当前位置:文档之家› 振动理论课后答案

振动理论课后答案

振动理论课后答案
振动理论课后答案

1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制?

解:物体与桌面保持相同的运动,知桌面的运动为

x=A sin10πt;

由物体的受力分析,N = 0(极限状态)

物体不跳离平台的条件为:;

既有,

,

由题意可知Hz,得到,mm。

1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。解:

设该简谐振动的方程为;二式平方和为

将数据代入上式:

联立求解得

A=10.69cm;1/s;T=s

当时,取最大,即:

得:

答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。

1-3 一个机器内某零件的振动规律为

,x的单位是cm,1/s 。这个振

动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。

解:

振幅A=0.583

最大速度

最大加速度

1-4某仪器的振动规律为。此振动是否为简谐振动?试用x- t坐标画出运动图。

解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。

1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。

解:两简谐振动分别为,,

则:=3cos5t+3isin5t

=5cos(5t+)+3isin(5t+)

或;

其合成振幅为:=

其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:实部:cos(5t+ arctan)

虚部:sin(5t+ arctan)

1-6将题1-6图的三角波展为傅里叶级数。

解∶三角波一个周期内函数x (t)可表示为

由式得

n=1,2,3……

于是,得x(t)的傅氏级数

1-7将题1-7图的锯齿波展为傅氏级数,并画出频谱图。

解∶锯齿波一个周期内函数P (t)可表示为

由式得

n=1,2,3……

于是,得x(t)的傅氏级数

,

1-8将题1-8图的三角波展为复数傅氏级数,并画出频谱图。

P(t)平均值为0

+

+

将代入整理得

1-9求题1-9图的矩形脉冲的频谱函数及画

频谱图形。

解:

可表示为

由于

得:

即:

1-10 求题1-10图的半正弦波的频谱函数并画频谱图形。

解:

频谱函数:

2.1 一弹簧质量系统沿光滑斜面作自由振动,如图T 2-1所示。已知,?=30α,m = 1 kg ,k = 49 N/cm ,开始运动时弹簧无伸长,速度为零,求系统的运动规律。

图 T 2-1

答案图 T 2-1

解:

0sin kx mg =α,1.049

21

8.91sin 0=?

?==

k

mg x α

cm

mg

α

α

x 0

x m

k

α

701

10492

=?==-m k n ωrad/s

t t x x n 70cos 1.0cos 0-==ωcm

2.1 图E2.2所示系统中,已知m ,c ,1k ,2k ,0F 和ω。求系统动力学方程和稳态响应。

图E2.1

答案图E2.1(a) 答案图E2.1(b)

解:

等价于分别为1x 和2x 的响应之和。先考虑1x ,此时右端固结,系统等价为图(a ),受力为图(b ),故:

()()x c x k x c c x k k x m &&&&112121+=++++ t A c A k kx x c x m 1111111cos sin ωωω+=++&&&

(1)

21c c c +=,21k k k +=,m

k k n 2

1+=

ω (1)的解可参照释义(2.56),为:

()()

()()

()

()()

2

2

2111

112

2

2111121cos 21sin s s t k

A c s s t k

A k t Y ξθωωξθω+--+

+--=

(2)

其中:

n s ωω1=

,2

1112s s tg -=-ξθ ()

()()2

12

12212212

2112

121k k c c k k k k c s ++++=

???

?

??++=+

ωωξ

x k 2x

&2 (11x k - )11x x &&-

1

()()

()()

()2

12

1

2

212

21212

21121221212

2

2 121k k c c m k k

k k c c k k m s s +++-+=

?

?

????+++???? ??+-=+-ωωωωξ

故(2)为:

()()()

()

()()()()

21121

2

2

1

2

21

21

21

2121

1

212

212

2

1

21111111111sin cos sin θθωω

ω

ωωωθωωθω+-++-++=++-+-+-=

t c c m k k

c k A c c m k k t A c t A k t x

()()m k k c c tg

k k m k k c tg s s tg 21211

2112

121211121

1112ωωωωξθ-++=+-

+=-=--- 1

1

11

2k c tg ωθ-=

考虑到()t x 2的影响,则叠加后的()t x 为:

()()()()???? ?

?+-++-++-++=--=∑

i i i i i i i i i i i i i k c tg m k k c c tg t c c m k k c k A t x ωωωωωωω1221211

2

1

222122212

22sin

2.2 如图T 2-2所示,重物1W 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2

W 从高度为h 处自由下落到1W 上而无弹跳。求2W 下降的最大距离和两物体碰撞后的运动规律。

图 T 2-2

答案图 T 2-2

解:

2

22221v g

W h W =

,gh v 22=

动量守恒:

122

122v g

W W v g W +=,gh W W W v 221212+=

平衡位置:

11kx W =,k

W x 1

1=

1221kx W W =+,k

W W x 2

112+=

故:

k

W x x x 2

1120=

-= ()2

121W W kg

g W W k n +=+=

ω

故:

t

v t x t

x t x x n n

n n n

n ωωωωωωsin cos sin cos 12

00

0+

-=+-=&

2.4 在图E2.4所示系统中,已知m ,1k ,2k ,0F 和ω,初始时物块静止且两弹簧均为

原长。求物块运动规律。

W 2

W 1

图E2.4

答案图E2.4

解:

取坐标轴1x 和2x ,对连接点A 列平衡方程:

()0sin 012211=+-+-t F x x k x k ω

即:

()t F x k x k k ωsin 022121+=+

(1)

对m 列运动微分方程:

()1222x x k x m --=&&

即:

12222x k x k x m =+&&

(2)

由(1),(2)消去1x 得:

t k k k

F x k k k k x m ωsin 2

120221212+=++

&&

(3)

故:

()

212

12k k m k k n +=

ω

由(3)得:

()()()???

