当前位置:文档之家› 电磁阀一般性故障的检测和维修

电磁阀一般性故障的检测和维修

电磁阀常见故障与解决方法

电磁阀常见故障与解决方法 电磁阀线圈的额定电压有DC12V、DC24V、 AC24V(50/60Hz)、AC110V(50/60Hz)、AC220V(50/60Hz)、 AC380V(50/60Hz)。 一般在电气设计时要么采用AC220V(不需加装开关电源,成本低、线路简单而便于维护)、要么采用DC24V(常用的的安全电压、开关电源/电磁阀线圈都易于维修更换)。 检测电磁阀好坏的方法 先给电磁阀通上被控制的介质(带压力的液体、气体<空气>,压力值为电磁阀使用压力范围的中间值),再给电磁阀线圈

通电,如果被控制介质有从通到断或从断到通的状态的变化,那么电磁阀就是好的,否则就是有问题的。 电磁阀常见故障有 1、线圈短路或断路 检测方法: 先用万用表测量其通断,阻值趋近于零或无穷大,那说明线圈短路或断路。如果测量其阻值正常(大概是几十欧),还不能说明线圈一定是好的(我有一次测得一个电磁阀线圈阻值大概50欧姆,但电磁阀无法动作,更换该线圈后一切正常),请进行如下最终测试。 找一个小螺丝刀放在穿于电磁阀线圈中的金属杆的附近,然后给电磁阀通电,如果感觉到有磁性,那么电磁阀线圈是好的,否则是坏的。 处理方法:更换电磁阀线圈。 2、插头/插座有问题

故障现象: 如果电磁阀是有插头/插座的那种,有可能出现插座的金属簧片问题(笔者就碰到过)、插头上接线的问题(比如将电源线接到接地线上去了)等原因无法将电源送到线圈中。 最好养成一个习惯: 插头插在插座上之后把固定螺丝拧上,线圈上在阀芯杆之后把固定螺母拧上。 如果电磁阀线圈的插头配备有发光二极管电源指示灯,那么采用DC电源驱动电磁阀时即行就要接对,否则指示灯不会亮。 另外,不要将不同电压等级的带发光二级管电源指示的电源插头调换使用,这样会导致发光二极管被烧毁/电源(换用低电压等级的插头)出现短路或发光二极管发光很微弱(换用高电压等级的插头)。 如果不带电源指示灯,电磁阀线圈是不用区分极性的(不象线圈电压为直流的晶体管时间继电器以及线圈上并联有二极管/电阻泄漏回路的线圈电压为直流的中间继电器<这种中间继电器以原装小日本的居多>,需要区分极性)。 处理方法:修正接线错误、修复或更换插头、插座。 3、阀芯问题 故障现象一: 在电磁阀所通介质压力正常的情况下,按下电磁阀红色的手动按钮,电磁阀都没有任何反应(压力介质没有出现通断的变

电动门的控制原理接线、调试步骤及常见故障处理

电动门的控制原理、调试步骤及常见故障处理 我厂使用的电动门和执行结构有扬州、常州、ROTORK、SIPOS、AUMA、瑞基、EMG等系列。 一、概述 电动装置是电动阀门的驱动装置,用以控制阀门的开启和关闭。适用于闸阀、截止阀、节流阀、隔膜阀、其派生产品可适用于球阀、碟阀和风门等,它可以准确地按控制指令动作,是对阀门实现远控和自动控制的必不可少的驱动装置. 二、电动门的控制原理 (一)电动装置的结构 阀门电动装置由六个部分组成:即电 机,减速器,控制机构,手--自动切换手轮及 电气部分. 1、控制机构由转矩控制结构,行程控 制机构及可调试开度指示器组成.用以控 制阀门的开启和关闭及阀位指示. 1)转矩控制机构由曲拐、碰块、凸 轮、分度盘、支板和微动开关组成.当输 出轴受到一定的阻转矩后,蜗杆除旋转外 还产生轴向位移,带动 曲拐旋转,同时使碰块 也产生一角位移,从而 压迫凸轮,使支板上抬. 当输出轴上的转矩增 大到预定值时,则支板 上抬直至微动开关动 作,切断电源,电机停 转,以实现电动装置输出转矩的控制. 2)行程控制机构由十进位齿轮组,顶杆,凸轮和微动开关组成,简称计数器.其工作原理是由减速箱内的主动小齿轮(Z=8)带动计数器工作.如果计数器已经按阀门开或关的位置已调好,当计数器随输出轴转到预先调整好的位置时,则凸轮将被转动90度,压迫微动开关动作,切断电源,电机停转,以实现对电动装置的控制. 2、手自动切换机构为半自动切换,电动转变为手动需要扳动切换手柄,而由手

动变为电动时系自动进行。由电动变为手动时,即用人工把切换手柄向手动方向推动,使输出轴上的中间离合器向上移动,压迫压簧。当手柄推到一定位置时,中间离合器脱离蜗轮与手动轴爪啮合,则可使手轮上的作用力通过中间离合器传到输出轴上,即成为手动状态。手动变为电动为自动切换,当电机旋转带动蜗轮转动时,直立杆立即倒下,在压簧作用下中间离合器迅速向蜗轮方向移动,与手轮轴脱开,与蜗轮啮合,则成为电动状态。 (二)传动原理:电动机输出动力,通过蜗杆传至蜗轮及离合器,最终传至输出轴。由于蝶簧组件的预紧力使蜗杆处于蜗轮的中心位置。当作用于输出轴上的负载大于蝶簧预紧力时,蜗杆将会做轴向移动,并偏离位置;此时曲拐将摆动,传递位移至转矩控制机构,若此时超过设定的转矩将会使开关动作,切断电源,电动执行机构停止运行。(见下图) (三)电气原理

电磁阀的常见故障以及解决方案(转)

