当前位置:文档之家› 物理(天体运动)

物理(天体运动)

物理(天体运动)
物理(天体运动)

天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。

如有必要,可结合黄金代换式简化运算过程。不过,还有几类问

题仅依靠基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。

一、变轨问题

例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。每次测量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、表示卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则()

A.,,

B.,,

C.,,

D.,,

分析:空气阻力作用下,卫星的运行速度首先减小,速度减小后的卫星不能

继续沿原轨道运动,由于而要作近(向)心运动,直到向心力再次供需平衡,即,卫星又做稳定的圆周运动。

如图,近(向)心运动过程中万有引力方向与卫星运动方向不垂直,会让卫星加速,速度增大(从能量角度看,万有引力对卫星做正功,卫星动能增加,速

度增大),且增加的数值超过原先减少的数值。所以、,又由

可知。

解:应选C选项。

说明:本题如果只注意到空气阻力使卫星速度减小的过程,很容易错选B

选项,因此,分析问题一定要全面,切忌盲目下结论。

卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术。

以卫星从椭圆远点变到圆轨道为例加以分析:如图,在轨道远点,万有引力

,要使卫星改做圆周运动,必须满足和,而在远

点明显成立,所以只需增大速度,让速度增大到成立即可,这个任务由卫星自带的推进器完成。“神舟”飞船就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的。

二、双星问题

例:在天体运动中,将两颗彼此相距较近的行星称为双星。它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。如果

双星间距为,质量分别为和,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线速度。

分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相等。但两者做匀速圆周运动的半径不相等。

解:设行星转动的角速度为,周期为

(1)如图,对星球,由向心力公式可得:

同理对星球有:

两式相除得:(即轨道半径与质量成反比)又因为

所以,,

(2)因为,所以

(3)因为,所以

说明:处理双星问题必须注意两点(1)两颗星球运行的角速度、周期相等;(2)轨道半径不等于引力距离(这一点务必理解)。弄清每个表达式中各字母的含义,在示意图中相应位置标出相关量,可以最大限度减少错误。

三、追及问题

例:两颗卫星在同一轨道平面内绕地球做匀速圆周运动,地球半径为,

卫星离地面的高度等于,卫星离地面高度为,则:(1)、两卫星运行周期之比是多少?(2)若某时刻两卫星正好同时通过地面同一点正上方,则至少经过多少个周期与相距最远?

分析:两卫星周期之比可按基本思路处理;要求与相距最远的最少时间,

其实是一个追及和相遇问题,可借用直线运动部分追及和相遇问题的处理思想,只不过,关键一步应该变换成“利用角位移关系列方程”。

解:(1)对做匀速圆周运动的卫星使用向心力公式

可得:

所以

(2)由可知:,即转动得更快。

设经过时间两卫星相距最远,则由图可得:

(、2、3……)

其中时对应的时间最短。

而,

所以,得

说明:圆周运动中的追及和相遇问题也应“利用(角)位移关系列方程”。当然,如果能直接将角位移关系转化成转动圈数关系,运算过程更简洁,但不如利用角位移关系容易理解,而且可以和直线运动中同类问题的解法统一起来,记忆比较方便。常见情况下的角位移关系如下,请自行结合运动过程示意图理解。

设,则:

四、超失重问题

例:某物体在地面上受到的重力为,将它放置在卫星中,在卫星以加速度随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为

时,求此时卫星距地球表面有多远?(地球半径,取

分析:物体具有竖直向上的加速度,处于超重状态,物体对支持物的压力大于自身实际重力;而由于高空重力加速度小于地面重力加速度,同一物体在高空的实际重力又小于在地面的实际重力。

解:如图,设此时火箭离地球表面的高度为,火箭上物体对支持物的压力

为,物体受到的重力为

根据超、失重观点有

可得

而由可知:

所以

说明:航天器在发射过程中有一个向上加速运动阶段,在返回地球时有一个向下减速阶段,这两个过程中航天器及内部的物体都处于超重状态;航天器进入轨道作匀速圆周运动时,由于万有引力(重力)全部提供向心力,此时航天器及内部的所有物体都处于完全失重状态。

