当前位置:文档之家› 用于DC-DC变换器的数字控制器的研究与设计

用于DC-DC变换器的数字控制器的研究与设计

用于DC-DC变换器的数字控制器的研究与设计
用于DC-DC变换器的数字控制器的研究与设计

双向DCDC变换器设计

用于锂电池化成系统的桥式DC/DC变换器.......................... 错误!未定义书签。1引言.. (2) 2 双向H桥DC/DC变换器拓扑分析................................ 错误!未定义书签。 双向DC/DC变换器 (3) 双向H桥DC/DC变换器结构分析 (3) 双向H桥DC/DC变换器工作状态分析 (4) 正向工作状态模型分析 (4) 反向工作状态模型分析 (4) 3 硬件电路分析设计............................................ 错误!未定义书签。 器件参数选择分析 (5) 主开关管的选择 (5) 滤波电感参数的计算 (6) 硬件电路分析设计 (6) 驱动电路分析设计 (6) 4 系统结构与控制 (9) 系统结构 (9) 控制系统结构 (9) DC/DC变换器控制方法 (10) 电压控制模式 (10) 电流控制模式 (10) 软件设计 (10) 5 实验调试与结果分析 (11) 实验平台搭建 (11) 样机调试 (12) 供电电源调试 (12) 驱动信号调试 (12) 单片机程序,VB工程调试 (13) 保护与采样电路测试 (14) 开环、闭环测试 (15) 小结 (17) 6 总结 (17) 7 谢辞 (17) 参考文献...................................................... 错误!未定义书签。用于锂电池化成系统的桥式DC/DC变换器 摘要:随着锂电池在生活中各个方面的广泛普及,锂电池在生产过程中重要的化成环节逐渐成为关注的焦点。本文主要设计介绍了使用于锂电池化成系统的桥式变换器部分,包含计算机监控、DC/DC双向变换器。双向DC/DC变换器通过调节MOSFET的占空比,实现对锂电池的智能充放电。本文对双向DC/DC变换器的工作原理进行了分析,并通过样机对预期功能进行验证。 关键字:电池化成;双向DC/DC变换器;实验分析 Abstract:As the lithium battery becomes more and more popular in every aspects of

基于FPGA的直接数字频率合成器设计

1 JANGSU UNIVERSITY OF TECHNOLOGY FPGA技术实验报告基于FPGA的直接数字频率合成器设计 学院:电气信息工程学院 专业:电子信息工程 班级: 姓名: 学号: 指导教师:戴霞娟、陈海忠 时间: 2015.9.24

1 目录 绪论.......................................................................................... 错误!未定义书签。 一、背景与意义 (2) 二、设计要求与整体设计 (2) 2.1 设计要求 (2) 2.2 数字信号发生器的系统组成 (3) 2.3 DDS技术 (3) 三、硬件电路设计及原理分析 (4) 3.1 硬件电路设计图 (4) 3.2 设计原理 (5) 四、程序模块设计、仿真结果及分析 (5) 4.1顶层模块设计 (6) 4.2分频模块设计 (6) 4.3时钟模块设计 (11) 4.4数据选择模块设计 (12) 4.5正弦波产生模块设计........................................................ 错误!未定义书签。 4.6三角波产生模块设计 (15) 4.7方波产生模块设计............................................................ 错误!未定义书签。 4.8锯齿波模块设计 (18) 五、软硬件调试 (21) 5.1正弦波 (22) 5.2锯齿波 (22) 5.3方波 (23) 5.4三角 (23) 六、调试结果说明及故障分析 (24) 七、心得体会 (24) 八、参考文献 (25) 九、附录 (25)

直接数字频率合成器DDS研究设计毕业论文

直接数字频率合成器DDS研究设计毕业论文 目录 1. 引言 (1) 1.1 频率合成器的研究背景 (1) 1.2频率合成器的研究现状 (1) 2. 频率合成技术 (3) 2.1频率合成技术概述 (3) 2.2频率合成器的主要指标 (3) 2.3频率合成的基本方法 (5) 2.4 频率合成器的长期频率稳定度和相位噪声 (5) 2.4.1长期频率稳定度 (5) 2.4.2 相位噪声 (6) 2.4.3噪声来源 (7) 3. 直接频率合成(DS)技术 (8) 3.1 直接频率合成器的基本原理和组成 (8) 3.2直接频率合成器的几个主要组成电路 (9) 3.2.1混频器 (9) 3.2.2倍频器 (11) 3.2.3分频器 (12) 3.2.5石英晶体振荡器 (14) 4. 直接数字频率合成(DDS)技术 (17) 4.1 直接数字频率合成的组成及其特点 (17) 4.2 直接数字频率合成的基本原理 (19) 4.3 直接数字频率合成的相位噪声和杂散 (20) 4.3.1 直接数字频率合成的相位噪声 (20) 4.3.2 直接数字频率合成的杂散分析 (21) 4.3.3 降低杂散电平的方法 (21) 4.4 集成直接数字频率合成器的芯片介绍 (23) 5. 直接数字频率合成器的设计 (26) 5.1 DDS芯片在跳频系统中应用的总体框图 (26)

