当前位置:文档之家› 二重积分的概念与性质word资料6页

二重积分的概念与性质word资料6页

二重积分的概念与性质word资料6页
二重积分的概念与性质word资料6页

第 1 页

第九章 重积分

Chapter 9 Multiple Integrals

9.1 二重积分的概念与性质 (The Concept of Double Integrals and Its

Properties)

一、二重积分的概念 (Double Integrals)

定义 ( 二重积分的定义 ) 设 D 是xy 平面的有界闭区域 ,f 是定义在 D 上的函数。将 D 任意分成 n 个小区域i σ,它们的面 积用

(1,2,)i

i n σ?=L 表示。在每个(1,2,)i i n σ=L 上任取一点(,)i i ξη,并作和1(,)n i i i i f ξησ=?∑。假设存在一个确定的数I 满足:任给0ε>,存在0δ>,使得当各小区域i σ的直径中的最大值λ小于δ时,就有 1(,)n

i i i i f I ξησε=?-<∑ 不管区域D 的分法如何,(,)i i ξη的取法如何。这样就称f 在D 上可积,

I 称为f 在D 上的二重积分,记作(,)D f x y d I σ=??或01(,)lim (,)λσξησ→==?∑??n i i i i D f x y d f Definition (The Double Integral) Let D be a bounded closed region in the 巧 1 plane and f a function defined on D. Partition D arbitrarily into nsubregions i σ,whose area is denoted by

(1,2,)i i n σ?=L Choose arbitrarily a point (,)i i ξη in (1,2,)i i n σ=L and then form the sum 1(,)n i i i i f ξησ=?∑。Suppose

that there exists a fixed number I such that for any 0ε>, there

exists a 0δ>such that if the length λ of the longest diameter of those subregions i σ in a partition of D is less than δ, then 1(,)n i i i i f I ξησε=?-<∑,

no matter how the partition is and how those points (,)i i ξηare chosen from (1,2,)i i n σ=L Then f is said to be integrable over D and I is the double integral of f over D ,written (,)D f x y d I σ=??,or 01(,)lim (,)λσξησ→==?∑??

n i i i i D f x y d f 二、二重积分的性质 (Properties of Double Integrals)

性质 1 两个函数和 ( 或差 ) 的二重积分等于它们二重积分的和 ( 或差 ), 即

((,)(,))(,)(,)D D D f x y g x y d f x y d g x y d σσσ±=±??????.

Property 1 The double integral of the sum(or difference) of two functions is equal to the sum( or difference) of their double integrals, that is

((,)(,))(,)(,)D D D f x y g x y d f x y d g x y d σσσ±=±?????? 性质 2 被积函数前面的常数因子可以提到积分号前面 , 即

(,)(,)D D kf x y d k f x y d σσ=????,若k 为常数。 Property 2 The constant factor in the integrand function can

第 2 页

be taken out of the double integral,

that is (,)(,)D D kf x y d k f x y d σσ=????,if k is a constant.

性质 3 二重积分关于积分区域具有可加性 , 即如果D 被 分成两个区域 1D 和2D ,12D D I 的面积为 0, 则有

12(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+??????.

Property 3 The double integral is additive with respect to the integration region, that is, if D is divided into two regions 1D and 2D and the area of 12D D I is 0, then 12

(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+??????

性质 4 若对任意(,)x y D ∈,有(,)0f x y ≥,则有(,)0D f x y d σ≥??。 Property 4 If (,)0f x y ≥ for every (,)x y D ∈,then (,)0D f x y d σ≥??. 性质5 若对任意(,)x y D ∈, 有(,)(,)f x y g x y ≥,则(,)(,)D D f x y d g x y d σσ≥????。

Property 5 If (,)(,)f x y g x y ≥ for every (,)x y D ∈,then

(,)(,)D

D f x y d g x y d σσ≥????. 性质 6 假设 M 和 m 分别是函数 f 在D 上的最大值和最小 值 ,

则(,)D m f x y d M σσσ≤≤??,其中σ是区域D 的面积。

Property 6 Suppose that M and m are respectively the maximum and minimum values of function f on D , then

