当前位置:文档之家› 机械原理课程设计汽车前轮转向机构

机械原理课程设计汽车前轮转向机构

机械原理课程设计汽车前轮转向机构
机械原理课程设计汽车前轮转向机构

机械原理课程设计

说明书

题目汽车前轮转向机构

目录

引言

一、题目:汽车前轮转向机构 (3)

1、设计题目 (3)

2、设计数据与要求 (4)

3、设计任务 (5)

二、转向系统 (5)

1、转向系统概述及结构简介 (5)

2、转向系统的要求 (6)

3、传动比变化特性 (6)

1、转向系传动比 (6)

2、力传动比与转向系角传动比的关系 (7)

3、转向器角传动比的选择 (8)

三、设计内容 (8)

四、设计结构分析 (10)

五、转向梯形机构优化 (11)

引言

改革开放以来,中国的汽车工业有着飞速的发展,据中国汽车工业协会统计,截至2006年10月底,轿车累计销量超过300万辆,达到304万辆,同比增长40%。2006年11月的北京车展,自主品牌:奇瑞、吉利、长城、中兴、众泰、比亚迪、双环、中顺、力帆、华普、长安、哈飞、华晨等自主品牌纷纷亮相,在国际汽车盛宴中崭露头角,无论从参展规模还是产品所展示的品质和技术含量上,都不得不令人折服,但和国外有着近百年发展历史的国外汽车工业相比,我们的自主品牌汽车在行车性能和舒适体验方面仍有差距。

汽车工业是国民经济的支柱产业,代表着一个国家的综合国力,汽车工业随着机械和电子技术的发展而不断前进。到今天,汽车已经不是单纯机械意义上的汽车了,它是机械、电子、材料等学科的综合产物。汽车转向系也随着汽车工业的发展历经了长时间的演变。

转向系是用来保持或者改变汽车行使方向的机构,转向系统应准确,快速、平稳地响应驾驶员的转向指令,转向行使后或受到外界扰动时,在驾驶员松开方向盘的状态下,应保证汽车自动返回稳定的直线行使状态。

随着私家车的越来越普遍,各式各样的高中低档轿车进入了人们的生活中。快节奏高效率的生活加上们对高速体验的不断追求,也要求着车速的不断提高。由于汽车保有量的增加和社会活生活汽车化而造成交通错综复杂,使转向盘的操作频率增大,这要求减轻驾驶疲劳。

所以,无论是为满足快速增长的轿车市场还是为给驾车者更舒适更安全的的驾车体验,都需要一种高性能、低成本的大众化的轿车转向结构。

本课题以现在国产轿车最常采用的齿轮齿条液压动力转向器为核心综合设计轿车转向机构。

一、题目:汽车前轮转向机构

1、设计题目

汽车的前轮转向,是通过等腰梯形机构ABCD驱使前轮转动来实现的。其中,两前轮分别与两摇杆AB、CD相连,如附图32所示。当汽车沿直线行使时(转弯半径R=∞),左右两轮轴线与机架AD成一条直线;当汽车转弯时,要求左右两轮(或摇杆AB和CD)转过不同的角度。理论上希望前轮两轴延长线的交点P始终能落在后轮轴的延长线上。这样,整个车身就能绕P点转动,使四个轮子都能与地面形成纯滚动,以减少轮胎的磨损.因此,根据不同的转弯半径R(汽车转向行驶时,各车轮运行轨迹中最外侧车轮滚出的圆周半径),要求左右两轮轴线(AB、CD)分别转过不同的角度a和β,其关系如下:

如附图32所示为汽车右拐时:

tanα=L/(R-d-B) tanβ=L/(R-d)所以a和β的函数关系为:

cotβ- cotα=B / L

同理,当汽车左拐时,由于对称性,有 cotα-cotβ=B / L,故转向机构ABCD 的设计应尽量满足以上转角要求.

附图32

2、设计数据与要求

设计数据见附表18,要求汽车沿直线行驶时,铰链四杆机构左右对称,以保证左右转弯时具有相同的特性.该转向机构为等腰梯形双摇杆机构,设计此铰链四杆机构.

3、设计任务

1)、根据转弯半径R min 和R max=∞(直线行驶),求出理论上要求的转角α和β的对应值。要求最少2组对应值。

2)、按给定两联架杆对应位移,且尽可能满足直线行驶时机构左右对称的附加要求,用图解法设计铰链四杆机构ABCD。

3)、机构初始位置一般通过经验或实验来决定,一般可在下列数值范围内选取a0 =96°~103°,β0 =77°~84°。建议a0取102°,β0取78°。

4)、用图解法检验机构在常用转角范围α≤20°时的最小转动角γmin。

二、转向系统

1、转向系统概述及结构简介

转向系统是汽车底盘的重要组成部分,转向系统性能的好坏直接影响到汽车行驶的安全性、操纵稳定性和驾驶舒适性,它对于确保车辆的行驶安全、减少交通事故以及保护驾驶员的人身安全、改善驾驶员的工作条件起着重要作用。

按转向力能源的不同,可将转向系分为机械转向系和动力转向系。

机械转向系的能量来源是人力,所有传力件都是机械的,由转向操纵机构(方向盘)、转向器、转向传动机构三大部分组成。其中转向器是将操纵机构的旋转运动转变为传动机构的直线运动(严格讲是近似直线运动)的机构,是转向系的核心部件。

2、转向系统的要求

1、轿车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。

2、轿车转向行驶时,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。

3、轿车在任何行驶状态下,转向轮都不得产生自振,转向盘没有摆动。

4、转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。

5、保证轿车有较高的机动性,具有迅速和小转弯行驶能力。

6、操纵轻便。

7、转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。

8、转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。 9、在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

10、进行运动校核,保证转向轮与转向盘转动方向一致。

3、传动比变化特性 1、转向系传动比

转向系的传动比包括转向系的角传动比0ωi 和转向系的力传动比i P 。 传动系的力传动比:

F F i W p /2= (1)

转向系的角传动比:

k

k k w d d dt d dt d i β?

β?ωωω===

//0 (2) 转向系的角传动比

ωi 由转向器角传动比ω

i 和转向传动机构角传动组成,即:

ω

ωωi i i '=0 (3)

转向器的角传动比: p

p p w d d d t d d t d i β?

