当前位置:文档之家› 一阶电路的过渡过程实验报告

一阶电路的过渡过程实验报告

一阶电路的过渡过程实验报告
一阶电路的过渡过程实验报告

《电路与电子学基础》实验

实验名称:一阶电路的过渡过程

班级:

学号:

姓名:

实验目的:

1.充电时电容器两端电压的变化为时间函数,画出充电电压曲线图。

2.放电时电容器两端电压的变化为时间函数,画出放电电压曲线图。

3.测量RC电路的时间常数并比较测量值与计算值。

4.研究R和C的变化对RC电路时间常数的影响。

5.当电感中的电流增大时确定电感电流随时间变化的曲线图。

6.当电感中的电流减小时确定电感电流随时间变化的曲线图。

7.测量RL电路的时间常数并比较测量值和计算值。

8.研究R和L元件值变化时对RL电路时间常数产生的影响。

实验步骤:

图2-1

1.在电子平台上建立如图2-1所示的实验电路,信号发生器和示波器的设置可照图进行。示波器屏幕上的红色曲线是信号发生器输出的方波。信号发生器的输出电压在+5V与0之间摆动,模拟直流电压源输出+5V电压与短路。当输出电压为+5V时电容器将通过电阻R充电。当电压为0对地短路时,电容器将通过电阻R放电。蓝色曲线显示电容器两端电压Vab随时间变化的情况。在下面V-T坐标上画出电容电压Vab随时间变化的曲线图。作图时注意区分充电电压曲线和放电电压曲线。

2.用曲线图测量RC电路的时间常数τ。τ=20.440ms

3.根据图2-1所示的R,C元件值,计算RC电路的时间常数τ。

τ=RC=1kΩ*20μF=20ms,

图2-4

4.子工作平台上建立如图2-4所示的实验电路,按图2-3对信号发生器和示波器进行设置。单击仿真电源开关,激活电路进行动态分析。在示波器屏幕上,红色曲线表示信号发生器的方波输出,信号电压在+10V和0V之间跳变,模拟加+10V直流电压与短路。当信号电压跳变到+10V时,电感电流将增加直至达到最大静态值,电感电流达到静态后将使电感电压

降为0。当信号电压跳变到0对地短路时,电感电流将减小直至达到0,电感电流到0后将引起电感电压变负,变小。屏幕上蓝色曲线表示电感两端的电压Vab与时间的函数关系。在下面的V-T坐标上画出电感电压Vab的曲图,作图时注意区分电感电流增加时的电压曲线和电感电流减小时的电压曲线。从曲线图测量RL电路的时间常数τ。

从图中可以读出时间常数τ=103.204ms。

5.将改为2kΩ,单击仿真电源开关,再次激活电路进行动态分析。从曲线图测量新的时间常数τ。

τ=50.109ms

6.根据R的新阻值,计算图2-4所示的RL电路的新时间常数τ。

τ=L/R=100H/2kΩ=50ms

7.将L改为200H,单击仿真电源开关,再次激活电路进行动态分析,从曲线图测量新的时间常数τ。

τ=102.722ms

8.根据R和L的新值,计算图2-4所示的RL电路新的时间常数τ。

τ=RL=200H/2kΩ=100ms

五、思考与分析

1.在步骤1中,当充满电后电容器两端的电压Vab为5V,与电源电压相等,放完电后电容器两端的电压Vab是0V。

2.在步骤2,3追踪时间常数τ的测量值和计算值在误差范围内近似相等。

3.在步骤4中当电感电流增大时最大电感电压是10V。当电感电流减小时最大电感电压是-10V。电杆电压为负值,主要是因为电感具有阻碍电流改变趋势的作用,所以当电流减小是,电感会释放自身存储的能量,所以方向自然为夫啦。最小电感电压Vab为0V。

4.时间常数与电阻R成反比例关系,R越大,时间常数就越小。

5.时间常数与电感L成正比例关系,L越大,时间常数就大。

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

实验四 一阶RC电路过渡过程的研究

实验四 一阶RC 电路过渡过程的研究 一、实验目的 1.了解示波器的原理,熟悉示波器面板上的开关和旋钮的作用,学会其使用方法; 2.学会信号发生器、交流毫伏表等电子仪器的使用方法; 3.研究一阶RC 电路的过渡过程。 二、实验原理 1.RC 电路的脉冲序列响应 (a ) (b ) 图4.1.12 RC 电路及其响应 (a )RC 电路 (b )脉冲序列响应 为了观察图4.1.12(a )所示RC 电路过程中电压、电流的变化规律,采用如图4.1.12(b )中u s 所示的矩形脉冲序列作为RC 电路的输入信号。矩形脉冲的脉宽t p ≥5τ(τ=RC ),则RC 电路的脉冲序列响应(如图4.1.12(b )所示)为: ????? ≤≤≤≤-=-- -T t t e U t t e U t u t t t 1) (s 1 s C ,0),1()(1ττ ?? ??? ≤≤≤≤=-- -T t t e U t t e U t u t t t 1) (s 1 s R ,0,)(1ττ- 当t p 不变而适当选取大小不同的R 、C 参数以改变时间常数τ 时,会使电路特性发生变化。 2.时间常数τ 的测量 时间常数τ 可以从响应波形中测量,测量原理如图4.1.13所示。

