当前位置:文档之家› 2.1.1 指数与指数幂的运算(第一课时)——根式概念

2.1.1 指数与指数幂的运算(第一课时)——根式概念

2.1.1 指数与指数幂的运算(第一课时)——根式概念
2.1.1 指数与指数幂的运算(第一课时)——根式概念

二次根式的概念及性质

第十六章二次根式 16. 1 二次根式 第1课时 二次根式的概念和性质 :?< 1. 二次根式的概念和应用. 2. 二次根式的非负性. 重点 二次根式的概念. 难点 二次根式的非负性. 一、情景导入 师:(多媒体展示)请同学们看屏幕 电视节目信号的传播半径 r/km 与电视塔高h/km 之间有近似关系r = yj 2Rh(R 为地球半径).如 果两个电视塔的高分别为 h i km , h 2 km ,那么它们的传播半径之比为多少?同学们能化简这个式 子吗? 由学生计算、讨论后得出结果 ,并提问. 生:半径之比为亠2Rh ;,暂时我们还不会对它进行化简. 师:那么怎么去化简它呢?这要用到二次根式的运算和化简.如何进行二次根式的运算?如 何进行二次根式的化简?这将是本章所学的主要内容. 二、新课教授 活动1:知识迁移,归纳概念 (1) 17的算术平方根是 __________ ; (2) 如图,要做一个两条直角边长分别为 7 cm 和4 cm 的三角形,斜边长应为 ____________ c m ; 2 (3) —个长方形的围栏,长是宽的2倍,面积为130 m ,则它的宽为 _________________ m ; (4) 面积为3的正方形的边长为 ____________ ,面积为a 的正方形的边长为 ___________________ ; (5) 一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下时的高度 h(单位: m)满足关系h = 5『.如果用含有h 的式子表示t ,则t= ______________ . 【答案】(1).17 (2) 65 (3).65 (4) 3 a ⑸- ;'5 活动2:二次根式的非负性 (多媒体展示) _ (1) 式子.a 表示的实际意义是什么?被开方数 a 满足什么条件时,式子."a 才有意义? (2) 当a >0时,百 ___________ 0;当a = 0时,需 ___________ 0;二次根式是一个 ____________ . 【答案】(1)a 的算术平方根,被开方数a 必须是非负数 (2) > = 非负数 老师结合学生的回答,强调二次根式的非负性. 当a >0时,,a 表示a 的算术平方根,因此a > 0; 当a = 0时,,a 表示0的算术平方根,因此,-/a = 0. 也就是说,当a > 0时,? a 》0. ,这是东方明珠电视塔. (多媒体演示)用含根号的式子填空.

二次根式的概念与性质

二次根式的概念与性质 编稿:庄永春审稿:邵剑英责编:张杨 一、目标认知 1.学习目标: 理解二次根式的概念,了解被开方数是非负数的理由;理解并掌握下列结论: ,,,并利用它们进行计算和化简.2.重点: ;,及其运用. 3.难点: 利用,,解决具体问题. 二、知识要点梳理 知识点一:二次根式的概念 一般地,我们把形如(a≥0)?的式子叫做二次根式,“”称为二次根号. 要点诠释: 二次根式的两个要素:①根指数为2;②被开方数为非负数. 知识点二:二次根式的性质 1.; 2.; 3.; 4. 积的算术平方根的性质:; 5. 商的算术平方根的性质:. 要点诠释: 二次根式(a≥0)的值是非负数,其性质可以正用亦可逆用,正用时去掉根号起到化简的作用;逆用时可以把一个非负数写成完全平方的形式,有利于在实数范围内进行因式分解.

知识点三:代数式 形如5,a,a+b,ab,,x3,这些式子,用基本的运算符号(基本运算包 括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子 为代数式(algebraic expression). 三、规律方法指导 1.如何判断一个式子是否是二次根式? (1)必须含有二次根号,即根指数为2; (2)被开方数可以是数也可以是代数式但必须是非负的,否则在实数范围内无意义. 2.如何确定二次根式在实数范围内有意义? 要使二次根式在实数范围内有意义必须满足被开方数为非负数.要确定被开方数中所含字母的取值范围,可根据题意列出不等式,通过解不等式确定字母的取值范围.当二次根式 作为分母时要注意分母不能为零. 经典例题透析 类型一:二次根式的概念 1、下列式子,哪些是二次根式,哪些不是二次根式: 、、、(x>0)、、、、、(x≥0,y≥0).思路点拨:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0. 解:二次根式有:、(x>0)、、、(x≥0,y≥0); 不是二次根式的有:、、、. 2、当x是多少时,在实数范围内有意义? 思路点拨:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,?才能有意义.解:由3x-1≥0,得:x≥ 当x≥时,在实数范围内有意义.