β?ωωω=

==

// (4) 转向传动机构的角传动比:

k

p

k p k p d d dt d dt d i ββββωωω

=

=='// (5) 2、力传动比与转向 系 角 传动比的关系

转向阻力F W 与转向阻力矩M r 的关系式:

a

M Fw r

=

(1) 作用在转向盘上的手力

F

h

与作用在转向盘上的力矩M h 的关系式:

sw

h

h D M F 2=

(2) 将式(1)、式(2)代入

h

W p F F i /2=后得到:

a

M D M i h sw

r p =

(3) 如果忽略磨擦损失,根据能量守恒原理,2Mr/M h 可用下式表示

02ωβ?

i d d M M k

h r == (4) 将式(1)代入式(2)后得到:

a

D i i sw

p 20ω=

(5) 当a 和Dsw 不变时,力传动比p i 越大,虽然转向越轻,但0ωi

也越大,表明转向不灵敏。

3、转向器角传动比的选择

转向器角传动比可以设计成减小、增大或保持不变的。影响选取角传动比变化规律的主要因素是转向轴负荷大小和对汽车机动能力的要求。

若转向轴负荷小或采用动力转向的汽车,不存在转向沉重问题,应取较小的转向器角传动比,以提高汽车的机动能力。若转向轴负荷大,汽车低速急转弯时的操纵轻便性问题突出,应选用大些的转向器角传动比。

汽车以较高车速转向行驶时,要求转向轮反应灵敏,转向器角传动比应当小些。汽车高速直线行驶时,转向盘在中间位置的转向器角传动比不宜过小。否则转向过分敏感,使驾驶员精确控制转向轮的运动有困难。

三、设计内容

1、根据转弯半径R min 和R max=∞(直线行驶),求出理论上要求的转角α和β的对应值。要求最少2组对应值。

R=R min时,

tanα=L/(R-d)=2900/(6100-400)=0.509 0

L/(R-d-B)=2900/(6100-400-1555)=0.70 34.9780 R=10000mm时,

=L/(R-d)=2900/(10000-400)=0.302

L/(R-d-B)=2900/(10000-400-1555)=0.360

根据公式可知,和随着转弯半径R的增加而单调递减。

参考数据如下:

2、按给定两联架杆对应位移,且尽可能满足直线行驶时机构左右对称的附加要求,用图解法设计铰链四杆机构ABCD 。

根据上图列唯一矢量方程:

化简到x 和y 轴:

对于该机构,AD 杆长已知,再给定AB 杆长及AB 与AD 夹角,该机构就确定了。 令 , 。令 。代入位移方程中。得出一组l 及对应的 和 。

令 ,将上面求得的l 及 值代入位移方程中,得出各种机构l 及 对应 的实际值。

再利用公式得出 的理论值。找出实际值中,与 理论值最接近的一个。所对应的l 及 即为最佳机构。

最后计算出选出的机构当 在0到最大值之间时所对应的 的理论值和实际值。 不同l 对应的 理论值和实际值之差的数据如下:

x

由表格数据可知,最佳机构为l=0.1,所对应的 为68.84°。

选定该机构后,检验其实际的可行性,让杆AB 转过 角度,算出该机构运动时所对应的 数据为:

比较β的理论值和实际值可知,该机构的误差较大,故该梯形机构不是最理想的机构。

3、用图解法检验机构在常用转角范围α≤20°时的最小转动角γ

min

机构在任意位置图示如下:

如图所示,传动角 ,令 。把l 与 为所选所对应的值。代入位移方程。计算出各转角对应的 值。则最小的值即为最小传动角γmin 。

计算可知, 随着 的增加而单调递减,其 数据如下:

四、设计结构分析

1、 四种类型梯形机构的选择:

汽车转向梯形机构如下图所示共有四种可能的类型: A

B

(a ) (b )

机构可行的必要条件是当机构转动时,前轮两轴延长线的交点P 能落在后轮轴的延长线上。当研究车辆右转时,左边连架杆的转角α小于右边连架杆的转角β。 易知,(a )、(d )两种机构均可行. 而对于(b)、(c)机构,当这两种机构右转时,α大于β,所以这两种机构是不可行的。 结构(a )(d )是平面四杆机构结构简单,虽然设计制造比较方便,但其性能有着较大的局限性,上面我们已经研究过,误差较大,无法保证前轮两轴延长线的交点P 能落在后轴上,所以不是最理想机构。

五、转向梯形机构优化

转向梯形机构用来保证汽车转弯行驶时所有车轮能绕一个瞬时转向中心,在不同的圆周上做无滑动的纯滚动。设计转向梯形的主要任务之一是确定转向梯型的最佳参数和进行强度计算。一般转向梯形机构布置在前轴之后,但当发动机位置很低或前轴驱动时,也有位于前轴之前的。转向梯形有整体式和断开式两种,选择整体式或断开式转向梯形方案与悬架采用何种方案有联系。无论采用哪一种方案,必须正确选择转向梯形参数,做到汽车转弯时,保证全部车轮绕一个瞬时转向中心行驶,使在不同圆周上运动的车轮,作无滑动的纯滚动运动。同时,为达到总体布置要求的最小转弯直径值,转向轮应有足够大的转角。

(c ) (d )

由机械原理易知,平面四杆机构结构简单,虽然设计制造比较方便,但其性能有着较大的局限性。如上面的设计过程,尽管在无数种机构中找到了最佳机构,但运动起来误差依然较大,无法保证前轮两轴延长线的交点P 能落在后轴上。 因此,我考虑利用上图所示的六杆机构设计转向机构。

1、计算机构自由度:

;

自由度为1,运动确定

2、运动分析

下图为该机构在转过某角度的状态如下:

列出位移方程:

3、机构设计方法

如第二题,满足该机构在最小转弯半径 R min 所对应的α和β满足P 点落在后轴延长线上的要求;并且其他各组α和β尽可能是能使P 点落在后轴延长线上。 经过分析,我们取 。令 ,代入位移方程中,解得一组l 对应的 。 再令 ,将上面求得的l 及 值代入位移方程中,得出各种机构l 及 对应 的实际值。

为找出最佳机构,利用公式L

B

=

-αβcot cot 得出 的理论值。找出实际值中,与 理论值最接近的一个。所对应的l 及 即为最佳机构。 用A3图纸画图得:

毕业论文设计转向系统设计

目录摘要2 第一章绪论3 1.1汽车转向系统概述3 1.2齿轮齿条式转向器概述9 1.3液压助力转向器概述10 1.4国内外发展情况12 1.5本课题研究的目的和意义12 1.6本文主要研究内容13 第二章汽车主要参数的选择14 2.1汽车主要尺寸的确定14 2.2汽车质量参数的确定16 2.3轮胎的选择17 第三章转向系设计概述18 3.1对转向系的要求18 3.2转向操纵机构18 3.3转向传动机构19 3.4转向器20 3.5转角及最小转弯半径20 第四章.转向系的主要性能参数22 4.1转向系的效率22 4.2传动比变化特性23 4.3转向器传动副的传动间隙△T25 4.4转向盘的总转动圈数26 第五章机械式转向器方案分析及设计26 5.1齿轮齿条式转向器26 5.2其他转向器28 5.3齿轮齿条式转向器布置和结构形式的选择29 5.4数据的确定29 5.5设计计算过程31 5.6齿轮轴的结构设计35 5.7轴承的选择35 5.8转向器的润滑方式和密封类型的选择35 5.动力转向机构设计36 5.1对动力转向机构的要求36 5.2动力转向机构布置方案36 5.3液压式动力转向机构的计算38 5.4动力转向的评价指标43

6. 转向传动机构设计45 6.1转向传动机构原理45 6.2转向传送机构的臂、杆与球销47 6.3转向横拉杆及其端部47 6.4杆件设计结果48 7.结论49 致谢49 摘要 本课题的题目是转向系的设计。以齿轮齿条转向器的设计为中心,一是汽车总体构架参数对汽车转向的影响;二是机械转向器的选择;三是齿轮和齿条的合理匹配,以满足转向器的正确传动比和强度要求;四是动力转向机构设计;五是梯形结构设计。因此本课题在考虑上述要求和因素的基础上研究利用转向盘的旋转带动传动机构的齿轮齿条转向轴转向,通过万向节带动转向齿轮轴旋转,转向齿轮轴与转向齿条啮合,从而促使转向齿条直线运动,实现转向。实现了转向器结构简单紧凑,轴向尺寸短,且零件数目少的优点又能增加助力,从而实现了汽车转向的稳定性和灵敏性。在本文中主要进行了转向器齿轮齿条的设计和对转向齿轮轴的校核,主要方法和理论采用汽车设计的经验参数和大学所学机械设计的课程内容进行设计,其结果满足强度要求,安全可靠。 关键词:转向系;机械型转向器;齿轮齿条;液压式助力转向器 Abstract The title of this topic is the design of steering system. Rack and pinion steering gear to the design as the center, one vehicle parameters on the overall framework of the impact of vehicle steering; Second, the choice of mechanical steering; third rack gear and a reasonable match to meet the correct steering gear ratio and strength requirements; Fourth, power steering mechanism design; Fifth, the structural design of trapezoidal. Therefore, taking into account the above issues and factors that require study, based on the steering wheel rotary drive transmission shaft of the steering rack and pinion steering, through the universal joint drive shaft rotation gear shift, steering rack and steering gear shaft meshing, thereby encouraging steering rack linear motion to achieve steering. Simple structure to achieve the steering tight, short axial dimension, and the number of parts can increase the advantages of less power in order to achieve the vehicle steering stability and sensitivity. In this article a major design steering rack and pinion steering gear shaft and the check, the main methods and theoretical experience in the use of automotive design parameters and the University of mechanical design school curriculum design and the results meet the strength

轿车前轮主动转向系统机械结构设计

第1章绪论 主动转向系统保留了传统转向系统中的机械构件,包括转向盘、转向柱、齿轮齿条转向机以及转向横拉杆等。其最大特点就是在转向盘和齿轮齿条转向机之间的转向柱上集成了一套双行星齿轮机构,用于向转向轮提供叠加转向角。主动转向系统通过一组双行星齿轮机构实现了独立于驾驶员的转向叠加功能,完美地解决了低速时转向灵活轻便与高速时保持方向稳定性的矛盾,并在此基础上通过转向干预来防止极限工况下车辆转向过多的趋势,进一步提高了车辆的稳定性。同时,该系统能方便地与其他动力学控制系统进行集成控制,为今后汽车底盘一体化控制奠定了良好的基础。 与常规转向系统的显著差别在于,主动转向系统不仅能够对转向力矩进行调节,而且还可以对转向角度进行调整,使其与当前的车速达到完美匹配。其中的总转角等于驾驶员转向盘转角和伺服电机转角之和。低速时,伺服电机驱动的行星架转动方向与转向盘转动相同,叠加后增加了实际的转向角度,可以减少转向力的需求。高速时,伺服电机驱动的行星架转动方向与转向盘转动相反,叠加后减少了实际的转向角度,转向过程会变得更为间接,提高了汽车的稳定性和安全性。 1.1转向系统综述 1、蜗杆曲柄销式转向器 它是以蜗杆为主动件,曲柄销为从动件的转向器。蜗杆具有梯形螺纹,手指状的锥形指销用轴承支承在曲柄上,曲柄与转向摇臂轴制成一体。转向时,通过转向盘转动蜗杆、嵌于蜗杆螺旋槽中的锥形指销一边自转,一边绕转向摇臂轴做圆弧运动,从而带动曲柄和转向垂臂摆动,再通过转向传动机构使转向轮偏转。这种转向器通常用于转向力较大的载货汽车上。 2、循环球式转向器 循环球式:这种转向装置是由齿轮机构将来自转向盘的旋转力进行减速,使转向盘的旋转运动变为涡轮蜗杆的旋转运动,滚珠螺杆和螺母夹着钢球啮合,因而滚珠螺杆的旋转运动变为直线运动,螺母再与扇形齿轮啮合,直线运动再次变为旋转运动,使连杆臂摇动,连杆臂再使连动拉杆和横拉杆做直线运动,改变车轮的方向。这是一种古典的机构,现代轿车已大多不再使用,但又被最新方式的助力转向装置所应用。它的原理相当于利用了螺母与螺栓在旋转过程中产生的相对移动,而在螺纹与螺纹之间夹入了钢球以减小阻力,所有钢球在一个首尾相连的封闭的螺旋曲线