母线加工机的动力来自于液压系统,在液压系统当中电磁阀的作用非常重要同时 也是液压系统当中故障的高发区,母线加工机电磁阀的常见故障以及解决方案如下: 一、线圈短路或断路: 检测方法:先用万用表测量其通断,阻值趋近于零或无穷大,那说明线圈短路或 断路。如果测量其阻值正常(大概是几十欧),还不能说明线圈一定是好的,请进行 如下最终测试:找一个小螺丝刀放在穿于电磁阀线圈中的金属杆的附近,然后给电磁 阀通电,如果感觉到有磁性,那么电磁阀线圈是好的,否则是坏的。 处理方法:更换电磁阀线圈。 二、插头、插座有问题: 故障现象: 如果电磁阀是有插头、插座的那种,有可能出现插座的金属簧片问题、插头上接 线的问题(比如将电源线接到接地线上去了)等原因无法将电源送到线圈中。最好养 成一个习惯:插头插在插座上之后把固定螺丝拧上,线圈上在阀芯杆之后把固定螺母 拧上。 如果电磁阀线圈的插头配备有发光二极管电源指示灯,那么采用DC电源驱动电磁阀时即行就要接对,否则指示灯不会亮。另外,不要将不同电压等级的带发光二级管 电源指示的电源插头调换使用,这样会导致发光二极管被烧毁/电源(换用低电压等级的插头)出现短路或发光二极管发光很微弱(换用高电压等级的插头)。 如果不带电源指示灯,电磁阀线圈是不用区分极性的(不象线圈电压为直流的晶 体管时间继电器以及线圈上并联有二极管/电阻泄漏回路的线圈电压为直流的中间继电器<这种中间继电器以原装小日本的居多>,需要区分极性)。 处理方法:修正接线错误、修复或更换插头、插座。 三、阀芯问题: 故障现象1:在电磁阀所通介质压力正常的情况下,按下电磁阀红色的手动按钮,电磁阀都没有任何反应(压力介质没有出现通断的变化),说明阀芯一定是坏的。 处理方法:检查介质是否存在问题,如压缩空气内是否有很多积水(有时候油水 分离器起的作用不是很大,特别是当管路设计不良时通到电磁阀的压缩空气会有很多 积水)、所通液体介质是否有很多杂质。然后清除电磁阀及管路中的积水或杂质。如 果再不行,请维修或更换阀芯,或者干脆把整个电磁阀全部换掉。 故障现象2:经过检查,线圈是原配线圈而且线圈通电时磁性正常,但电磁阀依 然不动作(这时电磁阀手动按钮的功能有可能是正常的),说明阀芯是坏的。 处理方法:请维修或更换阀芯,或者干脆把整个电磁阀全部换掉。 至于电磁阀阀体的维修,因为种类太多,而且维修繁琐。厂家建议出现阀体问题 应及时更换以免出现危险。

判断电磁阀好坏及处理方法

判断电磁阀好坏及处理方法 电磁阀的好坏主要取决于两个方面,一是线圈二是是阀体。按电磁阀的手动按钮,如果可以动作,而当通电后而电磁阀不动作或者电源跳闸,这说明电磁阀线圈坏了,用万能表也可以检查出来的。 1、线圈短路或断路: 检测方法:先用万用表测量其通断,阻值趋近于零或无穷大,那说明线圈短路或断路。如果测量其阻值正常(大概是几十欧),还不能说明线圈一定是好的(实例:一次测得一个电磁阀线圈阻值大概50欧姆,但电磁阀无法动作,更换该线圈后一切正常),请进行如下最终测试:找一个小螺丝刀放在穿于电磁阀线圈中的金属杆的附近,然后给电磁阀通电,如果感觉到有磁性,那么电磁阀线圈是好的,否则是坏的。处理方法:更换电磁阀线圈。 2、插头或插座有问题: 故障现象:如果电磁阀是带插头/插座的那种,有可能出现插座的金属簧片问题(笔者就碰到过)、插头上接线的问题(比如将电源线接到接地线上去了)等原因无法将电源送到线圈中。最好养成一个习惯:插头插在插座上之后把固定螺丝拧上,线圈上在阀芯杆之后把固定螺母拧上。

如果电磁阀线圈的插头配备有发光二极管电源指示灯,那么采用DC电源驱动电磁阀时即行就要接对,否则指示灯不会亮。另外,不要将不同电压等级的带发光二级管电源指示的电源插头调换使用,若换用低电压等级的插头,这样会导致发光二极管被烧毁甚至电源出现短路,若换用高电压等级的插头可能导致发光二极管发光很微弱。 如果不带电源指示灯,电磁阀线圈是不用区分极性的。若线圈电压为直流的晶体管时间继电器以及线圈上并联有二极管/电阻泄漏回路的线圈电压为直流的中间继电器这种中间继电器以原装小日本的居多,需要区分极性。 处理方法:修正接线错误、修复或更换插头、插座。 3、阀芯问题: 故障现象1:在电磁阀所通介质压力正常的情况下,按下电磁阀红色的手动按钮,电磁阀都没有任何反应(压力介质没有出现通断的变化),说明阀芯一定是坏的。 处理方法:检查介质是否存在问题,如压缩空气内是否有很多积水(有时候油水分离器起的作用不是很大,特别是当管路设计不良时通到电磁阀的压缩空气会有很多积水)、所通液体介质是否有很多杂质。然后清除电磁阀及管路中的积水或杂质。如果再不行,请维修或更换阀芯,或者干脆把整个电磁阀全部换掉。 故障现象2:经过检查,线圈是原配线圈而且线圈通电时

电磁阀的结构原理

电磁阀的结构原理 简单的讲,电磁阀是用来开关流体通路或对流体进行换向的基础元件;其内部部件经过精密的机加工,并选择不同的阀体阀芯材料满足不同介质的流通。电磁阀的对流体通路的开关功能是通过其内部的电磁动铁芯的提升或落下来实现的,而动铁芯的动作是由电磁线圈的通电或断电来完成; 按内部结构可分为膜片式(图一、图二)和活塞式电磁阀(图三); 按其断电时电磁阀的状态分常开型和常闭型, 常闭型电磁阀:电磁线圈断电时,电磁阀呈关闭状态,当线圈通电时产生电磁力,使动铁芯克服弹簧力后被提起,此时电磁阀打开,介质呈通路状态;当线圈断电时,电磁力消失,动铁芯在弹簧力的作用下复位,直接关闭阀口,电磁阀关闭,介质断流;常开型与此相反; 按动作方式可分为直动式、分步直动式和先导式电磁阀: 直动式电磁阀:常闭型直动式电磁阀通电时,电磁线圈产生电磁力使动铁芯克服弹簧力被提起,电磁阀开启,介质流通;当线圈断电时,电磁力消失,动铁芯在弹簧力的作用下复位,电磁阀关闭,介质断流;常开型与此相反;在真空、负压、零压差时能正常工作,但电磁头体积较大。

