当前位置:文档之家› 2005 1种提高变压器UHF局部放电信号时延精度的统计方法

2005 1种提高变压器UHF局部放电信号时延精度的统计方法

2005 1种提高变压器UHF局部放电信号时延精度的统计方法
2005 1种提高变压器UHF局部放电信号时延精度的统计方法

2005年第20卷第4期 电 力 学 报 Vol.20No.42005 (总第73期) J OURNAL OF EL ECTRIC POWER (Sum.73)

文章编号: 1005-6548(2005)04-0343-04

1种提高变压器U HF局部放电信号时

延精度的统计方法Ξ

唐志国1, 王德玲2, 李成榕1, 李 君1, 李金忠1

(1.华北电力大学高电压与电磁兼容北京市重点实验室,北京 102206;2.晋中供电分公司,山西榆次

 030600)

A Statisitic Method to Improve the Time2Delay Accuracy of

the T ransformer’s UHF Part Pow er Emitting Signals TAN G Zhi2guo1, WAN G De2ling2, L I Cheng2rong1, L I J un1, L I Jin2zhong1

(1.North China Electric Power University,Beijing 102206,China;2.Jinzhong Power Supply Sub2Compa2

ny,Yuci 030600,China)

摘 要: 通过测量变压器局放信号到达U HF传感器阵列各个阵元的时间延迟来进行PD定位在理论上是可以实现的。电磁波在空气中的传播速率是30cm/ns,所以解决U HF信号被U HF传感器阵列检测到的时间延迟问题是实现PD精确定位的1个关键。本文提出了1种数学方法:互相关—移位—平均算法,这种算法可以通过增加信噪比和降低随机PD带来的分散性来提高U HF信号时延估计的精度。通过对试验数据的验证,显示这种方法在一些情况下可以将时延精度提高到数十个ps,同时将PD定位精度提高到几个厘变。

关键词: 变压器;故障诊断;局部放电检测

中图分类号: TM407TM931 文献标识码: A Abstract: By measuring the time delay of the trans2 former2part2power2emitting2signal’s reaching the various array units of the sensor,to locate PD is real2 ized in theory.Electromagnetic wave travels at30 cm/ns in theair.That U HF sensors examine the time delay of U HF signals is the key step in the exact loca2 tion.This paper puts forward a maths algorithm:in2 terrelevance2translocation2average.This algorithm improves the time delay accuracy by increasing sig2 nal’s noise ratio and decreasing the scattering brought by PD.The experiment shows that this al2 gorithm may improve the time delay by10ps in some situations and improve the PD location accuracy by several centichanges.

K ey Words: transformer;faut diagnosis;part power emitting examination

已经证明局部放电(以下简称局放)检测是监测电力变压器绝缘性能的1种有效方法。局放定位有利于状态维修检测,目前采用的变压器局放定位方法主要有超声波法和电气法2种。超声波法的灵敏度过低,无法满足现场的需求;电气法通过变压器绕组传播局放电流脉冲特征,由于变压器绕

Ξ收稿日期: 2005-07-01 修回日期: 2005-07-18

作者简介: 唐志国(1977-),男,河北迁安人,在读博士,电气设备在线检测及故障诊断、高电压技术;

王德玲(1971-),女,江苏泰兴人,助理工程师,电力系统自动化;

李成榕(1957-),男,陕西西安人,教授,博士生导师,气体放电,电气设备在线检测及故障诊断、电气绝缘及材料;

李 君(1983-),女,河北邢台人,在读硕士,电气设备在线检测及故障诊断;

李金忠(1974-),男,山西大同人,在读硕士,电气设备在线检测及故障诊断。

组的结构复杂,也很难得到准确的故障定位。

发生局放时,会辐射出属于U HF 范围(0.3~3GHz )的电磁波信号,其脉冲上升沿为1ns 或更

小。由于U HF 检测技术具有高灵敏度和很好的抗干扰特性,U HF 法实现局放定位是电力变压器状态维修领域中1个重要而前沿的研究课题[1-6]。

局放的准确定位主要由放电类型、传播路径、传播速度和传感器间信号时延估计决定,U HF 传感器阵列间的相对时延的准确测量是局放定位的1个关键。由于U HF 信号为电磁波信号,它的传播速度为光速(空气中约30cm/ns ),1ns 的时延估计误差会对应着30cm/ns 的定位误差。另外,U HF 信号不能在导体中传播,在固体金属,比如变压器铁心处会发生绕射。文献[7]中的试验结果表明大体积固体障碍物使U HF 信号在沿最短光程路径传播时衰减强烈。这种情况下,测量系统的信噪比(SNR )降低,信号的波形也会发生畸变,这2个因

素都给正确估计时延带来困难。

本文关心的是信号到达传感器阵列中不同阵元的相对时延的测量。平均和相关处理可以提高测量系统的SNR ,抑制随机脉冲干扰,并且这种算法还可以实现时延估计的自动化。由于局放现象的随机性,信号间强度可能有很大不同,固定触发水平下的取样信号可能出现在不同的触发位置,本文提出在平均处理前进行移位处理,以降低信号触发位置水平变动带来的影响。

1 测量系统

时延测量系统由PD 模拟源、包括4个单极探针的天线阵列、4根8m 长的射频同轴电缆、4通道超宽带高速示波器(20GS/s ,6GHz 模拟带宽)和屏蔽室(3.5m ×2.4m ×2m )组成,见图1所示

图1 相对时间延迟测量系统

本文提出了4阵元的菱形传感器阵列,U HF 传感器阵列的阵元采用的是与频率基本无关的单极

天线[8],探针长度l =2.0cm 。4个传感器阵元布置在菱形各顶点上,菱形边长为80cm ,锐角顶角为60°,底板为3mm 厚铝圆盘,见图2所示。模拟局

放源为压电发生器,通过30dB 衰减器直接向同轴电缆线放电,由示波器测得其电流脉冲上升时间约为500ps ,50%脉冲宽度约1ns ,10%持续时间约7ns ,通过对其放电电流脉冲进行积分计算,得其放

电量约300pC ,如图3所示

图2 传感器菱形阵列布置

2 相对时延估计算法

该算法通过对大量样本进行平均处理,降低背景噪声,抑制随机脉冲干扰。因此,首先要进行局放试验,四路传感器同时采集一定量(至少50次)的信号,然后进行以下步骤:①根据相关系数选择样本;②移位—叠加并进行平均;③互相关法估计相对时延

图3 模拟局放源典型放电电流脉冲

211 根据相关系数选择样本

因背景噪声和局放随机性的影响,各个传感器捕获的波形形状可能多少有些不同,信号的触发时刻也很碓确定。另外,用本文的检测系统采集的样本里可能存在一些畸变的波形,这些畸变的波形与其它大多数波形在形状上有很大的差别,如图4所示,这些畸变的波形必须从样本集中删除。事实上试验过程中经常会出现这种现象,因为放电辐射信号的存在时间很长,所以触发示波器的可能是信号