图4.1.13时间常数τ的测量 三、仪器设备 1.示波器 2.交流毫伏表 3.信号发生器 四、实验内容与步骤 1.练习使用信号发生器和交流毫伏表 使信号发生器依次输出以下正弦波信号,用交流毫伏表测量其大小。 500 Hz 5 mV ;1000 Hz 40 mV; 30 kHz 1 V ;150 kHz 3 V 。 2.练习使用示波器 (1)将示波器接通电源,调节有关旋钮,使荧光屏上出现扫描线,熟悉“辉度”、“聚焦”、上下、左右位移旋钮的作用。 (2)使信号发生器输出3 V、1 kHz正弦波信号,用示波器观察其电压波形,熟悉“Y轴衰减”旋钮的作用。 (3)调节“扫描时间”和“稳定度”等旋钮,使荧光屏上显示的完整正弦波的个数增加或减少,如在荧光屏上得到一个、三个或六个完整的正弦波。 (4)将正弦波信号频率改为100 Hz,10 kHz,调节有关旋钮使波形清晰稳定。 3.一阶RC电路响应的测量 按图4.1.12接线。调节信号发生器使其输出幅度U s=5 V,频率f =500 Hz的方波信号。 (1)取C=0.1 μF,用示波器分别观察R=1 kΩ、R=2 kΩ两种情况下的u s、u C波形,测量电路的时间常数τ值,并记录。 (2)将图4.1.14中的R和C互换位置,用示波器分别观察R=1 kΩ、R=2 kΩ两种情况下的u s、u R波形,并记录。 图4.1.14一阶RC电路响应的测量电路 四、预习要求 1.认真阅读有关示波器、低频信号发生器、交流毫伏表全部内容,了解它们的工作原理、主要用途、使用范围和注意事项,熟悉各仪器面板上旋钮的作用。 2.复习有关一阶RC电路响应的内容,了解时间常数τ的测量方法。 五、报告要求 1.根据实验结果,说明使用示波器观察波形时,需调节哪些旋钮达到: (1)波形清晰且亮度适中; (2)波形大小适当且在荧光屏中间; (3)波形完整; (4)波形稳定。 2.用示波器观察正弦波电压时,若荧光屏上出现图4.1.15所示波形,是哪些开关或旋钮位

实验五--一阶RC电路的过渡过程实验

实验五一阶RC电路的过渡过程实验 一、实验目的 1、研究RC串联电路的过渡过程。 2、研究元件参数的改变对电路过渡过程的影响。 二、实验原理 电路在一定条件下有一定的稳定状态,当条件改变,就要过渡到新的稳定状态。从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。电路的过渡过程往往为时短暂,所以电路在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。 1、RC电路的零状态响应(电容C充电) 在图5-1(a)所示RC串联电路,开关S在未合上之前电容元件未充电,在t= 0时将开关S合上,电路既与一恒定电压为U的电源接通,对电容元件开始充电。此时电路的响应叫零状态响应,也就是电容充电的过程。 (a) (b) 图5-1RC电路的零状态响应电路及uC、u R、i随时间变化曲线根据基尔霍夫电压定律,列出t 0时电路的微分方程为 电容元件两端电压为 其随时间的变化曲线如图5-1(b) 所示。电压uc按指数规律随时间增长而趋于稳定值。 电路中的电流为 电阻上的电压为

其随时间的变化曲线如图5-1 (b)所示。 2、RC电路的零输入响应(电容C放电) 在图5-2(a)所示,RC串联电路。开关S在位置2时电容已充电,电容上的电压 uC= U0,电路处于稳定状态。在t = 0时将开关从位置2转换到位置1,使电路脱离电源,输入信号为零。此时电容元件经过电阻R开始放电。此时电路的响应叫零输入响应,也就是电容放电的过程。 (a)(b) 图5-2 RC电路的零输入响应电路及u C、u R、i随时间变化曲线 根据基尔霍夫电压定律,列出t>0时的电路微分方程为 电容两端电压为 其随时间变化曲线如图5-2(b)所示。它的初始值为U0,按指数规律衰减而趋于零。 τ =RC 式中τ = RC,叫时间常数,它所反映了电路过渡过程时间的长短,τ越大过渡时间就越长。 电路中的电流为 电阻上电压为 其随时间变化曲线如图5-2(b)所示。 3、时间常数τ 在RC串联电路中,τ为电路的时间常数。在电路的零状态(电容充电)响应上升到稳态值的63.2%所需要时间为一个时间常数τ,或者是电路零输入(电容放电)响应衰减到初始值的36.8%所需要时间[2]。虽然真正电路到达稳定状态所需要的时间为无限大,但通常认为经过(3-5)τ的时间,过度过程就基本结束,电路进入稳态。

(完整word版)日光灯实验报告答案

日光灯实验报告答案 篇一:日光灯实验报告 单相电路参数测量及功率因数的提高 实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。3.研究日光灯电路中电压、电 流相量之间的关系。4.理解改善电路功率因数的意义并掌握其应用方法。 实验原理 1.日光灯电路的组成日光灯电路是一个rl串联电路,由灯管、镇流器、起辉器组成,如图所示。由于 有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。图日光灯的组成电路灯管:内壁

涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器 突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二 是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯 管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻rl和一个电感l串联 组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双 金属片制成的u形动触片。动触片由两种热膨胀系数不同的金属制成,受