5.2 控制模块 (26) 5.2.1 AT89C51引脚说明 (26) 5.2.2 单片机外围电路设计 (28) 5.3 频率合成模块 (29) 5.3.1 AD9852的引脚说明 (29) 5.4电平转换模块 (32) 5.5低通滤波模块 (33) 5.6 放大电路 (35) 结束语 (36) 致谢 (37) 参考文献 (38)

双向DC-DC变换器设计-全国大学生电子设计竞赛

2015年全国大学生电子设计竞赛 双向DC-DC变换器(A题) 学号:1440720117 吕刚 2015年12月30日

摘要 本设计主要由双向DC-DC变换电路、测控显示电路、辅助电源三部分构成,其中双向DC-DC变换电路降压部分采用XL4016开关降压型DC-DC转换芯片,最高转换效率可达93%,升压部分采用XL6019开关型升压/降压芯片,具有低纹波,输入范围广,转换效率高的特点。恒流部分采用PWM控制原理,形成一个闭环回路,控制电流恒定,恒压部分完全由硬件控制,单片机辅助控制的方式。以上部分确保系统满足题目要求,实现恒流充电,恒压放电,过压保护功能,并且有着较高的转换效率。 在本次设计中恒压部分完全有硬件控制,硬件自身形成一个闭环控制回路,对电压进行调节使其恒定题目要求的精度范围。单片机通过光耦电路的工作与停止,恒流部分由PWM调节占空比,使其恒流。 关键字电池充放电升压降压XL4016 XL6019 STM32

目录 一、系统方案 (1) 1、双向DC-DC变换电路的论证与选择 (1) 2、测量控制方案和辅助电源的论证与选择 (1) 3、控制方法的论证与选择 (1) 二、系统理论分析与计算 (2) 三、电路与程序设计 (3) 1、电路的设计 (3) (1)系统总体框图 (3) 2、程序的设计 (5) (1)程序功能描述与设计思路 (5) (2)程序流程图 (6) 3、程序流程图 (7) 四、测试仪器与数据分析 (7) 附录1:电路原理图 (9) 附录2:源程序 (10)

双向DC-DC变换器(A题) 【本科组】 一、系统方案 本设计主要由双向DC-DC变换电路、测控显示电路、辅助电源三部分构成,其中双向DC-DC变换电路降压部分采用XL4016开关降压型DC-DC转换芯片,最高转换效率可达93%,升压部分采用XL6019开关型升压/降压芯片,具有低纹波,输入范围广,转换效率高的特点。恒流部分采用PWM控制原理,形成一个闭环回路,控制电流恒定,恒压部分完全由硬件控制,单片机辅助控制的方式。以上部分确保系统满足题目要求,实现恒流充电,恒压放电,过压保护功能,并且有着较高的转换效率。 1、双向DC-DC变换电路的论证与选择 方案1:由降压斩波变换电路(即Buck变换电路)和升压斩波变换电路(即Boost 电路)组成双向DC-DC变换电路,分别各使用一个全控型器件VT(IGBT或MOSFET),对输入直流电源进行斩波控制通过调整全控型器件VT的控制信号占空比来调整输出电压。 方案2:采用XL4016开关型降压芯片和XL6019开关型升压/降压芯片构成升压、降压电路具有低纹波,内助功率MOS,具有较高的输入电压范围,内置过电流保护功能与EN引脚逻辑电平关断功能。 综合以上两种方案,考虑到时间的限制,选择了比较容易实现的方案2。 2、测量控制方案和辅助电源的论证与选择 由于瑞萨单片机开发套件数量有限,所以我们选择了一款相对便宜,速度快,性价比较高的STM32103V8T6作为控制器,显示部分由于收到题目对作品重量的要求,选择了质量轻,分辨率较高的0.96寸OLED屏幕显示。由于市场上所售开关电源模块的,纹波大的因素,所以辅助电源选择了一个较小的9V变压器,进行,整流滤波作为辅助电源。 3、控制方法的论证与选择 方案1:采用PWM调节占空比的方法控制降压芯片的控制端,达到控制恒流和控制恒压的目的,采用PWM调节软件较为复杂,而且PWM调节较为缓慢,软件控制难度大。 方案2:恒压部分完全有硬件控制,硬件自身形成一个闭环控制回路,对电压进行调节使其恒定题目要求的精度范围。单片机通过光耦电路的工作与停止,恒流部分由PWM调节占空比,使其恒流。 综合以上两种方案,选择软件较为简单,硬件较为复杂的方案2。