首波部分,也可能是反射信号,或者是信号拖尾震荡的部分。当然,偶发的干扰信号也可能导致检测系统采集“伪信号”

(即指对定位而言无用的信号)。4

43 电 力 学 报 2005年

事实上,只有信号的首波部分触发采集时,检测系统获取的才是真正可用于定位的,此时测得的相对时间差信息才能用于准确定位

图4 传感器采集的1组波形样本

根据下列公式(1)计算采集到波形的相关系数,并将其与提前设定的阀值(比如0.8,表示2个波形已经相当相似)比较,删掉计算所得相关系数小于所设阀值的畸变波形。

ρ=

cov (X i ,X j )

S (X i )S (X j )

。(1)

式中:ρ为样本波形X i 和X j 的相关系数;cov (X i ,

X j )为波形序列X i 、j 的协方差;S (X i )、S (X j )为X i 、X j 波形序列的标准偏差。

212 移位—叠加并进行平均

由于信号触发位置的水平变动,直接平均处理不够准确,因为它无法确定触发时刻。在叠加和平均前对信号进行移位处理可以避免触发时间变化带来的影响。

用下列公式(2)对同一通道的波形样本进行互相关处理,可消除触发位置不稳定带来的影响。

r ck -ij (m )=

1

N ρN -1-m

n =0x

ck -i (n )?x ck -j (n +m )。

(2)式中:r ck -

ij (m )为通道k (k =1,…,4)的信号集中

第i 个和第j 个样本之间的互相关函数,i =1,j =2,…,N ,N 为信号记录长度;m ∈[0,2N -1]。

设该互相关函数最大值对应的索引为i m ,则

[i m -(N -1)]d t 为第i 个和第j 个样本水平触发

的时间差,d t 为2个采样点的时间间隔,将第j 个信号样本左移[i m -(N -1)]位后与第i 个信号样本波形叠加,对叠加后信号进行平均,该过程如图5所示。

对k 通道下所有样本做相同的处理。

x ck (n )=

1

C ρC

1x

ck -i

(n )

,k =1,…

,4。(3)

式中:C 为通道k 的样本个数。

(a )移位处理

(b )2个波形样本的相关函数

图5 相关函数移位处理图例

背景噪声和随机脉冲干扰严重时,移位—叠加和平均处理可以明显提高被测信号SNR ,明确信号触发时刻。图6所示为对50组采样信号进行移位—叠加—平均处理后的效果。信号原始SNR 约为8dB ,平均处理后SNR 增加到23dB ,触发时刻可

以清晰的确定。

213 互相关法估计相对时延

再次计算各通道经叠加平均后的波形之间的互相关函数,自动求得各通道间的相对时延,表达式如下: r cij (m )=

1

N

ρN -1-m n =0

x ci (n )? x cj (n +m )。(4)

式中:r cij (m )为通道i 和通道j 下经平均处理后波形的互相关函数,i =1,j =2,3,4。设该互相关函数最大值对应的索引为i m ,则传感器阵列下阵元i 相对阵元1的时间延迟可由下列公式(5)计算。Δt 1i =[i m -(N -1)]?d t ,i =2,3,4。

(5)

经算法处理后4个通道的典型波形见图7。表1所示为传感器间的相对时间延迟。结果

543第4期 唐志国等:1种提高变压器U HF 局部放电信号时延精度的统计方法

显示根据互相关算法读取的时延值与人工直接读取的时延值基本一致。

表1 

互相关法和直接读取法结果的比较

相对时延/ns

Δt 12

Δt 13

Δt 14

自动计算值 2.0-1.10.0人工读取值

2.1

-1.2

-0.2 

(a )典型波形样本(b )通道1下波形移位后波形簇

(c )50组样本移位

—叠加—平均处理后波形图6 算法处理前后通道1下波形

3 结束语

本文提出了关于相对时延测量的1套完整的统计算法。对采样的大量波形,在每个通道下进行互相关—移位—平均处理,可以有效抑制背景噪声

和随机脉冲干扰,显著提高被测信号SNR ,另外,由局放随机性引起的触发位置水平变动的影响也被排除,信号的触发位置可以明确。最后,再对所有通道叠加—平均处理后的波形进行互相关计算,可以自动精确的读取相对时延,为局放的精确定位提供了基础。

图7 经本文提出算法处理后4个通道的典型波形

参考文献:

[1] R bartnikas.Partial discharges :Their mechanism ,detec 2

tion and measurement [J ].IEEE Trans On DEL.2002,9(5):763-808.

[2] Peter E M.Partial discharge XXI :Acoustic emission 2

based PD cource location in transformers[J ].IEEE Elec 2trical Insulation Magazine ,1995,11(6):22-26.[3] 孙才新,罗 兵,顾乐观,赵文麟等.变压器局放源的

电—声和声—声定位法及其评判的研究[J ]1电工技术学报,1997,12(5):49-52,601

[4] Thoeng A T.Detection and location of partial discharge

in power transformer [C ].Conf.Publications No.94,Partl ,IEE Diagnostic Testing of IV Power Apparatus in Service ,March 1973,6-8.

[5] Fuhr J ,Haessig M ,Boss P ,et al.Detection and location

of intermal defects in the insulation of power transformers [J ].IEEE Trans on EI ,1993,28(6):1057-1067.[6] James R E ,Phung B T ,Su Q.Application of digital fil 2

tering techniques to determination of partial discharge lo 2cation in transformers[J ].IEEE Trans on EI ,1989,24(4):657-668.

[7] Z.G.Tang , C.R.Li ,The feasibility of locating PD

source in transformer using the U HF technology [C ].2004CEIDP ,Oct.2004.17-20.

[8] Felsen L B.Transient electromagnetic fields[M ].New

Y ork :Springge 2Verlag ,1976.

[责任编辑:王 琨]

6

43 电 力 学 报 2005年

反激变压器的详细公式的计算

单端反激开关电源变压器设计 单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。 1、已知的参数 这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。 2、计算 在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。反激电压由下式确定: V f=V Mos-V inDCMax-150V 反激电压和输出电压的关系由原、副边的匝比确定。所以确定了反激电压之后,就可以确定原、副边的匝比了。 N p/N s=V f/V out 另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式: V inDCMin?D Max=V f?(1-D Max) 设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。由能量守恒,我们有下式: 1/2?(I p1+I p2)?D Max?V inDCMin=P out/η 一般连续模式设计,我们令I p2=3I p1 这样就可以求出变换器的原边电流,由此可以得到原边电感量: L p= D Max?V inDCMin/f s?ΔI p 对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。 可由A w A e法求出所要铁芯: A w A e=(L p?I p22?104/ B w?K0?K j)1.14 在上式中,A w为磁芯窗口面积,单位为cm2 A e为磁芯截面积,单位为cm2 L p为原边电感量,单位为H I p2为原边峰值电流,单位为A B w为磁芯工作磁感应强度,单位为T K0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4 K j为电流密度系数,一般取395A/cm2 根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯

