当前位置:文档之家› 毕赤酵母表达实验手册

毕赤酵母表达实验手册

毕赤酵母表达实验手册
毕赤酵母表达实验手册

毕赤酵母表达实验手册(作参考)

部分试剂中英文名称:

小牛肠碱性磷酸酶(CIP)、AOX1(alcohol oxidase,醇氧化酶)

10*YNB (含有硫酸铵、无氨基酸的13.4%酵母基础氮源培养基)

500*B (0.02%生物素Biotin)、100*H (0.4%Histidine 组氨酸)

10*D (20%Dextrose 葡萄糖)、10*M (5%Methanol 甲醇)

10*GY (10%Glycerol 甘油)、100*AA (0.5% of each Amino Acid,各种氨基酸)、1M 磷酸钾溶液(potassium phosphate buffer,pH6.0)

Sorbitol (山梨醇)、磷酸钾溶液(potassium phosphate buffer)

YEPDM(Y east Extract Peptone Dextrose Medium,酵母浸出粉/胰蛋白胨/右旋葡萄糖培养基)

Minimal Glycerol Medium (最小甘油培养基)

YPD培养基的配制:每(L)液体预混合物(50g/L)终浓度

酵母提取物10g 250g 1%

蛋白栋20g 500g 2%

葡萄糖20g 500g 2%

※注:配制YPD培养基时,20%(10×)葡萄糖溶液最好采用单独过滤除菌或高压灭菌(在灭菌后再加入到其他各种成分),以免在高压灭菌时培养基变黑并妨碍酵母菌的最佳生长。

※极限培养基{合成葡萄糖(SD)培养基}

每(L)液体预混合物(50g/L)终浓度

YNB-AA/AS 1.7g 68g 0.17% (NH4)2SO4 5g 200g 0.5%

葡萄糖20g 800g 2% 注:这种极限培养基可以培养没有特殊营养要求的酵母菌,但更多时候这种培养基是作为一种待添加其他成分的极限培养基(见下文提到的CM省却成分培养基)。

完全极限(CM)省却成分培养基(每L中含):

省却成分粉剂 1.3g(见表13.1.1)

YNB-AA/AS 1.7g

(NH4)2SO4 5g

葡萄糖20g

*(另外,后3种成分可用27g极限培养预混合物代替)

CM省却成分粉剂(CM dropout powder)即所谓的减少成分粉剂(minus powder)或删除成分粉剂(omission powder),它们缺少了表13.1.1中某一种营养成分但含其他营养成分。完全极限(CM)省却成分培养基一般用于检测与生物合成途径有关的基因,或转化实验中用于筛选基因的功能。

大肠杆菌表达系统最突出的优点是工艺简单、产量高、生产成本低。然而,许多蛋白质在翻译后,需经过翻译后的修饰加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等过程才能转化成活性形式。大肠杆菌

缺少上述加工机制,不适合用于表达结构复杂的蛋白质。另外,蛋白质的活性还依赖于形成正确的二硫键并折叠成高级结构,在大肠杆菌中表达的蛋白质往往不能进行正确的折叠,是以包含体状态存在。包含体的形成虽然简化了产物的纯化,但不利于产物的活性,为了得到有活性的蛋白,就需要进行变性溶解及复性等操作,这一过程比较繁琐,同时增加了成本。

与大肠杆菌相比,酵母是低等真核生物,具有细胞生长快,易于培养,遗传操作简单等原核生物的特点,又具有真核生物时表达的蛋白质进行正确加工,修饰,合理的空间折叠等功能,非常有利于真核基因的表达,能有效克服大肠杆菌系统缺乏蛋白翻泽后加工、修饰的不足。因此酵母表达系统受到越来越多的重视和利用。

大肠杆菌是用得最多、研究最成熟的基因工程表达系统,当前已商业化的基因工程产品大多是通过大肠杆菌表达的,其主要优点是成本低、产量高、易于操作。但大肠杆菌是原核生物,不具有真核生物的基因表达调控机制和蛋白质的加工修饰能力,其产物往住形成没有活性的包涵体,需要经过变性、复性等处理,才能应用。近年来,以酵母作为工程菌表达外源蛋白日益引起重视,主更是因为酵母是单细胞真核生物,不但具有大肠杆菌易操作、繁殖快、易于工业化生产的特点,还具有真核生物表达系统基因表达调控和蛋白修饰功能,避免了产物活性低,包涵体变性、复性等等间题[1]。