分步直动式(反冲式):采用一次开阀和两次开阀连在一体,常闭型电磁阀线圈通电时,电磁力先将导阀打开,导阀设在主阀口上,此时主阀上腔的压力通过导阀口卸荷,主阀下腔压力大于上腔压力,在利用压力差和电磁力的共同作用下使主阀芯向上运动,电磁阀打开,介质流通;线圈断电时,电磁力消失,在动铁芯的自重和弹簧力的作用下关闭导阀孔,此时介质在平衡孔中进入主阀上腔,使上腔压力升高,在弹簧力和压力的作用下关闭主阀,介质断流。常开型与此相反;在零压差或高压时可靠工作,但功率及体积较大; 先导式电磁阀:由导阀和主阀芯连着形成通道,常闭型电磁阀电磁先驱通电时,产生的电磁力使导阀打开,介质流向出口,主阀上腔压力迅速下降,在主阀上下腔内形成压差克服弹簧力而随之向上运动,主阀开启,介质流通,电磁阀开启;线圈断电时,电磁力消失,动铁芯在弹簧力的作用下复位,关闭导阀,介质从平衡孔中流入,主阀芯上腔压力增大,并在弹簧力的作用下向下运动,关闭主阀,介质断流,电磁阀关闭。常开型与此相反;体积小,功率低,但介质压差范围受限,管道中压力必须满足开启的压差条件;

先导式电磁阀的常见故障与处理

先导式电磁阀常见故障及处理 先导式电磁阀在不通电的情况下,因为有弹簧的作用力,使得阀芯被压紧在电磁阀的阀座上,这个时候电磁阀是保持密封的状态。在电磁阀通电以后,电磁头会产生磁力提起阀杆,这个时候阀芯就会被提起与阀座分离,从而控制介质流出。先导式电磁阀在用户使用的过程中也会遇到一些常见的故障问题,例如无法启动和工作等,上海力典阀业的技术人员总结了几点关于先导式电磁阀的常见故障问题,以及对应的处理方式: 先导式电磁阀常见故障 1、阀芯上部销孔磨损, 销孔内侧有较为明显的被磨压形成的凹槽, 微观形貌可见有磨 屑磨粒及较短的划痕等特征, 磨痕边缘为挤压辗平的金属磨屑形态。阀芯内腔底部与调节螺 钉接触处, 可见有明显的磨损痕迹, 靠中间位置形成一圆形的凹坑, 微观形貌可见有剥落及 腐蚀微孔等显微特性。 2、阀杆仅外圆表面有局部磨损, 存在部分剥落现象, 局部区域留下了与轴向基本平行 的沟槽特征,可认为该阀芯与阀杆间存在周向相对运动。 3、销钉两端有明显的磨损及沟槽, 表面有可见剥落及较短的划痕等显微特性。 先导式电磁阀原因分析经检测, 阀芯、阀杆、调节螺钉和销钉材料的化学成分均与设计 技术要求一致。硬度测试结果显示, 调节螺钉的硬度约为280HV , 阀芯硬度约为440HV , 阀杆硬度约为500HV , 销钉硬度约为550HV。分析确定, 阀门开启时阀芯等组件沿轴向产

生微小振动及周向的相对微小转动, 造成了销钉、阀芯销孔处以及阀杆外表面的局部磨损。对于调整螺钉的螺纹部位而言, 宏观分析及微观分析表明, 该部位主要为接触疲劳引起的失效。由于螺纹连接部位存在一定的间隙, 在接触应力以及泄漏引起的振动荷载作用下, 金属表面的直接接触以及相对的运动, 使硬度相对较低的螺杆螺纹表面产生剥落(能谱分析结果表明磨损表面发生了金属的迁移) 。剥落的磨屑及基体脱落的粒子又使表面产生了磨料磨损, 同时兼有腐蚀磨损等, 导致了螺纹部的失效。由金相分析可知, 螺纹部的外表层存在较明显的形变流变痕迹, 表明该螺纹部位存在较大的应力作用。调节螺钉螺纹处的腐蚀麻点及腐蚀斑, 加上先导阀长期开启后, 其电磁头保持带电产生磁性, 引起调节螺钉和阀杆材料之间电极电位存在差异, 使调节螺钉螺纹处与阀杆之间的电化学腐蚀作用加速了螺纹处的失效。对于调节螺钉下端顶部而言, 由于阀芯与调节螺钉电极电位存在差异, 导致阀芯产生电化学腐蚀引起表面粗糙以及接触强度下降, 因而导致调节螺钉下端顶部与阀芯接触面产生粘着磨损(能谱分析中也可看出磨损面上产生的金属迁移) , 随着泄漏引起的轴向振动载荷以及周向转动载荷的不断作用, 较软的螺钉顶部将随着粘着磨损的进行不断削平, 最终导致螺杆接触端面的失效。部件的失效分析表明, 失效不是由于单向高载荷引起的, 而是一种循环载荷(如振动) 现象。 先导式电磁阀改进措施为了消除阀芯组件的振动问题, 其有效的方法就是在先导阀处于开启状态时, 消除阀芯的自由活动性。因此对阀芯组件做了改进。 ①取消阀杆的上密封, 将阀芯的筒体长度增加, 以阀芯与阀杆套筒控制阀门的行程。 ②取消调节螺钉, 不再通过调节螺钉来调节阀门的行程, 避免材料不同引起电极电位差导致的电化学腐蚀。阀杆加长, 顶部呈圆头, 材料仍采用Inconel , 与阀芯材料接近。 ③销钉直径由Φ3mm 增加到Φ5mm , 提高了强度, 以便在阀门处于开启状态下将阀杆的力传递到阀芯上, 将阀芯的上密封压紧在阀杆套筒上, 防止阀门开启后阀芯在蒸汽流的