热后,双金属片伸 张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动 开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触 片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流 过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、 静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很 高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气

实验六 一阶RL电路的过渡过程实验

dt di L 实验六 一阶RL 电路的过渡过程实验 一、实验目的 1、研究RL 串联电路的过渡过程。 2、研究元件参数的改变对电路过渡过程的影响。 二、实验原理 在电路中,在一定条件下有一定的稳定状态,当条件改变,就要过渡到新的稳定状态。从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。电路的过渡过程往往为时短暂,所以电路在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。 1、RL 电路的零状态响应(电感L 储存能量) 图6-1 (a) 是RL 串联电路。在t = 0时将开关S 合上,电路既与一恒定电压为U 的电压接通。 根据克希荷夫电压定律,列出t ≥0时电路的微分方程为 i R + = U (a) (b) (c) 图6-1 RL 电路的零状态响应电路及、、 随时间变化曲线 电路中的电流为 电阻上电压为 电感上的电压为 其随时间的变化曲线如图6-1(b )、(c)所示。 2、RL 电路的零输入响应(电感L 释放能量)

在图6-2(a) 所示RL串联电路,开关S是合在位置2上,电感元件中通有电流。在t = 0时将开关从位置2合到位置1,使电路脱离电源,RL电路被短路。此时电路为零输入响应。 (a) (b) (c) 图6-2RL电路的零输入响应电路及、、随时间变化曲线根据克希荷夫电压定律,列出t≥0时电路的微分方程为 电路中的电流为 其随时间的变化曲线如图6-2 (b) 所示。它的初始值为I 0,按指数规律衰减而趋于零。 式中τ叫做时间常数,它反映了电路过渡过程时间的长短。 电路中电阻上电压为 电路中电感上电压为 其随时间的变化曲线如图6-2(c)所示。 3、时间常数τ 在RL串联电路中,τ为电路的时间常数。在电路的电路零状态响应上升到稳态值的63.2%所需要时间为一个时间常数τ,或者是零输入响应减到初始值的36.8%所需要时间。虽然真正电路到达稳定状态所需要的时间为无限大,但通常认为经过(3—5)τ的时间,过度过程就基本结束,电路进入稳态。 三、实验内容及步骤 1、脉冲信号源 在实际实验中,采用全数控函数信号发生器的矩形波形做为实验信号电源,由它产生一个固定频率的矩形波,模拟阶跃信号。在矩形波的前沿相当于接通直流电源,电容器通过电阻充电。矩形波后沿相当于电路短路,电容器通过电阻放电。矩形波周期性重复出现,电路就不断的进行充电、放电。

电路分析基础实验报告

电路分析基础课程实验报告

院系专业:信系科学与技术软件工程 年级班级:2011 级软件五班(1105) 姓名:涂明哲 学号:20112601524 本课程实验全部采用workbench 作为试验仿真工具。 实验一基尔霍夫定理与电阻串并联 实验目的:学习使用workbench 软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 1、基尔霍夫电流、电压定理的验证

解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 实验原理图: 12.DJ "VI 山 *---- 'XAAi- 112 与理论计算数据比较分析: i3 = i1 + i2; u1 + u2 + u7 + u6 = 0; u4 + u3 +u7 + u5 = 0; u1 + u2 + u3 + u4 + u5 + u6 = 0; 2、电阻串并联分压和分流关系验证 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 实验原理图:

与理论计算数据比较分析: 200Q + 100 Q=300Q; (100Q+200 Q)//600 Q = 200 Q; 11= 15/(200+200+100) = 30mA 12= i1*(600/900) = 10mA 13= i1*(300/900) = 20mA u1 = u3*(200/300) = 4v u2 = u3*(100/300) = 2v 实验心得: 1.使用大电阻可以减小误差 2.工具不能熟练的使用而且有乱码实验二叠加定理

电路分析基础实验报告

实验一 1. 实验目的 学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 2.解决方案 1)基尔霍夫电流、电压定理的验证。 解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 2)电阻串并联分压和分流关系验证。 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 3.实验电路及测试数据 4.理论计算 根据KVL和KCL及电阻VCR列方程如下: Is=I1+I2, U1+U2=U3, U1=I1*R1,

U2=I1*R2, U3=I2*R3 解得,U1=10V,U2=20V,U3=30V,I1=5A,I2=5A 5. 实验数据与理论计算比较 由上可以看出,实验数据与理论计算没有偏差,基尔霍夫定理正确; R1与R2串联,两者电流相同,电压和为两者的总电压,即分压不分流; R1R2与R3并联,电压相同,电流符合分流规律。 6. 实验心得 第一次用软件,好多东西都找不着,再看了指导书和同学们的讨论后,终于完成了本次实验。在实验过程中,出现的一些操作上的一些小问题都给予解决了。 实验二 1.实验目的 通过实验加深对叠加定理的理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。 2.解决方案 自己设计一个电路,要求包括至少两个以上的独立源(一个电压源和一个电流源)和一个受控源,分别测量每个独立源单独作用时的响应,并测量所有独立源一起作用时的响应,验证叠加定理。并与理论计算值比较。 3. 实验电路及测试数据 电压源单独作用:

实验五一阶RC电路的过渡过程的multisim实验分析解析

实验五 一阶RC 电路的过渡过程实验 一、实验目的 1、研究RC 串联电路的过渡过程。 2、研究元件参数的改变对电路过渡过程的影响。 二、实验原理 电路在一定条件下有一定的稳定状态,当条件改变,就要过渡到新的稳定状态。从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。电路的过渡过程往往为时短暂,所以电路在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。 1、RC 电路的零状态响应(电容C 充电) 在图5-1 (a)所示RC 串联电路,开关S 在未合上之前电容元件未充电,在t = 0时将开关S 合上,电路既与一恒定电压为U 的电源接通,对电容元件开始充电。此时电路的响应叫零状态响应,也就是电容充电的过程。 (a) (b) 图5-1 RC 电路的零状态响应电路及u C 、u R 、i 随时间变化曲线 根据基尔霍夫电压定律,列出t > 0时电路的微分方程为 (注:dt du C i CU q dt dq i c c === ,故,) 电容元件两端电压为 其随时间的变化曲线如图5-1 (b) 所示。电压u c 按指数规律随时间增长而趋于稳定值。 电路中的电流为 电阻上的电压为 其随时间的变化曲线如图5-1 (b) 所示。

2、RC电路的零输入响应(电容C放电) 在图5-2(a)所示, RC串联电路。开关S在位置2时电容已充电,电容上的电压u C= U0,电路处于稳定状态。在t = 0时将开关从位置2转换到位置1,使电路脱离电源,输入信号为零。此时电容元件经过电阻R开始放电。此时电路的响应叫零输入响应,也就是电容放电的过程。 (a) (b) 图5-2RC电路的零输入响应电路及u C、u R、i随时间变化曲线根据基尔霍夫电压定律,列出t >0时的电路微分方程为 电容两端电压为 其随时间变化曲线如图5-2 (b)所示。它的初始值为U0,按指数规律衰减而趋于零。 τ=R C 式中τ = RC,叫时间常数,它所反映了电路过渡过程所用时间的长短,τ越大过渡时间就越长。 电路中的电流为 电阻上电压为 其随时间变化曲线如图5-2 (b)所示。 3、时间常数τ 在RC串联电路中,τ为电路的时间常数。在电路的零状态(电容充电)响应上升到稳态值的63.2%所需要时间为一个时间常数τ,或者是电路零输入(电容放电)响应衰减到初始值的36.8%所需要时间[2]。虽然真正电路到达稳定状态所需要的时间为无限大,但通常认为经过(3-5)τ的时间,过度过程就基本结束,电路进入稳态。 三、实验内容及步骤 1、脉冲信号源

电路实验报告

目录实验一电位、电压的测定及电路电位图的绘制实验二基尔霍夫定律的验证 实验三线性电路叠加性和齐次性的研究 实验四受控源研究 实验六交流串联电路的研究 实验八三相电路电压、电流的测量 实验九三相电路功率的测量

330口 R B 1— 1 2. 电路中相邻两点之间的电压值 在图1 — 1中,测量电压U AB :将电压表的红笔端插入 A 点,黑笔端插入B 点,读电压表读数,记入表 1 — 1中。按同样方法测量 U BC 、U CD 、U DE 、U EF 、及U FA ,测量数据记入表1 — 1中。 实验一 电位、电压的测定及电路电位图的绘制 1.学会测量电路中各点电位和电压方法。理解电位的相对性和电压的绝对性; 2?学会电路电位图的测量、绘制方法; 3.掌握使用直流稳压电源、直流电压表的使用方法。 .原理说明 在一个确定的闭合电路中, 各点电位的大小视所选的电位参考点的不同而异, 但任意两点之间的电 压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。据此性质,我们 可用一只电压表来测量出电路中各点的电位及任意两点间的电压。 若以电路中的电位值作纵坐标, 电路中各点位置(电阻或电源)作横坐标, 将测量到的各点电位在 该平面中标出,并把标出点按顺序用直线条相连接, 就可得到电路的电位图, 每一段直线段即表示该两 点电位的变化情况。而且,任意两点的电位变化,即为该两点之间的电压。 在电路中,电位参考点可任意选定, 对于不同的参考点, 所绘出的电位图形是不同,但其各点电位 变化的规律却是一样的。 三.实验设备 1.直流数字电压表、直流数字毫安表 2 .恒压源(EEL — I 、II 、III 、IV 均含在主控制屏上,可能有两种配置( 1) +6V ( +5V ) , +12 V , 0? 30V 可调或(2)双路0?30V 可调。) 四.实验内容 实验电路如图1 — 1所示,图中的电源U S 1用恒压源中的+6V (+5V )输出端, 输出端,并将输出电压调到 +12V 。 U S2用0?+30V 可调电源 1.测量电路中各点电位 以图1 — 1中的A 点作为电位参考点,分别测量 B 、C 、 用电压表的黑笔端插入 A 点,红笔端分别插入 B 、C 、 以D 点作为电位参考点,重复上述步骤,测得数据记入表 D 、E 、F 各点的电位。 D 、 E 、 F 各点进行测量,数据记入表 1 — 1 中。 1 — 1 中。 5100 S3 VCU 5100 5ion R4