? ??--+=t t k k m k F t x n n n ωωωωωωsin sin 2221202

2.5在图E2.3所示系统中,已知m ,c ,k ,0F 和ω,且t =0时,0x x =,0v x

=&,求系统响应。验证系统响应为对初值的响应和零初值下对激励力响应的叠加。

t ω

x k

)1x x k - 2x m &&

(2k

2

图E2.3

解:

()()()θωωωξω-++=-t A t D t C e t x d d t cos sin cos 0

()()

2

2

20

211

s s k

F A ξ+-?=

,2

1

12s

s

tg

-=-ξθ ()θθcos cos 000A x C A C x x -=?+==

()()()()

θωωωωωωωωξωξωξω--+-++-=--t A t D t C e

t D t C e t x d d d d t

d d t sin cos sin sin cos 000&

()d

d

d A C

v D A D C v x

ωθ

ωωξωθωωξωsin sin 00000-

+=?++-==&

求出C ,D 后,代入上面第一个方程即可得。

2.7 求图T 2-7中系统的固有频率,悬臂梁端点的刚度分别是1k 及3k ,悬臂梁的质量忽略不计。

图 T 2-7

答案图 T 2-7

解:

1k 和2k 为串联,等效刚度为:2

12

112k k k k k +=

。(因为总变形为求和)

12k 和3k 为并联(因为12k 的变形等于3k 的变形),则:

2

13

2312132121312123k k k k k k k k k k k k k k k k +++=++=

+=

123k 和4k 为串联(因为总变形为求和),故:

4

24132312143243142141234123k k k k k k k k k k k k k k k k k k k k k k k k e ++++++=+=

故:

m

k e

n =

ω

2.7 由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图E2.7所示。当齿轮转动角速度为ω时,偏心质量惯性力在垂直方向大小为

t me ωωsin 2。已知偏心重W = 125.5 N ,偏心距e = 15.0 cm ,支承弹簧总刚度系数k = 967.7

N /cm ,测得垂直方向共振振幅cm X m 07.1=,远离共振时垂直振幅趋近常值cm X 32.00=。求支承阻尼器的阻尼比及在m in 300r =ω运行时机器的垂直振幅。

图E2.7

解:

()()()

()θωξ-+-?

=t s s s M

me t x sin 212

2

22

,2

1

12s

s

tg -=-ξθ

s =1时共振,振幅为:

cm M me X 07.1211=?=

ξ

(1)

远离共振点时,振幅为:

cm M

me

X 32.02==

(2)

由(2)2

X me M =

?

由(1)15.0221211

2121==?=?=

?X X X X me me X M me ξ m in 300r =ω,M

k

=

0ω,10ωω=s

故:

()()

m s s s M

me

X 32

2

22

108.321-?=+-?

2.9 如图T 2-9所示,一质量m 连接在一刚性杆上,杆的质量忽略不计,求下列情况系统作垂直振动的固有频率: (1)振动过程中杆被约束保持水平位置; (2)杆可以在铅锤平面内微幅转动; (3)比较上述两种情况中哪种的固有频率较高,并说明理由。

图 T 2-9

答案图 T 2-9

解:

(1)保持水平位置:m

k k n 2

1+=

ω mg l l

F 2

11

2+=

x x 2

(2)微幅转动:

()()()()()()()()()mg

k k l l k l k l mg

k k l l k l l k l l l k l mg k k l l k l k l l l l k l l mg l mg

k l l l k l l l l l l k l l mg l l l l x x k F x x x 2

12212

2

21212

122122112121222121221121112121212221121112122

11

12111 ++=+-++=+-?+++=??????+-++++=

+-+='+=

故:

()2

2

21212

12

21k l k l k k l l k e

++=

m

k e

n =

ω

2.10求图T 2-10所示系统的固有频率,刚性杆的质量忽略不计。

图 T 2-10

答案图 T 2-10

解:

m 的位置:A A x k mg

x x x +=

+=2

2 a F mgl 1=,a

mgl

F =

1,11ak mgl x =∴

l a x x A =1,1

22

1k a mgl x l a x A ==∴

x 1

x A

mg

k k a k l k a mg k a l k k a mgl k mg x x x A 2

122

212122212222 1+=???

?

??+=+=+=∴

2

2122

12k l k a k k a k e +=∴,m k e n

2.11 图T 2-11所示是一个倒置的摆。摆球质量为m ,刚杆质量可忽略,每个弹簧的刚

度为2

k

。 (1)求倒摆作微幅振动时的固有频率;

(2)摆球质量m 为0.9 kg 时,测得频率()n f 为1.5 Hz ,m 为1.8 kg 时,测得频率为0.75

Hz ,问摆球质量为多少千克时恰使系统处于不稳定平衡状态?

图 T 2-1

答案图 T 2-11(1)

答案图 T 2-11(2)

解:(1)

2222

121θ

θ&&ml I T ==

()()

()

2

22222

2

1

2121 cos 121212θθθθθmgl ka mgl ka mgl a k U -=-=--??

? ???=

利用max max U T =,max

max θωθn =& ???

? ??-=

-=-=12

2222mgl ka l g l

g

ml ka ml mgl ka n ω ----------------------------------------------------------------------------------------------------------------------

(2)

若取下面为平衡位置,求解如下:

θ

零平衡位置

2222

121θθ&&ml I T ==

()()

mgl

mgl ka mgl mgl ka mgl ka mgl a k U +-=-+=?

?? ??-+=+??? ???=222222222

2

1

2121 2sin 2121cos 21212θθθθθθθ ()0=+U T dt

d ,()02222=-+θθθθ&&&&mgl ka ml ()

022=-+θθmgl ka ml &&

2

2ml mgl

ka n -=

ω 2.17 图T 2-17所示的系统中,四个弹簧均未受力,k 1= k 2= k 3= k 4= k ,试问: (1)若将支承缓慢撤去,质量块将下落多少距离?