电动阀门电装(电动执行机构)故障分析与维修

阀门电动执行器故障判断及维修 扬州贝尔阀门控制有限公司上海湖泉阀门有限公司技术部廖雄电话: 故障报修故障分析技术咨询请来电 .过力矩故障 1.普通户外型过力矩故障现象为通电后电源指示灯和故障灯 亮,开关不运行; 2.智能型过力矩故障现象为通电后频显过力矩故障,开关不运行; 以上排除故障方法为手动开关阀门,打开外盖回动过力矩触电,故障随之解除(智能型还得现场远程切换后频显才恢复正常)。 二.跳闸故障 1.送电跳闸:故障现象为松不上电,短路,排除方法为检测 线路是否短路,设备是否进水; 2.开关运行跳闸:故障现象为通电正常,阀开阀关运行跳闸,排除方法为:首先查看电流保护开关大小,如因电流保护开关小而导致更换电流保护开关即可排除故障;其次检测电机绕组电阻值,电阻值趋近于0说明电机烧坏,更换电机,故 障排除;最后如果执行器电压是220V的以上两项都正常,那用万用表测电容两边的电阻发现有一个开路,将其更换后故障排除。

.正反转故障出现反转故障表现为控制阀开实际发关运行,反之一样(普通户外型表现为只能开或者只能关,而起开关不会停止)故障排除方法为仍以调换两颗电机线即可; 备注:普通开关型如出现开关运行时一会儿正转一会儿反转现象故障并且执行机构运行噪音大,故障表现为输入电机电源缺项。 四.智能型显示故障 1.指示灯故障 1.1..故障现象:给电动执行器通电后发现电源指示灯不亮, 伺放板无反馈,给信号不动作。 故障判断和检修过程: 因电源指示灯不亮,首先检查保险管是否开路,经检查保险管完好,综合故障现象,可以推断故障有可能发生在伺放板的电源部分,接着检查电源指示灯,用万用表检测发现指示灯开路,更换指示灯故障排除。 1.2.故障现象:电动执行器的执行机构通电后,给信号开可以,关不动作。故障判断和检修过程:先仔细检查反馈线路,确认反馈信号无故障,给开信号时开指示灯亮,说明开正常,给关信号时关指示灯不亮,说明关可控硅部分有问题,首先检查关指示灯,用万用表检测发现关指示灯开路,将其更换后故障排除。 2.电阻电容

电磁阀故障

“该出水时不出水,不该出水水长流”。 ——故障原因:感应器受环境亮度及反射光线影响产生误动。 ——解决办法:1、调整感应器调节旋纽;2、采取挂窗帘、贴窗纸等方法隔离汽车灯光、太阳反射光等外界光线或采取更换灯具等办法改变环境亮度,然后重复步骤1。 开启速度慢,关闭滞后甚至无法关闭,不但浪费水甚至造成水患。 ——故障原因:1、感应器灵敏度差、反应迟钝;2、水压过高(供水管网水压变大后没有及时调整手动水压调节阀);3、电磁阀阀芯与阀座产生粘连、阻力过大;3、先导式电磁阀(又叫射流式电磁阀)先导孔堵塞;4、交流电压低或电池电量不足。 出水水量太小甚至不出水。 ——故障原因:1、电磁阀卡住或堵塞;2、手动水压调节阀内置滤网堵塞;3、供水管网水压减小后没有及时调整调节阀。 直流供电式感应洁具电池寿命达不到产品说明书的使用期限,电池更换频繁且更换不便。——故障原因:1、电池寿命是理论寿命,是在特定使用条件下,如每天使用时间为a,每次工作时间为b,水压为c,水质为d等理想化的条件下的使用时间,类似于汽车的标称油耗,与实际有较大的出入;2、目前感应洁具市场僧多粥少,不良厂家有意夸大电池使用寿命。 交流供电式感应洁具存在严重的安全隐患:不少感应洁具绝缘等级不高,且没有漏电保护装置,一旦绝缘失效很容易造成触电事故;国内民用建筑、特别是居民家庭普遍没有接地保护或没有可靠的接地保护(拆开室内墙上的三孔插座,会发现很多接地线根本就没有接),一旦发生线路短路就很容易造成触电事故。 注意事项: 交流供电的感应洁具一定要有漏电保护器,同时必须良好接地。 水质差,特别是颗粒性、粘附性杂质多不宜用。 电压不稳、经常停电不宜用交流供电式感应洁具。 光线明暗变化大和容易受不确定光线影响的场合不宜用。 必须根据供水水压及时调整水量调节阀或者用其昌感应洁具自动水压调节阀替换手动调节阀。