二次根式的概念及性质练习题

二次根式的概念及性质练习题 班级 姓名 一.判断题(对的打“∨”,错的打“×”) (1x 的取值范围是x<0 ( ) (2中字母x 的取值范围是x ≤3 4 ( ) (3)当x=-1 ( ) (4)当a=-4( ) (5)2= —12 ( );(6—1 2 ( ) (7)2= —1 2 ( );(8)(2 =2×1 2=1 ( ) 二、填空题: 1.b ≥3)s ≥0)a (0≥a )的代 数式,叫做_______. 2.当x______ 时, 3 x 的取值范围是_______ .

4. (7) 2 =________;(8 +( 2=________. (10 . 5.当x=-2 _______. 6.当a取______ 时, 7.当x取______ 8.当m=-2 值为________. 9、若直角三角形的两直角边分别是2cm 和acm,则直角三角形的斜边长是_______ 10、若正方形的面积是(b-3)cm2,则正方形的边长是_________。 三、选择题: 1.下列各式中,哪一个是二次根式() A . ( ( ()( () ( ()( 2 2 3 1_____,2______,3_____, 4_____,5____,6____. === ===

2 .使代数式2 x +有意义的x 的取值范围是( ) A .x ≠-2; B .x ≤12且x ≠-2; C .x<12 且x ≠-2; D .x ≥1 2且x ≠-2 3.下列各式中一定成立的是( ) A =3+4=7 B C .( 2 D =1-13=2 3 四、求下列二次根式中字母的取值范围: 五、计算:(1 -(12)2; (2) ( 3) 4时x 的值. ( )( )( )123( 4

指数与指数幂的运算备课教案

2.1.1 指数与指数幂的运算(2课时) 第一课时根式 教学目标:1.理解n次方根、根式、分数指数幂的概念; 2.正确运用根式运算性质和有理指数幂的运算性质; 3.培养学生认识、接受新事物和用联系观点看问题的能力。教学重点:根式的概念、分数指数幂的概念和运算性质 教学难点:根式概念和分数指数幂概念的理解 教学方法:学导式 教学过程: (I)复习回顾 引例:填空 m n =(m,n∈Z); a+

(II )讲授新课 1.引入: (1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m n a a ÷可看作m n a a -?,所以m n m n a a a -÷=可以归入性质m n m n a a a +?=;又因为n b a )(可看作 m n a a -?,所以n n n b a b a =)(可以归入性质()n n n ab a b =?(n ∈Z)),这是为下面学习分 数指数幂的概念和性质做准备。为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。 (2)填空(3),(4)复习了平方根、立方根这两个概念。如: 分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。由此,可有:

2.n 次方根的定义:(板书) 问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确? 分析过程: 解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根; 因为632a )a (=,所以a 2是a 6的3次方根。 结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。此时,a 的n 次方根可表示为n a x =。 从而有:3273=,2325-=-,236a a = 解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;

根式与分数指数幂的互化

根式与分数指数幂的互化(一) 一.标教学目 1.知识与技能 ①初步了解指数幂和指数函数; ②通过类比平方根、立方根,认识n次方根,进而初步理解根式的概念. 2.过程与方法 会求或化简根指数为正整数的根式。 3.情感.态度与价值观 通过具体的情景,引发学生思考,激发求知欲,培养学生对数学的情感。 二.重点 利用n次方根式性质化简n次方根式。 三.难点 指数幂的含义与根式互化 四、教学过程设计 (一)教学基本流程 (二)教学情景 1.本章学习引导 问题1:给出化石图片,归纳出函数关系式。 设计意图:引导同学对本章内容有一个概括性的认识,并大致清楚学习的目标和方法.问题2:对于a n,当n是正整数时的意义我们已经知道;当n是有理数时,它的意义又是什么呢? 设计意图:引导同学建立与根式的联系.

2.概念的引入 问题3:我们知道,如果x2=a,那么x叫做a的平方根(2次方根);如果x3=a,那么x 叫做a的立方根(3次方根).请问: (1)你由此想到,还有哪些方根? (2)你能否根据上述定义,给你所说的这些方根进行定义? 设计意图:通过回顾平方根和立方根,让同学在已有认知基础上,与同类概念进行比较,通过类比得到对新概念的认识方法上的启发,并为领会新概念找到一个固着点,从而引出n 次方根的定义.以此促进概括,明确n次方根概念的内涵,进而准确把握此概念.师生活动:为了帮助同学进行类比,可以将平方根和立方根的定义上下对齐写在黑板上,然后让同学将类比出的定义写在它们的下面. 3.概念的形成 问题4:根据平方根和立方根的定义,我们可以举例,例如,由于(±2)2=4,所以±2就是4的平方根;由于23=8,所以2就是8的立方根.类似地,请根据你所给出的其他方根的定义,举出相应的例子. 设计意图:当n较大时,同学举例困难了,于是引入n次方根的表示. 师生活动:可引导同学类比平方根和立方根的表示,给出n次方根的表示: (1)我们知道,4的平方根是±2,可以表示为±4=±2;8的立方根是2,可以表 =-2.那么类似地,16的4次方根怎样表示为38=2;-8的立方根是-2,可以表示为38 示?32的5次方根怎样表示?-32的5次方根怎样表示?a的n次方根又怎样表示? (2)从上述例子中我们是否能看出什么规律?也就是: n是奇数时,正数a的n次方根有几个?是正数,负数,还是零?怎样表示?负数a的n次方根有几个?是正数,负数,还是零?怎样表示? n是偶数时,正数a的n次方根有几个?是正数,负数,还是零?怎样表示? (3)负数有没有偶次方根? (4)0的n次方根是多少?可以怎样表示? 4.概念的明确