(2)若将支承突然撤去,质量块又将下落多少距离?

图 T 2-17

解:

k

k k k k k k k k k k k k k k k 2

1

32

24123412312342312311233223=+=

=+==+=

(1)01234x k mg =,k

mg

x 20=

(2)()t x t x n ωcos 0=,k

mg

x x 420max =

=

2.19 如图T 2-19所示,质量为m 2的均质圆盘在水平面上可作无滑动的滚动,鼓轮绕轴的转动惯量为I ,忽略绳子的弹性、质量及各轴承间的摩擦力,求此系统的固有频率。

图 T 2-19

解:

系统动能为:

2

2

22212

2

2222

2212

1 2321 2121212121x m x m R I m r x r m x m R x I x m T e &&&&&&=???

? ??++=???

???????? ????? ??++???? ??+=

系统动能为:

22

2221122

21

1222

1 21 2121x k x R R k k x R R k x k V e =

???? ??+=???

?

??+=

根据:

max max V T =,max max x x n ω=&

2

2212

221122

2

3m R I m R R k k n +++=

ω

2.20 如图T 2-20所示,刚性曲臂绕支点的转动惯量为I 0,求系统的固有频率。

图 T 2-20

解:

系统动能为:

()()

()2222102221202

1 2

12121θθθθ&&&&l m a m I l

m a m I T ++=++=

系统动能为:

()()()()2

2322212322212

1

2

12121θθθθb k l k a k b k l k a k V ++=++=

根据:

max max V T =,max

max θωθn =& 2

22102

322212l

m a m I b k l k a k n

++++=ω 2.24 一长度为l 、质量为m 的均匀刚性杆铰接于O 点并以弹簧和粘性阻尼器支承,如图T 2-24所示。写出运动微分方程,并求临界阻尼系数和无阻尼固有频率的表达式。

图 T 2-24

答案图 T 2-24

解: 利用动量矩方程,有:

l l c a a k J ?-?-=θθθ&&&,23

1ml J =

033222=++θθθka cl ml &&&

2

2

3ml

ka n =ω n ml cl ξω232

2

=,1=ξ 3

2332322

2mk

l a ml ka m m c n ===ω

2.25 图T 2-25所示的系统中,刚杆质量不计,写出运动微分方程,并求临界阻尼系数及阻尼固有频率。

图 T 2-25

答案图 T 2-25

解:

0=?+?+?b b k a a c l l m θθθ&&& 0222=++θθθkb ca ml &&&

m

k

l b ml kb n =

=22ω n ml ca ξω222=,k

m

mlb ca ml ca n 22222==ωξ

l &

《大学物理学》机械振动练习题

《大学物理学》机械振动自主学习材料 一、选择题 9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2 A - ,且向x 轴正方向运动, 代表此简谐运动的旋转矢量为( ) 【旋转矢量转法判断初相位的方法必须掌握】 9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( ) (A )22 2cos()3 3x t ππ=-; (B )2 22cos()33x t ππ=+ ; (C )4 22cos()33x t ππ=-; (D )4 22cos()33 x t ππ=+ 。 【考虑在1秒时间内旋转矢量转过 3 ππ+,有43 πω= 】 9-3.两个同周期简谐运动的振动曲线如图所示, 1x 的相位比2x 的相位( ) (A )落后 2 π ; (B )超前 2 π ; (C )落后π; (D )超前π。 【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】 9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A )2 ν ; (B )ν; (C )2ν; (D )4ν。 【考虑到动能的表达式为2 2 2 11sin () 2 2 k E m v kA t ω?= = +,出现平方项】 9-5.图中是两个简谐振动的曲线,若这两个简谐振动可 叠加,则合成的余弦振动的初相位为( ) (A )32 π; (B )2π ; (C )π; (D )0。 【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】 9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则 '/T T 为( ) ()A ()B () C ()D ) s 1 -2 -

《振动力学》习题集(含答案)【精选】精心总结

《振动力学》习题集(含答案) 1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。求系统的固有频率。 图E1.1 解: 系统的动能为: ()2 22 121x I l x m T += 其中I 为杆关于铰点的转动惯量: 2102120131l m dx x l m x dx l m I l l ??==?? ? ??= 则有: ()2212212236 16121x l m m x l m x ml T +=+= 系统的势能为: ()()()2 1212124 1 4121 cos 12cos 1glx m m glx m mglx x l g m x mgl U +=+=-? +-= 利用x x n ω= 和U T =可得: ()()l m m g m m n 113223++= ω

1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。求系统的固有频率。 图E1.2 解: 如图,令θ为柱体的转角,则系统的动能和势能分别为: 22222243212121θθθ mR mR mR I T B =??? ??+== ()[]()22 22 12θθa R k a R k U +=+?= 利用θωθn = 和U T =可得: ()m k R a R mR a R k n 34342 2 +=+=ω

1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。 求系统的固有频率。 图E1.3 解: 系统的动能为: 2 2 1θ J T = 2k 和3k 相当于串联,则有: 332232 , θθθθθk k =+= 以上两式联立可得: θθθθ3 22 33232 , k k k k k k +=+= 系统的势能为: ()2 32323212332222121212121θθθθ?? ????+++=++= k k k k k k k k k k U 利用θωθn = 和U T =可得: ()() 3232132k k J k k k k k n +++= ω

