、控制、存储等业务功能外,同时具有系统用户管理、设备管理、控制管理、存储管理、调度管理、告警管理等系统管理功能,实现区域综合监控系统集中、统一管理。

1、实现了权限的集中管理 2、所有子系统共用网络系统,在监控中心实现统一管理。 3、所有子系统全部信息(视频信息、车辆信息、门禁信息、告警信息、广播信息、巡更信息等)全部存储在监控中心,实现统一存储。 三、系统传输方案 选用LAN网络来进行监控的媒体信息传输,经过TCP/IP网络传输到监控中心。监控点采用多媒体接入单元实现对媒体信息进

行编码压缩和远程管理。 组网方式如下图所示: 四、各子系统设计方案 1、视频监控子系统 以IP网络为基础,将分散、独立的现场采集点进行联网,实现跨区域、统一监控和统一管理。它由监控现场、网络设备及监控中心三部分组成。 (1)监控现场 监控现场的监控设备主要包括:多媒体接入单元、摄像机、

各类报警探头等,主要负责监控现场现场视频及环境告警信息的采集,而且执行监控中心的控制指令。 监控现场的典型设备连接示意图如下: 在监控现场,由摄像机、报警探头等设备采集的所有现场信息,在多媒体接入单元经过数字化编码压缩处理后,直接上传至上级监控中心。监控中心将以IP单播/组播的方式实现一对多(一个业务/管理客户端同时连接监控多个监控现场内的监控目标)和多对一(多个业务/管理客户端同时监控一个监控现场内的监控目标)的远程实时监控功能。 当发生特定的报警情况时(如:人员非法入侵、设备状态变化及故障、消防报警等),系统将接收相应的报警信息,并根据预先设定的联动策略,联动相应的摄像机转动到指定的预置位,进行录像、抓图等相关操作。报警信息能与录像、抓图无缝结合,即可由报警信息检索回放相应的现场录像与抓拍图片,以便作为日后事故追忆和调查的有力辅助手段。 监控现场内同时发生多点报警时,系统将按报警级别高低和时间优先的原则进行处理:先上传严重报警点的视音频等告警信息,同等级别的报警将按时间优先顺序上传。

可测试性需求讲解

软件可测试性需求设计 一、引言 1、目的 提高软件的可测试性,加快测试进度,提高测试效率。 2、范围 描述的范围主要是可测性设计的特征,考虑方向及设计方法。 3、读者对象 系统分析员、设计人员、开发人员。 二、测试所需文档 1、需求规格说明书 2、概要设计说明书 3、详细设计说明书 4、系统功能清单 5、系统运行环境搭建指导书 6、系统操作指导书 三、可测试性设计需求 可测试性主要是指被测实体具有如下特征:可控制性、可分解性、稳定性、易理解性、可观察性,该特征的主要要表现是设立观察点、控制点、观察装置。需要注意的是可测性设计时必须要保证不能对软件系统的任何功能有影响,不能产生附加的活动或者附加的测试。 1、可控制性设计需求 1)全局变量的可控制性设计需求 在外界使用适当的手段能够直接或间接控制该变量,包括获取、修改变量值等。可以将全局类型的变量进行分类并封装到一个个接口中操作。 2)接口的可控制性设计需求 各接口在外界使用适当的手段能够直接调用对该接口进行操作,这里所谓的适当的手段

主要包括使用测试工具和增加额外代码。对于向外提供的接口的接洽处能够人为的对接,比如构造测试环境模拟接口对接,这里所指的开放接口主要是指相对于被测系统,即为被测系统外提供的接口。接口接洽处人为对接时各接口所要求的条件和所需的参数人为的能够轻易达到和提供。 3)模块的可控制性设计需求 对于每个相对独立的模块设计好所需要的驱动和桩都能单独设计用例进行测试对应的功能,在测试运行期间模块异常时能够将其隔离而不影响测试。 4)业务流程的可控制性设计需求 在测试环境满足的情况下能够控制任一单独业务流程,各业务流程具有流通性。 5)场景的可测性设计需求 将一场景所涉及到的业务和接口整合到一个统一的接口使其能够单独操作该场景。 2、可分解性设计需求 1)业务流程的可分解性设计需求 对于复杂的业务流程需合理设定分解点,在测试时能够对其进行分解。 2)场景的可测性设计需求 对于复杂的场景需合理设定分解点,在测试时能够对其进行分解。 3、稳定性设计需求 测试模块发布合理,不能在后期追加的模块为前期所测模块引入新的不必要的测试活动。 4、易理解性设计需求 1)设计文档的易理解性 设计参考标准 内容描述主次要分清 依赖关系描述明确 2)接口的易理解性