实数和二次根式的基本概念解析

一.实数的基本概念 1.无理数的概念: (1)定义:无限不循环小数叫做无理数. (2)解读: 1)无理数的两个重要特征:①无限小数;②不循环. 2)无理数的常见类型: ①具有特定意义的数。如π等; ②具有特定结构的无限小数,如0.1212212221……(每相邻两个1之间依次多一个2)等; ③开方开不尽的数,如2,34等. 那么,是否所有带根号的数都是无理数呢??? 3)有理数与无理数的区别:有理数总可以表示为有限小数或无限循环小数,反之,有限小数和无限循环小数也必定是有理数;而无理数是无限不循环小数,无限不循环小数也必定是无理数. 2.实数的概念及分类: (1)定义:有理数和无理数统称为实数. (2)分类: ①按定义分: ?? ? ? ?? ? ? 整数 有理数 实数分数---有限小数或无限循环小数无理数-------无限不循环小数 知识点睛 实数、二次根式的基本概念

②按性质分:0??????????????? 正有理数正实数正无理数实数负有理数负实数负无理数 {} ?????????????????????????????????正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (3)实数的性质: ①相反数:a 与b 互为相反数0a b ?+=. ②绝对值:,00,0,0a a a a a a >??==??-?=?-≤? (4)实数和数轴上的点是一一对应的. π是一个超越数,用尺规作图的方法是不能在数轴上表示的;可以用物理方法来表示:用一个直径为1的圆形从数轴的零点开始转动,正好转一圈的那个点就是π,因为直径为1的圆的周长为π。 (5)实数的运算顺序:先算乘方、开方、再算乘除、最后算加减,同级运算按照从左到右的顺序进行,有括号的先算括号里的。 (6)实数中非负数的四种形式及其性质: 形式:①0a ≥;②2 0a ≥ 0≥(0a ≥) 0a ≥. 性质:①非负数有最小值0;②有限个非负数之和仍然是非负数;③几个非负数之和等于0,则每个非负数都等于0. (7)实数中无理数的常见类型: ①所有开不尽的方根都是无理数,且不可认为带根号的数都是无理数; ②圆周率π及含有π的数是无理数,例如:21π+等; ③看似循环,但实质不循环的无限小数是无理数,例如:1.023*******…….

二次根式的概念教学设计

1 6.1 二次根式 第1课时 二次根式的概念 1.能用二次根式表示实际问题中的数量及数量关系,体会研究二次根式的必要性;(难点) 2.能根据算术平方根的意义了解二次根式的概念及性质,会求二次根式中被开方数中字母的取值范围.(重点) 一、情境导入 问题1:你能用带有根号的式子填空吗? (1)面积为3的正方形的边长为________,面积为S 的正方形的边长为________. (2)一个长方形围栏,长是宽的2倍,面积为130m 2,则它的宽为________m. (3)一个物体从高处自由落下,落到地面所用的时间t (单位:s)与落下的高度h (单位:m)满足关系h =5t 2,如果用含有h 的式子表示t ,则t =______. 问题2:上面得到的式子3,S ,65,h 5 分别表示什么意义?它们有什么共同特征? 二、合作探究 探究点一:二次根式的定义 下列各式中,哪些是二次根式,哪些不是二次根式? (1)11;(2)-5;(3)(-7)2; (4)313;(5)15-16 ;(6)3-x (x ≤3); (7)-x (x ≥0);(8)(a -1)2;(9)-x 2-5; (10)(a -b )2(ab ≥0). 解析:要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数. 解:因为11,(-7)2,15-16=130 ,3-x (x ≤3),(a -1)2,(a -b )2(ab ≥0)中的根指数都是2,且被开方数为非负数,所以都是二次根式.313的根指数不是2,