既掌握基本问题的处理方法,又熟悉“另类”问题的分析要点,这样在面对天体运动问题时才能应付自如。

五、变式练习

1.开普勒三定律也适用于神舟七号飞船的变轨运动。飞船与火箭分离后进入预定轨道,飞船在近地点(可认为近地面)开动发动机加速,之后,飞船速度增大并转移到与地球表面相切的椭圆轨道,飞船在远地点再次点火加速,飞船沿

半径为的圆轨道绕地运动。设地球半径为,地球表面的重力加速度为,若不计空气阻力,试求神舟七号从近地点到远地点的时间(变轨时间)。

2.两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。现测得两星中心距离为R,其运动周期为T,求两星的总质量。

3.如图所示,是地球的同步卫星。另一卫星的圆形轨道位于赤道平面

内,离地面高度为,已知地球半径为,地球自转角速度为,地球表面的重

力加速度为,为地球中心。(1)求卫星的运行周期;(2)若卫星绕行方向与地球自转方向相同,某时刻、两卫星相距最近(、、在同一直线上),则至少经过多长时间,他们再一次相距最近?

4.北京时间9月27日17时,航天员翟志刚在完成一系列空间科学实验,并按预定方案进行太空行走后,安全返回神舟七号轨道舱,这标志着我国航天员

首次空间出舱活动取得成功。若这时神舟七号在离地面高为的轨道上做圆周运

动,已知地球半径为,地球表面处的重力加速度为。航天员站在飞船时,求:(1)航天员对舱底的压力,简要说明理由。(2)航天员运动的加速度大小。

5.为了迎接太空时代的到来,美国国会通过一项计划:在2050年前建造成太空升降机,就是把长绳的一端搁置在地球的卫星上,另一端系住长降机。放开绳,升降机能到达地球上;人坐在升降机里,在卫星上通过电动机把升降机拉到

卫星上。已知地球表面的重力加速,地球半径为。求:

(1)某人在地球表面用体重计称得重,站在升降机中,当升降机以加速度(为地球表面处的重力加速度)竖直上升时,在某处此人再一次用同一体重计称得视重为,忽略地球自转的影响,求升降机此时距地面的高度;

(2)如果把绳的一端搁置在同步卫星上,地球自转的周期为,求绳的长度至少为多长。

变式练习答案:

1.

2.

3.(1)(2)

4.(1)航天员对神舟七号的压力为零。因为地球对航天员的万有引力恰好提供了航天员随飞船绕地球做匀速圆周运动所需的向心力,航天员处于完全失重

状态;(2)。

5.(1);(2)。

高中天体物理公式总结

高中天体物理公式总结 高中天体物理公式 1. 开普勒第三定律:T2/R3=K(=4π2/GM){R: 轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2. 万有引力定律:F=Gm1m2/r2 (G=6.67×10- 11Nm2/kg2 ,方向在它们的连线上) 3. 天体上的重力和重力加速度:GMm/R2=mg;g=GM/R{2R: 天体半径(m) , M 天体质量(kg) } 4. 卫星绕行速度、角速度、周期: V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5. 第一(二、三)宇宙速度V仁(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6. 地球同步卫星GMm/(r地+h)2=m4π2(r 地 +h)/T2{h≈36000km ,h: 距地球表面的高度,r 地: 地球的半径} 强调:(1) 天体运动所需的向心力由万有引力提供,F 向=F 万; (2) 应用万有引力定律可估算天体的质量密度等; (3) 地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4) 卫星轨道半径变小时, 势能变小、动能变大、速度变大、周期变小;(5) 地球卫星的最大环绕速度和最小发射速度

均为7.9km/s 。 高中物理易错知识点 1. 受力分析,往往漏“力”百出对物体受力分析,是物理学中最重要、最基本的知识,分析方法有“整体法”与“隔离法”两种。对物体的受力分析可以说贯穿着整个高中物理始终,如力学中的重力、弹力(推、拉、提、压)与摩擦力(静摩擦力与滑动摩擦 力),电场中的电场力(库仑力)、磁场中的洛伦兹力(安培力)等。在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力。在受力分析过程中,特别是在“力、电、磁”综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数。还要说明的是在分析某个力发生变化时,运用的方法是数学计算法、动态矢量三角形法(注意只有满足一 个力大小方向都不变、第二个力的大小可变而方向不变、第三个力大小方向都改变的情形)和极限法(注意要满足力的单调变化情形)。 2. 对摩擦力认识模糊摩擦力包括静摩擦力,因为它具有“隐敝性”、“不定性”特点和“相对运动或相对趋势”知识的介入而成为所有力中最难认识、最难把握的一个力,任何一个题目一旦有了摩擦力,其难度与复杂程度将会随之加大。最典型的就是“传送带问题”,这问题可以将摩擦力各种可能情况全部包括进去,建议同学们