一套适合无人值守雷达远程监控系统的综合设计

第3期一气象水文海洋仪器一一N o .32018年9月一M e t e o r o l o g i c a l ,H y d r o l o g i c a l a n d M a r i n e I n s t r u m e n t s 一一S e p .2018收稿日期:2018G01G15. 基金项目:由江西省气象科技重点项目 新一代天气雷达(C I N R A D /S A ) 远程智能控制系统设计 (项目编号:赣气科验字[2017]第5号)资助.作者简介:陈利芳(1988),女,大学,助理工程师.主要从事大气探测设备维护保障工作.一套适合无人值守雷达远程监控系统的综合设计 陈利芳1,张初江1,杨小明2 (1.抚州市气象局,抚州344000;2.抚州市临川区气象局,抚州344000 )摘一要:文章从供电二消防安全二环境动力监控二网络视频监控二数据质量监控等方面综述了无 人值守雷达稳定运行所需要综合考虑的一整套远程监控系统设计方案,通过远程视频监控,采 用M i c r o s o f tV i s u a l C #语言开发通信传输程序, 定时对数据进行分析,多方式获得雷达设备故障信息和数据传输异常信息,实现偏远雷达台站无人或少人值守.该系统可以在提高雷达 可用性二保障设备安全和数据质量二减少故障响应时间二降低维护保障经费等方面提供参考,同 时,也为将要布设雷达的台站提供借鉴. 关键词:无人值守雷达;远程监控;视频监控中图分类号:T P 29一一文献标识码:A一一文章编号:1006G009X (2018)03G0061G04 S y n t h e s i z e dd e s i g no na r e m o t em o n i t o r i n g s y s t e mf o r u n m a n n e d r a d a r C h e nL i f a n g 1,Z h a n g C h u j i a n g 1,Y a n g X i a o m i n g 2(1.F u z h o uM e t e o r o l o g i c a lB u r e a u ,F u z h o u 344000;2.L i n c h u a nM e t e o r o l o g i c a lB u r e a uo f F u z h o u ,F u z h o u 344000)A b s t r a c t :T h i s p a p e r s u m m a r i z e s t h e d e s i g no f r e m o t em o n i t o r i n g a n d c o n t r o l s y s t e m w h i c hn e e d t ob e c o n s i d e r e d c o m p r e h e n s i v e l y i n t h e a s p e c t s o f p o w e r s u p p l y ,f i r e s a f e t y ,e n v i r o n m e n t p o w e rm o n i t o r i n g ,n e t w o r kv i d e om o n i t o r i n g a n dd a t a q u a l i t y m o n i t o r i n g .T h r o u g h r e m o t e v i d e o s u r v e i l l a n c e ,i t d e v e l o p s c o m m u n i c a t i o na n dt r a n s m i s s i o n p r o c e d u r e sb y u s i n g M i c r o s o f tV i s u a lC #l a n g u a g e ,a n a l y z e sd a t a r e g u l a r l y a n da c q u i r e s r a d a re q u i p m e n t f a u l t i n f o r m a t i o na n dd a t at r a n s m i s s i o n i n f o r m a t i o n i n m a n y w a y s ,w h i c hc a nb eu s e dt or e a l i z er e m o t er a d a rs t a t i o n s w i t hn oo n eo rf e w p e o p l eo nd u t y .T h e s y s t e mh a s i m p o r t a n t p r a c t i c a l s i g n i f i c a n c e f o r i m p r o v i n g t h e a v a i l a b i l i t y o f r a d a r ,e n s u r i n g t h e s a f e t y o f e q u i p m e n t a n dd a t a q u a l i t y ,r e d u c i n g t h e r e s p o n s e t i m eo f t h e f a u l t a n d l o w e r i n g t h em a i n t e n a n c e a n d p r o t e c t i o n f u n d i n g .A t t h e s a m e t i m e ,i t a l s o p r o v i d e s a r e f e r e n c e f o r t h e s t a t i o nw h e r e t h e r a d a r w i l l b e d e p l o y e d .K e y w o r d s :u n m a n n e d r a d a r ;r e m o t em o n i t o r i n g ;v i d e o s u r v e i l l a n c e 0一引言天气雷达可以及时提供时空连续变化的实时降水资料,给出较大范围内的瞬时降水强度分布二 累积降水量分布和区域降水量等,对全球范围内 出现越来越多的极端天气的监测具有重要意 义[1].自1998年起, 我国开始在全国范围内陆续布设天气雷达,并规划在全国范围内布设天气雷 达系统,形成覆盖全国的天气雷达监测网[2],但是由于雷达探测效率和探测环境,全国大部分雷达