变压器局部放电故障定位几种方法的应用比较

变压器局部放电故障定位几种方法的应用比 较 宋友(国网电力科学研究院武汉南瑞有限责任公司) 摘要: 介绍了几种变压器局部放电故障定位常用的技术手段,并结合实际现场试验中几种方法的应用情况,对其进行比较。为各种变压器局部放电故障定位方法在现场的有效应用提供参考。 关键字: 变压器局部放电、UHF、超声波、电气定位 引言 目前,对于变压器局部放电故障的确定,已有多种方法可以有效做到。随着近年来计算机技术、数字信号处理技术的迅速发展,检测手段也越来越多,检测设备也越来越检测迅速、使用方便、功能强大。 对于制造厂家和现场试验、运行人员来说,仅仅确定局放故障是否存在是不够的,往往还要确定故障的位置,以便有的放矢的排除或者处理故障。在出厂试验、交接验收试验、预试及运行中迅速查明变压器的内部放电故障位置,对迅速修复故障、保证设备制造质量及安全运行有重要意义,并可以节约大量人力、物力、时间,也是目前国网公司一次设备带电检测的重要组成内容。 局部放电的检测和定位都是根据放电过程中的声、光、电、热和化学现象来进行的,故障定位方法有超声波定位、电气定位、光定位、热定位和DGA定位等。目前,国内外应用比较广泛的是超声波定位法和电气定位法,近几年,一些新的定位方法如UHF定位法也在国内外有较多的研究和应用。本文拟对超声波定位法、电气定位法、UHF定位法进行应用比较,并就实际应用中存在的问题和今后的发展趋势进行探讨。 超声波定位方法 当变压器内部发生局部放电故障时,会产生相应频率和波形特征的超声波信号,放电源成为声发射源。超声波信号在油箱内部经过不同介质传播到达固定在油箱壁上的超声波传感器。对应每一次放电,都会有相应的超声波产生;对应同一次放电,每一个超声波传感器接收到的相应超声波信号之间会表现出合理的、有规律的时差关系。根据到达超声波传感器的相对时差,通过相关的定位算法,就可以计算出局部放电故障点。 局部放电产生的超声波信号到达不同传感器的有规律时差现象分为两种,一种为局部放电电脉冲信号与各超声波传感器收到的声波信号之间的时差,称为电-声时差。第二种为同一次放电各超声波传感器收到的相应超声波信号之间的时差,称为声-声时差。利用两种时差现象可确立两种超声波定位技术:电声定位法(俗称球面定位)和声声定位法(俗称双曲面定位)。 电声定位方法

主变压器在线监测装置配置分析.

分析主变压器的油色谱、温度(光纤测温)、铁芯接地、局部放电、套管介损等五种在线监测,得出配置主变压器在线监测是安全,可靠、经济的结论。 1.前言 大型电力变压器的安全稳定运行日益受到各界的关注,尤其越来越多的大容量变压器进网运行,一旦造成变压器故障,将影响正常生产和人民的正常生活,而且大型变压器的停运和修复将带来很大的经济损失,在这种情况下实时监测变压器的绝缘数据,使变压器长期在受控状态下运行,避免造成变压器损坏,对变压器安全可靠运行具有一定现实意义。 主变压器在线监测主要包括:油色谱、温度(光纤测温)、铁芯接地、局部放电、套管介损监测。 2.变压器油色谱在线监测 变压器油中溶解气体分析是诊断充油电气设备最有效的方法之一,能够及早发现潜在性故障。由于试验室分析的取样周期较长,且脱气误差较大及耗时较多等问题,因此不能做到实时监测、及时发现潜伏性故障,很难满足安全生产和状态检修的要求。油色谱在线监测采用与实验室相同的气相色谱法。能够对变压器油中溶解故障气体进行实时持续色谱分析,可以监测预报变压器油中七种故障气体,包括氢气(H2),二氧化碳(CO2),一氧化碳(CO),甲烷(CH4),乙烯(C2H4),乙烷(C2H6)和乙炔(C2H2)。 该系统目前已广泛应用于变压器的在线故障诊断中,并且建立起模式识别系统可实现故障的自动识别,是当前在变压器局部放电检测领域非常有效的方法。 3.变压器光纤测温在线监测 变压器寿命的终结能力最主要因素是变压器运行时的绕组温度。传统的绕组温度指示仪(WTI)是利用"热像"原理间接测量绕组温度的仪表,安装在变压器油箱顶部感测顶层油温,WTI指示的温度是基于整个

变压器局部放电试验

变压器局部放电试验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

变压器局部放电试验 试验及标准 国家标准GB1094-85《电力变压器》中规定的变压器局部放电试验的加压时间步骤,如图5所示。其试验步骤为:首先试验电压升到U 2下进行测量,保持5min ;然后试验电压升到U 1,保持5s ;最后电压降到U 2下再进行测量,保持30min 。U 1、 U 2的电压值规定及允许的放电量为 U U 2153=.m 电压下允许放电量Q <500pC 或 U U 213 3=.m 电压下允许放电量Q <300pC 式中 U m ——设备最高工作电压。 试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。 测量应在所有分级绝缘绕组的线端进行。对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。 在电压升至U 2及由U 2再下降的过程中,应记下起始、熄灭放电电压。 在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q 。放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。整个试验期间试品不发生击穿;在U 2的第二阶段的30min 内,所有测量端子测得的放电量Q ,连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。 如果放电量曾超出允许限值,但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min 的期间内局部放电量不超过允许的限值,试品才合格。利用变压器套管电容作为耦合电容C k ,并在其末屏端子对地串接测量阻抗Z k 。

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5 层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该