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

(完整版)天体运动总结

天体运动 总结 一、处理天体运动的基本思路 1.利用天体做圆周运动的向心力由万有引力提供,天体的运动遵循牛顿第二定律求解,即G Mm r 2=ma ,其中a =v 2r =ω2r =(2π T )2r ,该组公式可称为“天上”公式. 2.利用天体表面的物体的重力约等于万有引力来求解,即G Mm R 2=m g ,gR2=GM ,该公式通常被称为黄金代 换式.该式可称为“人间”公式. 合起来称为“天上人间”公式. 二、对开普勒三定律的理解 开普勒行星运动定律 1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不 同的星系中,此比值是不同的.(R 3 T 2=k ) 1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点. 2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小. 3.开普勒第三定律的表达式为a 3 T 2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个常量,与行星无关但与中心天体的质量有关. 三、开普勒三定律的应用 1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转. 2.表达式a 3 T 2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太 阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关. 四、太阳与行星间的引力 1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力 2.万有引力的三个特性 (1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力. (2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律. (3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.

物理必修二天体运动各类问题

天体运动中的几个“另类”问题 江苏省靖江市季市中学范晓波 天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。 如有必要,可结合黄金代换式简化运算过程。不过,还有几类问题仅依靠 基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。 一、变轨问题 例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。每次测 量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、 表示卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则() A.,, B.,, C.,, D.,, 分析:空气阻力作用下,卫星的运行速度首先减小,速度减小后的卫星不能继续沿原轨 道运动,由于而要作近(向)心运动,直到向心力再次供需平衡,即,卫星又做稳定的圆周运动。

如图,近(向)心运动过程中万有引力方向与卫星运动方向不垂直,会让卫星加速,速度增大(从能量角度看,万有引力对卫星做正功,卫星动能增加,速度增大),且增加的数 值超过原先减少的数值。所以、,又由可知。 解:应选C选项。 说明:本题如果只注意到空气阻力使卫星速度减小的过程,很容易错选B选项,因此,分析问题一定要全面,切忌盲目下结论。 卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术。 以卫星从椭圆远点变到圆轨道为例加以分析:如图,在轨道远点,万有引力, 要使卫星改做圆周运动,必须满足和,而在远点明显成立,所以 只需增大速度,让速度增大到成立即可,这个任务由卫星自带的推进器完成。“神舟”飞船就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的。 二、双星问题 例:在天体运动中,将两颗彼此相距较近的行星称为双星。它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。如果双星间距为,质量分别为和,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线 速度。 分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相等。但两者做匀速圆周运动的半径不相等。

高考物理真题分类汇编:万有引力和天体运动

高中物理学习材料 金戈铁骑整理制作 2014年高考物理真题分类汇编:万有引力和天体运动 19.[2014·新课标全国卷Ⅰ] 太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是( ) 地球 火星 木星 土星 天王星 海王星 轨道半径(AU) 1.0 1.5 5.2 9.5 19 30 A.各地外行星每年都会出现冲日现象 B .在2015年内一定会出现木星冲日 C .天王星相邻两次冲日的时间间隔为土星的一半 D .地外行星中,海王星相邻两次冲日的时间间隔最短 19.BD [解析] 本题考查万有引力知识,开普勒行星第三定律,天体追及问题.因为冲日现象实质上是角速度大的天体转过的弧度恰好比角速度小的天体多出2π,所以不可能每年都出现(A 选项).由开普勒行星第三定律有T 2木T 2地=r 3木 r 3地=140.608,周期的近似比值为12,故木星的周期为12年,由曲线运动追及公式 2πT 1t -2πT 2t =2n π,将n =1代入可得t =12 11年,为木星两次冲日的时间间隔,所以2015年能看到木星冲日现象, B 正确.同理可算出天王星相邻两次冲日的时间间隔为1.01年.土星两次冲日的时间间隔为1.03年.海王星两次冲日的时间间隔为1.006年,由此可知 C 错误, D 正确. 18.[2014·新课标Ⅱ卷] 假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( ) A.3πGT 2 g 0-g g 0 B.3πGT 2g 0 g 0-g C. 3πGT 2 D.3πGT 2g 0 g 18.B [解析] 在两极物体所受的重力等于万有引力,即 GMm R 2 =mg 0,在赤道处的物体做圆周运动的周期等于地球的自转周期T ,则GMm R 2-mg =m 4π2T 2R ,则密度 ρ=3M 4πR 3=34πR 3 g 0R 2 G =3πg 0GT 2(g 0-g ) .B 正确. 3. [2014·天津卷] 研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种