-5,-x (x ≥0),-x 2-5的被开方数小于0,所以不是二次根式. 方法总结:判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号“ ”;(2)被开方数是非负数. 探究点二:二次根式有意义的条件 【类型一】 根据二次根式有意义求字母的取值范围 求使下列式子有意义的x 的取值范围. (1)14-3x ;(2)3-x x -2;(3)x +5x . 解析:根据二次根式的性质和分式的意义,被开方数大于或等于0且分母不等于0,列不等式(组)求解. 解:(1)由题意得4-3x >0,解得x <43.当x <43时,14-3x 有意义; (2)由题意得?????3-x ≥0,x -2≠0, 解得x ≤3且x ≠2.当x ≤3且x ≠2时,3-x x -2有意义; (3)由题意得? ????x +5≥0,x ≠0,解得x ≥-5且x ≠0.当x ≥-5且x ≠0时,x +5x 有意义. 方法总结:含二次根式的式子有意义的条件: (1)如果一个式子中含有多个二次根式,那么它们有意义的条件是各个二次根式中的被开方数都必须是非负数;(2)如果所给式子中含有分母,则除了保证二次根式中的被开方数为非负数外,还必须保证分母不为零. 【类型二】 (1)x 的方程(a +2)x +b 2=a -1; (2)已知x 、4,求y x 的平方根. 解析:(1)根据二次根式的非负性和绝对值的非负性求解即可;(2)根据二次根式的非负性即可求得x 的值,进而求得y 的值,进而可求出y x 的平方根. 解:(1)根据题意得???2a +8=0,b -3=0,解得???a =-4,b = 3. 则(a +2)x +b 2=a -1,即-2x +3=-5,解得x =4; (2)根据题意得? ????x -3≥0,3-x ≥0,解得x =3.则y =4,故y x =43=64,±64=±8,∴y x 的平方根

【教案】4.1.1 《n次方根与分数指数幂》教案

4.1.1 n 次方根与分数指数幂 教学设计 从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n 次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,并将幂的运算性 质由整数指数幂推广到分数指数幂.通过对有理数指数幂;1≠ ,且0>(a a a n m 、实数指数幂R)∈1;;≠ 且a 0,(a>a x 含义的认识,了解指数幂的拓展过程,掌握指数幂的运算性质. 1.掌握n 次方根及根式的概念,正确运用根式的运算性质进行根式的运算; 2.了解分式指数幂的含义,学会根式与分数指数幂之间的相互转化; 3.理解有理数指数幂的含义及其运算性质. 教学重难点 【教学重点】 理解n 次方根及根式的概念,掌握根式的性质.(重点) 【教学难点】 能利用根式的性质对根式进行运算.(重点、难点、易错点) 课前准备 引导学生复习回顾初中相关知识,做好衔接,为新知识的学习奠定基础. 二、教学过程: (一)自主预习——探新知: 问题导学 预习教材P104-P109,并思考以下问题:1.n 次方根是怎样定义的? 2.根式的定义是什么?它有哪些性质? 3.有理数指数幂的含义是什么?怎样理解分数指数幂?4.有理指数幂有哪些运算性质? (二)创设情景,揭示课题 (1)以牛顿首次使用任意实数指数引入,激发学生的求知欲望和学习指数概念的积极性. (2)简单复习正整数指数幂的概念和运算,并且思考一下问题: 4的平方根是什么?任何一个实数都有平方根吗?一个数的平方根有几个? -27的立方根是什么?任何一个实数都有立方根吗?一个数的立方根有几个? 如果x 2=a ,那么x 叫做a 的平方根,如果x 3=a ,那么x 叫做a 的立方根, 类似的,(±2)4 =16,我们可以把±2叫做16的4次方根,(2)5=32,2叫做32的5次方根? 推广到一般情形,a 的n 次方根是一个什么概念?给出定义. (3)当n 是奇数时,a 的n n a n 是偶数时,若a >0,则a 的n 次方根为n a 若a =0,则a 的n 次方根为0; 若a <0,则a 的n 次方根不存在.即:

二次根式的有关概念及性质

二次根式的有关概念及性质 一、二次根式的有关概念: 1.二次根式:式子(a≥0)叫做二次根式。 2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式; (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5,都是最简二次根式。 3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。如, , 就是同类二次根式,因为=2,=3,它们与的被开方数均为2。 4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。如与,a+与a-,-与+,互为有理化因式。 二、二次根式的性质: 1.(a≥0)是一个非负数, 即≥0; 2.非负数的算术平方根再平方仍得这个数,即:()2=a(a≥0); 3.某数的平方的算术平方根等于某数的绝对值,即=|a|= 4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即=·(a≥0,b≥0)。

5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a≥0,b>0)。 三、例题:例1.x为何值时,下列各式在实数围才有意义: (1)(2)(3) (4)+(5)(6)+分析:这是一组考察二次根式基本概念的问题,要弄清每一个数学表达式的含义,根据分式和根式成立的条件去解,即要考虑到分式的分母不能为0并且偶次根号下被开方数要大于或等于零。 解:(1)∵ 6-x≥0,∴x≤6时原式有意义。 (2)∵ x2≥0, ∴ x2+3>0, ∴ x取任意实数原式都有意义。 (3) ∵∴∴当x<3且x≠-3时,原式有意义。 (4) ∵∴∴当-≤x<时,原式有意义。 (5) ∴∴当x≥0且x≠1时,原式有意义。 (6) ∵∴∴ x=2 ∴当x=2时,原式有意义。 例2.写出下列各等式成立的条件:

高中数学实数指数幂及其运算测试题

第三章基本初等函数(Ⅰ) 3.1指数与指数函数 3.1.1有理指数幂及其运算 【目标要求】 1. 理解根式的概念。 2. 理解分数指数的概念,掌握根式与分数指数幂的关系。 3. 掌握有理数幂的运算性质并注意灵活运用。 4. 掌握用计算器计算有理指数幂的值。 【巩固教材——稳扎马步】 1.下列说法中正确的是() A.-2是16的四次方根 B.正数的次方根有两个 C.的次方根就是 D. 2.下列等式一定成立的是() A .2 33 1a a ?=a B .2 12 1a a ?-=0C .(a 3)2=a 9 D.6 13121a a a =÷ 3.4 31681-?? ? ??的值是() A. 278 B.278- C.23D.2 3- 4.将322-化为分数指数幂的形式为() A .2 1 2- B .3 12-C .212- - D.6 52- 【重难突破——重拳出击】 5.下列各式中,正确的是()

A .100 =B .1)1(1 =--C .7 4 4 71 a a = - D .5 3 5 31 a a = - 6.设b ≠0,化简式子()()() 6 153 122 2 133 ab b a b a ??--的结果是() A.a B.()1-ab C.1-ab D.1-a 7.化简[32 )5(-]4 3的结果为() A .5 B .5 C .-5 D.-5 8.若122-=x a ,则x x x x a a a a --++33等于() A .22-1 B .2-22C .22+1 D.2+1 9. 1 2 1 2 --=--x x x x 成立的充要条件是() A. 1 2 --x x ≥0B.x ≠1C.x <1D.x ≥2 10.式子经过计算可得到() A. B. C. D. 11.化简44 2 5168132c b a a c (a >0,c <0)的结果为() A.±42ab B .-42ab C .-2ab D.2ab 12.设x>1,y>0,y y y y x x x x ---=+则,22等于() A .6B .2或-2C .2D .-2 【巩固提高——登峰揽月】 13.计算0.0273 1--(-7 1 )-2+25643 -3-1+(2-1)0=__________.

二次根式的概念及运算

二次根式的概念及运算 二次根式 形如()0a a ≥的式子. 二次根式有意义 被开方数大于等于零(即若a 有意义,则0a ≥) 【例1】 1当x 取何值时,下列式子有意义? ⑴2x - ⑵2x - ⑶2 x - ⑷213x x ++- ⑸1x - ⑹x 模块一 二次根式的概念 知识导航 知识互联网 夯实基础

2 若x ,y 为实数,且14411y x x =-+-+.求xy 的值. 3 设3 1221 x x y x -+-=+,求使y 有意义的x 的取值范围. ①0(0)a a ≥≥ ②2 ()(0)a a a =≥ ③(必考)2a a a a ?==?-?() ( )00a a <≥ 【例2】 化简下列各式 ⑴ ( ) 2 25 - ⑵ () 2 3a - 能力提升 夯实基础 知识导航 题型二 二次根式的性质

【例3】 ⑴已知数a b c 、、在数轴上的位置如图所示: 化简:() 2 2a a c c b b -++---的结果为________ ⑵已知01a <<,化简2 2 1144a a a a ??? ?-+++- ? ????? ⑶化简( ) 2 2 412912x x x -+- -得( ) A. 2 B.44x -- C.2- D.44x - ⑷若()2 2340a b c -+-+-=,则a b c -+= . ⑸已知实数x 、y 满足480x y -+-=,则以x 、y 的值为两边长的等腰三角形的周长是( ) A . 20或16 B . 20 C . 16 D . 以上答案均不对 ⑹若a 、b 为实数,且|1|20a ab -+-=, 求1111(1)(1)(2)(2)(2012)(2012)ab a b a b a b +++++++++的值. 乘法 与积的算术平方根可互相转化:(0,0)a b ab a b ?=≥≥ 除法 与商的算术平方根可互相转化: (0,0)a a a b b b =>≥ 最简二次根式 ①被开方数不含分母 ②被开方数中不含能开得尽方的因数或因式. 知识导航 模块三 二次根式的运算 c a