自动控制原理-雷达天线伺服控制系统

自动控制理论课程设计 设计题目雷达天线伺服控制系统 姓名 学号 专业 班级 指导教师 设计时间

目录 第一章绪论 (1) 1.1课题背景及意义 (1) 1.2课题研究的目的 (1) 1.3课题研究的主要内容 (2) 第二章系统的总体设计 (3) 2.1系统的组成图 (3) 2.2控制系统的结构图 (3) 2.3系统的简化方框图及简单计算 (4) 2.4系统的动态分析 (6) 第三章系统的根轨迹和伯德图 (7) 3.1系统的根轨迹图及分析 (7) 3.2系统的Bode图及分析 (8) 第四章校正设计 (10) 4.2校正后的根轨迹图及分析 (12) 4.2校正后的Bode图及分析 (13) 第五章总结 (15) 参考文献 (16)

第一章绪论 1.1课题背景及意义 雷达天线伺服控制系统是用来控制天线,使之准确地自动跟踪空中目标的方向,也就是要使目标总是处于天线轴线的方向上的,用来精确地跟随或复现某个过程的反馈控制系统,又称随动系统,主要解决位置跟随系统的控制问题。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度,加速度的反馈控制系统,并要求具有足够的控制精度。其作用是使输出的机械位移(或转角)准确地跟踪输入地位移(或转角)。伺服系统的结构组成和其他形式反馈控制系统没有原则上的区别,它是由若干元件和部件组成的并具有功率放大作用的一种自动控制系统。 雷达天线伺服控制系统,可以准确确定障碍物的位置。利用雷达天线伺服控制系统可以探测飞机、舰艇、导弹以及其他军事目标,信息处理、数字处理,收集、综合地面运动目标和固定目标的情报及图像,还可以探测低空飞行的威胁,为用户提供包含面广的威胁画面。对空搜索、边搜索边测距、空地测距、自动检测;除了军事用途外,雷达在交通运输上可以用来为飞机、船只导航;在天文学上可以用来研究星体;在气象上可以用来探测台风,雷雨,乌云等等。雷达天线伺服控制系统的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。然而雷达天线伺服控制系统在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面显示了很好的应用潜力。 1.2课题研究的目的 雷达天线伺服控制系统的设计目的是通过采取各种控制策略,快速,准确,稳定,可靠地跟踪目标,使天线伺服系统的天线座驾的机械轴随控制指令运动,并能使天线的电轴始终对准目标,完成各项任务,并确保天线伺服系统安全,可靠,长期,稳定地工作。利用电磁波探测目标的电子设备,发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。而在我们设计的伺服控制系统中,天线的转动要求

雷达天线控制系统的设计.doc

雷达天线控制系统设计 摘要 本课题研究的雷达天线控制系统要求具有定位和等速跟踪功能,定位控制要求精度高、响应快,等速跟踪控制要求转速平稳。早期的雷达天控系统大多采用模拟电路实现,如需调整控制参数时,就要更换控制器中一些元件,同时受环境温度、外界干扰及元件老化等因素的影响,调节器参数都会发生变化,从而影响控制性能。 一般的雷达天线的性能主要取决于其伺服系统的设计水平。伺服系统的设计包括结构设计和控制设计两部分,这两部分是相互影响紧密耦合的。一般所采用的设计方法是对结构系统和控制系统先分别设计,然后再根据要求进行调校,这往往会导致产品研制的周期长、成本高、性能差、结构笨重,不能保证伺服系统总体的综合性能最优。针对雷达天线伺服系统设计中存在的结构设计与控制设计相分离的问题,提出一种结构与控制集成优化设计的模型,即采用手轮控制和电路自动化控制相结合的方式完成。 本文以雷达天线控制系统的研制为背景,设计了系统总体方案。雷达为机动型远程警戒雷达,天线在圆周360°方位中进行运转工作,在伺服系统中对天线的控制实现远程遥控和人工控制。工作中为了有效的消除云雨气象杂波的干扰,利用空间电磁场和目标的特性,在伺服系统中对云雨气象杂波的干扰实现线极化和原极化的转换控制。对于天线360°圆周运转状态,需要通过处理变换并把360°圆周运转的模拟方位信号转换为数字方位信号,同时为雷达各个分系统提供出方位数据;通过方位处理可实现雷达寻北,对方位数据进行自动教北。天线在架设时应进行升降俯仰控制,通过控制可安全操作升降俯仰。 关键词:雷达,天线,控制,精度,伺服