2018高考物理总复习专题天体运动的三大难点破解1深度剖析卫星的变轨讲义

拼十年寒窗挑灯苦读不畏难;携双亲期盼背水勇战定夺魁。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。 二、重难点提示: 重点:1. 卫星变轨原理; 2. 不同轨道上速度和加速度的大小关系。 难点:理解变轨前后的能量变化。 一、变轨原理 卫星在运动过程中,受到的合外力为万有引力,F 引=2 R Mm G 。卫星在运动过程中所需要的向心力为:F 向= R m v 2 。当: (1)F 引= F 向时,卫星做圆周运动; (2)F 引> F 向时,卫星做近心运动; (3)F 引

运动进入轨道2沿椭圆轨道运动,此过程为离心运动;到达B点,万有引力过剩,供大于求做近心运动,故在轨道2上供需不平衡,轨迹为椭圆,若在B点向后喷气,增大速度可使飞船沿轨道3运动,此轨道供需平衡。 2. 回收变轨 在B点向前喷气减速,供大于需,近心运动由3轨道进入椭圆轨道,在A点再次向前喷气减速,进入圆轨道1,实现变轨,在1轨道再次减速返回地球。 三、卫星变轨中的能量问题 1. 由低轨道到高轨道向后喷气,卫星加速,但在上升过程中,动能减小,势能增加,增加的势能大于减小的动能,故机械能增加。 2. 由高轨道到低轨道向前喷气,卫星减速,但在下降过程中,动能增加,势能减小,增加的动能小于减小的势能,故机械能减小。 注意:变轨时喷气只是一瞬间,目的是破坏供需关系,使卫星变轨。变轨后稳定运行的过程中机械能是守恒的,其速度大小仅取决于卫星所在轨道高度。 3. 卫星变轨中的切点问题 【误区点拨】 近地点加速只能提高远地点高度,不能抬高近地点,切点在近地点;远地点加速可提高近地点高度,切点在远地点。

高一物理天体运动.