汽车前轮转向机构课程设计

机械原理课程设计说明书题目:汽车前轮转向机构学院:车辆工程学院 姓名: 班级: 学号: 指导老师:

目录 1、背景...................................................................................................... .1 2、题目:汽车前轮转向机构 (3) 2.1设计题目 (3) 2.1.1转向机构简介 (3) 2.1.2 转向梯形 (4) 2.1.3计算机构自由度 (5) 2.1.4机构设计 (6) 2.1.5 数据设计..............................................................。. (8) 2.2设计要求 (8) 3、设计内容 (9) 3.1 求转角 (9) 3.2 解析法设计机构 (9) 3.3 解析法检验 (11) 4. 设计结构分析 (12) 4.1 四种类型梯形结构的选择 (12) 5、转向梯形机构优化 (14) 5.1 计算机构自由度 (15) 5.2 运动分析 (15) 5.3机构设计方法 (16) 6、课程设计总结 (17)

1、背景 在汽车行业迅速发展的今天,汽车前轮定位参数的确定仍然是困扰汽车企业设计的难题,。汽车前轮定位参数是汽车的重要性能参数,前轮定位参数的设计是否合理,将直接影响到车辆的很多重要性能,从而影响到整车的优劣。例如注销后倾角和内倾角将直接影响到车辆的回正性、直线行驶稳定性和高速制动时方向稳定性、转向轻便性;前轮的外倾角和前束值的合理匹配将直接影响到前轮的策划和异常磨耗,同时也间接地影响车辆的动力性和燃油的经济性。后倾角和前束值设计的是否合理还将影响这届影响到前轮的摆振,导致车辆操纵稳定性变坏,增加了有关零件载荷,从而降低行驶安全性和可靠性,摆振严重时会影响到车辆的行驶平顺性和安全性。因此,如果前轮定位参数不合理,就会大大降低汽车使用性能,但由于前轮定位参数的确定必须考虑多种因素的影响,而且前轮定位各参数对汽车使用性能的影响不是完全独立的,这给前轮定位参数的确定增加了困难。 汽车的转向传递机构的主要作用就是使用汽车在转向时期内、外轮具有正确的转角关系,它对汽车轮胎的磨损、转向半径和转向力都有重要的影响。汽车在转向时,由于主销后倾角、主销内倾角的存在,导致转向系统的运动并不是在一个平面内,这增加了转向的难度。而一般货车和拖拉机的转向机构是使用整体式的专项梯形机构进行传递。传统的整体式转向机构分析采用近似的平面运动分析方法,而实际上转向梯形的运动并不是在一个平面内。这样就必然存在着误差。

汽车转向器毕业设计

汽车转向器毕业设计 【篇一:毕业设计汽车转向系统】 摘要 本设计课题为汽车前轮转向系统的设计,课题以机械式转向系统的齿轮齿条式转向器设计及校核、整体式转向梯形机构的设计及验算 为中心。首先对汽车转向系进行概述,二是作设计前期数据准备, 三是转向器形式的选择以及初定各个参数,四是对齿轮齿条式转向 器的主要部件进行受力分析与数据校核,五是对整体式转向梯形机 构的设计以及验算,并根据梯形数据对转向传动机构作尺寸设计。在转向梯形机构设计方面。运用了优化计算工具matlab进行设计 及验算。matlab强大的计算功能以及简单的程序语法,使设计在参数变更时得到快捷而可靠的数据分析和直观的二维曲线图。最后设 计中运用autocad和catia作出齿轮齿条式转向器的零件图以及装配图。 关键词:转向机构,齿轮齿条,整体式转向梯形,matlab梯形abstract the title of this topic is the design of steering system. rack and pinion steering of mechanical steering system and integrated steering trapezoid mechanism gear to the design as the center. firstly make an overview of the steering system. secondly take a preparation of the data of the design. thirdly, make a choice of the steering form and determine the primary parameters and design the structure of rack and pinion steering. fourthly, stress analysis and data checking of the rack and pinion steering. fifthly, design of steering trapezoid mechanism, according to the trapezoidal data make an analysis and design of steering linkage. in the design of integrated steering trapezoid mechanism the computational tools matlab had been used to design and checking of the data. the powerful computing and intuitive charts of the matlab can give us accurate and quickly data. in the end autocad and catia were used to make a rack and pinion steering parts diagrams and assembly drawings keywords: steering system,mechanical type steering gear and gear rack, integrated steering trapezoid,matlab trapezoid

汽车电动助力转向机构的设计

汽车电动助力转向机构的设计 引言 在汽车的发展历程中,转向系统经历了四个发展阶段:从最初的机械式转向系统(Manual Steering,简称MS)发展为液压助力转向系统(Hydraulic Power Steering,简称HPS),然后又出现了电控液压助力转向系统(Electro Hydraulic Power Steering,简称EHPS)和电动助力转向系统(Electric Power Steering,简称EPS)。 装配机械式转向系统的汽车,在泊车和低速行驶时驾驶员操纵负担过于沉重,为了解决这个问题,美国GM公司在20世纪50年代率先在轿车上采用了液压助力转向系统[1]。但是,液压助力转向系统无法兼顾车辆低速时的转向轻便性和高速时的转向稳定性,因此在1983年日本koyo公司推出了具备车速感应功能的电控液压助力转向系统。这种新型的转向系统可以随着车速的升高提供逐渐减小的转向助力,但是结构复杂、造价较高,而且无法克服液压系统自身所具有的许多缺点,是一种介于液压助力转向和电动助力转向之间的过渡产品。到了1988年,日本Suzuki公司首先在小型轿车Cervo上配备了Koyo公司研发的转向柱助力式电动助力转向系统;1990年,日本Honda公司也在运动型轿车NSX上采用了自主研发的齿条助力式电动助力转向系统,从此揭开了电动助力转向在汽车上应用的历史。