Radar antenna control system design Summary Research of radar antenna control system requires a positioning and velocity tracking, positioning control requires high precision and fast response, speed speed tracking control requirements, such as stable. Most of the early days of radar controlled systems used analog circuits, need to adjust control parameters, it is necessary to replace the controller components in and influenced by environmental factors such as temperature, outside interference and component aging effects, changes regulator parameters, thus affecting performance. General performance of radar antenna mainly depends on the level of its servo system design. Design of servo system design including design and control of two parts, interaction between these two parts are tightly coupled. General system design method is used to structure and control system design, respectively, and then adjusted according to the requirements, which often leads to long product development cycles, high cost, poor performance, structure of heavy, cannot ensure the overall performance of optimal servo system. For the radar antenna servo system design of structure and control design of phase separation problem, proposed a model of integrated optimization design of structure and control, using hand wheel completed the combination of control and automatic control circuit. With development of the radar antenna control system in the background of this article, designing the general scheme of the system. Radar-Mobile early warning radar, antennas work running in a circle of 360 ° azimuth, remote control for antenna servo system of control and manual control. In order to be effective in eliminating Cloud and rain weather clutter interference using spatial characteristics of electro-magnetic fields and the target, Cloud and rain in a servo system of weather clutter jamming transition control for linear polarization and the polarization. Aerial 360 °circle running condition, use the transform and simulation of running in a circle of 360 °azimuth direction of signal into a digital signal, while for the radar system with location data through North azimuth radar homing, on North azimuth data

智能监控系统改造设计方案

智能监控系统改造设计方案 第一部分项目设计实施指导思想 一统集成商的选择 1、应有集成化系统中的一项或几项产品、或系统中大多项数产品的直接代理; 2、不但具备供货能力、施工资质,而且具备培训、开发维护等技术支持能力; 3、具备丰富的工程经验、较好的工程业绩。在正式施工前,具备实施方案的各 子系统及其集成模拟安装、测试及演示手段,保证具备各子系统以及系统集成的技术实力,做到业主放心; 4、拥统产品的专家,具备一定的科技实力,具有技术领先性,能掌握技术前沿的 硬件、软件,保证系统的升级换代能力。 5、具备现场各类机电设备的调试指导能力,保证弱电、强电系统的统一配合开 通。 6、具备独立测试、集成系统的能力,保证系统的具体技术参数和总体质量。 7、系统集成商首先要熟悉各子系统产品,这种熟悉不能纸上谈兵,应该有实际 的工程经验,能真正了解技术细节。从而能正确提出信息集成所需要的各项工作任务。 该项目是一项十分庞大的综合性系统工程,需要相应的技术专家对众多产品作评估和把握,需要一套行之有效的技术管理和施工管理的作业方法,在这样的工程中,实际的现场经验具有头等重要的意义,相信您不能将一项投资达数百万元以上的工程当作实验让没有经验的人去做。 同时,系统集成商能面对现场的需要解决各种各样的实际应用问题,去满足综合管理方面的需要。应倾注全力向业主提供一套完整、全面的、最佳的整体解决方案,是对系统集成商的基本尺度和要求,而不应只关注于推销某种弱电产品,只有这样作为弱电系统总承包者,他的做法才会客观和公正,他才能得到众多供货厂家的支持,也才会得到业主的信赖和委托。