高一物理天体的运动 一、考点探究: 1、星球表面的重力加速度; 2、天体质量、密度的求解计算问题; 3、天体瓦解问题; 4、线速度、角速度、周期、向心加速度(重力加速度)随半径(或高度)变化的关系型问题; 5、卫星发射、运行过程中的超重、失重问题; 6、第一宇宙速度的理解、推导问题; 7、同步卫星问题; 8、双星问题; 9、卫星的变轨 二、重点与难点: 1、开普勒第一定律:所有行星绕太阳运动的轨迹都是椭圆,太阳处在椭圆的一个焦点上。 2、开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。 3、开普勒第三定律:所有行星的轨迹的半长轴的立方跟它的公转周期的平方的比值都相等。 4、万有引力定律:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小跟它们的质量的乘积成正比,跟它们的距离的平方成反比;F=G 2 21r m m ,式中G=6.67?1011 -N·m 2/kg 2。 5、万有引力定律的适用条件:质点、质量分布均匀的球体,或物体之间的距离远大于物体大小时。 6、万有引力的特点:任何客观存在有质量的物体之间都有万有引力;万有引力是一对作用力与反作用力;通常情况下万有引力很小,只有质量巨大的星球或天体附近的物体间才有实际的物理意义。 7、万有引力与重力的关系:地球表面物体所受万有引力可以分解成为物体的重力和物体随地球自转的向 心力;通常情况下,物体随地球自转的向心力很小,万有引力近似全部充当重力,即G 2r Mm =mg 。 8、天体运动:天体的运动可以近似看作匀速圆周运动,万有引力充当向心力,即F 向= G 221r m m 。 9、人造地球卫星:分为普通卫星、近地卫星和同步卫星。 10、天体运动的运算:可应用公式G 2r Mm =m r v 2=m 2 ωr=m 224T πr 计算天体的质量和密度,以及天体运动 的线速度、角速度、周期、轨道半径之间的关系。 11、第一宇宙速度:卫星沿地球表面绕地球飞行的速度;又叫环绕速度;是卫星做匀速圆周运动的最大速度;是物体成为人造卫星的最小发射速度;v=gr =7.9km/s 。 12、第二宇宙速度:脱离地球束缚的最小速度;v=11.2km/s 。 13、第三宇宙速度:脱离太阳束缚的最小速度;v=16.7km/s 。 三、考点梳理 1、基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供, Gr v m r Mm 22==mω2 r=mr T 224π 2、估算天体的质量和密度 由G 2r Mm =mr T 224π得:M=2324Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就 可以计算出中心天体的质量.由ρ=V M ,V=34πR3 得: ρ=3 233R GT r π.R 为中心天体的星体半径。 特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=2 3GT π (2003年高考),由此可以测量天体的密度. 3、行星表面重力加速度、轨道重力加速度问题 表面重力加速度g 0,由 02 GMm mg R = 得:02GM g R = 轨道重力加速度g ,由 2()GMm mg R h =+ 得: 22 0()()GM R g g R h R h ==++ 4、卫星的绕行速度、角速度、周期与半径的关系

重点高中物理天体运动知识

重点高中物理天体运动 知识 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

“万有引力定律”习题归类例析 万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析. 一、求天体的质量(或密度) 1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量 由mg=G得.(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.) [例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ. [解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为 设初始平抛小球的初速度为v,则水平位移为x=vt.有○1 当以2v的速度平抛小球时,水平位移为x'=2vt.所以有② 在星球表面上物体的重力近似等于万有引力,有mg=G③ 联立以上三个方程解得 而天体的体积为,由密度公式得天体的密度为。 2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量

卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为 [例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)() A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r B.月球绕地球运行的周期T和地球的半径r C.月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T和轨道半径r [解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D 项正确. 二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系 可得 由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为() A. B.

2019高考物理一轮复习天体运动题型归纳

天体运动题型归纳 李仕才 题型一:天体的自转 【例题1】一物体静置在平均密度为ρ的球形天体表面的赤道上。已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( ) A .1 2 4π3G ρ?? ??? B .1 2 34πG ρ?? ??? C .1 2 πG ρ?? ??? D .1 2 3πG ρ?? ??? 解析:在赤道上2 2 R m mg R Mm G ω+=① 根据题目天体表面压力怡好为零而重力等于压力则①式变为 22R m R Mm G ω=②又 T π ω2= ③ 33 4 R M ρπ= ④ ②③④得:2 3GT π ρ= ④即21 )3(ρπG T =选D 练习 1、已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔN ,假设地球是质量分布 均匀的球体,半径为R 。则地球的自转周期为( ) A. 2T = 2T =R N m T ?=π2 D.N m R T ?=π2 2、假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为: A. 0203g g g GT π- B. 0203g g g GT π- C. 23GT π D. 23g g GT πρ=

题型二:近地问题+绕行问题 【例题1】若宇航员在月球表面附近高h 处以初速度0v 水平抛出一个小球,测出小球的水平射程为L 。已知月球半径为R ,引力常量为G 。则下列说法正确的是 A .月球表面的重力加速度g 月=hv 2 L 2 B .月球的质量m 月=hR 2v 20 GL C .月球的第一宇宙速度v = v 0 L 2h D .月球的平均密度ρ=3hv 2 2πGL 2R 解析 根据平抛运动规律,L =v 0t ,h =12g 月t 2 ,联立解得g 月=2hv 2 0L 2;由mg 月=G mm 月R 2, 解得m 月=2hR 2v 2 0GT 2;由mg 月=m v 2 R ,解得v =v 0L 2hR ;月球的平均密度ρ=m 月43πR 3=3hv 2 2πGL 2R 。 练习:“玉兔号”登月车在月球表面接触的第一步实现了中国人“奔月”的伟大梦想。机器人“玉兔号”在月球表面做了一个自由下落试验,测得物体从静止自由下落h 高度的时间t ,已知月球半径为R ,自转周期为T ,引力常量为G 。则下列说法正确的是 A .月球表面重力加速度为t 2 2h B .月球第一宇宙速度为 Rh t C .月球质量为hR 2 Gt 2 D .月球同步卫星离月球表面高度 3hR 2T 2 2π2t 2-R 【例题2】过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕。“51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的1 20 。该中心恒星与太阳的质量比约为 A.1 10 B .1 C .5 D .10