高等教育出版社_金尚年_马永利编著的理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案 第一章 1.2 afG — sin0) ;殳上运动的质点的微 afl - COS0) 分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解: 设s为质点沿摆线运动时的路程,取0=0时,s=0 H ( x = a(0-sine) * ly = —a(l — COS0) ds - J (dx)2 + (dy)2 二 J((i9 — COS0 亠de)2+(sirL9 de)2 = 2asin| 2a sin舟dO = 4 a (L co马 写出约束在铅直平面内的光滑摆线

ee A s=2acos^59 + 2asin?9 = acos| 9^ + 2a sin? 9 x轴的夹角,取逆时针为正,tan (p即切线斜率设(P为质点所在摆线位置处切线方向 与 dy cos 0 -1 tan

《机械振动与噪声学》习题集与答案

《机械振动噪声学》习题集 1-1 阐明下列概念,必要时可用插图。 (a) 振动; (b) 周期振动和周期; (c) 简谐振动。振幅、频率和相位角。 1-2 一简谐运动,振幅为 0.20 cm,周期为 s,求最大的速度和加速度。 1-3 一加速度计指示结构谐振在 82 Hz 时具有最大加速度 50 g,求其振动的振幅。 1-4 一简谐振动频率为 10 Hz,最大速度为 4.57 m/s,求其振幅、周期和最大加速度。 1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。即: A cos n t+ B cos (n t+ ) = C cos (n t+ ' ),并讨论=0、/2 和三种特例。 1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大 1-7 计算两简谐运动x1 = X1 cos t和x2 = X2 cos ( +

) t之和。其中 << 。如发生拍的现象,求其振幅和 拍频。 1-8 将下列复数写成指数A e i 形式: (a) 1 + i3(b) 2 (c) 3 / (3 - i ) (d) 5 i (e) 3 / (3 - i ) 2 (f) (3 + i ) (3 + 4 i ) (g) (3 - i ) (3 - 4 i ) (h) ( 2 i ) 2 + 3 i + 8 2-1 钢结构桌子的周期= s,今在桌子上放W = 30 N 的重 物,如图2-1所示。已知周期的变化= s。求:( a ) 放重物后桌子的周期;( b )桌子的质量和刚度。 2-2 如图2-2所示,长度为L、质量为m 的均质刚性杆由两根刚 度为k 的弹簧系住,求杆绕O点微幅振动的微分方程。 2-3 如图2-3所示,质量为m、半径为r的圆柱体,可沿水平面 作纯滚动,它的圆心O用刚度为k的弹簧相连,求系统的振动 微分方程。 图2-1 图2-2 图2-3

汽车振动分析试题1

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2 1121y m T = m 2动能:2222222 22 222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 323 33)2 1(21))(21(212 1y m R y R m J T === ω 系统势能: 2 21)21(21)21( y k y g m gy m V + +-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =+ +-++= +2 212 321) 2 1(2 12 1)2 13 1(2 1 上式求导,得系统的微分方程为: E y m m m k y '=+ + +) 2 131(4321 固有频率和周期为: ) 2 131(43210m m m k + + = ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2 212 1x m T = 轮子与地面接触点为速度瞬心,则轮心速度为x v c 2 1= ,角速度为x R 21=ω,转过的角度为x R 21= θ。轮子动能: )83(21)41)(21(21)4 1( 2 12 1212 122 21212 2 12x m x R R m x m J v m T c =+= + = ω 系统势能: x

振动理论课后答案

1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt; 由物体的受力分析,N = 0(极限状态) 物体不跳离平台的条件为:; 既有, , 由题意可知Hz,得到,mm。 1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。解: 设该简谐振动的方程为;二式平方和为 将数据代入上式: ; 联立求解得 A=10.69cm;1/s;T=s 当时,取最大,即:

得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。 1-3 一个机器内某零件的振动规律为 ,x的单位是cm,1/s 。这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: 振幅A=0.583 最大速度 最大加速度 1-4某仪器的振动规律为。此振动是否为简谐振动?试用x- t坐标画出运动图。 解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。

1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5t+) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:实部:cos(5t+ arctan) 虚部:sin(5t+ arctan) 1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x (t)可表示为 , 由式得

机械振动学习题解答大全

机械振动习题解答(四)·连续系统的振动 连续系统振动的公式小结: 1 自由振动分析 杆的拉压、轴的扭转、弦的弯曲振动微分方程 22 222y y c t x ??=?? (1) 此式为一维波动方程。式中,对杆,y 为轴向变形,c =;对轴,y 为扭转 角,c ;对弦,y 为弯曲挠度,c 令(,)()i t y x t Y x e ω=,Y (x )为振型函数,代入式(1)得 20, /Y k Y k c ω''+== (2) 式(2)的解为 12()cos sin Y x C kx C kx =+ (3) 将式(3)代入边界条件,可得频率方程,并由此求出各阶固有频率ωn ,及对应 的振型函数Y n (x )。可能的边界条件有 /00, 0/0p EA y x Y Y GI y x ??=??? ?'=?=????=???? 对杆,轴向力固定端自由端对轴,扭矩 (4) 类似地,梁的弯曲振动微分方程 24240y y A EI t x ρ??+=?? (5) 振型函数满足 (4)4420, A Y k Y k EI ρω-== (6) 式(6)的解为 1234()cos sin cosh sinh Y x C kx C kx C kx C kx =+++ (7) 梁的弯曲挠度y (x , t ),转角/y x θ=??,弯矩22/M EI y x =??,剪力 33//Q M x EI y x =??=??。所以梁的可能的边界条件有 000Y Y Y Y Y Y ''''''''======固定端,简支端,自由端 (8) 2 受迫振动 杆、轴、弦的受迫振动微分方程分别为 222222222222(,) (,), (,) p p u u A EA f x t t x J GI f x t J I t x y y T f x t t x ρθθ ρρ??=+????=+=????=+??杆:轴:弦: (9) 下面以弦为例。令1 (,)()()n n n y x t Y x t ?∞==∑,其中振型函数Y n (x )满足式(2)和式(3)。代入式(9)得 1 1 (,)n n n n n n Y T Y f x t ρ??∞ ∞ ==''-=∑∑ (10) 考虑到式(2),式(10)可改写为 21 1 (,)n n n n n n n Y T k Y f x t ρ??∞ ∞ ==+=∑∑ (11) 对式(11)两边乘以Y m ,再对x 沿长度积分,并利用振型函数的正交性,得 2220 (,)l l l n n n n n n Y dx Tk Y dx Y f x t dx ρ??+=???