(,)D

m f x y d M σσσ≤≤??,where σ is the area of D . 性质 7( 二重积分的中值定理 ) 若(,)f x y 在闭区域D 上连续 , 则在D 上至少存在一点(,)ξη使得(,)(,)D f x y d f σξησ=??,其中σ是区域D 的面积σ Property 7 (The Mean Value Theorem for Double Integral) If (,)f x y is continuous on the closed region D , then there exists at least a point (,)ξηin D such that (,)(,)D

f x y d f σξησ=??, where σ is the area of D . 9.2 二重积分的计算法 (Evaluation of Double Integrals)

一、直角坐标的二重积分 (Double Integrals in Rectangular Coordinates)

定理 设(,)f x y 在xy 平面上的有界闭区域 D 上连续 ,

(1)若区域D 由a x b ≤≤和12()()g x y g x ≤≤所给出,其中12(),()g x g x 是

[,]a b 上的连续函数,则21()

()(,)(,)b g x a g x D f x y d dx f x y dy σ=????

。 (2) 若区域D 由c y d ≤≤和12()()h y x h y ≤≤所给出,其中12(),()h y h y 是[,]c d 上的连续函数,则21()

()(,)(,)d h y c h y D f x y d dy f x y dx σ=????。

第 3 页 Theorem Let (,)f x y be continuous on a bounded closed region D in the xy -plane.

(1) If D is given by a x b ≤≤and 12()()g x y g x ≤≤, where 12(),()g x g x are continuous functions of x on [,]a b , then

21()()(,)(,)b g x a g x D f x y d dx f x y dy σ=???

? (2) If D is given by c y d ≤≤ and 12()()h y x h y ≤≤, where 12(),()h y h y are continuous functions of y on [,]c d , then 21()()(,)(,)d

h y c h y D f x y d dy f x y dx σ=????

二 极坐标下的二重积分 (Double Integrals in Polar Coordinates) 如果积分区域D 由极坐标形式12{(,),()()}D r h r h θαθβθθ=≤≤≤≤ 给出,则

21()()(,)(cos ,sin )h h D f x y d f r r rdrd βθαθσθθθ=????。 If the region D is given by 12{(,),()()}D r h r h θαθβθθ=≤≤≤≤ in

polar coordinates, then

21()()(,)(cos ,sin )h h D f x y d f r r rdrd βθαθσθθθ=????。 9.3 三重积分 (Triple Integrals)

一、三重积分的概念 (Triple Integrals)

定义 设f 是定义在空间有界闭区域Ω上的三元函数。如果存在一个确定的数A , 满足 :

任给0ε>, 存在0δ>, 对Ω 的任 意一个分法 , 设小区域为i v ,它们的

体积用i v ?表示 , 在每个(1,2,)i v i n =L 中任取一点(,,)i i i ξηζ,当小区域的最大直径λ小于δ时,不等式1(,,)n i i i i i f v A ξηζε=?-<∑成立,则A 成为f 在D 上

的三重积分,记作(,,)f x y z dv A Ω=???,或01(,,)lim (,,)n i i i i i f x y z dv f v A λξηζ→=Ω=?=∑???. Definition Suppose that f is a continuous function of three

variables defined on a bounded closed region Ω in space. If there is a number A such that for any 0ε>, there exists a 0δ> such that, for any partition to Ωwith subregions i v , whose volume are

denoted by i v ? and any points (,,)i i i ξηζchosen arbitrarily from (1,2,)i v i n =L respectively, the inequality 1(,,)n

i i i i i f v A ξηζε=?-<∑ holds true whenever the diameter of the largest subregion is less than δ, then A is said to be the triple integral of function f over the region Ω,written (,,)f x y z dv A Ω=???,or 01(,,)lim (,,)n

i i i i i f x y z dv f v A λξηζ→=Ω=?=∑??? 二、三重积分的计算 (Evaluation of Triple Integrals)

1. 利用直角坐标 (Rectangular Coordinates) 计算三重积分

设f 是定义在空间有界闭区域Ω上的连续的二元函数,Ω由1212{(,,),()(),(,)(,)}x y z a x b y x y y x z x y z z x y ≤≤≤≤≤≤给出,则