RL电路的过渡过程

RL 电路的过渡过程 摘 要:一个电路从原来的稳定状态向新的稳定状态变化需要经过另一个时间过程,这就是电路的过渡过程。电路的过渡过程虽然往往很短暂,但它的作用和影响很重要。本文将用数学分析方法对RC 及RL 一阶线性电路进行全面分析,目的就在于认识和掌握有关的规律,利用过渡过程特性的有利的一面,对其有害的一面进行预防或抑制。 关键词:过度过程,放电过程,充电过程,零状态,非零状态 I .RC 电路的过渡过程 1.1 RC 电路的放电过程 设开关原在位置2,电路达到稳态后,电容电压等于U,在0t =时开关突然倒向位置1,则在0t ≥时,按照基尔霍夫电压定律列出电路方程 0C iR u += 因为 C du i C dt = 故得 0C C du RC u dt += (1) 这是一个一阶、线性、常系数、齐次微分方程,其通解为 pt C u Ae = 将上式代入式(1),消去公因子,pt Ae 则得到该微分方程的特征方程 10RCP += 该特征方程根(特征根)为 1 p RC =- 因此,式(1)的通解为 t RC C u Ae -= 其中A 为待定的积分常数,由初始条件确定。根据换路定律,换路瞬间电容上的电压不能突变,即在0t +=时,C u =U ,故有A =U 。于是微分方程(1)的解为 t t RC C u Ue Ue τ --== (2) 将电容电压C u 随时间的变化曲线画在图(2)(a )中,这是一个指数曲线,其初始值为U ,衰减的终了值为零。 式(2)中τ=RC ,称为RC 电路的时间常数,它决定了电压C u 衰减的快慢。τ的单位 图(1)RC 电路

RC一阶电路的过渡过程实验原理.

RC一阶电路的过渡过程实验原理 RC一阶电路的过渡过程实验原理 类别:电子综合 1.RC过渡过程是动态的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号,利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数t,那么电路在周期性的方波脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。2.图1(b)所示的RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢取决于电路的时间常数t。图1 RC 一阶电路充放电过程示意图3.时间常数t的测定方法。用示波器测量零输入响应的波形如图1(a)所示。根据一阶微分方程的求解可知,UC=Ume-t/RC=Ume-t/t。当t=T时,UC(T)=0.368Um。此时,所对应的时间就等于T,亦可用零状态响应波形增加到0.632Um,所对应的时间测得,如图1(c)所示。4.微分电路和积分电路是RC过渡过程中较为典型的电路,它对电路元件的参数和输入信号的周期都有特定的要求。对于一个简单的RC串联电路,在方波脉冲的重复激励下,当满足T=RC《T/2时(T为方波脉冲的重复周期),且由R 两端的电压作为响应输出时,则该电路就是一个微分电路,因为此时电路的输出信号电压与输入信号电压的微分成正此,如图2(a)所示。利用微分电路可以将方波变成尖脉冲。图2微分电路及积分电路的实验电路在图2(a)中,根据基尔霍夫电压定律及元件特性,有ui=uc(t)+uR(t),而uR= Ri(t),i(t)=.如果电路元件R与C的参数选择满足关系uc(t)》 uR(t),ui(t)≈uc(t)那么即输出电压uR(t)与输入电压ui(t)成近似微分关系。若将图2(a)中的R与C位置调换,如图2(b)所示,由C两端的电压作为响应输出,且当电路的参数满足t=RC》T/2,则该RC电路称为积分电路,因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波变成三角波。在图2(b)所示电路中,如果t=uc(t)《Ri(t),也就是使时间常数t=RC》T/2,则可近似地认为Ri(t)≈ui(t),此时输出电压即输出电压与输入电压呈积分关系。从输入/输出波形来看,上述两个电路均起着波形变化的作用,请在实验过程中仔细地观察和比较。

实验二基尔霍夫定律和叠加原理的验证实验报告答案(供参考)

实验二基尔霍夫定律和叠加原理的验证 一、实验目的 1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。 3.进一步掌握仪器仪表的使用方法。 二、实验原理 1.基尔霍夫定律 基尔霍夫定律是电路的基本定律。它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 (1)基尔霍夫电流定律(KCL) 在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。 (2)基尔霍夫电压定律(KVL) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。 基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。 基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。 2.叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。某独立源单独作用时,其它独立源均需置零。(电压源用短路代替,电流源用开路代替。)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流数字电压表 1 块 3.直流数字毫安表 1 块 4.万用表 1 块 5.实验电路板 1 块 四、实验内容 1.基尔霍夫定律实验 按图2-1接线。

简单RC 电路的过渡过程

实验六简单RC电路的过渡过程 一、实验目的 1.研究RC电路在零输入、阶跃激励和方波激励情况下,响应的基本规律和特点。 2.学习用示波器观察分析电路的响应。 二、原理及说明 1、一阶RC电路对阶跃激励的零状态响应就是直流电源经电阻R向C充电。对于图6-1所示的一阶电路,当t=0时开关K由位置2转到位置1,由方程: 初始值: Uc(0 - )=0 可以得出电容电流随时间变化的规律: 上述式子表明,零状态响应是输入的线性函数。其中τ=RC,具有时间的量纲,称为时间常数,它是反映电路过渡过程快慢程度的物理量。τ越大,暂态响应所持续的时间越长,即过渡过程时间越长。反之,τ越小,过渡过程时间越短。 图6-1 2、电路在无激励情况下,由储能元件的初始状态引起的响应称为零输入响应。即电容器的初始电压经电阻R放电。在图6-1中,让开关K于位置1,使初 始值Uc(0 -)=U ,再将开关K转到位置2。电容器放电由方程: 可以得出电容器上的电压和电流随时间变化的规律:

如用方波信号源激励,RC电路的方波响应,在电路的时间常数远小于方波周期时,前半周期激励作用时的响应就是零状态响应,得到电容充电曲线;而后半周期激励为0,相当于电容通过R放电,电路响应转换成零输入响应,得到电容放电曲线。由于方波是周期信号,可以用普通示波器显示出稳定的图形,以便于定量分析。充电曲线当幅值上升到最大值的63.2%和放电曲线幅值下降到初始值的36.8%所对应的时间即为一个τ,图6-2所示。 图6-2 方波激励作用下RC一阶电路电容电压波形 三、实验设备 1.电路实验箱 2.信号发生器 3.双踪示波器 四、实验内容 用示波器观察RC电路的方波响应。 认清实验线路板上R、C元件的布局及其标称值,个开关的通断位置等等。按下面三中情况选取不同的R、C值 1)R=10KΩ,C=1000PF 2)R=10KΩ,C=3300PF 3)R=30KΩ,C=3300PF 组成如图6-2所示的RC充放电电路,信号发生器的信号为方波信号,Um=3V,,将激励与响应的信号输入到示波器,测时间常数τ,观察并描绘响应波f=1KH Z 形。

电路分析实验报告

本科生实验报告 实验课程电路分析 学院名称信息科学与技术学院 专业名称物联网工程 学生小源 学生学号201513060114 指导教师阴明 实验地点6B602 实验成绩

二〇一六年三月——二〇一六年六月

实验一、电路元件伏安特性的测绘 摘要 实验目的 1、学会识别常用电路元件的方法。 2、掌握线性电阻、非线性电阻元件伏安特性曲线的测绘。 3、掌握实验台上直流电工仪表和设备的使用方法。 实验步骤 U 测量线性电阻的伏安特性 按图接线。调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表中记下相应的电压表和电流表的读数。 R为各个值时所测得数据如下:

I(mA) 0 0.99 2 2.98 3.99 4.99 5.99 6.97 8.02 8.98 9.98 R=900Ω时: U(v) 0 1 2 3 4 5 6 7 8 9 10 I(mA) 0 1.10 2.22 3.34 4.42 5.55 6.67 7.77 8.89 9.98 10.1 R=800Ω时: U(v) 0 1 2 3 4 5 6 7 8 9 10 I(mA) 0 1.2 2.4 3.7 5 6.3 7.5 8.9 10.1 11.3 12.6 线性电阻的伏安特性曲线如下: 白炽灯时: U(v) 0 1 2 3 4 5 6 7 8 9 10 I(mA) 0 0 0.3 1.1 0.9 0.7 1 1.3 1.8 1.8 2

伏安特性曲线如下: 为IN4007时: 正向 U(v) 0 0.2 0.4 0.5 0.55 0.6 0.65 0.7 0.73 I(mA) 0 0 0 0.1 0.4 1.3 3.7 11 1.1 反向 U(v) 0 -2 -4 -6 -8 -10 -12

电工实验报告答案

实验四线性电路叠加性和齐次性验证 表4—1实验数据一(开关S3 投向R3侧) 测量项目实验内容U S1 (V) U S2 (V) I1 (mA) I2 (mA) I3 (mA) U AB (V) U CD (V) U AD (V) U DE (V) U FA (V) U S1单独作用120 U S2单独作用0-6 U S1, U S2共同作用12-6 2U S2单独作用0-12 3 测量项目实验内容U S1 (V) U S2 (V) I1 (mA) I2 (mA) I3 (mA) U AB (V) U CD (V) U AD (V) U DE (V) U FA (V) U S1单独作用120 U S2单独作用0-6 U S1, U S2共同作用12-6 2U S2单独作用0-12 S1S2S1S2 直接短接? 答: U S1电源单独作用时,将开关S1投向U S1侧,开关S2投向短路侧; U S2电源单独作用时,将开关S1投向短路侧,开关S2投向U S2侧。 不可以直接短接,会烧坏电压源。 2.实验电路中,若有一个电阻元件改为二极管,试问叠加性还成立吗?为什么? 答:不成立。二极管是非线性元件,叠加性不适用于非线性电路(由实验数据二可知)。 实验五电压源、电流源及其电源等效变换 表5-1 电压源(恒压源)外特性数据 R2(Ω 470400 300 200 100 0 I (mA U (V R2(Ω 470400 300 200 100 0 I (mA U (V 表5-3 理想电流源与实际电流源外特性数据 R2(Ω)470 400 300 200 100 0 R S=∞ U (V)0 R S=1KΩI (mA) U (V)0 U(V)I(mA)图5-4(a)