振动力学》习题集(含答案)

《振动力学》习题集(含答案) 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图所示。求系统的固有频率。 图 解: 系统的动能为: ()22 2 121x I l x m T &&+= 其中I 为杆关于铰点的转动惯量: 2102120131l m dx x l m x dx l m I l l ??==?? ? ??= 则有: ()2 212212236 16121x l m m x l m x ml T &&&+=+= 系统的势能为: ()()()2 1212124 1 4121 cos 12 cos 1glx m m glx m mglx x l g m x mgl U +=+=-? +-= 利用x x n ω=&和U T =可得: ()()l m m g m m n 113223++= ω

质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图所示。求系统的固有频率。 图 解: 如图,令θ为柱体的转角,则系统的动能和势能分别为: 2222224321212 1θθθ&&&mR mR mR I T B =?? ? ??+== ()[]()22 22 12θθa R k a R k U +=+?= 利用θωθ n =&和U T =可得: ()m k R a R mR a R k n 34342 2 +=+=ω

转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图所示。求系统 的固有频率。 图 解: 系统的动能为: 22 1θ& J T = 2k 和3k 相当于串联,则有: 332232 , θθθθθk k =+= 以上两式联立可得: θθθθ3 22 33232 , k k k k k k +=+= 系统的势能为: ()232323212 332222*********θθθθ?? ????+++=++=k k k k k k k k k k U 利用θωθ n =&和U T =可得: ()() 3232132k k J k k k k k n +++= ω

车辆悬架振动分析

车辆悬架系统振动研究概述 关键词:振动悬架 摘要: 本文简单介绍了车辆振动的相关知识,对其做了简明的分析,由于篇幅有限故只重点介绍了与车辆悬架相关的知识。根据不同结构悬架的特点,分别介绍与其相关的振动研究内容和成果。 引言 悬架系统是提高车辆平顺性(乘座舒适性)和安全性(操纵稳定性)、减少动载荷引起零部件损坏的关键,。自70年代以来,工业发达国家开始研究基于振动主动控制的主动/半主动悬架系统。引入主动控制技术后的悬架是一类复杂的非线性机、电、液动力系统,其研究进展和开发应用与机械动力学、流体传动与控制、测控技术、计算机技术、电子技术、材料科学等多个学科的发展紧密相关。为此,关于车辆悬架系统振动的研究比较困难,但是其又具有十分重要的实际意义。一、车辆悬架系统简介 悬架系统的作用主要是连接车桥和车架,传递二者之间的作用力和力矩以及抑制并减少由于路面不平而引起的振动,保持车身和车轮之间正确的运动关系,保证汽车的行驶平顺性和操纵稳定性。 悬架系统一般由弹性元件、减振器和导向装置等组成。其中,弹性元件的作用是承受和传递垂直载荷,缓冲并抑制不平路面所引起的冲击。按弹性元件分类包括钢板弹簧悬架、螺旋弹簧悬架、扭杆弹簧悬架以及气体弹簧悬架。钢板弹簧是1根由若干片等宽但不等长的合金弹簧片组合而成的近似等强度的弹性梁,多数情况下由多片弹簧组成。多片式钢板弹簧可以同时起到缓冲、减振、导向和传力的作用,可以不装减振器而用于货车后悬架。螺旋弹簧用弹簧钢棒料卷制而成,常用于各种独立悬架。其特点是没有减振和导向功能,只能承受垂直载荷。扭杆弹簧本身是1根由弹簧钢制成的杆,一端固定在车架上,另一端固定在悬架的摆臂上。气体弹簧是在1个密封的容器中冲入压缩气体,利用气体可压缩性实现弹簧的作用。气体弹簧具有理想的变刚度特性。气体弹簧有空气弹簧和油气弹簧2种。

振动理论课后答案

精心整理 1-1???一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt????; ???????? 既有 , ,得到,mm 有一作简谐振动的物体,它通过距离平衡位置为cm 解: 设该简谐振动的方程为; ; A=10.69cm;1/s;T=s 当时,取最大,即: 得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。

1-3?一个机器内某零件的振动规律为,x的单位是cm,1/s?。 这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: ????????振幅A=0.583 ??????最大速度??? 已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式, 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:?实部:cos(5t+?arctan) ????????????????????????????????????虚部:sin(5t+?arctan)

1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x?(t)可表示为 ?, 由式得??????????????????????????????????????????????????????????n=1,2,3…… 1-7 , ,???? ?????; ?????P(t)平均值为0