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

二重积分的概念及性质

二重积分的概念及性质 前面我们已经知道了,定积分与曲边梯形的面积有关。下面我们通过曲顶柱体的体积来引出二重积分的概念,在此我们不作详述,请大家参考有关书籍。 二重积分的定义 设z=f(x,y)为有界闭区域(σ)上的有界函数: (1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n); (2)在每一个子域(△σk)上任取一点,作乘积; (3)把所有这些乘积相加,即作出和数 (4)记子域的最大直径d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作: 即:= 其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域. 关于二重积分的问题 对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。 上述就是二重积分的几何意义。

如果被积函数f(x,y)在积分区域(σ)上连续,那末二重积分必定存在。 二重积分的性质 (1).被积函数中的常数因子可以提到二重积分符号外面去. (2).有限个函数代数和的二重积分等于各函数二重积分的代数和. (3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末: (4).如果在(σ)上有f(x,y)≤g(x,y),那末: ≤ (5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使 其中σ是区域(σ)的面积. 二重积分的计算法 直角坐标系中的计算方法 这里我们采取的方法是累次积分法。也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。为此我们有积分公式,如下:

定积分的概念和性质公式

1.曲边梯形的面积 设在区间*I上:;--L ,则由直线工’=■<、応匚、V 1及曲线■V °/W所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间-八「中任意插入若干个分点将宀…-分成n个小区间 兀5 5 <…,小区间的长度&广呜一為」(T三12… 在每个小区间- :-一I〕上任取一点-■■作乘积 求和取极限:则面积取极限

J=1 其中;'1 ; J L厂V '…,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度| I「是上*的连续函数,且1■求在这段时间内物体所经过的路程。 分割求近似:在「〔[内插入若干分点■- _ "将其分成 n 个小区间「—,小区间长度■- _■'.-1, ■1丄。任取? _ _ 做 求和取极限:则路程一取极限 将分成n个小区间-,其长度为2 - —,在每个小区间 上任取一点「:,作乘积■- ' ■',并求和 r , 记1■r 1,如果不论对怎样分法,也不论小区间[:■ 上的 点「怎样取法,只要当「「I;时,和总趋于确定的极限,则称这个极限 为函数-—I在区间上的定积分,记作J ',即 定义设函数」?、在L?二上有界,在-亠二中任意插入若干个分点

其中叫被积函数,一’,八叫被积表达式,'‘叫积分变量,二叫积分下限, 「叫积分上限,-’」叫积分区间。■叫积分和式。 说明: 1.如果(*)式右边极限存在,称-’’」在区间-仁丄可积,下面两类函数在区间 上…-可积,(1)」在区间-LL■- - 上连续,则■' J'-在可积。(2)-’八在区间-‘丄-上有界且只有有限个间断点,则在--"-■ 上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所 3.

定积分的概念和性质公式

1. 曲边梯形的面积 设在区间上,则由直线、、及曲线所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间中任意插入若干个分点将分成 n 个小区间 ,小区间的长度 在每个小区间上任取一点作乘积, 求和取极限:则面积取极限

其中,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度是上的连续函数,且,求在这段时间内物体所经过的路程。 分割求近似:在内插入若干分点将其分成 n 个小区间,小区间长度,。任取, 做 求和取极限:则路程取极限 定义设函数在上有界,在中任意插入若干个分点 将分成 n 个小区间,其长度为,在每个小区间 上任取一点,作乘积,并求和, 记,如果不论对怎样分法,也不论小区间上的点

怎样取法,只要当时,和总趋于确定的极限,则称这个极限 为函数在区间上的定积分,记作,即 ,(*) 其中叫被积函数,叫被积表达式,叫积分变量,叫积分下限,叫积分上限,叫积分区间。叫积分和式。 说明: 1.如果(*)式右边极限存在,称在区间可积,下面两类函数在区间 可积,(1)在区间上连续,则在可积。(2)在区间 上有界且只有有限个间断点,则在上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所以 3.规定 时, 在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积;

在上时, 表示曲线、两条直线、与轴所围成的曲边梯形的面积(此时,曲边梯形在轴的下方); 例1 利用定积分的几何意义写出下列积分值 (1)(三角形面积)(2)(半圆面积)