谈变压器的局部放电

谈变压器的局部放电 (1) 2009-01-21 09:26:10 来源:输配电产品应用变压器及仪器仪表卷总第77期浏览次数:306 介绍了变压器局部放电的基本原理及产生的原因和危害,并提出了降低局部放电产生的措施。 关键字:变压器;局部放电;预防措施 1 前言 对变压器局部放电试验,我国在初期阶段是对220kV级及以上变压器执行。 后来新IEC标准规定,当设备最高工作电压Um≥126kV时,就要做变压器局部放电测量。国家标准也做了相应的规定,对设备最高工作电压Um≥72.5kV,额定容量P≥10000kVA的变压器,如无其他协议,均应进行变压器局部放电测量。 局部放电试验方法按GB1094.3-2003中规定执行,局部放电量标准规定应不大于500pC。但用户经常要求小于等于300pC或小于等于100pC,这种技术协议要求,就是企业的产品技术标准。 我国在大量生产500kV级变压器后,对750kV、1000kV级超高压变压器及超高压换流变压器的生产正在快速发展,并跻身于世界发达国家行列。因此,电力部门对变压器产品局部放电的要求也越来越高,局部放电引起了生产企业的高度重视。为进一步提高变压器的产品质量,笔者对油浸式变压器在生产企业经常出现的局部放电问题进行了探讨,并对降低变压器局部放电量提出了具体措施。 2 局部放电及其原理 局部放电又称游离,也就是静电荷流动的意思。在一定的外施电压作用下,在电场较强的区域,静电荷在绝缘较弱的位置首先发生静电游离,但并不形成绝缘击穿。这种静电荷流动的现象称为局部放电。对于被气体包围的导体附近发生的局部放电,称为电晕。 变压器油内存在着大量的正、负离子和极性分子。因正、负离子的数量相等,故在油中不显电性。由于绝缘纸板对油中的负离子和极性分子有吸附作用,使油中电荷产生了定向移动。 在强油导向冷却系统中,当开动油泵后,在器身内部流速较快的区域,油中的正离子被流动的油带走,使正、负离子产生分离。这样就产生了油带正电,固体绝缘材料带负电,其带有电量相等、符号相反的电荷。 电荷分离之后,可能沿着导电通路向大地泄漏,也可能与异性离子复合成中性分子。这种使电荷减少的过程,电荷松弛,但电荷松弛的速度远远慢于电荷积累的速度。 在相同条件下,油中含水量少,电荷密度会增加;而含水量多,电荷密度则

智能变压器状态在线监测技术方案

智能变压器状态监测系统技术方案 一、智能变压器状态监测系统 智能变压器作为智能变电站的核心组成部分,其建设获得了越来越多的关注。根据现行的标准,智能变电站是指采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能,实现与相邻变电站互动的变电站。智能变压器在线监测系统是保证变压器正常工作并预估设备的损耗以建立合理的检修计划,智能变压器在线监测系统是实现智能变电站的基础设备之一。 变压器是电力系统中重要的也是昂贵的关键设备,它承担着电压变换,电能分配和转移的重任,变压器的正常运行是电力系统安全、可靠地经济运行和供用电的重要保证,因此,必须最大限度地防止和减少变压嚣故障或事故的发生。但由于变压器在长期运行中,故障和事故是不可能完全避免的。引发变压器故障和事故的原因繁多,如外部的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中留下的设备缺陷等事故隐患,特别是电力变压器长期运行后造成的绝缘老化、材质劣化等等,已成为故障发生的主要因素。同时,客观上存在的部分工作人员素质不高、技术水平不够或违章作业等,也会造成变压器损坏而造成事故或导致事故的扩大,从而危及电力系统的安全运行。 正因为变压器故障的不可完全避免,对故障的正确诊断和及早预测,就具有更迫切的实用性和重要性。但是,变压器的故障诊断是个非常复杂的问题,许多因素如变压器容量、电压等级、绝缘性能、工作环境、运行历史甚至不同厂家的产品等等均会对诊断结果产生影响。 智能变压器状态监测系统构架如图1-1所示:

变压器局部放电的原因分析

变压器局部放电的原因分析 其一,由于变压器中的绝缘体、金属体等常会带有一些尖角、毛刺,致使电荷在电场强度的作用下,会集中于尖角或毛刺的位置上,从而导致变压器局部放电;其二,变压器绝缘体中一般情况下都存在空气间隙,变压器油中也有微量气泡,通常气泡的介电系数要比绝缘体低很多,从而导致了绝缘体中气泡所承受的电场强度要远远高于和其相邻的绝缘材料,很容易达到被击穿的程度,使气泡先发生放电;其三,如果导电体相互之间电气连接不良也容易产生放电情况,该种情况在金属悬浮电位中最为严重。 局部放电的危害及主要放电形式 2.1 局部放电的危害 局部放电对绝缘设备的破坏要经过长期、缓慢的发展过程才能显现。通常情况下局部放电是不会造成绝缘体穿透性击穿的,但是却有可能使机电介质的局部发生损坏。如果局部放电存在的时间过长,在特定的情况下会导致绝缘装置的电气强度下降,对于高压电气设备来讲是一种隐患。 2.2 局部放电的表现形式 局部放电的表现形式可分为三类:第一类是火花放电,属于脉冲型放电,主要包括似流注火花放电和汤逊型火花放电;第二类是辉光放电,属于非脉冲型放电;第三类为亚辉光放电,具有离散脉冲,但幅度比较微小,属于前两类的过渡形式。 3 变压器局部放电检测方法 变压器局部放电的检测方法主要是以局部放电时所产生的各种现象为依据,产生局部放电的过程中经常会出现电脉冲、超声波、电磁辐射、气体生成物、光和热能等,根据上述的这些现象也相应的出现了多种检测方法,下面介绍几种目前比较常见的局部放电检测方法。 3.1 脉冲电流检测法 这种方法是目前国内使用较为广泛的变压器局部放电检测方法,其主要是通过电流传感器检测变压器各接地线以及绕组中产生局部放电时引起的脉冲电流,并以此获得视在放电量。电流传感器一般由罗氏线圈制成。主要优点是检测灵敏度较高、抗电磁干扰能力强、脉冲分辨率高等;缺点是测试频率较低、信息量少。 3.2 化学检测法 化学检测法又被称为气相色谱法。变压器出现局部放电时,会导致绝缘材料被分解破坏,在这一过程中会出现新的生成物,通过对这些生成物的成分和浓度进行检测,能够有效的判断出局部放电的状态。这种方法的优点是抗电磁干扰较强,基本上能够达到不受电磁干扰的程度,也比较经济便捷,还具有自动识别功能;但该检测方法也存在一些缺点:由于生成物的产生过程时间较长,故此延长了检测周期,只能发现早期故障,无法检测突发故障,并且该