第1章概述 1.1电动助力转向的优点 与传统的转向系统相比,电动助力转向系统最大的特点就是极高的可控制性,即通过适当的控制逻辑,调整电机的助力特性,以达到改善操纵稳定性和驾驶舒适性的目的。作为今后汽车转向系统的发展方向,必将取代现有的机械转向系统、液压助力转向系统和电控制液压助力转向系统[2]。 相比传统液压动力转向系统,电动助力转向系统具有以下优点: (1)只在转向时电机才提供助力,可以显著降低燃油消耗 传统的液压助力转向系统有发动机带动转向油泵,不管转向或者不转向都要消耗发动机部分动力。而电动助力转向系统只是在转向时才由电机提供助力,不转向时不消耗能量。因此,电动助力转向系统可以降低车辆的燃油消耗。 与液压助力转向系统对比试验表明:在不转向时,电动助力转向可以降低燃油消耗2.5%;在转向时,可以降低5.5%。 (2)转向助力大小可以通过软件调整,能够兼顾低速时的转向轻便性和高速时的操纵稳定性,回正性能好。传统的液压助力转向系统所提供的转向助力大小不能随车速的提高而改变。这样就使得车辆虽然在低速时具有良好的转向轻便性,但是在高速行驶时转向盘太轻,产生转向“发飘”的现象,驾驶员缺少显著的“路感”,降低了高速行驶时的车辆稳定性和驾驶员的安全感。 电动助力转向系统提供的助力大小可以通过软件方便的调整。在低速时,电动助力转向系统可以提供较大的转向助力,提供车辆的转向轻便性;随着车速的提高,电动助力转向系统提供的转向助力可以逐渐减小,转向时驾驶员所需提供的转向力将逐渐增大,这样驾驶员就感受到明显的“路感”,提高了车辆稳定性。

汽车前轮转向设计说明书

设计题目汽车前轮转向机构原理设计 年级 学号 学生姓名 指导教师 完成时间2014 年 4 月 2 日电子信息与机电工程学院

机 械 原 理 课 程 设 计 签 名 页 学 生 签 名: 年 月 日 指导教师签章: 年 月 日 答辩教师签章: 年 月 日 说明:(1)课程设计说明书提交时,学生须签名完毕。(2)分值填写、指导教师和答辩教师签章,是在相应质量评价之后由指导教师和答辩教师填写、签署。(3)指导教师质量评价分值小于48分,为课程设计质量不及格;答辩质量评价分值小于12分,为答辩不及格。课程设计质量不及格的或答辩不及格的,不予课程设计修改和二次答辩,须重修课程设计并参加下届学生的课程设计。

目录 第1章设计任 1 务 ……………………………………………………………………………………………………………………………… 1.1 设计任 1 务 ………………………………………………………………………………………………………………………………… 1.1.1 工作原 1 理 ……………………………………………………………………………………………………………………… 1.1.2 设计要求 ………………………………………………………………………………………………………………-1 ……… 1.2 设计参 2 数 ………………………………………………………………………………………………………………………………… 1.3 国内外技术应用与发展现 3 状 ……………………………………………………………………………………… 1.4 国内外技术发展趋 4 势 ……………………………………………………………………………………………………… 1.5 工作计 7 划 ………………………………………………………………………………………………………………………………… 第2章课程设计过 9 程 ……………………………………………………………………………………………………………………… 2.1 设计内 9 容 ………………………………………………………………………………………………………………………………… 2.1.1 理论的α和β值 (9) 2.1.2 用图解法设计四杆机构 9 ABCD …………………………………………………………………………… 2.1.3 运动分 10 析 ……………………………………………………………………………………………………………………… 2.1.4 最小传动角γ 12 min……………………………………………………………………………………………………… 结论 参考文献 个人总结

汽车转向系设计说明书

汽车设计课程设计说明书 题目:重型载货汽车转向器设计 姓名:席昌钱 学号:5 同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班 指导教师:王丰元、邹旭东

设计任务书 目录 1.转向系分析 (4) 2.机械式转向器方案分析 (8) 3.转向系主要性能参数 (9) 4.转向器设计计算 (14) 5.动力转向机构设计 (16) 6.转向梯形优化设计 (22) 7.结论 (24) 8.参考文献 (25)

1转向系设计 基本要求 1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2.操纵轻便,作用于转向盘上的转向力小于200N。 3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。 4.转向灵敏。 5.转向器和转向传动机构中应有间隙调整机构。 6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 基本参数 1.整车尺寸: 11976mm*2395mm*3750mm。 2.轴数/轴距 4/(1950+4550+1350)mm 3.整备质量 12000kg 4.轮胎气压 2.转向系分析 对转向系的要求[3] (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员. 转向操纵机构 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

汽车转向系统EPS设计(论文)

汽车转向系统EPS设计

毕业设计外文摘要

目录 错误!未定义书签。 1 引言?1 1.1汽车转向系统简介?1 1.2汽车转向系统的设计思路 (3) 1.3EPS的研究意义?4 2 EPS控制装置的硬件分析 (5) 2.1汽车电助力转向系统的机理以及类别 (5) 2.2 电助力转向机构的主要元件 (8) 11 3 电助力转向系统的设计? 3.1 动力转向机构的性能要求..................................... 11 3.2 齿轮齿条转向器的设计计算...................................... 11 3.3 转向横拉杆的运动分析[9]21? 3.4 转向器传动受力分析......................................... 22 4转向传动机构优化设计?24 4.1传动机构的结构与装配.......................................... 24 4.2利用解析法求解出内外轮转角的关系............................ 25 4.3 建立目标函数?27

5控制系统设计? 29 29 5.1 电助力转向系统的助力特性? 30 5.2 EPS电助力电动机的选择? 5.3 控制系统框图设计........................................... 3132 结论? 致谢................................................ 错误!未定义书签。参考文献......................................... 错误!未定义书签。

汽车转向机构设计

目录 中文摘要、关键词 (1) 英文摘要、关键词 (2) 引言 (3) 第1章轿车转向系统总述 (4) 1.1轿车转向系统概述 (4) 1.1.1转向系统的结构简介 (4) 1.1.2轿车转向系统的发展概况 (4) 1.2轿车转向系统的要求 (5) 第2章转向系的主要性能参数 (7) 2.1转向系的效率 (7) 2.1.1转向器的正效率 (7) 2.1.2转向器的逆效率 (8) 2.2 传动比变化特性 (9) 2.2.1 转向系传动比 (9) 2.2.2 力传动比与转向系角传动比的关系 (9) 2.2.3 转向器角传动比的选择 (10) 2.3 转向器传动副的传动间隙 (10) 2.4 转向盘的总转动圈数 (11) 第3章轿车转向器设计 (12) 3.1 转向器的方案分析 (12) 3.1.1 机械转向器 (12) 3.1.2 转向控制阀 (12)