设可积 性质1 性质2 性质3 (定积分对区间的可加性)对任何三个不同的数,有 性质4 性质5 如果在区间上,,则 推论 性质6 (定积分的估值)设 M 及 m 分别是函数在区间上的最大值及最小值,则 性质7 (定积分中值定理) 如果函数在区间上连续,则在上至少有一点, 使成立

5.1 定积分的概念与性质-习题

1.利用定积分的定义计算下列积分: ⑴ b a xdx ? (a b <); 【解】第一步:分割 在区间[,]a b 中插入1n -个等分点:k b a x k n -=,(1,2,,1k n =-),将区间[,]a b 分为n 个等长的小区间[(1),]b a b a a k a k n n --+-+, (1,2,,k n =),每个小区间的长度均为k b a n -?=, 取每个小区间的右端点k b a x a k n -=+, (1,2,,k n =), 第二步:求和 对于函数()f x x =,构造和式 1 ()n n k k k S f x ==??∑1 n k k k x ==??∑1 ()n k b a b a a k n n =--=+ ?∑ 1()n k b a b a a k n n =--=+∑1 ()n k b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1) []2 b a b a n n na n n ---=+? ^ 1()[(1)]2b a b a a n -=-+ ?-1 ()()22b a b a b a a n --=-+-? 1 ()()22b a b a b a n +-=--? 第三步:取极限 令n →∞求极限 1 lim lim ()n n k k n n k S f x →∞ →∞ ==??∑1 lim()( )22n b a b a b a n →∞ +-=--? ()(0)22 b a b a b a +-=--?()2b a b a +=-222b a -=, 即得 b a xdx ? 22 2 b a -=。

二重积分的概念与性质教案

7.1二重积分的基本概念(教案) 主讲人:孙杰华 教学目的:理解二重积分的概念、性质 教学重难点:二重积分的概念、二重积分的几何意义. 教学方法:讲授为主 教学内容: 一、二重积分的概念 1.曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =,称这种立体为曲顶柱体. 与求曲边梯形的面积的方法类似,我们可以这样来求曲顶柱体的体积V : (1)用任意一组曲线网将区域D 分成n 个小区域1σ?,2σ?, ,n σ?,以这些小区 域的边界曲线为准线,作母线平行于z 轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n 个小曲顶柱体1?Ω,2?Ω, ,n ?Ω. (假设i σ?所对应的小曲顶柱体为i ?Ω,这里i σ?既代表第i 个小区域,又表示它的面积值, i ?Ω既代表第i 个小曲顶柱体,又代表它的体积值.),从而1 n i i V ==?Ω∑. 图7.1 (2)由于(,)f x y 连续,对于同一个小区域来说,函数值的变化不大.因此,可以将小曲顶柱体近似地看作小平顶柱体,于是

(,),((,))i i i i i i i f ξησξησ?Ω≈??∈?. (3)整个曲顶柱体的体积近似值为 1 (,)n i i i i V f ξησ=≈?∑. (4)为得到的精确值,只需让这个小区域越来越小,即让每个小区域向某点收缩.为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者. 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零. 设n 个小区域直径中的最大者为λ,则 1 lim (,),(,)n i i i i i i i V f λξησξησ→==??∈?∑. 2.二重积分的定义 设(),f x y 是闭区域D 上的有界函数, 将区域D 分成个小区域 12,,,,n σσσ??? 其中,i σ?既表示第i 个小区域,也表示它的面积, i λ表示它的直径. 1max{}(,)i i i i i n λλξησ≤≤=?∈?, 作乘积(,)(1,2 ,)i i i f i n ξησ?=, 作和式 1 (,)n i i i i f ξησ =?∑, 若极限()0 1 lim ,n i i i i f λξησ →=?∑存在,则称此极限值为函数(),f x y 在区域D 上的二重积分,记 作 (),D f x y d σ??.即 (),D f x y d σ=??()0 1 lim ,n i i i i f λξησ →=?∑. 其中:(),f x y 称之为被积函数,(),f x y d σ称之为被积表达式,d σ称之为面积元素, ,x y 称之为积分变量,D 称之为积分区域. V n