指数与指数幂的运算导学案

§2.1.1 指数与指数幂的运算(1) 1. 了解指数函数模型背景及实用性、必要性; 2. 了解根式的概念及表示方法; 3. 理解根式的运算性质. 4850 复习1:正方形面积公式为;正方体的体积公式为. 复习2:(初中根式的概念)如果一个数的平方等于a,那么这个数叫做a的,记作; 如果一个数的立方等于a,那么这个数叫做a的,记作. 二、新课导学 ※学习探究 探究任务一:指数函数模型应用背景 探究下面实例及问题,了解指数指数概念提出的背景,体会引入指数函数的必要性. 实例1. 某市人口平均年增长率为1.25℅,1990年人口数为a万,则x年后人口数为多少万? 实例 2. 给一张报纸,先实验最多可折多少次?你能超过8次吗? 计算:若报纸长50cm,宽34cm,厚0.01mm,进行对折x次后,求对折后的面积与厚度? 问题1:国务院发展研究中心在2000年分析,我国未来20年GDP(国内生产总值)年平均增长率达7.3℅,则x年后GDP为2000年的多少倍? 问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t年后体内碳14的含量P 与死亡时碳14关系为5730 1 () 2 t P=. 探究该式意义? 小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学. 探究任务二:根式的概念及运算 考察:2 (2)4 ±=,那么2±就叫4的; 3 327 =,那么3就叫27的; 4 (3)81 ±=,那么3±就叫做81的. 依此类推,若n x a =,,那么x叫做a的. 新知:一般地,若n x a =,那么x叫做a的n次方根(n th root ),其中1 n>,n* ∈ N. 例如:32 8 =2 =. 反思: 当n为奇数时, n次方根情况如何? 33 -, 记:x=当n为偶数时,正数的n次方根情况? 例如: 81的4次方根就是,记:. 强调:负数没有偶次方根; 0的任何次方根都是00 =. 试试:4b a =,则a的4次方根为; 3 b a =,则a的3次方根为 . 新知根式(radical),这里n 叫做根指数(radical exponent),a叫做被开方数(radicand) . 试试:计算2 . 反思: 从特殊到一般, n 结论:n a =. 当n a;当n是

二次根式的概念和其应用

二次根式 知识点一:二次根式的定义 二次根式:一般地,式子√a (a ≥0)叫做二次根式,a 叫做被开方数。 1) 二次根式的定义必须包含二次根号“√”,尽管√9的结果为3,但由于√9满足二次根式的特征,所以√9是二次根式; 2) 二次根式的被开方数可以使数字,亦可以是一代数式,但必须满足被开方数≥0,如√-x 2-1,由于被开方数<0,所以它不是二次根式; 3) 根指数是2,此处的2可以省略不写; 4) 形如b √a (a ≥0)的式子也是二次根式; 知识点二:二次根式有意义的条件(被开方数是非负数) 知识点三:二次根式的性质 性质1:双重非负性 性质2: 2=a (a ≥0) 性质3:a a a a a a 200==≥-0) 、 、 、1 x y + x ≥0,y?≥0). 例2. 求下列各式有意义的所有x 的取值范围。 ();(); (); ();();()1322131 2 4115216453 3 2-++-++-----x x x x x x x x x x

例3.已知x,y 为实数,且5y =,求22x xy y -+的值。 例4. 已知 ,求x y 的值 例5. 当a 1+取值最小,并求出这个最小值 例6. 已知2310x x -+= 例7. 已知:,x y 为实数,且13y x -+ ,化简:3y -- 例 8. 实数a 在数轴上的位置如图所示,化简:|1|a - 例9.已知 a 、b 、c 满足2(0a c -= (1)a 、b 、c 的值; (2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由

根式 指数与指数幂的运算

根式指数与指数幂的运算 根式的性质 思考1:445533)2(,)2(,)2(-分别等于什么?一般地n n a )(等于什么? 思考2:44445 533)2(,2,2,)2(--分别等于什么?一般地n n a 等于什么? 思考3:对任意实数a ,b ,等式n n n ab b a = ?成立吗? 例1 求下列各式的值88442343)1(,)3(,)10(,)8(,)2(,64------a π 例2 化简下列各式 3322)1()1()1(,3625a a a -+-+-+- 根式的性质 思考1:445533)2(,)2(,)2(-分别等于什么?一般地n n a )(等于什么? 思考2:44445 533)2(,2,2,)2(--分别等于什么?一般地n n a 等于什么? 思考3:对任意实数a ,b ,等式n n n ab b a = ?成立吗? 例1 求下列各式的值88442343)1(,)3(,)10(,)8(,)2(,64------a π 例2 化简下列各式 3322)1()1()1(,3625a a a -+-+-+- 分数指数幂和无理数指数幂 知识探究(一):分数指数幂的意义 思考1:设4128510,,,0a a a a >分别等于什么 思考2:观察上述结论,你能总结出什么规律? 思考3:按照上述规律,根式573543,7,5a 分别可写成什么形式? 思考4:我们规定:n m a (a>0,m ,n ∈N 且n >1),那么328表示一个什么数?5 2214,3分别表示什么根式? 思考5:你认为如何规定m n a - (a>0,m,n ∈N ,且n >1)的含义? 思考6:怎样理解零的分数指数幂的意义? 思考7:5 32 33 2 )2(,)2(,)2(---都有意义吗?当a<0时,n m a 何时无意义? 知识探究(二):有理数指数幂的运算性质 思考1:=?3 42322一般地等于什么? 思考2:= 3 42 3)2(一般地 等于什么? 思考3:=?3 23 222一般地 等于什么? 例1 求下列各式的值43 32 13 2)81 16(,)41(,100 ,8--- 例2用分数指数幂的形式表示下列各式:a a a a a a ,,3232?? (式中a >0).