数字PID控制器设计

数字PID控制器设计 实验报告 学院电子信息学院 专业电气工程及其自动化学号 姓名 指导教师杨奕飞

数字PID控制器设计报告 一.设计目的 采用增量算法实现该PID控制器。 二.设计要求 掌握PID设计方法及MATLAB设计仿真。 三.设计任务 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于,超调量不大于20%,调节时间不大于。采用增量算法实现该PID控制器。 四.设计原理 数字PID原理结构图 PID控制器的数学描述为:

式中,Kp为比例系数;T1为积分时间常数;T D为微分时间常数。 设u(k)为第K次采样时刻控制器的输出值,可得离散的PID表达式为:? 使用模拟控制器离散化的方法,将理想模拟PID控制器D(s)转化为响应的理想数字PID控制器D(z).采用后向差分法,得到数字控制器的脉冲传递函数。

2.增量式PID控制算法 u(k)=u(k-1)+Δu(k) 增量式PID控制系统框图 五.Matlab仿真选择数字PID参数 利用扩充临界比例带法选择数字PID参数,扩充临界比例带法是以模拟PID调节器中使用的临界比例带法为基础的一种数字PID参数

的整定方法。其整定步骤如下 1)选择合适的采样周期T:,因为Tmin<1/10 T,选择采样周期为; 2)在纯比例的作用下,给定输入阶跃变化时,逐渐加大比例作用 Kp(即减小比例带δ),直至系统出现等幅震荡,记录比例增益 Kr,及振荡周期Tr 。Kr成为临界振荡比例增益(对应的临界比 例带δ),Tr成为临界振荡周期。 在Matlab中输入如下程序? G=tf(1,[1/150,36/150,185/150,1]); p=[35:2:45]; for i=1:length(p) Gc=feedback(p(i)*G,1); step(Gc),hold on end; axis([0,3,0,]) 得到如下所示图形: 改变其中的参数P=[35:2:45]为p=[40:1:45]得到下图曲线,得Kr约为43,Tr

外文翻译---关于直接数字频率合成器

All About Direct Digital Synthesis What is Direct Digital Synthesis? Direct digital synthesis (DDS) is a method of producing an analog waveform —usually a sine wave —by generating a time-varying signal in digital form and then performing a digital-to-analog conversion. Because operations within a DDS device are primarily digital, it can offer fast switching between output frequencies, fine frequency resolution, and operation over a broad spectrum of frequencies. With advances in design and process technology, today’s DDS devices are very compact and draw little power. Why would one use a direct digital synthesizer (DDS)? Aren’t there other methods for easily generating frequencies? The ability to accurately produce and control waveforms of various frequencies and profiles has become a key requirement common to a number of industries. Whether providing agile sources of low-phase-noise variable-frequencies with good spurious performance for communications, or simply generating a frequency stimulus in industrial or biomedical test equipment applications, convenience, compactness, and low cost are important design considerations. Many possibilities for frequency generation are open to a designer, ranging from phase-locked-loop (PLL)-based techniques for very high-frequency synthesis, to dynamic programming of digital-to-analog converter (DAC) outputs to generate arbitrary waveforms at lower frequencies. But the DDS technique is rapidly gaining acceptance for solving frequency- (or waveform) generation requirements in both communications and industrial applications because single-chip IC devices can generate programmable analog output waveforms simply and with high resolution and accuracy. Furthermore, the continual improvements in both process technolog y and design have resulted in cost and power consumption levels that were previously unthinkably low. For example, the AD9833, a DDS-based programmable waveform generator (Figure 1), operating Figure 1. The AD9833-a one-chip waveform generator.