3.1.3 转向系压力流量类型选择 (13) 3.1.4 液压泵的选择 (14) 3.2 齿轮齿条式液压动力转向机构设计 (14) 3.2.1 齿轮齿条式转向器结构分析 (14) 3.2.3 参考数据的确定 (20) 3.2.4 转向轮侧偏角计算 (21) 3.2.5 转向器参数选取 (21) 3.2.6 选择齿轮齿条材料 (22) 3.2.7 强度校核 (22) 3.2.8 齿轮齿条的基本参数如下表所示 (23) 3.3 齿轮轴的结构设计 (23) 3.4 轴承的选择 (23) 3.5 转向器的润滑方式和密封类型的选择 (24) 3.6 动力转向机构布置方案分析 (24) 第4章转向传动机构设计 (26) 4.1 转向传动机构原理 (26) 4.2 转向传送机构的臂、杆与球销 (27) 4.3 转向横拉杆及其端部 (28) 第5章转向梯形机构优化 (30) 5.1 转向梯形机构概述 (30) 5.2整体式转向梯形结构方案分析 (30) 5.3 整体式转向梯形机构优化分析 (31) 5.4整体式转向梯形机构优化设计 (34) 5.4.1 优化方法介绍 (34) 5.4.2 优化设计计算 (35)

汽车前轮转向机构

汽车前轮转向机构

目录 1、题目:汽车前轮转向机构 (3) 1.1设计题目 (3) 1.2设计数据与要求 (4) 1.3设计任务 (4) 2、转向系统 (4) 2.1转向系统概述及结构简介 (4) 2.2转向系统的要求 (5) 2.3传动比变化特性 (5) 2.3.1转向系传动比 (5) 2.3.2力传动比与转向系角传动比的关系 (6) 2.3.3转向器角传动比的选择 (7) 3、设计内容 (7) 4、设计结构分析 (9) 4.1 四种类型梯形机构的选择: (9) 5、转向梯形机构优化 (10) 5.1计算机构自由度: (11) 5.2运动分析 (11) 5.3机构设计方法 (11) 5.4对比分析 (12) 6、课程设计总结 (12) 6.1 设计心得 (12) 6.2 设计工作分工表 (13) 6.3 参考文献 (13)

引言 转向系是用来保持或者改变汽车行使方向的机构,转向系统应准确,快速、平稳地响应驾驶员的转向指令,转向行使后或受到外界扰动时,在驾驶员松开方向盘的状态下,应保证汽车自动返回稳定的直线行使状态。 随着私家车的越来越普遍,各式各样的高中低档轿车进入了人们的生活中。快节奏高效率的生活加上们对高速体验的不断追求,也要求着车速的不断提高。由于汽车保有量的增加和社会活生活汽车化而造成交通错综复杂,使转向盘的操作频率增大,这要求减轻驾驶疲劳。 所以,无论是为满足快速增长的轿车市场还是为给驾车者更舒适更安全的的驾车体验,都需要一种高性能、低成本的大众化的汽车前轮转向机构。 本课题以现在国产轿车最常采用的齿轮齿条液压动力转向器为核心综合设计轿车转向机构。

课程设计--汽车转向机构说明书

汽车运动机构课程设计说明书 温州大学机电工程学院 2013年6月

机械原理设计说明书 题目:汽车转向机构 学院:机电工程学院 专业:汽车服务工程 班级:11汽车服务本 姓名:叶凌峰俞科王栋柄 王璐吴海霞欧阳凯强 学号:11113003233 11113003243 11113003199 11113003209 11113003218 11113003174指导老师:李振哲

目录 一.设计题目 (1) 1.1课程设计目的和任务 (1) 1.2课程设计内容与基本要求 (2) 1.3机构简介 ........................................................................ 错误!未定义书签。 1.4参考数据 (5) 1.5设计要求 (5) 二. 设计方案比较 (6) 2.1设计方案一 (6) 2.2设计方案二 (7) 2.3设计方案三 (8) 2.4最终设计方案 ................................................................ 错误!未定义书签。 三.虚拟样机实体建模与仿真 (9) 四.虚拟样机仿真结果分析 (10) 4.1运动学仿真 (11) 4.1.1运动学仿真--转向盘位移仿真曲线 (11) 4.1.2运动学仿真--轮胎位移仿真曲线 (11) 4.1.3运动学仿真--转向盘速度仿真曲线 (12) 4.1.4运动学仿真--轮胎速度仿真曲线 (12) 4.1.5运动学仿真--转向盘加速度仿真曲线 (13) 4.1.6运动学仿真--轮胎加速度仿真曲线 (13) 4.2动力学分析 (14) 4.2.1转向盘受力仿真曲线 (14) 4.2.2轮胎受力仿真曲线 (14) 五. 课程设计总结 (15) 5.1机械原理课程设计总结 (15) 5.2设计过程 (15) 5.3设计展望 (16) 5.4设计工作分工表 (16) 5.5参考文献 (16)

汽车转向器液压助力系统设计刘子轩开题报告

汽车转向器液压助力系统设计------刘子轩-----开题报告

————————————————————————————————作者: ————————————————————————————————日期: ?