二次根式的概念及性质

二次根式 教学目标 1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子; 2.熟练地进行二次根式的加、减、乘、除混合运算. 教学重点和难点 重点:含二次根式的式子的混合运算. 难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子. 教学过程设计 一、复习 1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件. 指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式. 2.二次根式的乘法及除法的法则是什么?用式子表示出来. 指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相 除, 计算结果要把分母有理化. 3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式: 4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:

二、例题 例1 x取什么值时,下列各式在实数范围内有意义: 分析: (1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义; (3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义; (4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.

x≥-2且x≠0. 解因为n2-9≥0,9-n2≥0,且n-3≠0,所以n2=9且n≠3,所以 例3 分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a≥0和1-a>0. 解:因为1-a>0,3-a≥0,所以a<1,|a-2|=2-a. (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.

二次根式的概念及性质练习卷[1]

二次根式的概念及性质练习卷 一.判断题(对的打“∨”,错的打“×”) (1 x 的取值范围是x<0 ( ) (2 x 的取值范围是x ≤3 4 ( ) (3)当x=-1 ( ) (4)当a=-4 ( ) (5) 2= —12 ( );(6 —12 ( ) (7) )2= —12 ( );(8)( 2=2×12=1 ( ) 二、填空题: 1 b ≥3) s ≥0) 这种形如a (0≥a )的代数式,叫做_______. 2.当x______ 时,有意义. 3 是二次根式,则x 的取值范围是_______ . 4. (7) 2 =________; (8 +( )2=________. (10 . 5.当x=-2 时,二次根式_______. ( ( ()( ()( ()( 2 2 3 1_____,2______,3_____, 4_____,5____,6____. ======

6.当a 取______ 7.当x 取______ 8.当m=-2 ________. 9、若直角三角形的两直角边分别是2cm 和acm ,则直角三角形的斜边长是_______ 10、若正方形的面积是(b-3)cm 2,则正方形的边长是_________。 三、选择题: 1.下列各式中,哪一个是二次根式 ( ) A B C D 2 x 的取值范围是( ) A .x ≠-2; B .x ≤1 2且x ≠-2; C .x<12且x ≠-2; D .x ≥12 且x ≠-2 3.下列各式中一定成立的是( ) A B C .( 2 D .13=23 四、求下列二次根式中字母的取值范围: 五、计算:(1 ) -(12) ( )( ) ( ) 123( 4

根式与分数指数幂题型总结

根式与分数指数幂 一、根式性质的应用 求下列各式的值: (1)3(-4)3; (2)(-9)2; (3)4 (3-π)4; (4)(a -b )2. (5)(a -1)2+(1-a )2+3 (1-a )3=________. 根式与分数指数幂的互化 (a >0,b >0): (1)3a ·4a ; (2)a a a ; (3)3a 2·a 3; (4)(3 a )2·a b 3. (5)3 x 6; (6)1x 3; (7)35x -; (8)2 132 x y -. 练习 1.当a ,b ∈R 时,下列各式总能成立的是 ( ) A .(6a -6b )6=a -b B.8(a 2+b 2)8=a 2+b 2 C.4a 4-4 b 4=a -b D. 10 (a +b )10=a +b 2.设k ∈Z,2-2k +2-2k -1-22k + 1等于 ( ) A .2 B .-2 -2k C .2 -2k +1 D .-2 -2k -1 3.4 a -2+(a -4)0有意义,则a 的取值范围是 ( ) A .a ≥2 B .2≤a <4或a >4 C .a ≠2 D .a ≠4 4.若xy ≠0,则可使4x 2y 2=-2xy 成立的条件是 ( ) A .x >0,y >0 B .x >0,y <0 C .x <0,y ≥0 D .x <0,y <0 5.若a <1 2 ,则化简4(2a -1)2的结果是 ( ) A.2a -1 B .-2a -1 C.1-2a D .-1-2a 6. x -2x -1=x -2x -1成立的条件是 ( ) A.x -2x -1 ≥0 B .x ≠1 C .x <1 D .x ≥2 7.若x 2-2x +1+y 2+6y +9=0,则y x =________. 8.设a =424,b =3 12,c =6,则a ,b ,c 的大小关系是________. 9.把a -1 a 根号外的a 移入根号内等于________. 10.计算下列各式的值: (1)(-3)2; (2)3(-3)3; (3)n (-3)n (n ∈N *,且n >1); (4)4(3-π)2;(5)(a -3)2; (6)3(-2)3+4(π-2)4+3 (2-π)3. 11.求使等式(x -2)(x 2-4)=(2-x )x +2成立的x 的取值范围.