A题双向DC-DC

A 双向 DC-DC 变换器
摘要:本设计实现了一种基于 MSP430F2616 单片机的可程控双向 DC-DC 变换器。 系统由 18650 电池组、直流稳压电源充电电路、同步 Boost-Buck 电路、滤波电 路、辅助电源、单片机、键盘、AD 转换电路、显示器等电路组成。充电模式下, 输入为 30V 直流电,通过同步降压拓扑结构形成稳定的约 20V 的直流电压,该直 流电压经过程控降压模块实现可程控输出电流。电流经过二次滤除纹波可得到稳 定的电流输出。放电模式下,通过同步升压拓扑结构形成稳定的 30V 电压输出。 同时该电源变换器具过充保护的功能,提高了电源的安全性和稳定性。本电源效 率高、步进精度高、输出电流稳定、安全性高、重量小轻便可携带;通过按键与 显示器实现人机交互,人机交互友好。 关键字:DC-DC,恒流,效率

1 方案论证
变换器设计方案
题目要求电池组在充电模式下,输入直流电为 24~36V 的条件下可以输出恒
流 2A,放电模式可以输出恒压 30V,所以本次设计需要利用双向 DC-DC 拓扑结构。
方案一:采用隔离型 DC-DC 双向变换器。借鉴非隔离单向变换器中反并联开
关管或二极管,以构成非隔离双向变换器的思想,也可以从隔离型单向变换器演
变得到隔离型正激双向 DC-DC 变换器。该方案在需要电气隔离的场合应用比较广
泛。
方案二:采用全桥 DC-DC 双向变换器。通过移相可使控制其开关器件实现零
电压开关。开关器件的电压、电流应尽量小;变压器为双向励磁,利用率较高,
在中、大功率场合有广泛的应用。
方案三:采用 Boost-Buck 双向变换器。常见的非隔离型单向变换器的拓扑
结构有 Buck、Boost、Buck/Boost 等电路。在这些单向变换器的二极管两端反并
联开关管,在开关管两端反并联二极管,即可构成与之对应的 Boost-Buck 双向
变换器电路。
三种方案理论上都能够实现本设计需要的双向 DC-DC 电压变换。正激双向
DC-DC 变换器虽然成本低,驱动电路容易,但由于变压器会处于单向励磁状态,
变压器利用率较低,并且需要额外设计磁复位电路,适用的电路范围较小。全桥
DC-DC 双向变换器虽处于双向励磁状态,利用率较高,但其电路拓扑结构复杂难
以实现;但相比于非隔离双向变换器而言,其效率还是较低的,达不到本设计需
要的效率达到 95%以上的要求。这两种隔离型双向变换器均需要用到变压器,比
较笨重,会超出该设计的系统总质量小于 500g 的要求。而 Boost-Buck 双向变换
器电路精简,无变压器较为轻便,利用率较高,因此本次设计采用 Boost-Buck
双向 DC-DC 拓扑结构。
恒流恒压设计方案
为满足充电模式下,输入为 24~36V 变化时,稳定输出恒定 2A 电流,输入电
压不变情况下充电电流步进可调,充电模式下本电源需要实现降压恒流功能。为
满足放电模式时候,保持输出电压不变,本电源在放电模式下需实现恒压功能。
方案一:采用程序控制 PWM 占空比实现恒压恒流功能。利用高精度 ADC 芯片
对负载进行采样得到负载两端的电压或者电流,根据公式: VOUT VIN TON TON TOFF
(1)
其中
VOU
T
为输出加在负载两端的电压,
VIN
为输入电压,
TON TON TOFF
为控制
PWM


第4章 数字频率合成器的设计分析

第4章数字频率合成器的设计 随着通信、雷达、宇航和遥控遥测技术的不断发展,对频率源的频率稳定度、频谱纯度、频率范围和输出频率的个数提出越来越高的要求。为了提高频率稳定度,经常采用晶体振荡器等方法来解决,但它不能满足频率个数多的要求,因此,目前大量采用频率合成技术。 频率合成是通信、测量系统中常用的一种技术,它是将一个或若干个高稳定度和高准确度的参考频率经过各种处理技术生成具有同样稳定度和准确度的大量离散频率的技术。频率合成的方法很多,可分为直接式频率合成器、间接式频率合成器、直接式数字频率合成器( DDS)。直接合成法是通过倍频器、分频器、混频器对频率进行加、减、乘、除运算,得到各种所需频率。该方法频率转换时间快(小于100ns),但是体积大、功耗大,目前已基本不被采用。 锁相式频率合成器是利用锁相环(PLL)的窄带跟踪特性来得到不同的频率。该方法结构简化、便于集成,且频谱纯度高,目前使用比较广泛。 直接数字频率合成器(Direct Digital Frequency Synthesis简称:DDS)是一种全数字化的频率合成器,由相位累加器、波形ROM,D/A转换器和低通滤波器构成,DDS技术是一种新的频率合成方法,它具有频率分辨率高、频率切换速度快、频率切换时相位连续、输出相位噪声低和可以产生任意波形等优点。但合成信号频率较低、频谱不纯、输出杂散等。 这里将重点研究锁相式频率合成器。本章采用锁相环,进行频率