雨鸟电磁阀常用故障及解决方案

雨鸟公司目前在国内销售的常用电磁阀有DV(DVF)、PGA、PEB(PESB)、BPE系列十几个品种,口径从3/4”到3”,主要用于农业、园林、高尔夫、工业防尘及喷泉等领域。常用电磁阀多为隔膜阀,其工作原理是:阀体分为上下两个室,中间为隔膜,在水压相同的条件下,由于隔膜上下受力面积不同而产生压力差,到达切断水流的目的。 电磁阀开启状态----当通过远程控制器给电信号或手动旋转电磁头,排水通道打开,上隔膜室内水排出,室内压强减小,作用在上隔膜的压力变小,在上游压力作用下推动隔膜向上运动,打开管路通道。 电磁阀关闭状态----手动关闭或断开电磁头电信号,使排水通道关闭,上隔膜室内慢慢充满水,等到横膈膜上下压强一致时,由于横膈膜上侧受力面积较大,使隔膜向下运动,关闭管路通道。 根据水流进入上隔膜室的途径不同,雨鸟电磁阀可以分成两种类型: 顺水流方向----水流是通过隔膜中央的一个小孔进入上隔膜室。通常这个小孔前安装有一个小过滤装置,需要经常保持过滤系统的干净。如雨鸟的DV(DVF)、PGA、PEB(PESB)、BPE阀等。 常见故障分析 一般在诊断电磁阀问题以前,需要做一些工作:如确定水源是否打开、控制器是否连接上且程序设置是否正确、电磁阀上流量调节手柄是否打开,然后采用手动操作试试,假如手动电磁阀能正常工作,问题有可能出在控制器或电缆线上面。 电磁阀不能关闭----这其中可能有两方面的原因。其一:物理上的障碍,比如一些碎石、枯叶残枝,阻止了隔膜的完全密封,在清除这些障碍以后,需要检查隔膜及附件是否有损坏。其二:作用在上隔膜的压力太小,可能存在下面几方面的原因: 上隔膜室进口过滤器堵塞。这将阻止水流进入上隔膜腔,不能产生足够大的水压力关闭隔膜。 流量调节手柄提得太高(开度最大)。这样在低流量/低压力的情况下,隔膜有可能悬在高位置,而不能密封。 电磁阀上下阀体之间密封不严。水很容易从其中渗出,这也不利于产生足够大的压力关闭隔膜。 电磁阀处在手动放水状态。雨鸟电磁阀有两种手动操作方式(内放水、外放水),外放水一般容易识别,而内放水对于一般的的客户就不容易觉察。 横隔膜上有穿孔(仅指顺水流阀)。在上隔膜室内不能产生足够的压力来关闭横膈膜。仔

电动阀门故障分析与研究

电动阀门故障分析与研究 发表时间:2018-08-10T15:48:51.330Z 来源:《科技中国》2018年5期作者:宋保明 [导读] 摘要:电动阀门是石油、石化系统中的重要组成部分。电动阀门由于其使用的环境较为复杂,阀门自身的原因和外部影响因素极容易使电动阀门产生一系列的故障导致电动阀门无法正常运行,严重影响了整个系统的正常生产运行和安全。基于此,本文对电动阀门故障进行分析。 摘要:电动阀门是石油、石化系统中的重要组成部分。电动阀门由于其使用的环境较为复杂,阀门自身的原因和外部影响因素极容易使电动阀门产生一系列的故障导致电动阀门无法正常运行,严重影响了整个系统的正常生产运行和安全。基于此,本文对电动阀门故障进行分析。 关键词:电动阀门;故障;分析 1电动阀门概述 电动阀门是利用电动执行器控制阀门,进而实现阀门的开、关。电动阀门由上半部分电动执行器和下半部分阀门组成,使用电能作为动力,通过电动执行机构的电机来驱动阀门,实现阀芯的开关,进而达到连通、截断管道介质的目的。其中,电磁阀也是电动阀的一种,它利用电磁圈产生的磁场拉动阀芯动作,进而改变阀门的通路状态。部分系列的电磁阀,在线圈断电后,阀芯可以依靠弹簧的推力动作。电动阀门动作的力矩和普通的阀门相当,开关运行速度可进行相应的调整。电动阀门大多结构简单、维护方便,因此,它在各种类流体的控制中运用广泛,比如控制水、空气、蒸汽、各种腐蚀性介质、泥浆和油品等,电动阀门也可以用作各类介质流量的模拟量调节。 2电动阀门常见故障 电动阀门常见故障有以下几种现象:就地不动作;执行器阀杆无输出;远控、就地不动作;指示灯不亮;电装人机面板模糊以及其他故障。 3原因分析 (1)电动执行机构板卡老化情况。所使用的电动执行机构一般均采用防爆设计,电器板件在密闭空间内运行产生的热量不易散发,长期处于发热工作状态,而且夏季户外高温加剧了元件如:变压器、电容、内部寄存器等元件的老化,这就导致了夏季阀门板卡故障高发。 (2)电压波动造成电源板故障。电装的电源板虽然采用了保护电路和宽电压设计,但部分阀门电装使用的380V电源电压直接来自35kV变电电压,停电送电或启停设备造成的电压波动较大,形成对电装元器件的冲击。实际上,因变电所改造,停、送电作业造成的电压波动和电流冲击已造成多例阀门电装电源板损坏。 (3)地面沉降对阀门电动执行机构电缆的破坏。通过维修发现,电动阀门断电、掉线或无法远程操作等故障多数是电缆被破坏造成的。阀门安装区域的土壤多为三类土,土质紧固、石块较多,且地基沉降量较大,各区域沉降量不均,阀门电动执行机构电缆一般采取直埋方式布设,电缆无法保留足够的变形余量。当地面发生不均匀沉降时,电缆直接受力,局部易被拉断,造成电缆接地、阀门失电或远控无效的现象。 (4)户外阀门电装机械部分会因密封圈老化、磨损、润滑油变质造成漏油和内部零件腐蚀。电缆接入端会因安装时防护不到位引起进水,造成腐蚀、短路及异常报警故障。部分管线长期得不到有效维护,管线内油水分离,造成对阀门的腐蚀。 (5)部分阀门的选型没有考虑到介质的影响。如储罐中央排水阀没有采取防水、防腐蚀措施,使得阀板出现单面或双面严重腐蚀而卡死。原油储罐罐底脱水阀闸板与罐底明水长期接触的一面,因罐底积水层溶有原油中的盐类,呈酸性并具有一定腐蚀性,造成单面阀板严重腐蚀,阀门无法使用。此两种情况已出现多例。 (6)部分阀门长期使用后开关力矩增大,原电动执行机构出现力矩不足、开关不到位现象,已不能满足使用要求,需升级阀门电装。 (7)岗位人员对电动阀门性能、维保专业知识了解不足,阀门缺乏有效维保。如阀门填料发生渗漏时,要将填料压盖两侧的螺母拧紧,但要留一定的余量,而实际中员工往往拧螺母用力过大,使得填料失去弹性,密封性能变差。 4电动阀门故障措施 4.1提高检测结果的精度和可靠性 如果检测结果的精度和可靠性出现问题,即便后续的分析方法和决策系统再先进,诊断的结果也有可能是错误的。现有检测设备精度不高的原因主要是由检测原理本身所造成的,因此很有必要吸收利用当前摩擦学、材料学、电子学和测量学的相关先进成果,结合阀门本身的特点研发出高精度、高可靠性的检测设备。对于某些重要的阀门状态参数,可以采用不同的检测设备对其测量,以提高检测结果的可靠性。另外,多传感器融合技术也是提高检测结果可靠性的一种方法,在阀门的运行过程中,单一的故障很有可能引起多个状态参数的变化,例如,由落入异物而导致的阀门内漏,除了密封副处出现应力波信号,还会引起阀门前后压力的变化,阀杆运动不到位,甚至还伴有噪声。仅仅使用一种传感器监测阀门状态,其可靠性和准确性都较低。通过多种传感器同时监测阀门的运行参数,多个传感器的数据进行综合分析,剔除无用和错误的信息,有利于提高传感器系统的可靠性,使最终的决策判断更加科学合理。 4.2加强早期的故障诊断研究 阀门使用现场往往环境较为恶劣,如存在高温,空间狭小和有毒介质泄漏等问题,操作人员在现场进行诊断时存在一定的危险性,因此,现有阀门诊断实施的频率较低。现有的诊断一般都是在阀门出现明显故障征兆后的事后诊断,这种诊断方法很难发现早期微弱的故障。利用网络技术对阀门进行远程在线诊断,一方面可以让操作人员远离危险环境进行诊断,提高作业的安全性;另外通过组网技术,将现场的关键阀门联系起来,提高诊断的效率。更为关键的是基于网络的实时连续监测有利于早期微弱故障的发现。基于网络的远程在线诊断技术需要将现有的阀门故障诊断技术,DTU技术和网络技术相结合,在阀门使用现场设立在线监测点,采集阀门的运行数据,在技术力量较强的研究所或企业建立诊断分析中心。诊断分析中心获得远程传输的阀门运行数据后,对阀门状态进行判断,再远程提供检修建议。这在提高阀门运行的可靠性和降低阀门维护成本方面具有很大的优势。未来建立过程控制系统时将越来越多地考虑运用该项技术。 4.3阀门故障机理的深入研究 阀门故障机理反映了阀门故障的本质,是阀门故障诊断方法和技术的坚实基础。机理不明,则只能对阀门故障的表象进行研究,无法对阀门故障进行全面正确地解释。加强对阀门故障机理的研究不能仅仅将阀门作为一个独立对象开展研究,而应将阀门放在整个工艺系统中,对阀门的实际使用工况,控制系统逻辑等全面地分析。对于故障机理的数学模型,应通过仿真数据和实际故障数据对其进行反复修