定积分的概念与性质练习

第一节 定积分的概念与性质 一、选择题 1. A ; 2. C . 二、填空题 1. (1)1; (2)0; (3)4 π. 2. (1)1 2 x dx ? > 1 30 x dx ? , (2)2 1ln xdx ? > () 2 2 1ln x dx ?, (3) 20 xdx π ? < 20 sin xdx π ? , (4)4 3 ln xdx ? < () 4 2 3ln x dx ?. 三、 解 由于()3f x x =在[]0,1上连续,故积分2 21 x dx -? 是存在的,且它与分法无关,同 时也与点的取法无关. 将区间[]0,1n 等分,得1 i x n = ,取() 1,2,, i i i n n ξ== 作和 ()2 3 2 1 1 13 344 0001114 n n n n i i i i i n n i S x i n n n n ξ---===+??==== ???∑∑∑ 于是 1 lim 4n n S →∞= 即 13 014 x dx =?. 四、 细棒的质量()0 l x dx ρ?. 五、 1 13 x e dx -+? 311 x e dx +-=-?. 设()()1 1,0x x f x e f x e ++'==>,所以()f x 在[]1,3-内单调增加, 从而 ()()()13f f x f -≤≤,即1 41x e e +≤≤. 于是 3 141 44x e dx e +-≤≤? 从而 1 4 13 44x e e dx -+-≤ ≤-? . 六、 设()()2 21,41f x x x f x x '=-+=-,令()0,f x '=得驻点1 4 x = . ()17101,,1482f f f ???? === ? ????? .所以 min ()f x =1, max ()f x =78. 1≤≤ 由定积分性质,得 1 2012≤≤ ?.

第一节二重积分的概念及性质教案

第九章 重积分 第一节 二重积分的概念及性质 一.二重积分的概念 1.引例 引例1 曲顶柱体的体积 设有一立体的底是xy 面上的有界闭区域D ,侧面是以D 的边界曲线为准线、母线平行于z 轴的柱面,顶是有二元非负连续函数),(y x f z = 所表示的曲面, 如图9—1所示, 这个立体称为D 上的曲顶柱体,试求该曲顶柱体的体积。 图9—1 图9—2 图9—3 解 对于平柱体的体积底面积高?=V ,然而,曲顶柱体不是平顶柱体,那么具体作法如下 (1)分割 把区域D 任意划分成n 个小闭区域n σσσ???,,,2 1 ,其中i σ?表示第i 个小闭区域, 也表示它的面积。在每个小闭区域内,以它的边界曲线为准线、母线平行于z 轴的柱面,如图9—2所示。这些柱面就那原来的曲顶柱体分割成n 个小曲顶柱体。 (2)近似 在每一个小闭区域i σ?上任取一点),(i i ηξ,以),(i i f ηξ为高,i σ?为底的平顶柱体 的体积i i i f σηξ?),(近似代替第i 个小曲顶柱体的体积。

i i i f V σηξ?≈?),( (3)求和 这n 个小平顶柱体的体积之和即为曲顶柱体体积的近似值 ∑=?≈?=n i i i i f V V 1),(σηξ (4)取极限 将区域D 无限细分,且每个小闭区域趋向于或说缩成一点,这个近似值趋近于曲顶柱体的体积。即 ∑=→?=n i i i i f V 10 ),(lim σηξλ 其中λ表示这n 个小闭区域i σ?直径中最大值的直径(有界闭区域的直径是指区 域中任意两点间的距离)。 引例2 平面薄片的质量 设有一平面薄片占有xy 面上的有界闭区域D ,它的密度为D 上的连续函数 ),(y x z ρ=,试求平面薄片的质量。 解 对于均匀平面薄片的质量薄片面积密度?=m ,然而,平面薄片并非均匀,那么具体作法如下 (1)分割 将薄片(即区域D )任意划分成n 个小薄片n σσσ???,,,2 1 ,其中i σ?表示第i 个 小小薄片,也表示它的面积,如图9—3所示。 (2)近似 在每一个小薄片i σ?上任取一点),(i i ηξ,以),(i i ηξρ为其密度,当i σ?很小时,认 为小薄片是均匀的,则i i i σηξρ?),(近似代替第i 个小薄片的质量。即 i i i m σηξρ?≈?),( (3)求和 这n 个小薄片的质量之和即为薄片的质量的近似值