合成器的设计与制作。 4.1 设计任务与要求 1.设计任务:利用锁相环,进行频率合成器的设计与制作 2.设计指标: (1)要求频率合成器输出的频率范围f0为1kHz~99kHz; (2)频率间隔 f 为1kHz; (3)基准频率采用晶体振荡频率,要求用数字电路设计,频率稳定度应优于10-4; (4)数字显示频率; (5)频率调节采用计数方式。 3.设计要求: (1)要求设计出数字锁相式频率合成器的完整电路。 (2)数字锁相式频率合成器的各部分参数计算和器件选择。 (3)画出锁相式数字频率合成器的原理方框图、电路图 (4)数字锁相式频率合成器的仿真与调试。 4.制作要求: 自行装配和调试,并能发现问题解决问题。测试主要参数:包括晶体振荡器输出频率;1/M分频器输出频率;1/N可编程分频器的测试;锁相环的捕捉带和同步带测试。 5.课程设计报告要求。 写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 6.答辩要求

双向DC-DC变换器(全国大学生电子设计竞赛全国二等奖作品)

2015年全国大学生电子设计竞赛双向DC-DC变换器(A题) 2015年8月15日

摘要 本设计主要由双向DC-DC变换电路、测控显示电路、辅助电源三部分构成,其中双向DC-DC变换电路降压部分采用XL4016开关降压型DC-DC转换芯片,最高转换效率可达93%,升压部分采用XL6019开关型升压/降压芯片,具有低纹波,输入范围广,转换效率高的特点。恒流部分采用PWM控制原理,形成一个闭环回路,控制电流恒定,恒压部分完全由硬件控制,单片机辅助控制的方式。以上部分确保系统满足题目要求,实现恒流充电,恒压放电,过压保护功能,并且有着较高的转换效率。 在本次设计中恒压部分完全有硬件控制,硬件自身形成一个闭环控制回路,对电压进行调节使其恒定题目要求的精度范围。单片机通过光耦电路的工作与停止,恒流部分由PWM调节占空比,使其恒流。 关键字电池充放电升压降压XL4016 XL6019 STM32

目录 一、系统方案 (1) 1、双向DC-DC变换电路的论证与选择 (1) 2、测量控制方案和辅助电源的论证与选择 (1) 3、控制方法的论证与选择 (1) 二、系统理论分析与计算 (2) 三、电路与程序设计 (3) 1、电路的设计 (3) (1)系统总体框图 (3) 2、程序的设计 (5) (1)程序功能描述与设计思路 (5) (2)程序流程图 (6) 3、程序流程图 (7) 四、测试仪器与数据分析 (7) 附录1:电路原理图 (9) 附录2:源程序 (10)

双向DC-DC变换器(A题) 【本科组】 一、系统方案 本设计主要由双向DC-DC变换电路、测控显示电路、辅助电源三部分构成,其中双向DC-DC变换电路降压部分采用XL4016开关降压型DC-DC转换芯片,最高转换效率可达93%,升压部分采用XL6019开关型升压/降压芯片,具有低纹波,输入范围广,转换效率高的特点。恒流部分采用PWM控制原理,形成一个闭环回路,控制电流恒定,恒压部分完全由硬件控制,单片机辅助控制的方式。以上部分确保系统满足题目要求,实现恒流充电,恒压放电,过压保护功能,并且有着较高的转换效率。 1、双向DC-DC变换电路的论证与选择 方案1:由降压斩波变换电路(即Buck变换电路)和升压斩波变换电路(即Boost 电路)组成双向DC-DC变换电路,分别各使用一个全控型器件VT(IGBT或MOSFET),对输入直流电源进行斩波控制通过调整全控型器件VT的控制信号占空比来调整输出电压。 方案2:采用XL4016开关型降压芯片和XL6019开关型升压/降压芯片构成升压、降压电路具有低纹波,内助功率MOS,具有较高的输入电压范围,内置过电流保护功能与EN引脚逻辑电平关断功能。 综合以上两种方案,考虑到时间的限制,选择了比较容易实现的方案2。 2、测量控制方案和辅助电源的论证与选择 由于瑞萨单片机开发套件数量有限,所以我们选择了一款相对便宜,速度快,性价比较高的STM32103V8T6作为控制器,显示部分由于收到题目对作品重量的要求,选择了质量轻,分辨率较高的0.96寸OLED屏幕显示。由于市场上所售开关电源模块的,纹波大的因素,所以辅助电源选择了一个较小的9V变压器,进行,整流滤波作为辅助电源。 3、控制方法的论证与选择 方案1:采用PWM调节占空比的方法控制降压芯片的控制端,达到控制恒流和控制恒压的目的,采用PWM调节软件较为复杂,而且PWM调节较为缓慢,软件控制难度大。 方案2:恒压部分完全有硬件控制,硬件自身形成一个闭环控制回路,对电压进行调节使其恒定题目要求的精度范围。单片机通过光耦电路的工作与停止,恒流部分由PWM调节占空比,使其恒流。 综合以上两种方案,选择软件较为简单,硬件较为复杂的方案2。