高中物理力学部分知识点归纳

高中物理力学部分知识点归纳 1、基本概念:力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速 2、基本规律:匀变速直线运动的基本规律(12个方程);三力共点平衡的特点;牛顿运动定律(牛顿第一、第二、第三定律);万有引力定律;天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变 化的关系);动量守恒定律(四类守恒条件、方程、应用过程);功能基本关系(功是能量转化的量度)重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);功能原理(非重力做功与物体机械能变化之间的关系);机械能守恒定律(守恒条件、方程、应用步骤);简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

3、基本运动类型:运动类型受力特点备注直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析匀变速直线运动同上且所受合外力为恒力 1. 匀加速直线运动 2. 匀减速直线运动曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向合外力指向轨迹内侧(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心(合外力充当向心力)一般圆周运动的受力特点向心力的受力分析简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析 4、基本方法:力的合成与分解(平行四边形、三角形、多边形、正交分解);三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);针对简谐运动的对称法、针对简谐波图像的描点法、平移法 5、常见题型:合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括

高中物理天体运动多星问题

双星模型、三星模型、四星模型 天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。 【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。(引力常量为G ) 【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别 为ω1、ω2。根据题意有 21ωω= ① r r r =+21 ② 根据万有引力定律和牛顿定律,有 G 12112 2 1r w m r m m = ③ G 12 212 21r w m r m m = ④ 联立以上各式解得 2 121m m r m r += ⑤ 根据解速度与周期的关系知 T πωω221= = ⑥ 联立③⑤⑥式解得 3 22214r G T m m π=+ 【例题2】天体运动中,将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L ,质量分别为M 1、M 2,试计算(1)双星的轨道半径(2)双星运动的周期。 解析:双星绕两者连线上某点做匀速圆周运动,即:

天体运动_规律

确定研究对象解题 -----高中物理必修2第六章万有引力与航天的题型归纳 高中物理必修2第六章万有引力与航天是第五章曲线运动在天体运动学的运用与升华,本章知识点较多,研究对象多,导致学生掌握困难。在教学中,笔者发现只要指导好学生认清楚题目的研究对象,就能突破学生在学习,解题中无从下手或者下手就错的现象。 本章按照研究对象分类可以分为以下几类:a,放在极地的物体;b,赤道上的物体;c,近地卫星(过赤道的,过极地的,一般的);d,同步卫星;e,一般卫星(月亮);f,双星a,放在极地的物体 放在极地的物体只受万有引力和地面的支持力,它的受力如图所示,它的运动状态相对于地球来说是静止的,所以受力平衡。有因为物体所受的重力就 是物体对地面的压力所有又有 即 把本公式化简就可以得到万能代换公式 b,放在赤道的物体 放在赤道的物体,跟地面保持相对静止,但是它随地球一起自转,所以它做匀速圆周运动,受力如图所示,它受到的合外力应该提供向心力。 有 其中,所以 说重力只是万有引力的一个分力,另外一个分力就是用来提供向心力了。在不是赤道和极地的位置,万有引力是指向球心的,而所需要的向心力指向圆心(并不重合),所以我们说重力是竖直向下的,而不能说重力也是指向球心的。考虑实际情况,在地球上,因为向心加速度过小只有a=0.034m/s2,所以有时候可以忽略不计。但是在有些自转比较快的星球上,这个向心加速度就不可以忽略了。 c,近地卫星 近地卫星首先是一个卫星,那么它肯定在做匀速圆周运动, 而且万有引力提供向心力。 有公式 这个公式最重要的一点,因为近地卫星它的高度很低所以可以忽略,那么近地卫星的轨道半径就等于地球的半径。它的运动轨迹的圆心是地球的球心,所以它可能好几种情况,一是在赤道上空,二是过极地,三是一般的情况。又因为万能公式,所以又可以得到