二重积分的概念与性质 习题

第十章 重积分 第一节 二重积分的概念与性质 一、填空题 1. 二重积分的定义是对 有界闭 区域上的 有界 函数而说的,当和式的极限0lim λ→()1,n i i i i f ξησ=Δ∑存在时,二重积分存在,对于 闭 区域上的 连续 _函数, 二重积分一定存在. 2. 设曲顶柱体的顶部曲面函数(,)z f x y =,它的底部区域为,则曲顶柱体的体积表示 D 为(,)d σ∫∫D f x y . 3. 设{}22(,)1D x y x y =+≤,则d D σ=∫∫π. 4. 由二重积分几何意义,d D x y =3π6a .(为D 222x y a +≤,). 0,0,0x y a ≥≥≥提示:当时, (,)0f x y ≥(,)d D f x y σ∫∫表示以为底,以曲面D (,)z f x y =为顶的曲顶柱 体的体积 5. 设一平面薄片在xoy 面内占的区域为,且其密度函数D 221(,)()2u x y x y = +,则此薄 片的质量表示为221()d 2D x y σ+∫∫ 二、单项选择题 1.()01(,)d lim ,n i i i i D f x y f λσξησ→==Δ∑∫∫中λ是 D . A. 最大小区间长 B. 小区域最大面积 C. 小区域直径 D. 小区域最大直径 61

三、解答题 1. 利用二重积分性质估计积分()222d d D I x y x = ++∫∫y 的值,其中1x y +≤. 解:∵01x y ≤+≤,∴2221x y xy ++≤,即2212x y x +≤?y , ∴2222323 x y xy ≤++≤?≤,2242 2d 3d 36D D I σσ==≤≤==∫∫∫∫, ∴即 46I ≤≤. 2. 根据二重积分的性质,比较2()d D x y σ+∫∫与3()d D x y σ+∫∫的大小,其中由圆周 D 22(2)(1)x y ?+?=22)围成. 解:,即22(2)(1)x y ?+?≤∵22 (1)22(x y x ?++≤+y , ∴22(1)11()2x y x y ?+≤+≤23()+,()y x y +≤+,故23()d ()d D D x y x y σσ+≤+∫∫∫∫. x 62

6.7 二重积分的概念与性质

1.利用二重积分定义证明: (,)(,)D D kf x y d k f x y d σσ=????。 【证明】由二重积分定义 1 (,)lim (,)n i i i i D f x y d f λ σξησ→==?∑??,得 1 (,)lim (,)n i i i i D kf x y d kf λ σξησ→==?∑??0 1 lim (,)n i i i i k f λξησ→==?∑ 1 lim (,)n i i i i k f λξησ→==?∑(,)D k f x y d σ=??, 证毕。 2.利用二重积分的几何意义说明:D kd k σσ=?? (k R ∈为常数,σ为积分区域D 的面积)。 【说明】二重积分的几何意义,就是说,二重积分(,)D f x y d σ??就是以(,)z f x y =为曲顶 的柱体体积, 于是知,二重积分 D kd σ??表示以平面z k =为顶的柱体体积, 而以平面z k =为顶的柱体体积,等于其底面积乘上其高z k =, 但该柱体的底面积就是积分区域D 的面积σ, 从而得, D kd k σσ=??。 3.利用二重积分的性质估计下列积分的值: ⑴ ()D xy x y d σ+??,其中积分区域{}(,)01,01D x y x y =≤≤≤≤; 【解】由于区域{} (,)01,01D x y x y =≤≤≤≤,可知区域D 的面积为 111D d σ=?=??, 而由于01x ≤≤,01y ≤≤,可得01xy ≤≤,02x y ≤+≤, 从而有0()2xy x y ≤+≤, 由二重积分性质6.7.5(估值不等式)即得 0()2D D D d xy x y d d σσσ≤+≤?????? 亦即为 0()2D xy x y d σ≤+≤??。 ⑵ (1)D x y d σ++??,其中积分区域{}(,)01,02D x y x y =≤≤≤≤; 【解】由于区域{} (,)01,02D x y x y =≤≤≤≤,可知区域D 的面积为 122D d σ=?=??,