与大肠杆菌相比,酵母是单细胞真核生物,具有比较完备的基因表达调控机制和对表达产物的加工修饰能力,人们对酿酒酵母

(Saccharomyces.Cerevisiae)分子遗传学方面的认识最早,酿酒酵母也最先作为外源基因表达的酵母宿主.1981年酿酒酵母表达了第一个外源基因一干扰素基因,随后又有一系列外源基因在该系统得到表达。虽然干扰素和胰岛素已大量生产并在人群中广泛应用,但很大部分表达由实验室扩展到工业规模时,培养基中维特质粒高拷贝数的选择压力消失,质粒变得不稳定,拷贝数下降,而大多数外源基因的高效表达需要高拷贝数的维特,因此引起产量下降。同时,实验室用培养基复杂而昂贵,采用工业规模能够接受的培养基时,往往导致产量的下降。为克服酿酒酵母的局限,人们发展了以甲基营养型酵母(methylotrophic yeast)为代表的第二代酵母表达系统[2]。

甲基营养型酵母包括:Pichia、Candida等.以Pichia.pastoris(毕赤巴斯德酵母)为宿主的外源基因表达系统近年来发展最为迅速,应用也最为广泛,已利用此系统表达了一系列有重要生物学活性的蛋自质。毕赤酵母系统的广泛应用,原因在于该系统除了具有一般酵母所具有的特点外,还有以下几个优点[1、2、3]:

⑴具有醇氧化酶AOX1基因启动子,这是目前最强,调控机理最严格的启动子之一。

⑵表达质粒能在基因组的特定位点以单拷贝或多拷贝的形式稳定整合。

⑶菌株易于进行高密度发酵,外源蛋白表达量高。

⑷毕赤酵母中存在过氧化物酶体,表达的蛋白贮存其中,可免受蛋白酶的降解,而且减少对细胞的毒害作用。

Pichia.pastoris基因表达系统经过近十年发展,已基本成为较完善的外源基因表达系统,具有易于高密度发酵,表达基因稳定整合在宿主基因组中,能使产物有效分泌并适当糖基化,培养方便经济等特点。利用强效可调控启动子AOX1,已高效表达了HBsAg、TNF、EGF、破伤风毒素C片段、基因工程抗体等多种外源基因,证实该系统为高效、实用、简便,以提高表达量并保持产物生物学活性为突出特征的外源基因表达系统,而且非常适宜子扩大为工业规模[4]。目前美国FDA已能评价来自该系统的基因工程产品,最近来自该系统的Cephelon制剂已获得FDA批准,所以该系统被认为是安全的.Pichia.pastoris表达系统在生物工程领域将发挥越来越重要的作用,促进更多外源基因在该系统的高效表达,提供更为广泛的基因工程产品[2、3]。

近年来,Invitrogon公司开发了毕赤酵母表达系统的系列产品,短短几年已经有300多种外源蛋自在该系统得到有效表达,被认为是目前最有效的酵母表达系统。

毕赤酵母宿主菌常用的有GS115和KM71两种,都具有HIS4营养缺陷标记。其中,GS115茵株具有AOX1基因,是Mut+,即甲醇利用正常型;而KM71菌株的AOX1位点彼ARG4基因插入,表型为Muts,即甲醇利用缓慢型,两种菌株都适用于一般的酵母转化方法。