直接数字频率合成器开题报告

毕业设计(论文)开题报告 题目基于FPGA的直接数字频率合成 专业名称通信工程 班级学号09042138 学生姓名周忠 指导教师刘敏 填表日期2013 年 1 月8 日

一、选题的依据及意义: 直接数字频率合成器(Direct Digital Frequency Synthesizer)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。其电路系统具有较高的频率分辨率,可以实现快速的频率切换(<20ns),频率分辨率高(0.01HZ),频率稳定度高,输出信号的频率和相位可以快速程控切换,输出相位可连续,可编程以及灵活性大等优点。DDS技术很容易实现频率、相位和幅度的数控调制,广泛用于接收本振、信号发生器、仪器、通信系统、雷达系统等,尤其适合调频无线通信系统 本课题使用可编程器件实现直接数字频率合成设计,它比传统的数字频率合成方式有着显著的优越性,与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。 二、国内外研究概况及发展趋势(含文献综述): 直接数字频率合成(DDS)技术是第三代频率合成技术。20世纪70年代以来,随着数字集成电路和电子技术的发展,出现了一种新的合成方法——直接数字频率合成。它从相位的概念出发进行频率合成,采用了数字采样存储技术,具有精确的相位,频率分辨率,快速的转换时间等突出优点,是频率合成技术的新一代技术。直接数字频率合成作为新一代数字频率技术发展迅速,并显示了很大的优越性,已经在军事和民用领域得到广泛的应用,例如在雷达(捷变频雷达、有源相控雷达、低截获概率雷达)、通信(跳频通信、扩频通信)、电子对抗(干扰和反干扰)、仪器和仪表(各种合成信号源)、任意波形发生器、产品测试、冲击和振动、医学等方面的应用。 DDS技术作为一项具有广泛前景和生命力的频率合成技术,越来越受到人们的重视。随着微电子技术的飞速发展,国外一些大公司Qualcomm、ADI等竞相推出DDS芯片,来满足设计人员的要求。许多性能优良的DDS产品不断的推向市场。 Qualcomm公司推出了DDS系列Q2220Q2230等其中Q2368的时钟频率

全国大学生电子设计竞赛双向DCDC变换器A题设计报告

全国大学生电子设计竞赛双向D C D C变换器A 题设计报告 Hessen was revised in January 2021

2015年全国大学生电子设计竞赛 双向 DC-DC 变换器(A题) 【本科组】 2015年8月13日

目录

摘要 本系统介绍了一种双向DC-DC变换器的基本原理和实现方法。由SG3525芯片产生的PWM波经三极管传入到电路中,驱动MOSFET管,使其关断或导通,使电压升高或降低。同时,可由单片机监测相应信号经判断后控制继电器选择放电或充电的模式使电路保持在一直正常情况下运行。当充电电压超出限幅值时,单片机可自动断开主电路,以保护系统安全。此外,本系统在设计时注重了高精度的要求,使输出电流步进可控,且步进值小于。而系统中各元件的选择以低损耗为标准,提高了系统的低功耗特性,使系统的效率达到最高。本系统经过多次模拟与实验,基本完成各项要求。 关键字:DC-DC变换;低损耗;自动;可控;充电 ABSTRACT This system introduces the basic principle and realization method of a kind of bidirectional DC-DC converter. The PWM wave generated by the SG3525 chip is introduced into the circuit by the transistor, driving the MOSFET tube, making it shut off or on, so that the voltage is raised or lowered. At the same time, the signal can be monitored by a single chip microcomputer to control the relay selection discharge or charging mode to keep the circuit under normal circumstances. When the charging voltage exceeds the limit, the single chip microcomputer can automatically disconnect the main circuit to protect the system security. In addition, the system is designed with high accuracy requirements, so that the output current is controlled, and the step value is less than . In the system, the selection of the components of the system is the standard, which improves the system's low power consumption characteristics, so that