最新定积分的概念与性质

定积分的概念与性质

第五章定积分 第一节定积分的概念与性质 教学目的:理解定积分的定义,掌握定积分的性质,特别是中值定理. 教学重点:连续变量的累积,熟练运用性质. 教学难点:连续变量的累积,中值定理. 教学内容: 一、定积分的定义 1.曲边梯形的面积 设?Skip Record If...?在?Skip Record If...?上非负,连续,由直线?Skip Record If...?,?Skip Record If...?,?Skip Record If...?及曲线?Skip Record If...? 所围成的图形,称为曲边梯形. 求面积: 在区间?Skip Record If...?中任意插入若干个分点 ?Skip Record If...?, 把?Skip Record If...?分成?Skip Record If...?个小区间[?Skip Record If...?],[?Skip Record If...?], … [?Skip Record If...?],它们的长度依次为: ?Skip Record If...? 经过每一个分点作平行于?Skip Record If...?轴的直线段,把曲边梯形分成?Skip Record If...?个窄曲边梯形,在每个小区间[?Skip Record If...?]上任取一点?Skip Record If...?,以[?Skip Record If...?]为底,?Skip Record If...?为高的窄边矩形近似替代第?Skip Record If...?个窄边梯形?Skip Record If...?,把这样得到的

第一节二重积分的概念及性质教案

第九章重积分 第一节二重积分的概念及性质 重积分的概念 1 ?引例 引例1曲顶柱体的体积 设有一立体的底是xy面上的有界闭区域D,侧面是以D的边界曲线为准线、母线 平行于z轴的柱面,顶是有二元非负连续函数z f(x,y)所表示的曲面,如图9—1所示, 这个立体称为D上的曲顶柱体,试求该曲顶柱体的体积。 图9—1 图9—2 图9 —3 解对于平柱体的体积V高底面积,然而,曲顶柱体不是平顶柱体,那么具体作法如下 (1)分割 把区域D任意划分成n个小闭区域,,,,其中表示第i个小闭区域, 1 2 n i 也表示它的面积。在每个小闭区域内,以它的边界曲线为准线、母线平行于z轴的柱面,如图9—2所示。这些柱面就那原来的曲顶柱体分割成n个小曲顶柱体。 ⑵近似 在每一个小闭区域上任取一点(,),以f ( i , i)为高,为底的平顶柱体 i I / i 的体积f( i, i) i近似代替第i个小曲顶柱体的体积

V f ( i, i) (3) 求和这n 个小平顶柱体的体积之和即为曲顶柱体体积的近似值n V V f ( i, i) i i1 (4) 取极限 将区域D无限细分,且每个小闭区域趋向于或说缩成一点,这个近似值趋近于曲 顶柱体的体积。即 n V lim0 f ( i, i ) i i1 其中表示这n 个小闭区域直径中最大值的直径(有界闭区域的直径是指区 i 域中任意两点间的距离) 。 引例2 平面薄片的质量 设有一平面薄片占有 xy面上的有界闭区域D,它的密度为D上的连续函数 z (x, y) ,试求平面薄片的质量。 解对于均匀平面薄片的质量m 密度薄片面积,然而,平面薄片并非均匀,那么具体作法如下 (1)分割 将薄片(即区域D )任意划分成n个小薄片,其中表示第i个 1 2 n i 小小薄片,也表示它的面积,如图9—3 所示。 (2)近似 在每一个小薄片」上任取一点(「丿,以(i, J为其密度,当i很小时,认 为小薄片是均匀的,则(i, i) i近似代替第i个小薄片的质量。即 m ( i , i) i (3)求和 这n个小薄片的质量之和即为薄片的质量的近似值