中北大学信息商务学院毕业设计开题报告 学生姓 名:刘子轩学号: 1301034 118 系名:机械工程系 专 业: 车辆工程 设计题目:汽车转向器液压助力系统设计 指导教 师:张翼

2017年3 月3日

毕业设计开题报 告 1.文献综述: (1)选题背景 汽车的转向系统的性能是汽车的主要性能之一,转向系统的性能直接影响到汽车的操纵稳定性,它对于确保车辆的安全行驶、减少交通事故以及保护驾驶员的人身安全、改善驾驶员的工作条件起着重要的作用。本次课题设计主要总数国内外转向系统的研究发展,介绍各转向系统的结构原理及其关键技术并提出汽车转向系的发展趋势,合理地设计转向系统,使汽车具有良好的操纵性能。这始终是设计人员的重要研究课题,在车辆高速化、驾驶人员非职业化、车流密集化的今天,针对更多不同水平的驾驶人群,汽车的易操纵性设计显得尤为重要。]1[电子控制动力转向系统(简称EPS),根据动力源不同又可分为液压式电子控制动力转向系统(液压式EPS,又作EHPS)和电动式电子控制动力转向系统(电动式EPS)。EHPS是在传统的液压动力转向系统的基础上增设了控制液体流量的电磁阀、车速传感器和电子控制单元等装置构成的,电子控制单元根据检测到的车速信号,控制电磁阀的开度,使转向动力放大倍率实现连续可调,从而满足高、低速时的转向助力要求。]2[ (2)课题研究意义 随着汽车工业的飞速发展以及人们对于舒适、安全性能要求的不断提高,对转向器的安全性及操作稳定性的要求也进一步提高。本次设计通过分析转向器的功能要求,结合转向器的布置设计,比较各类型的转向器的优缺点设计一款转向器。根据一些指定的参数结合《汽车设计》和其他相关书籍中关于转向器的理论知识,给出优化设计的目标函数和设计变量的选择范围使设计出的转向器液压助力器符合使用要求。]3[作为汽车转向系统的一个重要组成部分,转向器对汽车的操纵稳定性和驾驶员的安全驾驶有这直接的影响。]4[特别是在车辆高速化,车流密集化的今天,汽车转向器的设计极为重要。通过对转向器的优化设计,使其达到汽车总体设计的要求,以达到对汽车的机构整体优化,更好地提高相应性能,达到更高水平。通过此次设计提高自身实习运用有关机械设计手

汽车前轮转向机构说明书

机械原理与设计训练I ——汽车前轮转向机构说明书

目录 设计题目 (2) 设计要求 (2) 设计内容(原始数据) (3) 第一题 (3) 第二题 (3) 思考题 (7) 第三题 (9) 第四题 (10) 参考资料 (12)

机构简介 汽车的前轮转向,是通过等腰梯形机构ABCD 驱使前轮转动来实现。其中,两前轮分别与两摇杆AB 、CD 相连,如下图所示。 当汽车沿直线行驶时(转弯半径R =∞),左右两轮轴线与机架AD 成一条直线;当汽车转弯时,要求左右两轮(或摇杆AB 与CD )转过不同的角度αβ、。理论上希望前轮两轴延长线的交点P 始终能落在后轮轴的延长线上。这样,整个车身就能绕P 点转动,使四个轮子都能与地面形成纯滚动,以减少轮胎的磨损。因此,根据不同的转弯半径R (汽车转向行驶时,各车轮运行轨迹中最外侧车轮滚出的圆周半径),就要求左右两轮轴线(AB 、CD )分别转过不同的角度α和β,其关系如下: 如图所示为汽车右拐时: tan /()L R d B β=-- , tan /()L R d α=- 所以α和β的函数关系为: cot cot /B L αβ-= 同理,当汽车左拐时,由于对称性,有cot cot /B L βα-=,故转向机构ABCD 的设计应尽量满足以上转角要求。 二、设计要求 设计数据见下表。要求汽车沿直线行驶时,铰链四杆机构左右对称,以保证左右转弯时具有相同的特性。该转向机构为等腰梯形双摇杆机构,设计此铰链四杆机构。 设计数据 参数 轴距 轮距 最小转弯半径 销轴到车轮中心的距离 符号 L B min R d 单位 mm mm mm mm 型号 涂乐GRX 2900 1605 6100 400 涂乐GL 2900 1555 6100 400 尼桑公爵 2800 1500 5500 500 现选择第二组数据进行解答

汽车转向系统毕业论文

目录 汽车转向系统故障诊断与维修 (2) 摘要 (2) 绪论 (3) 1 概述 (4) 1.1 什么是汽车转向系统 (4) 1.2 汽车转向系统概述 (4) 1.3 转向系统简介及工作原理 (4) 2 汽车转向系统的故障诊断 (7) 2.1 机械转向系故障诊断 (7) 2.2 动力转向系故障诊断 (10) 2.3 转向系仪器检测 (13) 3对汽车转向系统的故障进行维修 (16) 3.1机械转向系的维修 (16) 3.2动力转向系的维修 (19) 4结论 (22) 谢辞 (23) 参考文献 (24)

摘要 本文阐述了汽车转向系统各个部分的作用、组成、主要构造、工作原理、及可能出现的故障,同时提出了对出现的故障进行维修的可行方案;采用了理论与实际相结合的方法,对每个问题都有良好的认识,对所学内容进行了良好的总结归纳,以此进一步熟悉掌握汽车转向系统的各方面知识,深化巩固所学知识,做到理论与实际相结合,在理论学习的前提下,用实际更好的理解所学内容。 关键词:汽车转向系统,工作原理,故障,维修。

绪论 汽车转向系统是用于改变或保持汽车行驶方向的专门机构。起作用是使汽车在行驶过程中能按照驾驶员的操纵要求而适时地改变其行驶方向,并在受到路面传来的偶然冲击及汽车意外地偏离行驶方向时,能与行驶系统配合共同保持汽车继续稳定行驶。因此,转向系统的性能直接影响着汽车的操纵稳定性和安全性。

1 概述 1.1什么是汽车转向系统 用来改变或保持汽车行驶或倒退方向的一系列装置称为汽车转向系统(steering system)。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全至关重要,因此汽车转向系统的零件都称为保安件。汽车转向系统和制动系统都是汽车安全必须要重视的两个系统。 1.2汽车转向系统概述 汽车在行驶的过程中,需按驾驶员的意志改变其行驶方向。就轮式汽车而言,实现汽车转向的方法是, 驾驶员通过一套专设的机构,使汽车转向桥(一般是前桥)上的车轮(转向轮)相对于汽车纵横线偏转一定角度。这一套用来改变或恢复汽车行驶方向的专设机构,即称为汽车转向系统。 汽车转向系统分为两大类:机械转向系统和动力转向系统。 机械转向系统:完全靠驾驶员手力操纵的转向系统。 动力转向系统:借助动力来操纵的转向系统。动力转向系统又可分为液压动力转向系统和电动助力动力转向系统。 1.3转向系统简介及工作原理 机械转向系以驾驶员的体力作为转向能源,其中所有传力件都是机械的。机械转向系由转向操纵机构、转向器和转向传动机构三大部分组成(如图1-1)。