Pichia.pastoris酵母菌体内无天然质粒,所以表达载体需与宿主染色体发生同源重组,将外源基因表达框架整合于染色体中以实现外源基

因的表达[5].包括启动子、外源基因克隆位点、终止序列、筛选标记等。表达载体都是穿梭质粒,先在大肠杆菌复制扩增,然后被导入宿主酵母细胞。为使产物分泌胞外,表达载体还需带有信号肽序列。毕赤酵母表达系统有多种分泌型表达质粒,有许多蛋白在毕赤酵母得到了高效分泌表达。胞外表达需要在外源蛋白的N末端加上一段信号肽序列,引导重组蛋白进入分泌途径,可使蛋白质在分泌到胞外之后获得准确的构型。毕赤酵母对外源蛋白自身的信号序列识别能力差,在本试验中所使用pPICZαA质粒,其信号肽来自酿酒酵母的α-交配因子(α-factor),能很好的达到以上的要求。并且作为新一代的毕赤酵母分泌表达质粒,它还拥有一个特点是其具有Zeocin抗性标记基因,给我们筛选转化子的工作带来很大的便利[1、2]。pPICZαA质粒是作为新一代的毕赤酵母分泌表达质粒,它的主要特点简介如下:

⑴具有强效可调控启动子AOX1(alcohol oxidase,醇氧化酶);

⑵具有Zeocin抗性筛选标记基因,重组转化子可直接用Zeocin进行筛选,即在YPDZ平板上生长的转化子中,100%都有外源基因的整合,大大简化了重组转化酵母的筛选过程[5]。在操作过程中,Zeocin也可用来筛选含表达载体pPICZαA的大肠杆菌转化子,不必另外使用Amp,经济而又简便。

⑶在表达载体A0X1 5’端启动子序列下游,有供外源基因插入的多克隆位点,多克隆位点下游有A0X1 3’端终止序列。

⑷分泌效率强的信号肽α-factor.

Invitrogen公司开发的毕赤酵母表达系统的系列产品作为目前被应用为最为广泛的酵母表达系统,其主要的优点有:醇氧化酶可调控的强启动子,能高密度发酵,重组蛋白表达量高。外源基因整合在酵母基因组上,可以稳定存在。同时,高效分泌表达质粒能将外源蛋白表达后,进行翻译后加工处理,将外源蛋白分泌到细胞外,不但提高表达蛋白的活性,而且.有利于产物的纯化。

一.毕赤酵母表达常用溶液及缓冲液的配制

1.1 各种母液的配制

10*YNB (含有硫酸铵、无氨基酸的13.4%酵母基础氮源培养基)4℃保存。34g酵母基础氮源培养基(无硫酸铵)+100g硫酸铵,溶于1000ml水中,过滤除菌。

500*B (0.02%生物素Biotin)4℃保存保存期为1年。20mg的生物素溶于100ml水中,过滤除菌。

100*H (0.4%Histidine 组氨酸)4℃保存保存期为1年。400mg 的L-组氨酸溶于100ml水中,(加热至50℃以促进溶解),过滤除菌。10*D (20%Dextrose 葡萄糖)保存期为1年。200g葡萄糖溶于1000ml水中,灭菌15min或过滤除菌。

10*M (5%Methanol 甲醇)保存期为2个月。将5ml的甲醇与95ml 水混匀,过滤除菌。

10*GY (10%Glycerol 甘油)保存期为1年以上。将100ml甘油和900ml水混匀后,高压灭菌或过滤除菌。

100*AA (0.5% of each Amino Acid,各种氨基酸)4℃保存保存

期为1年。分别将500mg的L-谷氨酸、L-蛋氨酸、L-赖氨酸、L-亮氨酸和L-异亮氨酸溶于100ml水中,过滤除菌。

1M 磷酸钾溶液(potassium phosphate buffer,pH6.0),将1mol/L 的K2HPO4溶液132ml与1mol/L的KH2PO4溶液868ml混匀,其pH为6.0,如需调节pH,则使用磷酸和氢氧化钾调节pH。

1.2 常用溶液及缓冲夜

1.2.1 碱裂解法抽提质粒DNA所用溶液:

溶液Ⅰ:50mmol / L glucose,100mmol / L EDTA,25mmol / L Tris -HCI (pH 8.0)

溶液Ⅱ:0.2mol/L NaOH,1%SDS(临用时配制)

溶液Ⅲ:29.44g KAc,11.5ml Acetic acid,加ddH2O至100 ml。4℃保存。

1.2.2 10% 甘油(Glycerol):