高中物理公式以及化学方程式

1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 3)万有引力 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=1 6.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注: (1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

2015年高考物理真题分类汇编:万有引力和天体运动

2015年高考物理真题分类汇编:万有引力和天体运动 (2015新课标I-21). 我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落,已知探测器的质量约为1.3×103kg,地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,地球表面的重力加速度约为9.8m/s2,则此探测器 A. 着落前的瞬间,速度大小约为8.9m/s B. 悬停时受到的反冲作用力约为2×103N C. 从离开近月圆轨道这段时间内,机械能守恒 D. 在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度 【答案】B、D 【考点】万有引力定律及共应用;环绕速度 【解析】在中心天体表面上万有引力提供重力:= mg , 则可得月球表面的重力加速度 g月= ≈ 0.17g地= 1.66m/s2 .根据平衡条件,探测器悬停时受到的反作用力F = G探= m探 g月≈ 2×103N,选项B正确;探测器自由下落,由V2=2g月h ,得出着落前瞬间的速度v ≈3.6m/s ,选项A错误;从离开近月圆轨道,关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,发动机做了功,机械能不守恒,故选项C错误;在近月圆轨道 万有引力提供向心力:= m,解得运行的线速度V月= = < , 小于近地卫星线速度,选项D正确。 【2015新课标II-16】16. 由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道。当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。已知同步卫星的环绕速度约为3.1x103/s,某次发 射卫星飞经赤道上空时的速度为1.55x103/s,此时 卫星的高度与同步轨道的高度相同,转移轨道和 同步轨道的夹角为30°,如图所示,发动机给卫星 的附加速度的方向和大小约为 A. 西偏北方向,1.9x103m/s B. 东偏南方向,1.9x103m/s C. 西偏北方向,2.7x103m/s D. 东偏南方向,2.7x103m/s 【答案】B

高一物理天体运动测试题

高一物理天体运动测试题 一.选择题 1. 人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运转的轨道半径会慢慢减小,在半径缓慢变化过程中,卫星的运动还可近似当作匀速圆周运动。当它在较大的轨道半径r 1上时运行线速度为v 1,周期为 T 1,后来在较小的轨道半径r 2上时运行线速度为v 2,周期为T 2,则它们的关系是 ( ) A .v 1﹤v 2,T 1﹤T 2 B .v 1﹥v 2,T 1﹥T 2 C .v 1﹤v 2,T 1﹥T 2 D .v 1﹥v 2,T 1﹤T 2 2. 两个质量均为M 的星体,其连线的垂直平分线为AB 。O 为两星体连线的中点,如图,一个质量为M 的物 体从O 沿OA 方向运动,则它受到的万有引力大小变化情况是( ) A.一直增大 B.一直减小 C.先减小,后增大 D.先增大,后减小 3. 土星外层上有一个土星环,为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v 与该层到土星中心的距离R 之间的关系来判断 ① 若v R ∝,则该层是土星的一部分 ②2v R ∝,则该层是土星的卫星群. ② ③若1v R ∝,则该层是土星的一部分 ④若21v R ∝,则该层是土星的卫星群.以上说法正确的是 A. ①② B. ①④ C. ②③ D. ②④ 4. 假如地球自转速度增大,关于物体重力的下列说法中不正确的是 ( ) A 放在赤道地面上的物体的万有引力不变 B.放在两极地面上的物体的重力不变 C 赤道上的物体重力减小 D 放在两极地面上的物体的重力增大 5.在太阳黑子的活动期,地球大气受太阳风的影响而扩张,这样使一些在大气层外绕地球飞行的太空垃圾被大气包围,而开始下落。大部分垃圾在落地前烧成灰烬,但体积较大的则会落到地面上给我们造成威胁和危害.那么太空垃圾下落的原因是 A .大气的扩张使垃圾受到的万有引力增大而导致的 B .太空垃圾在燃烧过程中质量不断减小,根据牛顿第二定律,向心加速度就会不断增大,所以垃圾落向地面 C .太空垃圾在大气阻力的作用下速度减小,那么它做圆运动所需的向心力就小于实际受到的万有引力,因此过大的万有引力将垃圾拉向了地面 D .太空垃圾上表面受到的大气压力大于下表面受到的大气压力,所以是大气的力量将它推向地面的 6.用 m 表示地球通讯卫星(同步卫星)的质量,h 表示它离地面的高度,R 表示地球的半径,g 表示地球表面处的重力加速度,ω表示地球自转的角速度,则通讯卫星所受万有引力的大小为 A.等于零 B.等于22 ()R g m R h + C.等于342ωg R m D.以上结果都不正确 7. 关于第一宇宙速度,下列说法不正确的是 ( ) A 第一宇宙速度是发射人造地球卫星的最小速度 B .第一宇宙速度是人造地球卫星环绕运行的最大速度 C .第一宇宙速度是地球同步卫星环绕运行的速度 D .地球的第一宇宙速度由地球的质量和半径决定的 8.如图5-1所示,以9.8m/s 的水平速度v 0抛出的物体,飞行一段时间后垂直地撞在倾角为θ=30°的斜面上,可知物体完成这段飞行的时间是 ( ) A .s 33 B .s 332 C . 3 s D .2s 9、某人造地球卫星绕地球做匀速圆周运动,假如它的轨道半径增加到原来的n 倍后,仍能够绕地球做匀速 圆周运动,则A .根据r v ω=,可知卫星运动的线速度将增大到原来的n 倍。 B .根据r mv F 2 =,可知卫星受到的向心力将减小到原来的n 1倍。 C .根据2 r GMm F =,可知地球给卫星提供的向心力将减小到原来的21n 倍。