汽车设计转向系统

第一节概述 转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。 机械转向系依靠驾驶员的手力转动转向盘,经转向器和转向传动机构使转向轮偏转。有些汽车还装有防伤机构和转向减振器。采用动力转向的汽车还装有动力系统,并借助此系统来减轻驾驶员的手力。 对转向系提出的要求有: 1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。 2)汽车转向行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。 3)汽车在任何行驶状态下,转向轮不得产生自振,转向盘没有摆动。 4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。 5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。 6)操纵轻便。 7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。 8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。 9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 10)进行运动校核,保证转向盘与转向轮转动方向一致。 正确设计转向梯形机构,可以使第一项要求得到保证。转向系中设置有转向减振器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低。为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮车轮轨迹计算,其最小转弯半径能达到汽车轴距的2~2.5倍。通常用转向时驾驶员作用·在转向盘上的切向力大小和转向盘转动圈数多少两项指标来评价操纵轻便性。没有装置动力转向的轿车,在行驶中转向,此力应为50—100N;有动力转向时,此力在20—50N。当货车从直线行驶状态,以10km /h速度在柏油或水泥的水平路段上转入沿半径为12m的圆周行驶,且路面干燥,若转向系没有装动力转向器,上述切向力不得超过250N;有动力转向器时,不得超过120N。轿车转向盘从中间位置转到每一端的圈数不得超过2.0圈,货车则要求不超过3.0圈。·近年来,电动、电控动力转向器已得到较快发展,不久的将来可以转入商品装车使用。电控动力转向可以实现在各种行驶条件下转动转向盘的力都轻便。

机械原理课程设计汽车前轮转向器

机械设计制造及其自动化 机械原理大作业 设计者 指导教师 201

目录 一、设计题目 (2) 二、设计要求 (3) 三、基本设计内容 (4) 四、设计结果分析 (10) 五、改进机构设计 (12)

1.机构简介 汽车的前轮转向,是通过等腰梯形机构ABCD 驱使前轮转动来实现的。其中,两前轮分别与两摇杆AB 、CD 相连,如图所示。 当汽车沿直线行驶时(转弯半径R=∞),左右两轮轴线与机架AD 成一条直线;当汽车转弯时,要求左右两轮(或摇杆 AB 和CD )转过不同的角度α、β。理论上希望前轮两轴延长线的交点P 始终能落在后轮轴的延长线上。这样,整个车身就能绕P 点转动,使四个轮子都能与地面形成纯滚动,以减少轮胎的磨损。因此,根据不同的转弯半径R (汽车转向行驶时,各车轮运行轨迹中最外侧车轮滚出的圆周半径),就要求左右两轮轴线(AB 、CD )分别转过不同的角度α和β,其关系如下: 如图所示为汽车右拐时 d R L B d R L -= --=βαtan tan 所以α和β的函数关系为 L B = -αβcot cot 同理,当汽车右拐时,由于对称性,有L B ctg ctg /=-βα,故转向机构ABCD 的设计应尽量满足以上转角要求。 2、设计数据 设计数据见下表。要求汽车沿直线行驶时,铰链四杆机构左右对称,以保证左右转弯时具有相同的特征。该转向机构为等腰梯形双摇杆机构,设计此铰链四杆机构。 参 数 轴 距 轮 距 最小转弯半径 销轴到车轮中心的 距离 符 号 L B R d 单 位 mm 型 号 途乐GRX 2900 1605 6100 400 途乐GL 2900 1555 6100 400 尼桑公爵 2800 1500 5500 500

汽车转向系统毕业设计_说明

摘要 本课题的题目是转向系的设计。以齿轮齿条转向器的设计为中心,一是汽车总体构架参数对汽车转向的影响;二是机械转向器的选择;三是齿轮和齿条的合理匹配,以满足转向器的正确传动比和强度要求;四是动力转向机构设计;五是梯形结构设计。因此本课题在考虑上述要求和因素的基础上研究利用转向盘的旋转带动传动机构的齿轮齿条转向轴转向,通过万向节带动转向齿轮轴旋转,转向齿轮轴与转向齿条啮合,从而促使转向齿条直线运动,实现转向。实现了转向器结构简单紧凑,轴向尺寸短,且零件数目少的优点又能增加助力,从而实现了汽车转向的稳定性和灵敏性。在本文中主要进行了转向器齿轮齿条的设计和对转向齿轮轴的校核,主要方法和理论采用汽车设计的经验参数和大学所学机械设计的课程内容进行设计,其结果满足强度要求,安全可靠。 关键词:转向系;机械型转向器;齿轮齿条;液压式助力转向器 1.绪论 1.1汽车转向系统概述 转向系统是汽车底盘的重要组成部分,转向系统性能的好坏直接影响到汽车行驶的安全性、操纵稳定性和驾驶舒适性,它对于确保车辆的行驶安全、减少交通事故以及保护驾驶员的人身安全、改善驾驶员的工作条件起着重要作用。随着现代汽车技术的迅速发展,汽车转向系统已从纯机械式转向系统、液压助力转向系(HPS)、电控液压助力转向系统(EHPS),发展到利用现代电子和控制技术的电动助力转向系统(EPS)及线控转向系统(SBW)。

按转向力能源的不同,可将转向系分为机械转向系和动力转向系。 机械转向系的能量来源是人力,所有传力件都是机械的,由转向操纵机构(方向盘)、转向器、转向传动机构三大部分组成。其中转向器是将操纵机构的旋转运动转变为传动机构的直线运动(严格讲是近似直线运动)的机构,是转向系的核心部件[2]。 动力转向系除具有以上三大部件外,其最主要的动力来源是转向助力装置。由于转向助力装置最常用的是一套液压系统,因此也就离不开泵、油管、阀、活塞和储油罐,它们分别相当于电路系统中的电池、导线、开关、电机和地线的作用。 通常,对转向系的主要要求是: (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员 1.1.1机械式转向系统 汽车的转向运动是由驾驶员操纵方向盘,通过转向器和一系列的杆件传递到转向轮来完成的。机械式转向系统工作过程为:驾驶员对转向盘施加的转向力矩通过转向轴输入转向器,减速传动装置的转向器中有1、2 级减速传动副,经转

相关主题
相关文档 最新文档