RC及RL电路的过渡过程

RC 及RL 电路的过渡过程 刘训永(安庆师范学院物理与电气工程学院 安徽 安庆 246011) 指导老师:潘康生 摘 要:一个电路从原来的稳定状态向新的稳定状态变化需要经过另一个时间过程,这就是电路的过渡过程。电路的过渡过程虽然往往很短暂,但它的作用和影响很重要。本文将用数学分析方法对RC 及RL 一阶线性电路进行全面分析,目的就在于认识和掌握有关的规律,利用过渡过程特性的有利的一面,对其有害的一面进行预防或抑制。 关键词:过度过程,放电过程,充电过程,零状态,非零状态 I .RC 电路的过渡过程 1.1 RC 电路的放电过程 设开关原在位置2,电路达到稳态后,电容电压等于U,在0t =时开关突然倒向位置1,则在0t ≥时,按照基尔霍夫电压定律列出电路方程 0C iR u += 因为 C du i C dt = 故得 0C C du RC u dt += (1) 这是一个一阶、线性、常系数、齐次微分方程,其通解为 pt C u Ae = 将上式代入式(1),消去公因子,pt Ae 则得到该微分方程的特征方程 10RCP += 该特征方程根(特征根)为 1 p RC =- 因此,式(1)的通解为 t RC C u Ae -= 其中A 为待定的积分常数,由初始条件确定。根据换路定律,换路瞬间电容上的电压不能突变,即在0t +=时,C u =U ,故有A =U 。于是微分方程(1)的解为 t t RC C u Ue Ue τ --== (2) 将电容电压C u 随时间的变化曲线画在图(2)(a )中,这是一个指数曲线,其初始值为U ,衰减的终了值为零。 图(1)RC 电路

电路元件伏安特性的测量(实验报告答案)

电路元件伏安特性的测量(实验报告答案) 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式 I=f(U)来表示,即用 I -U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图 1-1(a)所示。该直线的斜率只由电阻元件的电阻值R 决定,其阻值 R 为常数,与元件两端的电压 U 和通过该元件的电流I 无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R 不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图 1-1(b)、(c)、(d)所示。在图 1-1 中, U >0的部分为正向特性,U<0 的部分为反向特性。

绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压 U 作用下,测量出相应的电流 I ,然后逐点绘制出伏安特性曲线 I = f ( U ),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流电压表 1 块 3.直流电流表 1 块 4.万用表 1 块 5.白炽灯泡 1 只 6. 二极管 1 只 7.稳压二极管 1 只 8.电阻元件 2 只 四、实验内容 1.测定线性电阻的伏安特性 五、实验预习 1. 实验注意事项 (1)测量时,可调直流稳压电源的输出电压由 0 缓慢逐渐增加,应时刻注意电压表和电流表,不能超过规定值。

一阶电路过渡过程的仿真实验报告

一阶电路过渡过程的仿真实验报告

————————————————————————————————作者:————————————————————————————————日期:

一阶电路过渡过程的仿真实验报告 实验名称:一阶电路过渡过程的仿真实验实验者:王子申同组同学:李万业杨锦鹏专业及班级:14电气工程及其自动化二班 一、实验目的: 1、进一步熟悉Multisim仿真环境。 2、掌握瞬态分析的使用方法。 3、理解过渡过程的含义。 二、实验设备: 1、PC机一台 2、Multisim仿真软件一套 三、实验原理: 电路在一定条件下有一定的稳定状态,当条件改变,就要过渡到新的稳定状态。从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。电路的过渡过程往往为时短暂,所以电路在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。 1、RC电路的零状态响应(电容C充电) 在图5-1(a)所示RC串联电路,开关S在未合上之前电容元件未充电,在t=0时将开关S合上,电路既与一恒定电压为U的电源接通,对电容元件开始充电。此时电路的响应叫零状态响应,也就是电容充电的过程。 (a)(b) 图5-1RC电路的零状态响应电路及u、u、i随时间变化曲线 C R 根据基尔霍夫电压定律,列出t0时电路的微分方程为

dt d t (注:i=dq,q=CU,故i=C du c) c 电容元件两端电压为 其随时间的变化曲线如图5-1 电路中的电流为 (b)所示。电压u c 按指数规律随时间增长而趋于稳定值。 电阻上的电压为 其随时间的变化曲线如图5-1(b)所示。 2、RC电路的零输入响应(电容C放电) 在图5-2(a)所示,RC串联电路。开关S在位置2时电容已充电,电容上的电压 u C =U ,电路处于稳定状态。在t=0时将开关从位置2转换到位置1,使电路脱离电源,输入信号为零。此时电容元件经过电阻R开始放电。此时电路的响应叫零输入响应,也就是 电容放电的过程。 (a)(b) 图5-2RC电路的零输入响应电路及u C 、u R 、i随时间变化曲线根据基尔霍夫电压定律,列出t>0时的电路微分方程为 电容两端电压为 其随时间变化曲线如图5-2(b)所示。它的初始值为U ,按指数规律衰减而趋于零。

大工12秋《电力系统继电保护实验》实验报告 含答案

网络高等教育《电力系统继电保护》实验报告 学习中心:奥鹏学习中心(直属) 层次:专科起点本科 专业:电气工程及自动化 年级:春/秋季 学号: 学生姓名:

实验一电磁型电流继电器和电压继电器实验 一、实验目的 1. 1. 熟悉DL型电流继电器和DY型电压继电器的的实际结构,工 作原理、基本特性; 2.学习动作电流、动作电压参数的整定方法。 二、实验电路 1.过流继电器实验接线图 2.低压继电器实验接线图