二重积分的概念与性质word资料6页

第 1 页 第九章 重积分 Chapter 9 Multiple Integrals 9.1 二重积分的概念与性质 (The Concept of Double Integrals and Its Properties) 一、二重积分的概念 (Double Integrals) 定义 ( 二重积分的定义 ) 设 D 是xy 平面的有界闭区域 ,f 是定义在 D 上的函数。将 D 任意分成 n 个小区域i σ,它们的面 积用 (1,2,)i i n σ?=L 表示。在每个(1,2,)i i n σ=L 上任取一点(,)i i ξη,并作和1(,)n i i i i f ξησ=?∑。假设存在一个确定的数I 满足:任给0ε>,存在0δ>,使得当各小区域i σ的直径中的最大值λ小于δ时,就有 1(,)n i i i i f I ξησε=?-<∑ 不管区域D 的分法如何,(,)i i ξη的取法如何。这样就称f 在D 上可积, I 称为f 在D 上的二重积分,记作(,)D f x y d I σ=??或01(,)lim (,)λσξησ→==?∑??n i i i i D f x y d f Definition (The Double Integral) Let D be a bounded closed region in the 巧 1 plane and f a function defined on D. Partition D arbitrarily into nsubregions i σ,whose area is denoted by (1,2,)i i n σ?=L Choose arbitrarily a point (,)i i ξη in (1,2,)i i n σ=L and then form the sum 1(,)n i i i i f ξησ=?∑。Suppose that there exists a fixed number I such that for any 0ε>, there exists a 0δ>such that if the length λ of the longest diameter of those subregions i σ in a partition of D is less than δ, then 1(,)n i i i i f I ξησε=?-<∑, no matter how the partition is and how those points (,)i i ξηare chosen from (1,2,)i i n σ=L Then f is said to be integrable over D and I is the double integral of f over D ,written (,)D f x y d I σ=??,or 01(,)lim (,)λσξησ→==?∑?? n i i i i D f x y d f 二、二重积分的性质 (Properties of Double Integrals) 性质 1 两个函数和 ( 或差 ) 的二重积分等于它们二重积分的和 ( 或差 ), 即 ((,)(,))(,)(,)D D D f x y g x y d f x y d g x y d σσσ±=±??????. Property 1 The double integral of the sum(or difference) of two functions is equal to the sum( or difference) of their double integrals, that is ((,)(,))(,)(,)D D D f x y g x y d f x y d g x y d σσσ±=±?????? 性质 2 被积函数前面的常数因子可以提到积分号前面 , 即 (,)(,)D D kf x y d k f x y d σσ=????,若k 为常数。 Property 2 The constant factor in the integrand function can

第一节 二重积分的概念与性质

第一节二重积分的概念与性质 学习指导 1.教学目的:使读者理解二重积分的概念与性质。 2.基本练习:熟悉二重积分的几何、物理背景。熟悉二重积分的性质。 3.应注意的事项: 二重积分是二元函数乘积和式的极限,是定积分的推广,因此从引例到研究方法,从定义到性质都是类似的,读者要善于比较,触类旁通,温故而知新。 第一节二重积分的概念与性质 一、二重积分的概念 1. 曲顶柱体的体积 (1)曲顶柱体 (2)曲顶柱体的体积 现在我们来讨论如何定义并计算上述曲顶柱体的体积V。 平顶柱体的体积 2. 平面薄片的质量 (1) 问题的提出 (2) 均匀薄片的质量

(3) 非均匀薄片质量的计算方法 (4) 二重积分的定义 上面两个问题的实际意义虽然不同,但所求量都归结为同一形式的和的极限。在物理、力学、几何和工程技术中,有许多物理量或几何量都可以归结为这一形式的和的极限。因此我们要一般的研究这种和的极限,并抽象出下述二重积分的定义。 定义设是有界闭区域上的有界函数.将闭区域任意分成个小闭区域 。 其中 表示第个小闭区域,也表示它的面积。再每个上任取一点,作乘积 ,并作和。如果当个小闭区域的直径中最大值 趋于零时,这和的极限总存在。则称此极限为函数在闭区域上的二重积分,记 作,即 。(1) 叫做被积函数,叫做被积表达式,叫做面积元素,与叫 其中 积分变量,叫做积分区域,叫做积分和。 (5) 直角坐标系中的面积元素 在二重积分的定义中对闭区域的划分是任意的,如果在直角坐标系中用平行于坐标轴的 直线网来划分,那么除了包含边界点的一些小闭区域外,其余的小闭区域都是矩形闭区域。 设矩形闭区域的边长为和,则。因此在直角坐标系中,有 时也把面积元素记作。而把二重积分记作 。 其中叫做直角坐标系中的面积元素。

相关主题
文本预览
相关文档 最新文档