变压器局部放电定位技术及新兴UHF方法的关键问题_唐志国

文章编号:1674-0629(2008)01-0036-05 中图分类号:TM761 文献标志码:A 变压器局部放电定位技术及新兴UHF方法 的关键问题* 唐志国,李成榕,常文治,王彩雄,盛康 (电力系统保护与动态安全监控教育部重点实验室,华北电力大学,北京 102206) The Partial Discharge Location Technology of Power Transformer and the Key Issues of Newly Developed UHF Method TANG Zhi-guo, LI Cheng-rong, CHANG Wen-zhi, WANG Cai-xiong, SHENG Kang (Key Laboratory of Power System Protection and Dynamic Security Monitoring and Control, Ministry of Education, North China Electric Power University, Beijing 102206, China) Abstract:As an effective resort of finding potential insulation defects of power transformer in its early stage, the partial discharge (PD) detection technology has gained great breakthrough on the issue of anti-interference with the introduction of UHF method. This paper summarized the present status and characteristics of several important PD detection and location methods, pointing out some key problems of PD location using the newly developed UHF approaches in its current circumstances of development. Key words:power transformer; partial discharge; detection; location; UHF method 摘要:局部放电检测作为一种发现潜在绝缘缺陷的 早期预警技术,近年来由于UHF方法的引入而在抗 干扰方面取得了一定的突破。本文概述了几种主要 的电力变压器局部放电检测和定位方法的现状和特点,并针对新兴的UHF局放检测和定位技术的发展 情况,指出了该方法应重点解决的关键技术问题。 关键词:电力变压器;局部放电;检测;定位;UHF方法 大量故障统计表明,在电气设备故障中绝缘故障一直占有较高的比重[1-4]。发生绝缘故障的原因主要是绝缘薄弱处的局部放电引起的绝缘老化和失效,并最终导致绝缘击穿[5]。局部放电检测能够提前反映变压器的绝缘状况,及时发现设备内部的绝缘缺陷,从而预防潜伏性和突发性事故的发生。20世纪70年代,IEC为此制定了专门的标准,并做了多次更新[6,7],发展电力设备的状态维修已经成为一种必然趋势[8-10]。 准确地局部放电定位是实现状态维修的重要前提之一。探索更加有效的定位方法是当今电力工业的当务之急。 1 变压器局部放电检测方法综述 对变压器局部放电有脉冲电流法、超声波法、射频检测法、特高频法、光测法、化学检测法以及红外检测法等多种检测方法[11,12]。 (1)脉冲电流法。局部放电造成电荷的移动并在外围测量回路中产生脉冲电流,通过检测该脉冲电流便可实现对局部放电的测量。该方法一般是检测脉冲电流信号的低频部分,通常为数kHz至数百kHz(至多数MHz)。目前,脉冲电流法广泛用于变压器型式试验、预防和交接试验、变压器局部放电实验研究等,其特点是测量灵敏度高、放电量可以标定等。 (2)射频检测法。射频检测法属于高频局部放 * 长江学者和创新团队发展计划资助。

变压器局部放电试验方案

变压器局部放电试验方案批准:日期: 技术审核:日期: 安监审核:日期: 项目部审核:日期: 编写:日期: 2017年4月

1概述 变压器注油后已静置48小时以上并释放残余气体,且电气交接试验、油试验项目都已完成,并确认达到合格标准。 2试验地点 三明110kV双江变电站 3试验性质:交接试验 4试验依据 DL/T417-2006《电力设备局部放电现场测量导则》 GB1094.3-2003《电力变压器第三部分:绝缘水平绝缘试验和外绝缘空气间隙》GB50150-2006《电气装置安装工程电气设备交接试验标准》 DL/T596-1996《电力设备预防性试验规程》 Q/FJG 10029.1-2004《电力设备交接和预防性试验规程》 合同及技术协议 5试验仪器仪表 6、人员组织 6.1、项目经理: 6.2、技术负责: 6.3、现场试验负责人及数据记录:黄诗钟 6.4二次负责人: 6.5、试验设备接线及实际加压操作负责人: 6.6、专责安全员: 6.7、工器具管理员: 6.8、试验技术人员共4人,辅助工若干人 6.9、外部协助人员:现场安装人员,监理,厂家及业主代表等人员

7试验过程 7.1试验接线图(根据现场实际情况采用不同的试验原理图) 7.2试验加压时序 图2中,当施加试验电压时,接通电压并增加至 U3,,持续5min ,读取放电量值;无异常则增加电压至U2,持续5min ,读取放电量值;无异常再增加电压至U1,进行耐压试验,耐压时间为(120×50/?)s ;然后,立即将电压从U1降低至U2,保持30min (330kV 以上变压器为60min ),进行局部放电观测,在此过程中,每5min 记录一次放电量值;30min 满,则降电压至U 3,持续5min 记录放电量值;降电压,当 图1变压器局部放电试验原理图 图2 局部放电试验加压时序图

EI 铁芯电源变压器计算步骤

铁芯电源变压器计算步骤 编写者:黄永吾 已知变压器有以下主要参数: 初级电压U1=220V, 频率f=50Hz 次级电压U2=20V, 电流I2=1A 其他一些要求如安规、温升、电压调整率、环境、(防潮、防震、防灰尘等)、工作状态、寿命等。

型变压器设计软件计算步骤如下: 1.计算变压器功率容量: 2.选择铁芯型号: 3.计算铁芯磁路等效长度: 4.计算铁芯有效截面积: 5.计算变压器等效散热面积: 6.计算铁芯重量: 7.计算胶芯容纳导线面积: 8.初定电压调整率: 9.选择负载磁通密度: 10.计算匝数: 11.计算空载电流: 12.计算次级折算至初级电流: 13.计算铁芯铁损: 14.计算铁损电流: 15.计算初级电流:

16.计算各绕组最大导线直径: 17.校核能否绕下: 18.计算各绕组平均长度: 19.计算各绕组导线电阻: 20.计算各绕组导线质量: 21.计算各绕组铜损: 22.计算各绕组次级空载电压: 23.核算各绕组次级负载电压: 24.核算初级电流: 25.核算电压调整率: 重复8~25项计算三次: 26.修正次级匝数: 重复8~25项计算三次: 27核算变压器温升:

型变压器设计软件计算步骤如下: 1. 计算变压器功率容量:以下为结构计算: 2. 选择铁芯型号:16.计算各绕组最大导线直径: 3. 计算铁芯磁路等效长度:17.校核能否绕下: 4. 计算铁芯有效截面积:18.计算各绕组平均长度: 5. 计算变压器等效散热面积:19.计算各绕组导线电阻: 6. 计算铁芯重量: 20.计算各绕组导线质量: 7. 计算胶芯容纳导线面积:21.计算各绕组铜损: 8. 初定电压调整率:22.计算各绕组次级空载电压: 9. 选择负载磁通密度: 23.核算各绕组次级负载电压: 10.计算匝数:24.核算初级电流: 11.计算空载电流: 25.核算电压调整率: 12.计算次级折算至初级电流:重复8~24项计算三次: 13.计算铁芯铁损:26.修正次级匝数: 14.计算铁损电流:重复8~24项计算三次: 15.计算初级电流: 27.核算变压器温升:

电力变压器局部放电试验目的及基本方法

一变压器局部放电分类及试验目的 电力变压器是电力系统中很重要的设备,通过局部放电测量判断变压器的绝缘状况是相当有效的,并且已作为衡量电力变压器质量的重要检测手段之一。 高压电力变压器主要采用油一纸屏障绝缘,这种绝缘由电工纸层和绝缘油交错组成。由于大型变压器结构复杂、绝缘很不均匀。当设计不当,造成局部场强过高、工艺不良或外界原因等因素造成内部缺陷时,在变压器内必然会产生局部放电,并逐渐发展,后造成变压器损坏。电力变压器内部局部放电主要以下面几种情况出现: (1)绕组中部油一纸屏障绝缘中油通道击穿; (2)绕组端部油通道击穿; (3)紧靠着绝缘导线和电工纸(引线绝缘、搭接绝缘,相间绝缘)的油间隙击穿; (4)线圈间(匝间、饼闻)纵绝缘油通道击穿; (5)绝缘纸板围屏等的树枝放电; (6)其他固体绝缘的爬电; (7)绝缘中渗入的其他金属异物放电等。 因此,对已出厂的变压器,有以下几种情况须进行局部放电试验: (1)新变压器投运前进行局部放电试验,检查变压器出厂后在运输、安装过程中有无绝缘损伤。 (2)对大修或改造后的变压器进行局放试验,以判断修理后的绝缘状况。 (3)对运行中怀疑有绝缘故障的变压器作进一步的定性诊断,例如油中气体色谱分析有放电性故障,以及涉及到绝缘其他异常情况。