电磁阀的工作原理与分类详解

一丶电磁阀工作原理 : 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔都通向不同 的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体 就会吸引到哪边, 然后通过控制阀体的移动来档住或漏出不同的排油 的孔,而进油孔是常开的,液压油就会进入不同的排油管,通过油的 压力来推动油缸的活塞,活塞又会带动活塞杆,活塞杆带动机械装置 动。这样通过控制电磁铁的电流通断就控制了机械运动。 二丶电磁阀的分类: 电磁阀按照气路数可分为:两位两通,两位三通,两位四通,两 位五通,另外电磁阀又可分为单电控和双电控,指的是电磁线圈的个 数,单线圈的称为单电控,双线圈的称为双电控,两位两通,两位三 通一般时是单电控 (单线圈) , 两位四通, 两位五通可以是单电控 (单 线圈) ,也可以是双电控(双线圈) 。从工作原理上可分为三大类:直 动式、分步直动式、先导式。而从阀瓣结构和材料上的不同与原理上 的区别又分为六个分支小类:直动膜片结构、分步直动膜片结构、先 导膜片结构、直动活塞结构、分步直动活塞结构、先导活塞结构。 1.两位两通电磁阀 (1)两位两通电磁阀工作原理:就是一个直通的开关阀,就跟普 通的阀门一样,只是手动的、气动的、电动的区别,电磁阀就是电动 的(通常是仪表电,24V 的。通常意义的电动阀应该是市电,220V 的) ,但明确的一点,它是两位式的,要么全开,要么全关。这个在 有些自动点火的点火枪的燃料管线上可以看到。?

2.两位三通电磁阀 (1)两位三通电磁阀简介:二位三通电磁阀是两个位置三个通 气口,其中一个为进气口(P) ,另两个为出气口(A/B),当电磁阀得 电励磁是,P 和 A 通,失电时 P 和 B 通两位指阀芯有两个位置,三通 就是三个口,一个进气口,P 口,或者 1 口,一个工作口,2 口,一 个排气口,3 口。分为常开常闭。常开工作原理就是通电后,阀芯产 生动作,开启气路,断电之后阀芯复位,关闭气路。符号见下图。?
(2)两位三通电磁阀工作原理: 1 一进二出:(ZC2/31)当电磁阀线圈通电时,出介质端(2)第一路 ○ 打开,第二路(3)关闭;当电磁阀线圈断电时,出介质端第一路(2)关 闭,第二路(3)打开。 2 二进一出:(ZC2/32)当电磁阀线圈通电时,进介质端第一路(2) ○ 打开,第二路(3)关闭;当电磁阀线圈断电时,进介质端第一路(2)关 闭,第二路(3)打开;(此内阀两进口端前必需加单向阀)。 3 一进一出:常闭式(ZC2/3)‐‐‐当电磁阀线圈通电时,接口 2 通向 ○ 接口 1,接口 3 关闭;当电磁阀线圈断电时,接口 2 关闭,接口 1 通 向接口 3;常开式(ZC2/3K)当电磁阀线圈断电时,接口 3 通向接口 1, 接口 2 关闭; 当电磁阀线圈通电时, 接口 3 关闭, 接口 1 通向接口 2;?