三、预习题 1. DL-20C系列电流继电器铭牌刻度值,为线圈并联时的额定值;DY-20C系列电压继电器铭牌刻度值,为线圈串联时的额定值。(串联,并联) 2.电流继电器的返回系数为什么恒小于1? 答:返回电流与启动电流的比值称为继电器的返回系数Kre ,Kre=Ire/Iop ,使继电器开始动作的电流叫启动电流Iop ,动作之后,电流下降到某一点后接点复归,继电器返回到输出高电子,这一电流点叫返回电流Ire 。为了保证动作后输出状态的稳定性和可靠性,过电流继电器和过量动作继电器的返回系数恒小于1 。在实际应用中,常常要求较高的返回系数,如0.85-0.9 四、实验内容 1.电流继电器的动作电流和返回电流测试 表一过流继电器实验结果记录表

2.低压继电器的动作电压和返回电压测试 表二低压继电器实验结果记录表 五、实验仪器设备 六、问题与思考 1.动作电流(压),返回电流(压)和返回系数的定义是什么? 答: 在电压继电器或中间继电器的线圈上,从0逐步升压,到继电器动作,这个电压是动作电压;继电器动作后再逐步降低电压,到继电器动作返回, 这个电压是返回电压. ;继电器动作后再逐步降低电压,到继电器动作返回, 这个电压是返回电压. 返回电流与启动电流的比值称为继电器的返回系数。

04动态电路分析 (1)

动态电路分析 一、是非题 1.对于零状态电路,过渡过程的起始瞬间,电容相当于短路,电感相当于开路(不计冲激作用)。 2.换路定律仅用来确定u c(0+)和i L(0+),其他电量的初始值应根据u c(0+)或 i L(0+)按欧姆定律及基尔霍夫定律确定。 3.同一个一阶电路的零输入响应、零状态响应和全响应具有相同的时间常数。 4.用短路开关把载流线圈短接,则线圈电阻越大,线圈电流衰减时间越长。 5.全响应中,零状态响应由外加激励引起的,所以零状态响应就是稳态响应。 6.电路的零输入响应就是自由分量,零状态响应就是强制分量。 7.R大于、等于或小于是判断RLC串联电路零输入响应处于非振荡放电、临界放电和振荡放电状态的判别式。 8.电感元件是用电压电流特性来定义的元件。 9.如电感元件的电流不变,无论其电感值为多大,都可等效为短路;如电容元件的电压不变,无论其电容值为多大,都可等效为开路。 10.一个在t=0-时电压为零且电压不跃变的电容在换路时相当于短路;一个在 t=0 -时电流为零且电流不跃变的电感在换路时相当于开路。 11.由R、L组成的一阶电路,若R越大,其零输入响应衰减得越慢。 12.零输入的RC电路中,只需时间常数τ不变,电容电压从100V放电到50V所需时间与从150V放电到100V所需时间相等。 13.在零输入响应的情况下,电路的时间常数τ是电流或电压由初始值衰减到该值的0.632倍所需的时间。 14.电压为100V的直流电压源,通过100kΩ电阻对10μF电容充电,经过1s,充电电流为0.368mA。 15.在零状态RL串联电路接入恒定电压,如果电源电压不变,增加电阻可以减少稳态电流及缩短过渡过程时间。

一阶电路的过渡过程

实验2 一阶电路的过渡过程 实验2.1 电容器的充电和放电 一、实验目的 1.充电时电容器两端电压的变化为时间函数,画出充电电压曲线图。 2.放电时电容器两端电压的变化为时间函数,画出放电电压曲线图。 3.电容器充电电流的变化为时间函数,画出充电电流曲线图。 4.电容器放电电流的变化为时间函数,画出放电电流的曲线图。 5.测量RC电路的时间常数并比较测量值与计算值。 6.研究R和C的变化对RC电路时间常数的影响。 二、实验器材 双踪示波器 1台 信号发生器 1台 0.1μF和0.2μF电容各1个 1KΩ和2KΩ电阻各1个 三、实验步骤 1.在电子平台上建立如图2-1所示的实验电路,信号发生器和示波器的设置可照图进行。示波器屏幕上的红色曲线是信号发生器输出的方波。信号发生器的输出电压在+5V与0之间摆动,模拟直流电压源输出+5V电压与短路。当输出电压为+5V时电容器将通过电阻R充电。当电压为0对地短路时,电容器将通过电阻R放电。蓝色曲线显示电容器两端电压Vab随时间变化的情况。在下面V-T 坐标上画出电容电压Vab随时间变化的曲线图。作图时注意区分充电电压曲线和放电电压曲线。

2.用曲线图测量RC电路的时间常数τ。T=0.1ms 3.根据图2-1所示的R,C元件值,计算RC电路的时间常数τ。 T=R*C=1000*0.0000001=0.00001s=0.1ms 4.在电子工作平台上建立如图2-2所示的实验电路,信号发生器和示波器按图设置。单击仿真电源开关,激活实验电路,进行动态分析。示波器屏幕上的红色曲线为信号发生器输出的方波。方波电压在+5V和0V之间摆动,模拟直流电源电压为+5V与短路。当信号电压为+5V时,电容器通过电阻R放电。当信号电压为0V对地短路时,电容器通过电阻R放电。蓝色曲线表示电阻两端的电压与时间的函数关系,这个电压与电容电流成正比。在下面的V-T坐标上画出电阻(电容电流)随时间变化的曲线图。作图时注意区分电容的充电曲线和放电曲线。

相关主题
文本预览
相关文档 最新文档