(精)解决天体运动问题的方法

解决天体运动问题的方法 一、基本模型 计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。 二、基本规律 1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。所需向心力由中心天体对它的万有引力提供。设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由 牛顿第二定律及万有引力定律有:。这就是分析与求解天体运行问题的基本关系式,由 于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示 为:或。 2.在天体表面,物体所受万有引力近似等于所受重力。设天体质量为M,半径为R,其表面的重力加速度 为g,由这一近似关系有:,即。这一关系式的应用,可实现天体表面重力加 速度g与的相互替代,因此称为“黄金代换”。 3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最 大,所需向心力最大。对于赤道上的物体,由万有引力定律及牛顿第二定律 有:,式中N为天体表面对物体的支持力。如果天体自转角速度过大,赤道上的 物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天 体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由 及可计算出天体不瓦解的最小密度。 三、常见题型 1.估算天体质量问题

由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周 期,可估算出被绕天体的质量。 例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。若还知道引力常量和月球半径,仅利用以上条件不能求出的是 A.月球表面的重力加速度B.月球对卫星的吸引力 C.卫星绕月运行的速度D.卫星绕月运行的加速度 解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。 对于卫星的绕月运行,由万有引力定律及牛顿第二定律有:,由此式可 求知月球的质量M。由“黄金代换”有:,由这两式可求知月面重力加速度g。由线速度 的定义式有:,由此式可求知卫星绕月运行的速度。由万有引力定律及牛顿第二定律 有:,由此式可求知绕月运行的加速度。由万有引力定律有:,由于不知也不可求知卫星质量m,因此,不能求出月球对卫星的吸引力。故,本题选B。 2.估算天体密度问题 若已知天体的近“地”卫星(卫星轨道半径等于天体半径)的运行周期,可以估算出天体的密度。 例2.天文学家新发现了太阳系外的一颗行星。这颗行星的体积是地球的4.7倍,质量是地球的25倍。已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N·m2/kg2,由此估算该行星的平均密度约为 A.1.8×103kg/m3 B.5.6×103kg/m3 C.1.1×104kg/m3 D.2.9×104kg/m3 解析:对于近地卫星饶地球的运动有:,而,代入已知数据解得: ρ=2.9×104kg/m3。本题选D 3.运行轨道参数问题 对于做圆周运动的天体,若已知它的轨道半径,可以计算它的运行线速度、角速度、周期等运行参数,并且可以看出,这些参数取决于轨道半径。 例3.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运动一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100陪。假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有 A.恒星质量与太阳质量之比 B.恒星密度与太阳密度之比 C.行星质量与地球质量之比 D.行星运行速度与地球公转速度之比

相关主题
文本预览
相关文档 最新文档