将100ml甘油和900ml水混匀后,高压灭菌或过滤除菌。保存期为1年以上。

1.2.3 Rnase-H2O:

1ul Rnase 加入1ml 灭菌dd H2O。4℃保存。

1.2.4 TE缓冲液:

10mmol / Tris-CI(pH 8.0),lmmol / L EDTA(pH 8.0)

1.2.5 STE缓冲液:

0.1mol / L, 10mmol / L Tris-HCl (pH 8.0), 1mmol / L EDTA (pH 8.0)

1.2.6 SCE缓冲液:

1mol / L Sorbitol (山梨醇), 10mmol / L 柠檬酸钠,10mmol / L EDTA

1.2.7

1M potassium phosphate buffer (pH 6.0):

132 ml 1M K2HPO4

868 ml 1M KH2PO4

1.2.8

50X TAE 琼脂糖凝胶电泳缓冲液,pH 8.0(1L):

242 g Tris

57.1 ml Acetic Acid

37.2 g EDTA

二.毕赤酵母表达的培养基配制[5]

2.1 LB(Luria-Bertani)培养基:

Trypton l%、Y east Extract 0.5%、NaCl l%、调PH 7.0

制作平板时加入2%琼脂粉。121℃高压灭菌20min。可于室温保存。用于培养pPICZαA原核宿主菌TOP10F’时可加入Zeocin 25ug / ml。

2.2 LLB(Low Salt LB)培养基:

Trypton l%、Y east Extract 0.5%、NaCl 0.5%、PH 7.0

制作平板时加入2%琼脂粉。121℃高压灭菌20min。可于室温保存数月。用于培养pPICZαA原核宿主菌TOP10F’时,加入Zeocin 25ug / ml,可以4℃条件下保存1~2周。

2.3 YPD (又称YEPD)

Y east Extract Peptone Dextrose Medium,(Y east Extract Peptone Dextrose Medium,酵母浸出粉/胰蛋白胨/右旋葡萄糖培养基)

Y east Extract 1%

Trypton 2%

dextrose (glucose) 2%

+agar 2%

+Zeocin 100 μg/ml

液体YPD培养基可常温保存;琼脂YPD平板在4℃可保存几个月。加入Zeocin 100ug / ml,成为YPDZ培养基,可以4℃条件下保存1~2周。

2.4 YPDS + Zeocin 培养基(Y east Extract Peptone Dextrose Medium):

yeast extract 1%

peptone 2%

dextrose (glucose) 2%

sorbitol 1 M

+agar 2%

+ Zeocin 100 μg/ml

不管是液体YPDS培养基,还是YPDS + Zeocin 培养基,都必须存放4℃条件下,有效期1~2周。

2.5 MGY

Minimal Glycerol Medium (最小甘油培养基)

(34%YNB;1%甘油;4*10-5%生物素)。将800ml灭菌水、100ml 的10*YNB母液、2ml的500*B母液和100ml的10*GY母液混匀即可,4℃保存,保存期为2个月。

2.6 MGYH

Minimal Glycerol Medium + Histidine (最小甘油培养基+ 0.004%组氨酸)

在1000ml的MGY培养基中加入10ml的100*H母液混匀,4℃保存,保存期为2个月。

2.7 RD

Regeneration Dextrose Medium (葡萄糖再生培养基)

(含有:1mol/L的山梨醇;2%葡萄糖;1.34%YNB;4*10-5%生物素;0.005%氨基酸)

1. 将186g的山梨醇定容至700ml,高压灭菌;

2. 冷却后于45℃水浴;

3. 将100ml的10*D、100ml的10*YNB;2ml的500*B;10ml的100*AA等母液和88ml无菌水混匀,预热至45℃后,与步骤2的山梨醇溶液混合。4℃保存。

2.8 RDH

Regeneration Dextrose Medium + Histidine (葡萄糖再生培养基+ 0.004%组氨酸)

在RD培养基配制的第三步中,在加入10ml的100*H母液,同时无

菌水的体积减少至78ml即可,其余配制方法与RD相同。4℃保存。

2.9 RD及RDH平板的制备

1. 将186g的山梨醇和15-20g琼脂粉定容至700ml,高压灭菌;冷却后于60℃水浴;