二测量回路接线及基本方法 1、外接耦合电容接线方式 对于高压端子引出套管没有尾端抽压端或末屏的变压器可按图1所示回路连接。 图1:变压器局部放电测试仪外接耦合电容测量方式110kV以上的电力变压器一般均为半绝缘结构,且试验电压较高,进行局部放电测量时,高压端子的耦合电容都用套管代替,测量时将套管尾端的末屏接地打开,然后串入检测阻抗后接地。测量接线回路见图2或图3。 图2:变压器局部放电测试中性点接地方式接线

变压器局部放电

目录 1.局部放电(一) (2) 2.局部放电(二) (3) 3.局部放电(三) (4) 4.局部放电(四) (7) 5.三相交流系统的对称分量法 (9) 6.空载电流的谐波分量 (11) 7.变压器不对称运行时的对称分量 (12)

1.局部放电(一) 在电场强度作用下,在变压器绝缘系统中局部区域有绝缘性能薄弱的地方会被激发出局部放电,局部放电是不足以贯通施加电压的两个电极间形成放电通道,即平常所说的击穿。如果将局部放电量控制在一定放电量水平以下,对绝缘不会引起损伤,所以局部放电试验是一种无损探测绝缘特性的试验,在一定的局部放电试验电压与大于局部放电试验电压并模拟运行中过电压的局部放电预激发电压作用后,在以后的局部放电试验电压持续时间内测局部放电视在放电量,如局部放电视在放电量小于标准规定值,即认为变压器能通过局部放电试验。这项试验比传统的短时工频耐压试验要严格,因短时工频耐压试验是以绝缘结构中是否有击穿作为能否通过试验的准则。局部放电试验能检测出绝缘上薄弱的部位,在运行中检测局部放电量可探测出潜在的绝缘薄弱部位。而短时工频耐压试验,只能探测到绝缘结构能否承受住各种过电压或试验电压的作用,要么承受住,要么承受不住,发现不了潜在的绝缘薄弱地位。所以说,局部放电试验是一种比较理想的绝缘试验项目,是一项正在推广应用范围的试验项目,凡是能通过局部放电试验的变压器,在运行中可靠性是比较高的。因此应对局部放电特性及检测加以研究,使变压器达到低局部放电量水平的要求,某些试验用变压器还应达到无局部放电的水平。 在油纸绝缘的变压器中,在内部带电电极上,固体绝缘部件的表面(油与绝缘材料的分界面)或内部、变压器油内部所发生的局部放电都统称为局部放电,发生在被气体所包围的电极表面或附近气体中局部放电则称为电晕。变压器的允许局部放电量水平不包括套管在空气中的电晕所产生的允许局部放电量水平,只是指油箱内部所产生的局部放电量水平。对三相变压器可以分相测出每一相的局部放电量水平。对每一相的局部放电量而言,包括其它绕组传递到被测绕组的局部放电量。每一相的高压、中压与低压绕组有其各自的局部放电量。每一相高压绕组(或中压或低压绕组)的局部放电量可能来自线端套管、中点套管、有载调压分接开关或无励磁分接开关、引线、绕组、各种接地零部件、绝缘内部、变压器油等处。但最容易产生局部放电的地方是气隙、 绝缘件内部的气隙、变压器油中气泡。 当变压器上施加电压后,绝缘介质内承受的电场强度与介电常数成反比,如纸中含气隙,纸的介电常数比气隙的介电常数要高。因此气隙要承受较高的电场强度,而气隙的允许场强又低。因此,纸中气隙是绝缘上的薄弱点,最易产生局部放电。当然气隙会不会产生局部放电要达到两个因素:首先,气隙上的承受场强超过起始局部放电允许场强;其次气隙内要存在一定的有效自 由电子。 所以,要控制绝缘材料内不准有气隙存在,包括制造中剩留的气隙及运行中绝缘材料裂解出的气体所形成的气隙,在绝缘件干燥时要注意加温与降温的速度,防止骤热膨胀后形成绝缘件开裂层中的气隙。变压器油必须脱气后才能注入变压器中。要控制最热点温度不超过140℃~160℃,避免纸和油的裂解。变压器试验前要停放足够时间,局部放电试验前要将顶部存气,通过放 气阀释放尽。

变压器局部放电在线监测装置检验规范-(终稿)

变压器局部放电在线监测装置检验规范 1 范围 本规范规定了变压器局部放电在线监测装置的专项检测项目、检验条件、检验内容及要求和检验结果处理。 本规范适用于变压器局部放电在线监测装置的型式试验、出厂试验、交接试验和运行中试验。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 16927 高电压试验技术 GB 7354-2003 局部放电测量 DL/T 356-2010 局部放电测量仪校准规范 3 检验项目 变压器局部放电在线监测装置专项试验项目包括一致性测试、通用技术条件试验、传感器频响特性检验、系统灵敏度检验、系统有效性检验和抗干扰性能试验。 4 检验条件 除环境影响试验和抗谐波干扰试验之外,其它试验项目应在如下试验环境中进行: a)环境温度:+15?C~+35?C; b)相对湿度:45%~75%; c)大气压力:80kPa~110kPa; d)电源电压:单相220×(1±10%)V; e)电源频率:50Hz±0.1Hz; f)电源波形:正弦波,波形失真度不大于5%; g)标准信号源:标准波形脉冲上升沿(10%~90%上升时间)约为1ns,半波时间为50ns, 幅值稳定度±5%,脉冲重复频率为50-200Hz可调。 对于高压检验试验,还应该满足以下试验条件: 1