电磁阀故障与排除

电磁阀故障与排除 检查电源电压是否在工作范围→调致正常位置范围线圈是否脱焊→重新焊接 线圈短路→更换线圈 工作压差是否不合适→调整压差→或更换相称的电磁阀 流体温度过高→更换相称的电磁阀 有杂质使电磁阀的主阀芯和动铁芯卡死→进行清洗,如有密封损坏应更换密封并安装过滤器 液体粘度太大,频率太高和寿命已到→更换产品 二、电磁阀不能关闭 主阀芯或铁动芯的密封件已损坏→更换密封件 流体温度、粘度是否过高→更换对口的电磁阀 有杂质进入电磁阀产阀芯或动铁芯→进行清洗 弹簧寿命已到或变形→更换 节流孔平衡孔堵塞→及时清洗

工作频率太高或寿命已到→改选产品或更新产品 三、其它情况 内泄漏→检查密封件是否损坏,弹簧是否装配不良 外泄漏→连接处松动或密封件已坏→紧螺丝或更换密封件 通电时有噪声→头子上坚固件松动,拧紧。电压波动不在允许范围内,调整好电压。铁芯吸合面杂质或不平,及时清洗或更换。 电磁阀的原理与结构 追朔电磁阀的发展史,到目前为止,国内外的电磁阀从原理上分为三大类(即:直动式、分步童先导式),而从阀瓣结构和材料上的不同与原理上的区别又分为六个分支小类(直动膜片结构、分步重片结构、先导膜式结构、直动活塞结构、分步直动活塞结构、先导活塞结构)。 直动式电磁阀

原理:通电时,电磁线圈产生电磁力把关闭件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。 特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。 分布直动式电磁阀 原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 特点:在零压差或真空、高压时亦能可*动作,但功率较大,要求必须水平安装。 先导式电磁阀 原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀

电磁阀工作原理(图文并茂)

电磁阀工作原理 纵观国外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式,而从阀瓣结构和材料上的不同以及原理上的区别反冲式又可分为:膜片式反冲电磁阀、活塞式反冲电磁阀;先导式又可分为:先导式膜片电磁阀、先导式活塞电磁阀;从阀座及密封材料上分又可分为:软密封电磁阀、钢性密封电磁阀、半钢性密封电磁阀。 一、直动式电磁阀 原理:常闭型直动式电磁阀通电时,电磁线圈产生电磁吸力把阀芯提起,使关闭件离远开阀座密封副打开;断电时,电磁力消失,靠弹簧力把关闭元件压在阀座上阀门关闭。(常开型与此相反) 特点:在真空、负压、零压差时能正常工作,DN50以下可任意安装,但电磁头体积较大。如我公司引进HERION公司技术生产的直动电磁阀可用于1.33×10-4 Mpa真空。 二、反冲型电磁阀 原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移动便阀门关闭。 特点:在零压差或高压时也能可靠工作,但功率及体积较大,要求竖直安装。三、先导式电磁阀 原理:通电时,电磁力驱动先导阀打开先导阀,主阀上腔压力迅速下降,在主阀上下腔形成压差,依靠介质压力推动主阀关闭件上移,阀门开启;断电时,弹簧力把先导阀关闭,入口介质压力通过先导孔迅速进入主阀上腔在上腔形成压差,从而使主阀关闭。 特点:体积小,功率低,但介质压差围受限,必须满足压差条件。 两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。 两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理 在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装_)。 两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和1个反动作

电动调节阀常见故障处理方法

电动调节阀常见故障处理方法 电动调节阀与气动薄膜调节阀相比,具有动作灵敏可靠、信号传输迅速和传送距离远等特点,便于使用在气源安装不方便的场合。公司三台ZAZN电动调节阀,用于三台10t锅炉控制上水的调节。在恢复锅炉减温系统时,也选用了一台ZAZN的电动调节阀。电动调节阀的故障现象多种多样,如: 1.电机不转 原因:电机线圈烧坏。如使用环境不良,进水或渗透有腐蚀性的气体而造成短路或电机转子卡死不动,电机线圈就发热、烧坏。 判断故障方法:用万用表测量电机引出线正、反和零线之间的电阻,正常值约为160Ω,如偏差过大或过小,就证明线圈已烧坏。 2.两个微动开关位置不当 当调节阀动作时,带动反馈连杆移动,行程至零点和满度时,微动开关应关闭,使电流不会流过电机,从而达到保护电机的目的。如微动开关位置过开,使阀杆动作已达零点或满度时仍不能断开,电流继续通过电机,但此时电机已无法转动,将会造成电机堵转烧坏。 处理方法是移动微动开关位置,使之与阀杆行程位置相对应。 3.分相电容失效或被击穿。分相电容如果坏了,电机不会启动。

4.电动调节阀一动作就引起保险丝熔断 原因:电机线圈漆包线绝缘漆脱落,线圈绕组与阀体短路;分相电容容量过大。 根据制造厂家的出厂标准,各种规格型号的调节阀使用的分相电容有相应的容量。如DKZ-200型的分相电容为630V、3μF。分相电容过大,启动电流就大。 判断方法:将交流电流表与电机引出线串接,测出其电流数值。 5.电动操作器一投入自动,调节阀就处于全开或全关位置原因:调节阀反馈线路部分故障,无反馈电流输出。 处理方法:检查有无提供反馈线路的电源;检查反馈线圈(差动变压器)的初级和次级是否断路;检查差动变压器的初级电压和次级电压是否正常。 如以上各项都正常,则检查电压及电流转换电路。

电磁阀工作原理

气动控制元件-各类控制阀 1、压力控制阀 压力控制阀的作用是控制、调整压缩空气的压力, 使气动执行元件的输出力保持在一定的范围。压力控制阀可分为四类: 1.普通调压阀 2.精密调压阀 3.电控调压阀(E/P调压阀) 4.增压阀 2、方向控制阀 方向控制阀作用是控制气流方向, 如控制气缸的移动方向。 方向控制阀如按操纵方式分类, 可分为机械操作, 手动操作, 气控操作及电磁操作等形式。 电磁阀操作双可分为两大类: A)直动型:直接用电磁铁的产生的力推动主阀芯, 符号是 B)先导型:用电磁力控制一小阀, 再使作用在主阀两端的气压来推动主阀。分内先导式和外先导式 气控式的换向阀是利用气压来直接驱动主阀芯换向, 这类换向阀通常用在那些不允许使用电气讯号的地方, 在那些防爆要求较高的环境下经常使用这一类气控换向阀。 机械式的换向阀常见的有滚轮式, 它通过机械接触来控制换向。 人工操作换向阀主要有手柄驱动方式, 按钮方式和脚踏方式。 方向控制阀按气口数, 切换的位置数分类可分为: 开关功能主要用途 2/2 ON/OFF没有 气马达和气动工具 排气 3/2 常闭(N.C.) 单作用气缸(推出型),气 动信号 3/2 常开(N.O.) 单作用气缸(拉进型)