机械振动学试题库

《机械振动学》课程习题库 第一章 1.1 何谓机械振动?表示物体运动特征的物理量有哪些? 1.2 按产生振动的原因分为几类?按振动的规律分为几类? 1.3 何谓线性系统、机械系统和等效系统? 1.4 如何理解瞬态振动、稳态振动、自由振动、强迫振动、纵向振动。横向振动、扭转振 动、参数振动和非线性振动? 1.5 写出频率、角频率、相位、幅值、有阻尼固有频率,并说明意义,注明单位值。 1.6 如何理解粘性阻尼系数、等效阻尼、临界阻尼系数、欠阻尼和过阻尼? 1.7 振动对机械产品有哪些影响? 1.8 利用振动原理而工作的机电设备有哪些?试举例说明。 1.9 重温非简谐的周期性振动傅里叶级数,时间函数为f(t),其周期为T ,表达式为: )s i n c o s ()(1 0t n b t n an a t f n n ωω++=?∞ = 式中:?= T dt t f T a 0 0)(1 ?=T n tdt n t f T a 0 cos )(2 ω ?=T n tdt n t f T b 0 sin )(2 ω 注:《手册》P9 1.10将下图所示的f(t)展成傅立叶级数。 参考答案:()∑∞== =5.2.1sin 1 440t n p t f n p b n b n n n ωππ 傅氏级数为奇数时,,当为偶数时,当 f(t) P 0 -P π/ω 2π/ω 3π/ω 4π/ω t

1.11今有一简谐位移x(t)(mm),其表达式为:()=8sin(24 -),3 x t t π 求: 1. 振动的频率和周期; 2. 最大位移、最大速度和最大加速度; 3. t=0时的位移、速度和加速度; 4. t=1.5s 时的位移、速度和加速度。 参考答案:24rad/s ,3.82Hz ,0.2618s ;192mm/s ,4608mm/s 2;-6.9282mm ,96mm/s ,3990.65 mm/s 2 ;-3.253mm ,175.4mm/s ,1874 mm/s 2 1.12一振动体作频率为50Hz 的简谐振动,测得其加速度为80 m/s 2 ,求它的位移幅值和 速度幅值。 参考答案:0.8/mm ,254.34mm/s 。 1.13 一简谐振动的频率为10Hz ,最大速度4.57m/s ,求它的振幅、周期和最大加速度。 参考答案:0.073m ,0.1s ,287.9m/s 2 1.14 求图中刚性杆的振动系统中自由度的数目,并规定出该系统中所用的广义坐标系。 1.15 分析如图所示的机械系统,试求所需的自由度数目,并规定出该系统中所用的坐标系。 1.16 在对所示机械系统进行分析时,试求所用到的自由度数目,并规定一套系统振动分析时所用到的广义坐标系。 题1.14 图 题1.15 图

汽车振动分析作业习题与参考答案(更新)

1、 方波振动信号的谐波分析,00,02 (),2 T x t x t T x t T ? <

相位频谱图 1tan 0,1,3,5 n n n a n b φ -?? ===?????? ??? 2、 求周期性矩形脉冲波的复数形式的傅立叶级数,绘频谱图。 解: 数学表达式:

计算三要素: 傅立叶级数复数形式: 频谱图 00 00,0sin ,0,n x t n T A x n t n n n T ππ?=??=? ?≠-∞<<∞?? ()???? ?????≤≤≤≤--≤≤-=2 202222000 00 T t t t t t x t t T t x 偶函数 T x t a 0002=2sin 2010t n n x a n ωπ?=0 =n b 2 sin 22010t n n x a ib a X n n n n ωπ?==-=()2sin 1101012/2/02/2/102/2 /02/2/010********t n n x t in e e T x t in e T x dt e x T dt e t x T X t in t in t t t in t in t t t in T T n ωπωωωωωωω?=--?=-?=??=??=-------? ?T t x t n n x X n 0 0010002sin lim =?=→ωπ()∑ ∑ ∞-∞=∞-∞===n t in n t in n e n t n x e X t x 112sin 0 10ωωωπ

振动习题答案分解

《振动力学》——习题 第二章 单自由度系统的自由振动 2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。试求2W 下降的最大距离和两物体碰撞后的运动规律。 解: 2 22221v g W h W = ,gh v 22= 动量守恒: 122 122v g W W v g W +=,gh W W W v 221212+= 平衡位置: 11kx W =,k W x 1 1= 1221kx W W =+,k W W x 2 112+= 故: k W x x x 2 1120= -= ()2 121W W kg g W W k n +=+= ω 故: t v t x t x t x x n n n n n n ωωωωωωsin cos sin cos 12 000+ -=+-= x x 0 x 1 x 12 平衡位置

2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2a θ=h α 2F =mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ 其中 1 2c o s s i n ≈≈θ αα h l ga p h a mg ml n 2 22 22304121==?+θθ g h a l ga h l p T n 3π23π2π22 2= == 2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。试求 其摆动的固有频率。

振动理论练习题

振动理论练习题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

第1章练习题 题已知一弹簧质量系统的振动规律为x(t)=?t+?t (cm), 式中,?=10? (1/s)。 (1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题如题图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题图题图 题一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题如题图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题图题图 题如题图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角?,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题利用等效质量与刚度的概念求解题图示系统的固有频率。AB杆为刚性,本身质量不计。 题图题图 题两缸发动机的曲轴臂及飞轮如题图所示,曲轴相当于在半径r处有偏心质量m e,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r,求平衡配重所需质量。

题 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由减少到。求此系统的相对阻尼系数?。 题 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%(3)衰减振动的周期是多少与不安装缓冲器时的振动周期作比较。 题 如题图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题图 题图 题 求题图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题 弹簧质量系统30o 光滑斜面降落,如题图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少 题图 题图 题 无阻尼单自由度质量弹簧m-k 系统,受题图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1)(000 t t t t t t x t x n n n n s -+--=ωωωω。 题 如题图,为车辆行驶通过曲线路面模型,设道路曲面方程为:)2cos 1(x l a y s π -=,求: 1)车辆通过曲线路面时的振动;2)车辆通过曲线路面后的振动。 题图 题图