a)试品的温度与环境温度应无显著差异; b)试验场所不得有显著的交流或直流外来磁场影响; c)试验场地必须具有单独工作接地和保护接地,设置保护栅栏; d)试品与接地体或邻近物体的距离,应大于试品高压部分与接地部分的最小空气距离 的1.5倍; e)构建吉赫兹横电磁波测量小室(GTEM测量小室)。 5 检验内容及要求 5.1一致性测试 5.1.1通信模型检测 a)检验模型配置文件与IEC 61850标准的变电站配置语言SCL的符合性; b)检验逻辑设备、逻辑节点、数据、数据属性的命名规则及描述与《变压器局部放电 在线监测装置技术规范》中附录A在线监测装置数据通信要求的符合性; c)检验数据集、报告控制块、日志控制块、定值组控制块等的命名规则、描述、定义 位置及数量与《变压器局部放电在线监测装置技术规范》中附录A在线监测装置数据通信要求的符合性。 5.1.2数据传送功能检测 a)通过报告服务,装置应实现遥信、遥测数据的告警、召唤、周期上传; b)通过日志服务,装置应响应综合处理单元查询遥信、遥测数据; c)通过文件服务,装置应实现谱图文件的上传; d)所有遥信、遥测数据应具备品质、时标等信息; e)装置内部的通信网络连接出现中断,应正确报出通信中断。 5.1.3谱图文件格式检测 装置生成的谱图文件应符合《变压器局部放电在线监测装置技术规范》的谱图文件格式要求。 5.1.4时间同步检测 a)装置应采用SNTP协议实现网络对时; b)用于事件时标的时钟同步准确度应为±1ms。 5.1.5通信自恢复能力检测 装置具备通信恢复能力,当物理故障消除后,网络通信应能自动恢复正常,信息传送正

变压器局部放电是怎么回事

变压器局部放电是怎么回事? 局部放电主要是变压器、互感器以及其他一些高压电气设备在高电压的作用下,其内部绝缘发生的放电。这种放电只存在于绝缘的局部位置,不会立即形成整个绝缘贯通性击穿或闪络,所以称为局部放电。局部放电量很微弱,靠人的直觉感觉,如眼观耳听是察觉不到的,只有灵敏度很高的局部放电测量仪器才能把它检测到。 变压器内部绝缘在运行中长期处于工作电压的作用下,特别是随着电压等级的提高,绝缘承受的电场强度值很高,在绝缘薄弱处很容易产生局部放电,产生局部放电的原因是:电场过于集中于某点,或者说某点电场强度过大,如固体介质有气泡,杂质未除净;油中含水、含气、有悬浮微粒;不同的介质组合中,在界面处有严重电场畸变。局部放电的痕迹在固体绝缘上常常只留下一个小斑,或者是树枝形烧痕。在油中,则出现一些分解的小气泡。 局部放电时间虽短,能量也很小,但具有很大的危害性,它的长期存在对绝缘材料将产生较大的破坏作用,一是使邻近局部放电的绝缘材料,受到放电质点的直接轰击造成局部绝缘的损坏,二是由放电产生的热、臭氧、氧化氮等活性气体的化学作用,使局部绝缘受到腐蚀老化,电导增加,最终导致热击穿。运行中的变压器,内部绝缘的老化及破坏,多是从局部放电开始。

变压器局部放电的检测方法一般有: 1、电测法。利用示波仪或无线电干扰仪,查找放电的特征波形或无线电干扰程度。 2、超声波测法。检测放电中出现的声波,并把声波变换为电信号,录在磁带上进行分析,利用电信号和声信号的传递时间差异,可求得探测点到放电点的距离。 3、化学测法。检测油中各种溶解气体的含量及增减变化规律。该测试法可发现油中的组成、比例以及数量的变化,从而判定有无局部放电(或局部过热)。 此外,近年来还研制出局部放电在线检测仪,能在变压器运行中进行自动检测局部放电。 为防止局部放电的发生,制造单位应对变压器进行合理的结构设计;精心施工,提高材料纯净度,严格处理各个环节的质量。运行单位应加强变压器维护、监测等工作,以有效地防止变压器局部放电的发生。

变压器局部放电在线监测技术

变压器局部放电在线监测技术 目录 目录 (1) 前言 (2) 1在线监测方法 (2) 1.1超声监测法 (2) 1.2光测法 (3) 1.3电脉冲法 (3) 1.4射频监测法 (3) 1.5超高频监测法 (3) 2在线监测监控技术 (4) 2.1.1现场噪声的抑制 (4) 2.1.1.1 周期性干扰的抑制 (4) 2.1.1.1.2 脉冲型干扰的抑制 (5) 2.1.1.1.3白噪声干扰的抑制 (5) 2.1.2局部放电模式识别 (5) 2.1.3局部放电定位技术 (6) 3结束语 (7) 结论 (7) 致谢 (7) 参考文献 (7)

前言 近年来 , 随着电力系统的快速发展 , 变压器的容量和电压等级不断提高 , 运行中的安全问题也越来越受到重视。在变压器所发生的故障中 , 绝缘问题占很大的比重 , 因此需要一种有效的手段对变压器的绝缘状况进行监测 , 确保运行中变压器的安全。 局部放电监测作为检测变压器绝缘的一种有效手段 , 无论是检测理论还是检测技术 , 近年来都取得了较大的发展 , 并在电厂和电站中得到了实际应用。 相对传统的停电局部放电检测 , 在线局部放电检测可以长时间连续监测变压器局部绝缘放电情况 , 在放电量达到危险时 , 及时停机做进一步的检查 , 因此在检修工时和经济效益等方面有很大的优势 , 是目前惟一的一种有效避免变压器突发性事故的监测手段。在线局部放电监测反映的是变压器实际工作状态下的绝缘放点情况,比离线检测更符合设备的实际运行工况。 1在线监测主要方法 根据变压器局放过程中产生的电脉冲、电磁辐射、超声波、光等现象,相应出现了电脉冲检测法超声波检测法、光测法及射频检测法和UHF超高频检测法。、 1.1超声监测法 用固体在变压器油箱壁上的超声传感器接收变压器内部局放产生的超声波来检测局放的大小和位置。通常采用的超声传感器为电压传感器,选用的频率范围为70-150kHz,目的是为了避开铁心的磁噪声和变压器的机械振动噪声。超声检测法主要用于定性判断是否有局放信号,结合电脉冲信号或直接利用超声信号对局放源进行物理定位。近年来,由于声电换能元件效率的提高和电子放大技术的发展,超声检测的灵敏度有了较大的提高。 1.2光测法 光测法是利用局部放电产生的光辐射进行检测。在变压器油中,各种放电发出的光波不同,光电转换后,通过检测光电流的特征可以实现局放的识别。虽然是实验室中利用光测法来分析局放特征及绝缘劣化机理等方面取得了很大进展。但由于光测法设备复杂、昂贵、灵敏度低在实际中并未直接使用。尽管如此,光纤技术作为超声技术的辅助手段应用于局放检测,将光纤伸入变压器油中,当变压器内部放生局放时,超声波在油中传播,这种机械力波挤压光纤,引起光纤变形,导致光纤折射率和光纤长度发生变化,从而光波被调制,通过适当的解调器即可测量出超声波,实现放电定位。