4/2 输出口A和B 之间的换带共同排气口双作用气缸、我厂的调速器锁定电磁阀(双电磁铁)、球阀控制柜旁通阀电磁阀(原先为三位)。 5/2 输出A和B之间换向,带独立排气口双作用气缸、我厂的刹车控制柜、及空气围带电磁阀(将两位五通当两位三通用)。 5/3 中间排气式,如5/2中位时输出AB均为排气双作用气缸,气缸可能均卸压 5/3 中间封闭式,如5/2中位时完全密封住气双作用气缸,气缸可能在任意位置停止 5/3 中间加压式特殊用途

电磁阀常见故障及解决办法精编版

电磁阀常见故障及解决办法 电磁阀常见故障及解决办法 怎么处理电磁阀的故障 电磁阀线圈的额定电压有DC12V、DC24V、AC24V(50/60 Hz)、AC110V(50/60Hz)、AC220V(50/60Hz)、AC380V(50/60Hz)。一般在电气设计时要么采用AC220V(不需加装开关电源,成本低、线路简单而便于维护)、要么采用DC24V(常用的的安全电压、开关电源/电磁阀线圈都易于维修更换)。 检测电磁阀好坏的方法:先给电磁阀通上被控制的介质(带压力的液体、气体<空气>,压力值为电磁阀使用压力范围的中间值),再给电磁阀线圈通电,如果被控制介质有从通到断或从断到通的状态的变化,那么电磁阀就是好的,否则就是有问题的。 电磁阀常见故障有: 1、线圈短路或断路: 检测方法:先用万用表测量其通断,阻值趋近于零或无穷大,那说明线圈短路或断路。如果测量其阻值正常(大概是几十欧),还不能说明线圈一定是好的(我有一次测得一个电磁阀线圈阻值大概50欧姆,但电磁阀无法动作,更换该线圈后一切正常),请进行如下最终测试:找一个小螺丝刀放在穿于电磁阀线圈中的金属杆的附近,然

后给电磁阀通电,如果感觉到有磁性,那么电磁阀线圈是好的,否则是坏的。 处理方法:更换电磁阀线圈。 2、插头/插座有问题: 故障现象: 如果电磁阀是有插头/插座的那种,有可能出现插座的金属簧片问题(笔者就碰到过)、插头上接线的问题(比如将电源线接到接地线上去了)等原因无法将电源送到线圈中。最好养成一个习惯:插头插在插座上之后把固定螺丝拧上,线圈上在阀芯杆之后把固定螺母拧上。 如果电磁阀线圈的插头配备有发光二极管电源指示灯,那么采用DC电源驱动电磁阀时即行就要接对,否则指示灯不会亮。另外,不要将不同电压等级的带发光二级管电源指示的电源插头调换使用,这样会导致发光二极管被烧毁/电源(换用低电压等级的插头)出现短路或发光二极管发光很微弱(换用高电压等级的插头)。 如果不带电源指示灯,电磁阀线圈是不用区分极性的(不象线圈电压为直流的晶体管时间继电器以及线圈上并联有二极管/电阻泄漏回路的线圈电压为直流的中间继电器<这种中间继电器以原装小日本的居多>,需要区分极性)。 处理方法:修正接线错误、修复或更换插头、插座。 3、阀芯问题:

阀门电动机问题故障分析

阀门电动机问题故障分析 防护等级低:电装配套的阀门专用电机为全封闭鼠笼式结构,短时断续工作制(10min)自冷却式。按GB 4942.1-85 要求,最低防护等级IP44,最高防护等级IP68。阀门使用工况和环境等不同,要求的防护等级也不同。防护等级低将造成电机内腔受潮或有粉尘等异物侵入,电机绝缘阻值下降引起损坏。 包装、运输及保管不当:阀门电装包装应有防雨、防潮、防尘措施,包装应牢固可靠。运输过程中应有防雨措施,产品到现场后应存放在通风、干燥处,不得露天存放。禁止在阴雨天气调试或检修,调试完毕后要拧紧全部紧固件,以保证所有电气部分密封严密可靠。 阀门电装选型与行程位置调整控制不当:阀门电装有两个重要参数。 ①启闭力矩值应包括阀门实际工作扭矩值加上阀门自身扭矩值,启闭力矩大小影响阀门使用,力大易坏,力小易漏。在选型配套上应有足够的余量(一般要求大于阀门实际操作转矩值 1.1~1.3 倍)。 ②行程位置控制与阀门口径大小、启闭时间长短及结构形式等有关。阀门电装配套的电机为专用电机,短时工作制,时间

10-15min。如在短时工作时间内高负载,造成电机发热绝缘等级下降造成损坏。 阀门电装与电机型号不匹配:所选的电机型号与电装要求不匹配,实际输出力矩未留有足够相应的余量,超载荷运转时易造成电机损坏。 电器保护失灵,电器元件质量差:阀门电装内的微动开关是控制机构的关键零部件,当阀门超过行程位置时,微动开关切断电源,起过载保护作用。大多数电装厂家将行程与力矩保护串联在一起,当超行程或超力矩时,微动开关及时切断交流接触器线圈控制电源,从而切断电机主回路。 调试安装使用不当: ①阀门电装分为水平安装和垂直安装两种。在垂直安装时电机尾端在下方。在穿线套筒橡胶件密封失效时,腔体内的润滑油脂通过电缆出线口进入电机内腔易使绕组短路而烧坏电机。 ②按JB 8528-1997 规定,电动装置的手轮转动方向应与输出轴转动方向一致,顺时针为关阀,逆时针为开阀。若电机实际转动方向与规定不符,则需更换三相电源的任意两相(对调即可)。否则因反相,使保护措施失效造成电机损坏。

相关主题
文本预览
相关文档 最新文档