总之,可以这样说,业主的资金加上一个优秀的弱电总包商才是一个成功的智能建筑集成化系统的保证。 二、弱电系统产品的选择 1、注重产品供应商的技术服务、工程服务和售后服务的素质和能力。 2、确认产品本身的先进性和成熟性,是否采用当今正在发展的、主流的技术, 是否可靠成熟等等。 3、一定要确保所选产品是真正开放的系统,即具有和外部世界交换数据的能力。 这一点对系统集成来说有决定性的意义。 4、在系统集成工程开展时,作为系统集成商应负全面的责任,他们应将已经掌 握的各种接口资料,向业主,设计院和建设者提出客观的参考意见。他们应向所有子系统供货商提出系统集成方案关于实现数据通讯的技术要求,由各子系统供货商承担责任,提供关于通讯接口的技术资料。他们应和各子系统供货商建立融洽的合作关系,因为集成系统和各子系统通讯接口的设计、技术开发和调试完成,取决于各子系统的本身的正常开通及现场数据地址的组织和编程,这种合作关系是极为重要的。 三、项目集成技术在业主管理中的思想体现 采用先进的概念、技术和方法,注意结构、设备、工具的相对成熟,既反映当今的最先进技术水平,又能保证系统功能在未来若干年内占主导地位。同时,面向实际应用、注重实效,坚持实用、经济的设计实施指导思想,充分考虑到保护系统投资的长期效应、及随着技术进步系统功能不断扩展的需求,以最先进、科学的方法和最经济、合理的投资,保证系统据具备高标准的开放性、扩展性,实现系统将来的扩展和维护,从而有效保护业主的初期投资。 坚持高起点,充分利用目前最先进成熟的系统设备及集成技术,总体优化,稳步推进,保证系统在未来一定时期内的先进性;并适应当代信息技术迅猛发展的要求,全面考虑功能扩容性、技术升级性,以获取最大经济效益及社会效益。

测试性验证方案设计实验

实验三基于双方风险值的测试性验证方案设计实验 一、实验目的 1.掌握基于双方风险值的测试性验证原理; 2.掌握测试性验证方案设计流程; 3.掌握数测试性验证方案设计软件的使用方法。 二、实验任务 1.熟练使用测试性验证方案设计软件; 2.使用测试性验证方案设计软件分析故障模式、机理及影响分析(FMMEA)数据 库; 3.使用测试性验证方案设计软件确定验证方案; 4.使用测试性验证方案设计软件分配故障样本量,选择故障模式。 三、实验设备 1.测试性验证方案设计软件一套; 2.故障模式、机理及影响分析(FMMECA)数据库一个。 四、实验原理 测试性验证是为确定产品是否达到规定的测试性要求而进行的试验与评价工作。通过对装备实物样机注入一定数量的故障,用测试性设计规定的方法进行故障检测与隔离,依据试验结果用统计分析的方法判断测试性指标(故障检测率/故障隔离率(FDR/FIR))是否达到规定要求。 测试性验证包括(1)确定验证方案,即故障样本量与允许的故障检测/隔离失败次数;(2)故障样本分配;(3)故障模式选取。测试性评估包括定性或定量判断装备测试性指标是否达到要求。 4.1 基于双方风险值的测试性验证方案, 基于双方风险值的测试性验证方案是在考虑承制方风险和使用方风险条件下,基于二项分布计算模型的确定故障样本量的方案。 要定量估计和验证的测试性参数主要是FDR 和FIR。在试验过程中注入一次故障,实施检测和隔离程序并给出故障指示(报警),其结果可能是:检测到故障(成功)或没有检测到故障(失败);把故障隔离到规定的可更换单元(隔离成功),或没有完成

隔离任务(隔离失败)。一个系统的各次故障检测、隔离,或者同批多个系统各自的故障检测、隔离,可近似认为彼此是独立的。测试性是系统设计中的固有特性。因此,一个系统或同一批的系统,在各次试验中故障检测/隔离的成功率可认为是不变的,系统的测试性验证试验可以认为是成败型试验,以二项分布为基础进行检验。 典型的成败型定数抽样检验方案的思路如下:随机抽取n 个样本进行试验,其中有 F 个失败。规定一个正整数C ,如果F ≤C 则认为合格,判定接收;如果F >C 则认为不合格,判定拒收。确定抽样方案就是同时确定 n 和 C 的值。 在成败型定数抽样试验中,设成功的概率记为q ,则在n 次试验中出现F 次失败的概率为: (;,)(1)F F n F n P q n F C q q -=- (1) 式中,F n C 是二项式系数,!()!! F n n C n F F =-。 接收的概率即n 个样本中失败数不超C 的概率,亦即失败数为0,1,2,...,C 的概率总和。由于抽样试验的随机性,成功概率q 为任意值都可能被接收。不同q 值被接收的概率称为抽样特性(Operation Characteristic ,OC ),记为 L (q )。 L ( q )与q 的函数关系称为抽样特性函数。 0()(;,)C F L q P q n F ==∑ (2) 使用方根据需要选定一个极限质量水平1q ,对应于一个确定的低的接收概率,质量 比极限质量水平还差的不予接收。但由于抽样方案不可避免的缺点,还会以较小的概率错判为接收的情况。质量水平为极限质量时的接收概率叫“使用方风险”,记为 β,β值一般可取 0.1、0.2 或其它值。选定极限质量1q ,对应1()L q β=,则当1q q <(即质量比极限质量水平还差)时,接收概率不会高于β。 承制方不能按极限质量开展测试性设计,否则被拒收的概率太大,要使设计的装备达到满意的设计质量水平0q (01q q >),以便达到0q 时以大概率接收装备。但达到0q 时还会以较小的概率判为拒收。达到满意质量水平时被拒收的概率,叫“承制方风险”,记为α。承制方选定0q 时,对应的0()1L q α=-,即以大概率接收。