机械振动习题及答案

一、 选择题 1、一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动按余弦函数描述,则其初相为 [ D ] (A )6π (B) 56π (C) 56π- (D) 6π- (E) 23 π- 2、已知一质点沿y 轴作简谐振动,如图所示。其振动方程为3cos()4y A t πω=+ ,与之对应的振动曲线为 [ B ] 3、一质点作简谐振动,振幅为A ,周期为T ,则质点从平衡位置运动到离最大振幅2 A 处需最短时间为 [ B ] (A ) ;4T (B) ;6T (C) ;8T (D) .12 T 4、如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为m 4的物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为m 的物体,此三个系统振动周期之比为 (A);2 1:2:1 (B) ;2:21:1 [ C ] (C) ;21:2:1 (D) .4 1:2:1 5、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取坐标原点。若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为 (A);1s (B) ;32s (C) ;3 4s (D) .2s [ B ] 6、一长度为l ,劲度系数为k 的均匀轻弹簧分割成长度分别为21,l l 的两部分,且21nl l =,则相应的劲度系数1k ,2k 为 [ C ] (A );)1(,121k n k k n n k +=+= (B );1 1,121k n k k n n k +=+= (C) ;)1(,121k n k k n n k +=+= (D) .1 1,121k n k k n n k +=+= 7、对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A ) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B ) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C ) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D ) 物体处于负方向的端点时,速度最大,加速度为零。 8、 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 2 1,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]

机械振动2015试题及参考答案-1

中南大学考试试卷(A卷) 2015 - 2016学年上学期时间110分钟 《机械振动基础》课程 32 学时 2 学分考试形式:闭卷专业年级:机械13级总分100分,占总评成绩 70 % 注:此页不作答题纸,请将答案写在答题纸上 1、简述机械振动定义,以及产生的内在原因。 (10分) 答:机械振动指机械或结构在它的静平衡位置附近的往复弹性运动。(5分)产生机械振动的内在原因是系统本身具有在振动时储存动能和势能,而且释放动能和势能并能使动能和势能相互转换的能力。(5分) 2、简述随机振动问题的求解方法,随机过程基本的数字特征包括哪些? (10分) 答:随机振动问题只能用概率统计方法来求解,只能知道系统激励和相应的统计值(5分)。 随机过程基本的数字特征包括:均值、方差、自相关函数、互相关函数。(5分) 3、阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么? (10分) 答:阻尼消耗振动系统的能量,它使自由振动系统的振动幅值快速减小(5分)。增加黏性阻尼量,可使指针快速回零位(5分)。 4、简述求解周期强迫振动和瞬态强迫振动问题的方法。

(10分) 答:求解周期强迫振动时,可利用傅里叶级数将周期激励力转化为简谐激励力,然后利用简谐激励情况下的周期解叠加,可以得到周期强迫振动的解(5分)。求解瞬态强迫振动的解时,利用脉冲激励后的自由振动函数,即单位脉冲响应函数,与瞬态激励外力进行卷积积分,可以求得瞬态激励响应(5分)。周期强迫振动和瞬态强迫振动,也可以通过傅里叶积分变换、拉普拉斯积分变换来求解。 5、如图1所示,系统中质量m 位于硬质杆2L (杆质量忽略)的中心,阻尼器的阻尼系数为c ,弹簧弹性系数为k , (1)建立此系统的运动微分方程; (5分) (2)求出临界阻尼系数表示式; (5分) (3)阻尼振动的固有频率表示式。 (5分) 答:(1)可以用力矩平衡方法列写平衡方程,也可以用能量方法列写方程,广义坐标可以选质量块的垂直直线运动,也可以选择杆的摆角,以质量块直线运动坐标为例,动能212T E mx =&,势能21(2)2U k x =,能量耗散2 12 D cx =&,由222,,T T ij ij ij i j i j i j E D U m c k x x x x x x ???=== ??????,得到:40mx cx kx ++=&&&; (2 )e c == (3 )d n ω== 6、如图2所示系统,两个圆盘的直径均为r ,设I 12,k 12,k 3=3k , (1)选取适当的坐标,求出系统动能、势能函数; (5分) (2)求出系统的质量矩阵、刚度矩阵; (5分) (3)写出该系统自由振动时运动微分方程。 (5分)

机械振动试题 (4)

北京工业大学2009—2010学年第1学期 研究生《机械振动学》 考试试卷 一、求图示单自由度系统的固有频率。(15分) 说明:1、图中K θ为扭转弹簧的刚度;2、杆的质量不计;3、静平衡时质量M 处于垂直向下 解:如图,设小球转动方程sin n t θθω=, 则系统的动能和势能分别为: 222222max 111 222 n T Mv M L M L θωθ= == 222max 11(1cos )2sin 222 V K MgL K MgL θθθθθθ= +-=+ 由于θ很小,sin 2 2 θ θ ≈ 由max max T V = 可得:n ω= 二、一位移传感器的固有频率为4Hz ,无阻尼,用以测量频率为12Hz 的简谐振动、测得振幅为0.275cm , 问实际振幅为多少?若加入一阻尼器,阻尼比为0.7,问测得的振幅为多少,误差为多少?(15分) 解: 仪器振动属于强迫振动,则相对位移的幅值为:2 z y = 频率比12 34 = n ωγω==,无阻尼0ξ=,0.275z cm =代入数据得:0.244y cm = 加阻尼后0.7ξ=,代入数据得:10.243z cm = 误差:10.2440.243 100%100%0.41%0.244 y z y --?=?= 三、求图示三自由度系统振动的固有频率与振型,画出振型图。 解:取质量块123,,m m m 的水平位移123,,x x x 为广义坐标,则由影响系数法列出质量和刚度矩阵为 111M m ?? ?= ? ???,210121012K k -?? ?=-- ? ?-?? 求出特征值:()0K M u λ-=,即{}{}202002k m k k k m k u k k m λλλ--?? ? ---= ? ?--??