浅谈电力变压器局部放电带电检测及定位技术

浅谈电力变压器局部放电带电检测及定位技术 发表时间:2017-08-07T15:02:24.647Z 来源:《电力设备》2017年第10期作者:江泓虞晓巍孟鑫[导读] 摘要:我国的经济社会不断发展,电力行业也进入了快速发展阶段。在电力系统中,电力变压器的应用非常广泛。 (上海久隆电力(集团)有限公司变压器修试分公司 200436)摘要:我国的经济社会不断发展,电力行业也进入了快速发展阶段。在电力系统中,电力变压器的应用非常广泛。值得注意的是,电力变压器在应用的过程中会容易携带电荷,引发安全事故,阻碍电力系统的平稳运行。为了避免上述问题出现,需要对电力变压器的放电区域进行检测和定位。本文将具体探讨电力变压器的局部放电带电检测及定位技术,希望能为相关人士提供一些参考。 关键词:电力变压器;局部放电;检测及定位技术引言 进入新世纪以来,我国的市场经济持续繁荣,社会生产生活的用电量持续膨胀,电力行业迎来了前所未有的发展机遇和挑战。如今我国的电网规模不断扩大,如何保障电网的平稳运行成为电力行业关注的重点。在电力系统中,电力变压器是重要的组成部分,但是在应用电力变压器的过程中经常会出现局部带电的情况。为了弥补电力变压器的物理缺陷,应用科学的局部放电带电检测及定位技术势在必行。 1电力变压器局部放电带电检测及定位技术的发展就电力变压器的发展情况来看,电力变压器的局部放电带电检测及定位技术主要经历了三个发展阶段:第一个发展阶段时上个世纪七十年代到八十年代。这一时期发达国家的电力行业开始发展,为了测量电力设备的各项参数,经常要应用直接测算的方法[1]。这一时期测算人员承担着较大的安全风险,经常会受到泄露电流的伤害。第二个发展阶段是上个世纪八十年代到九十年代。这一时期出现了大量的测算仪器,传统人工测算方法逐渐落后于时代发展的潮流,放电带电检测技术开始朝着数字化的方向发展。第三个发展阶段是从上个世纪九十年代到现如今。互联网技术不断发展,在网络技术的支撑之下,现代先进科技兴起,如微电子技术、传感技术等等,推动了各个行业的现代化。电力变压器的局部放电带电检测及定位技术由传统的线下检测转换为线上检测,通过获取电力变压器的运行数据,可以定位电力变压器的故障区域。我国在上个世纪八十年代引进了线上检测技术,并取得了显著成果。进入新世纪以来,我国的现代科技突飞猛进,线上检测技术进入了大众的视野,电力行业和线上检测的融合更加密切。 2电力变压器局部放电带电检测及定位的常用技术 2.1脉冲电流法 首先,脉冲电流法是电力变压器局部放电带电检测及定位的常用技术之一。在应用电力变压器的过程中,变压器回路会产生脉冲电流,通过测算脉冲电流,可以计算变压器不同区域的电荷量[2]。一般来说,电力变压器各个区域的电荷量相对固定,如果超过了额定电量,可以采取相应的制动举措。在应用脉冲电流法的过程中,可以使用两类传感器,一种是窄带传感器,一种是宽带传感器。第一种传感器的频宽虽然较小,但是对外界干扰信号的防御能力比较强。第二种传感器的抗干扰性不如前者,但是对信号的接收效率和转换效率比较高。当电力变压器运作时,内部会产生大量电流,如果出现了局部放电的问题,这些电流会流经地面,把传感器和电力变压器的回路相连接,当变压器通过脉冲电流时,传感器会在第一时间把电信号发送给决策系统,并对放电区域进行精准定位。 2.2特高频检测法 其次,特高频检测法是电力变压器局部放电带电检测及定位的常用技术之一。在应用电力变压器的过程中,如果出现了局部电流,会辐射高频电磁波,此时应用特定仪器对电磁波信号进行截取,可以判定电力变压器的局部故障,提高电力变压器放电检测的效率。在应用这一方法时,需要把铁芯引到地面的导线上,高频电磁波产生电位差,电流和电力变压器的电源电压会出现不相对称的情况,为了避免受到外界的磁场干扰,可以采用屏蔽装置,把屏蔽体安装在电力变压器的外部。在屏蔽装置安装完毕之后,可以对电力变压器的电磁波频率进行分析,如果回路电流加大,说明变压器的某个区域电磁波频率过大,电力变压器出现了局部带电故障[3]。 2.3再次,超声检测法也是电力变压器局部放电带电检测及定位的常用技术之一。超声检测法和贴高频检测法具有相似之处。当电力变压器出现局部放电故障时,不仅会对电磁波产生影响,还会对声波产生影响,因此只需对电力变压器的局部超声波进行检测,就可以判断电力变压器的放电位置。在应用这种方法时,需要借助频率范围为100k赫兹左右的压电传感器,避免受到外界的噪声污染。在电力变压器出现局部放电的问题时,声波分子会剧烈运动,甚至发生碰撞,加大电力变压器内部的压力。脉冲式的压力对声波产生作用,发出相应的声音信号。此时应用压电传感器,对超声波进行感应,可以测算电力变压器内部的振动频率和振动幅度[4]。 3电力变压器局部放电带电检测及定位的新兴技术 3.1定向耦合差动平衡技术 首先,在电力变压器的局部放电带电检测及定位中,定向耦合差动平衡技术的应用越来越广泛。这一技术是新兴的现代技术,其基本原理是对电力变压器的电磁信号进行抑制,以此对放电区域形成屏蔽墙。在电力变压器的检测中应用这一方法,不仅能判断放电带电区域的位置,还能判断不同放电区域负荷电流的强弱。电力变压器在运行过程中,可能不止一处发生了带电放电问题,双相脉冲电流或三相脉冲电流共同发出脉冲信号,在电容耦合作用下,信号强弱会有一定区别,根据脉冲信号的大小,可以判定放电区域的相位。 3.2分形理论放电检测技术 其次,在电力变压器的局部放电带电检测及定位中,分形理论放电检测技术的应用越来越广泛。所谓的分形理论,就是对带电区域的放电量、放电次数进行判断和识别,提取谱图中的特征参数[5]。分形理论以人工智能技术作为基础,在应用的过程中,需要把电力变压器分成不同维度,并掌握其中的分形规律。 结论 综上所述,为了弥补电力变压器的物理缺陷,应用科学的局部放电带电检测及定位技术势在必行。 参考文献 [1]朱学成,高自伟,盛阿芳,张健,张洪达,李童.变压器局部放电带电检测系统的应用[J]. 黑龙江电力,2011,(06):473-474+477. [2]张献.电力变压器局部放电检测技术现状与新技术[A].天津市电机工程学会(Tianjin Society of Electrical Engineering)、天津市电工技术学会.天津市电机工程学会2012年学术年会论文集[C].天津市电机工程学会(Tianjin Society of Electrical Engineering)、天津市电工技术学会:,2012:4.

相关主题
文本预览
相关文档 最新文档