数字PID控制器设计制作(附答案)

数字PID控制器设计 设计任务: 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于0.1,超调量不大于20%,调节时间不大于0.5s。采用增量算法实现该PID控制器。 具体要求: 1.采用Matlab完成控制系统的建立、分析和模拟仿真,给出仿真结果。 2.设计报告内容包含数字PID控制器的设计步骤、Matlab仿真的性能曲线、采样周期T的选择、数字控制器脉冲传递函数和差分方程形式。 3.设计工作小结和心得体会。 4.列出所查阅的参考资料。

数字PID控制器设计报告 一、设计目的 1 了解数字PID控制算法的实现; 2 掌握PID控制器参数对控制系统性能的影响; 3 能够运用MATLAB/Simulink 软件对控制系统进行正确建模并对模块进行正确的参数设置; 4 加深对理论知识的理解和掌握; 5 掌握计算机控制系统分析与设计方法。 二、设计要求 1采用增量算法实现该PID控制器。 2熟练掌握PID设计方法及MATLAB设计仿真。 三、设计任务 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于0.1,超调量不大于20%,调节时间不大于0.5s。采用增量算法实现该PID控制器。 四、设计原理 1.数字PID原理结构框图

2. 增量式PID 控制算法 ()()()()()01P I D i u k K e k K e i K e k e k ∞ ==++--????∑ =u(k-1)+Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)] =u(k-1)+(Kp+Ki+Kd)e(k)-(Kp+2Kd)e(k-1)+Kde(k-2) 所以Δu(k)=u(k)-u(k-1) =Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)] =(Kp+Ki+Kd)e(k)-(Kp+2Kd)e(k-1)+Kde(k-2) 整理: Δu(k)= Ae(k)-Be(k-1)+Ce(k-2) A= Kp+Ki+Kd B=-(Kp+2Kd ) C=Kd 五、Matlab 仿真选择数字PID 参数 (扩充临界比例度法/扩充响应曲线法 具体整定步骤) 利用扩充临界比例带法选择数字PID 参数,扩充临界比例带法是 以模拟PID 调节器中使用的临界比例带法为基础的一种数字 PID 参数的整定方法。其整定步骤如下:;

第11题 双向DC-DC变换器

摘要 本系统基于双向同步整流原理,主电路在拓扑结构上整合Buck和Boost两种电路,配合MOS管驱动电路、电流检测电路、辅助电源电路以及输出过流保护电路,使该DC/DC 变换器实现能量的双向流通。系统由STM32F103ZET6单片机控制电流的步进可调,同时控制PWM波产生相应恒定电压值,使用TI的MOS管CSD19535代替续流二极管,大大提高了系统效率。本系统在充电模式可达到98%的转换效率,放电模式达到98%的转换效率,电流检测电路使用TI高精度检流芯片INA282,恒定输出的电流精度稳定在1.5%以内,电压精度稳定在1%以内,同时在LCD上显示所处状态,符合基本要求与发挥部分的参数要求。本设计创新点在于将电池充电过程分为三个阶段,通过显示屏实时显示电池所处的充电状态。 关键词 DC/DC电路同步整流STM32

目录 1 方案论证 (3) 1.1 方案描述 (3) 1.2 方案比较与选择 (3) 1.2.1 主控器方案比较与选择 (3) 1.2.2 显示屏方案比较与选择 (3) 1.2.3 电流检测方案比较与选择 (4) 1.2.4 PWM生成方式比较与选择 (4) 1.2.5 驱动电路方案比较与选择 (2) 2 电路与程序设计 (3) 2.1 双向DC/DC主回路与器件 (3) 2.2 测量控制电路、控制程序 (3) 2.2.1 测量控制电路 (3) 2.2.2 控制算法 (3) 2.2.3 主程序设计 (4) 3 理论分析与计算 (5) 3.1 主回路主要器件参数选择及计算 (5) 3.1.1 MOS管驱动芯片IR2110 (5) 3.1.2 电流检测芯片INA282 (5) 3.1.3 功率管选择CSD19535 (6) 3.1.4 电感参数计算 (6) 3.2 控制方法与参数计算 (6) 3.3 提高效率的方法 (7) 4 测试方案与测试结果(见附件) (7) 4.3 测试结果分析 (7) 5 结束语 (8) 6 参考文献 (8)

直接数字合成器通信原理课程设计

课程设计 课程名称:通信原理课程设计 设计名称:基于400MSPS 14-Bit,1.8VCMOS直接 数字合成器AD9951 专业:班级: 姓名:学号:

400 MSPS 14-Bit, 1.8 V CMOS 直接数字合成器AD9951 Abstract: The AD9951 is a direct digital synthesizer (DDS) featuring a 14-bit DAC operating up to 400 MSPS. The AD9951 uses advanced DDS technology, coupled with an internal high speed, high performance DAC to form a digitally programmable, complete high frequency synthesizer capable of generating a frequency-agile analog output sinusoidal waveform at up to 200 MHz. The AD9951 is designed to provide fast frequency hopping and fine tuning resolution (32-bit frequency tuning word). The frequency tuning and control words are loaded into the AD9951 via a serial I/O port. The AD9951 is specified to operate over the extended industrial temperature range of –40°C to +105°C.Synchronizing Multiple AD9951s , The AD9951 product allows easy synchronization of multiple AD9951s. There are three modes of synchronization available to the user: an automatic synchronization mode, a software controlled manual synchronization mode, and a hardware controlled manual synchronization mode. Applications, Agile LO frequency synthesis, Programmable clock generators, Test and measurement equipment ,Acousto-optic device drivers. T he AD9951 supports various clock methodologies. Support for differential or single-ended input clocks and enabling of an on-chip oscillator and/or a phase-locked loop (PLL) multiplier are all controlled via user programmable bits. 摘要: AD9951是一个直接数字频率合成器(DDS),其特色是有一个工作在400MSPS的14位数/模转换器(14-bit DAC). AD9951采用了先进的DDS技术,芯片内部有一个高速的,高性能的DAC,能够形成一个数位可编程的,完整的高频合成器DDS系统,有能力产生频率达200 MHz 的模拟正弦波。AD9951可提供快速频率跳变和高精度分辩率(32位频率控制字)。频率调谐和控制字经并行口或串行口输入到AD9951。 在工业应用中,AD9951的工作温度为–40°C到+105°C。同时并联发生AD9951,存在三种可能得到的同步方式电路∶自动同步方式,软件控制手控同步方式,硬件控制手控同步方式。AD9951可以应用于本机振荡频率合成,可编程时钟发生器,测试和测量装置,声光器件驱动装置。AD9951在不同的时钟脉冲下有不同的操作方法。适合于差动或单端输入时钟脉冲并启动芯片内部振荡器及锁相环路(锁相环)放大器全部控制经由用户可编程序的位。 Key words: automatic synchronization mode software controlled manual synchronization mode a hardware controlled manual synchronization mode Support for differential input clocks Common-mode noise increased signal-to-noise ratio 关键字:自动同步方式软件控制手控同步方式 硬件控制手控同步方式差动输入时钟脉冲 共模噪声信噪比

双向DC-DC变换器研究

双向DC-DC变换器 摘要: 双向DC/DC变换器是一种可以实现“一机两用”的设备,可用其得到能量的双向传输,并且在有些需要能量双向流动的场合,双向DC/DC变换器可大幅度减轻系统的体积、重量以及成本价值,有着重要的研究意义。 首先介绍的是双向DC/DC变换器的概念、应用场合以及其研究现状,并在此基础上分析了电压—电流型双向全桥DC/DC变换器;Buck充电模式时,高压侧开关有驱动信号,低压侧开关管驱动信号封锁,仅用功率开关管的体二极管整流;此时电路为电压型全桥结构;Boost放电模式时,低压侧开关管有驱动信号,高压侧开关管驱动信后封锁,仅用功率开关管的体二极管整流;此时电路为电流型全桥结构。然后,分别对buck充电模式和boost放电模式的工作原理进行了分析。最后利用Proteus软件分别对buck充电模式和boost放电模式的开环和闭环进行了仿真,给出了各部分的波形图,最后得出的仿真结果和理论一致。 关键词:双向DC-DC变换器 Buck充电模式 Boost放电模式

目录 前言 (3) 1.方案论证 (4) 1.1方案一 (6) 1.2 方案二 (6) 1.3 方案选择 (7) 2.电路设计和原理 (7) 2.1 5V电压源电路设计 (7) 2.2 0.1s (8) 2.2.1 引脚及功能表 (9) 2.2.2 (10) 2.3 计数电路设计 (11) 2.4电路设计 (13) 2.5显示电路设计 (14) 2.6控制电路设计 (15) 3.软件仿真调试 (15) 3.1 软件介绍 (15) 3.2 调试步骤及方法 (16) 4.故障分析及解决方法 (17) 5.总结与体会 (18) 附录: (20) A、总体电路图 (20) B、元器件清单 (20) C、元器件功能与管脚 (21) D、参考文献 (24)

相关主题
文本预览
相关文档 最新文档