机械振动综合试题及答案

第11章 机械振动 单元测试 一、选择题(本题共10小题海小题4分,共40分?在每小题给出地四个选项中 ,有地只 有一个选项正确,有地有多个选项正确,把正确选项前地字母填在题后地括号内?全部选对地 得4分,选对但不全地得2分,有选错或不答地得 0分) 1?一质点做简谐运动,则下列说法中正确地是( ) A ?若位移为负值,则速度一定为正值,加速度也一定为正值 B ?质点通过平衡位置时,速度为零,加速度最大 3?一质点做简谐运动地振动图象如图 2所示,质点地速度与加速度方向相同地时间段是 ( ) A ? 0?0.3 s B ? 0.3?0.6 s C . 0.6?0.9 s D . 0.9?1.2 s 4?一个弹簧振子放在光滑地水平桌面上 ,第一次把它从平衡位置拉开距离为 d ,释放后 做 简谐运动,振动频率为f ;第二次把它从平衡位置拉开距离为 3d ,释放后仍做简谐运动,其振动 频率为f 2.则f 1 : f 2等于( ) A . 1 : 3 B . 3 : 1 C . 1 : 1 D. . 3 : 1 5. 自由摆动地秋千,摆动地振幅越来越小,下列说法正确地是( ) A .机械能守恒 B .总能量守恒,机械能减小 C .能量正在消失 D .只有动能和势能地转化 6如图3所示,一质点做简谐运动,先后以相同地速度依次通过 A 、B 两点,历时1 s 质点通 过B 点后再经过1 s 又第2次通过B 点,在这2 s 内质点通过地总路程为 12 cm.则质点地振动 周期和振幅分别为() A . 3 s ,6 cm B . 4 s ,6 cm C . 4 s ,9 cm D . 2 s ,8 cm A 0 11 图3 7.如图 4 所示,光滑槽半径远大于小球运动地弧长 ,今有两个小球同时由图示位置从静止释放 则它们第一次相遇地地点是 ( ) C .质点每次通过平衡位置时 D ?质点每次通过同一位置时 ,加速度不一定相同 ,速度也不一定相 同 2.如图1所示是一做简谐运动物体地振动图象 ,由图象可知物体速度最大地时刻是 C. t 3 D. t 4 ( A . t 2 图4

振动力学参考答案

请打双面 习题与综合训练第一章 2-1一单层房屋结构可简化为题2-1图所示的模型,房顶质量为m,视为一刚性杆;柱子 高h,视为无质量的弹性杆, 其抗弯刚度为EJ。求该房屋 作水平方向振动时的固有 频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 其中为两根杆的静形变量,由材料力学易知 = 则= 设静平衡位置水平向右为正方向,则有 所以固有频率 2-2一均质等直杆,长为 l,重量为W,用两根长h的相同的铅垂线悬挂成水平位置,如题2-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ θ=hα 2F=mg 由动量矩定理: 其中 2-3求题2-3图中系统的固有频率,悬臂梁端点的刚度分别是和,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分 别为k1和k3的弹簧,因此,k1 与k2串联,设总刚度为k1ˊ。 k 1 ˊ与k3并联,设总刚度为k2 ˊ。k2ˊ与k4串联,设总刚度 为k。即为 ,, mg kδ =δ δ 3 24 mgh EJ = k3 24EJ h " m x kx =- 3 n 24 mh EJ p= 2 a a h a mg a mg Fa M ml I M I 8 2 2 cos sin 12 1 2 2 - = - ≈ ? - = == = α θ α θ&& 1 2 cos sin≈ ≈ θ α α h l ga p h a mg ml n2 2 2 2 2 3 4 12 1 = = ? +θ θ&& g h a l ga h l p T n 3 π2 3 π2 π2 2 2 = = = 1 k3k 2 1 2 1 1k k k k k + = ' 2 1 2 1 3 2k k k k k k + + = ' 4 2 4 1 2 1 3 2 3 1 4 2 1 4 3 2 4 2 1 k k k k k k k k k k k k k k k k k k k k + + + + + + = θ F sinα 2 θ α F h mg θ F

机械振动学机械振动学考试卷模拟考试题.docx

《机械振动学》 考试时间:120分钟 考试总分:100分 遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。 1、机械振动系统的固有频率与哪些因素有关?关系如何?( ) 2、简述无阻尼单自由度系统共振的能量集聚过程。( ) 3、什么是共振,并从能量角度简述共振的形成过程。( ) 4、简述线性系统在振动过程中动能和势能之间的关系。( ) 5、什么是机械振动?振动发生的内在原因是什么?外在原因是什么?( ) 姓名:________________ 班级:________________ 学号:________________ --------------------密----------------------------------封 ----------------------------------------------线-------------------------

6、简述线性多自由度系统动力响应分析方法。() 7、 简述确定性振动和随机振动的区别,并说明工程上常见的随机过程的 数字特征有哪些;各态遍历随机过程的主要特点。
() 8、简述随机振动问题的求解方法,以及与周期振动问题求解的区别。() 9、简述确定性振动和随机振动的区别,并举例说明。() 10、离散振动系统的三个最基本元素是什么?简述它们在线性振动条件下的基 本特征。() 11、简述非周期强迫振动的处理方法。() 12、用数学变换方法求解振动问题的方法包括哪几种?有什么区别?()

13、简述动力响应分析中采用振型叠加方法的基本过程。() 14、简述线性系统在振动过程中动能和势能之间的关系。() 15、当振动系统受到周期激励作用时,简述系统响应的求解方法。() 16、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。() 17、在离散系统中,弹性元件储存(),惯性元件储存(),()元件耗散能量。() 18、周期运动的最简单形式是(),它是时间的单一()或()函数。 ()

相关主题
文本预览
相关文档 最新文档