指数与指数幂的运算习题.docx

指数与指数幂的运算1.下列命题 04 2 1 n a n | a | ; 2 a2 1 ;33x3y4x y 3;432 a 16 2 .其中正确命题的个数是【】 A. 0B. 1C. 2D. 3 2111 115 2.化简 a 3b 23a 2b3a6 b6的结果为【】 3 A. 6a C. - 9a D. 9a 3.下列各式正确的是【】 A.31 a 5 3 a5 . 32 3 B x x2 C.111111D1124 ) ( 2x ( 1 ) (4) 1(15) 0,结果是【】 4.计算22 1 22 1 B. 2 2 C.2 D. 22 11 5,则 x21 的值为【 5.已知 x 2x 2】 x A.5 B.23 C.25 D. 27 6.下列根式与分数指数幂的互化,正确的是【】 A . 1 B . 6y2 1 x ( x) 2 ( x 0)y 3 ( y 0) 3 4 ( 1 )3( x0)1 C. x4 D . x33 x( x 0) x 1 可化简为【】 7 式子a a A.a B . a C . a D .a 3 8. 已知x28,则 x 的值应为【】 B. ±4 C. 16 2 D .16 2

9. 若6 4a24a 1 3 12a ,则实数 a 的取值范围是() B. 1 C.a 1 D. a 2 2 11111 10、化简 1 2 32 1 2 161 2 8 1 2 41 2 2 1 a 2 ,结果是() A、111111 、 11 1 2 32B、 1 232 C 、1 2 32D 1 2 32 22 11、若a1,b 0,且a b a b2 2 ,则 a b a b的值等于() A、6 B、 2 C、 2 D、2 12、若10x3,10 y4,则 10x y。 13.化简 36946394 的结果是. (a)(a) 14 1 14.计算1 20643 . (6)0.125 3 927 15.化简3 2 2 . 3 2 2 16.化简求值: 2131 a 3 b2g3a 2 b2 (1) 1 5 4a 2b 6 ; (2)3 a a64a 4. 17. 已知 a3,求a11的值。 a a 1a31

分数指数幂公开课教案

《分数指数幂》教学设计 陈炜明(2013/3/5公开课) 一、教学目标: 知识与技能:理解分数指数幂的含义,了解分数指数幂的运算性质,掌握根式与分数指数幂的互化。通过具体实例了解实数指数幂的意义。 过程与方法:回顾整数指数幂的定义过程,学生通过观察,模仿,并进行合作交流,对整数指数幂进行推广,寻求分数指数幂最合理自然的规定方式。 情感、态度与价值观:通过对指数的推广,感受从特殊到一般的思想方法,提高数学的基本运算能力,体会数学的理性精神以及数学的美学意义。 二、教学重点:分数指数幂的意义和运算性质 三、教学难点:分数指数幂的概念 四、教学过程: 【问题情境】 里氏震级是目前国际通用的地震震级标准。它是根据离震中一定距离所观测到的地震波幅度和周期,并且考虑从震源到观测点的地震波衰减,经过一定公式,计算出来的震源处地震的大小。 假设第0级地震所释放的能量为1,且在估算能量的时候,里氏震级每增加1级,释放的能量大约增加31.6227倍,则 (1)第3级地震所释放的能量为多少? 31.6227 答:3 (2)第x级地震所释放的能量为多少? y 答:31.6227x (3)上一问中的x会出现为分数的情况吗? 教师举例

引导学生提出问题:当指数为分数时,应该如何定义?又该如何计算? (此时教师在黑板上画出函数2,x y x Z =∈的图像辅助说明该问题的提出) 【温故知新】 问题一:m a 表示什么含义(当m 为正整数的时候)?当指数为正整数时候,指数的运 算都有哪些运算性质? 答:m 个a 相乘。 , ,(,0)(), ()m n m n m m n n m n mn m m m a a a a a m n a a a a a b a b +-==>≠== (此处板书) 在这里,m n 均为正整数。 问题二:若在计算m n a -时,遇到m n =时,有无意义?怎样计算?得出什么结果? 若m n <呢? 答:当扩展到整数指数幂时候,若要求维持原来的运算性质,可以得到 01a =(0)a ≠。同理,可以对负分数指数幂进行规定。 小结:负整指数幂的实质是分式(或分数)形式。在将正整数指数幂推广到整数指数幂时,保持了原有的运算性质不变。(对刚刚运算性质的板书修改)。 问题三:为什么对于熟悉的分式还需要用负指数幂来表示呢?

相关主题
文本预览
相关文档 最新文档