(完整版)雷达组成及原理.doc

雷达的组成及其原理 课程名称:现代阵列并行信号处理技术 姓名:杜凯洋 学号: 2015010904025 教师:王文钦教授

一.简介 雷达( Radar,即 radio detecting and ranging),意为无线电搜索和测距。它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。其中,天线是雷达实现大空域、多功能、多目标的技术关键 之一;信号处理器是雷达具有多功能能力的核心组件之雷达种类很多,可按多种方法分类: (1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。 (2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。 (3)按辐射种类可分为:脉冲雷达和连续波雷达。 (4)按工作被长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段 雷达。 (5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。 二.雷达的组成 (一)概述 1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。 2、收发开关:收发隔离。 3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。 4、接收机:超外差,高 频放大,混频,中频放大,检波,视频放大等。(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。 5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测 判决之前完成( MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。 6、显示器(终端):原始视频,或经过处理的信息。 7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式) 才有)。 (二)雷达发射机 1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件)

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

雷达车距报警系统

雷达车距报警系统(RPW, Radar proximity warning system) 随着电子技术的进步,全新的雷达车距控制系统使得驾驶者的使用经验进入全新的时代,不同于以往的车距控制完全依赖于驾驶员的呆板控制,全新的雷达车距控制系统利用雷达技术与控制技术的进步让车距控制更为人性化。它安装了一具测距雷达,在系统启动时,不断发射雷达波,以即使检测与前方车辆的距离。可别将雷达车距控制系统与停车雷达混为一谈,两者虽然拥有相同的运作原理,但是使用的技术却有极大地差异。一般常见的停车雷达雷达,其所用的是超声波,是利用空气介质传递的雷达波,其侦测的距离极短,仅能作为低速行驶,停车,车身周围障碍物侦测之用。 所谓雷达车距控制系统指的是通过雷达持续高频地发射与接收信号,控制单元对雷达侦测信号及其它附加输入信号进行处理,通过这些信号可以在雷达侦测范围内众多物体中找出作为进行相关调控参照物的车辆,并通过自动控制执行器的相关动作来控制油门或制动,使得车辆保持相互间的安全距离,大幅度地减少驾驶员的操作动作,以保证更安全行车的一种装置。 雷达车距控制系统通过控制燃油供给与制动系统来控制车速的改变,以实现更为安全德尔行车距离。它与普通车控制系统有一定的区别。 一般以为,汽车上采用雷达控制车距的系统可以按传递信号的波形分为超声波型与雷达波型两种类型。 一.结构组成 雷达车距控制系统一般由车距调控系统感应器和车距调节控制系统控单元两大部分所组成。 感应器和控制单元安装在同一壳罩内,若感应器控制单元任一发生故障,则必须调换整个单元元件。 车距调控系统感应器发射模数化频率信号并接收反射信号。控制单元对雷达探测信号及其它附加信号进行处理,通过这些信号可以在雷达探测范围内众多物体中找出作为进行相关调控参考物的车辆。 二.工作原理 1.车距测量系统中视觉观测与雷达技术相比较 2.雷达车距控制系统的车距控制原理 3.测量系统原理。发射信号到接收部分反射信号所用的时间取决于目标间的距离。例如距离扩大到两倍时,发射信号到接收反射信号所用的时间也延长到两倍。

相关主题
文本预览
相关文档 最新文档