2. 参照RD/RDH液体培养基配制的步骤4,将100ml的10*D、100ml 的10*YNB;2ml的500*B;10ml的100*AA等母液、(10ml的100*H 母液)和88(78)ml无菌水混匀,预热至45℃后,与步骤1的山梨醇/琼脂液混匀;

3. 迅速制备平板。4℃可保存数月。

2.10 RD及RDH 的TOP 琼脂的制备(常用于酵母菌的包被)

1.将186g的山梨醇和7.5~10g琼脂粉定容至700ml,高压灭菌;冷却后于60℃水浴;

2.参照RD/RDH液体培养基配制的步骤4,将100ml的10*D、100ml 的10*YNB;2ml的500*B;10ml的100*AA等母液、(10ml的100*H 母液)和88(78)ml无菌水混匀,预热至45℃后,与步骤1的山梨醇/琼脂液混匀;

3.将该TOP琼脂置于45℃水浴冷却、保温,备用。

2.11 MD与MDH

Minimal Dextrose Medium +(Histidine)最小葡萄糖培养基+(0.004 %组氨酸)

(含有:1.34%YNB;;4*10-5% 生物素;2%葡萄糖)

1. 100ml的10*YNB;2ml的500*B和100ml10*D母液,用800ml

的无菌水定容至1000ml即可;

2. 如配制MDH,可在上述的MD中加入10ml的100*H即可;

3. 如配制平板,可无菌水的灭菌前,加入15~20g的琼脂。4℃可保存数月。

2.12 SOC培养基:

Trypton l%

Y east Extract 0.5%

NaCl 0.05%

Glucose (1mol / L) 2%

121℃高压灭菌20min,冷却后,4℃保存

三.主要试验环节的操作

3.1 酵母菌株的分离纯化

接种GS115于5ml YPD液体培养基,30℃,200rpm振荡过夜,涂布YPD平板,30℃培养48 小时,用YNB基本培养基和含His的补充培养基作点种分离纯化,挑选在补充培养基上生长而在基本培养基上不生长的单菌落划YPD平板,4℃保存。

3.2 pPICZαA原核宿主菌TOP10F’的活化培养

TOP10F’做为菌种保存在-70 ℃条件下,在进行扩大培养抽提质粒之前,先要进行活化培养。

接种TOP10F’于5ml LLB(加入25ug / ml Zeocin)中,37℃,200 rpm ,培养16~18小时。

3.3 毕赤酵母表达的试验方法

3.3.1 线状质粒DNA的脱磷酸化处理

为了防止载体质粒DNA的自身环化,用小牛肠碱性磷酸酶(CIP)处理酶切后的质粒DNA,具体操作如下:

⑴建立反应体系:

线性化的质粒35ul

10x CIP buffer 4ul

CIP 1ul

ddH2O 5ul ——————————————————————————

total 45ul

⑵在PCR仪上控制反应温度(加石蜡油封闭),37℃,15 min ;50℃,15 min;56℃,30 min(灭活)。

⑶在56℃未开始前停止,加入proteinse K ,用于灭活CIP,加入试剂如下:

反应物45ul

10x 5%SDS 7ul

10x EDTA (pH 8.0)7ul

proteinse K 5ul

ddH2O 6ul ———————————————————

total 70ul

⑷纯化使用QIAquick spin kit ,按照2.2.3.3步骤进行,20 ul 灭菌ddH2O洗脱纯化产物。进行1%琼脂糖凝胶电泳,120 V,观察纯化结果,并大约估计DNA浓度。

3.3.2 E.coli TOP10F’ 感受态细胞的制备及转化

⑴取10 ul TOP10F’ 菌液,接种于200ml LB液体培养基中活化培养,37℃,200 rpm,16~18小时。取100 ul菌液接种于200 ml 液体LB培养基中。

⑵37℃,200 rpm,培养16~18小时。

⑶灭菌500 ml 离心管,4℃,4000 rpm,20 min 。得菌体沉淀。弃上清,菌体用10%甘油重悬并洗涤。重复洗涤3次。

⑷第三次离心后,弃绝大部分上清,留下约1ml 液体用于重悬菌体。

⑸从制得得感受态细胞中,取200 ul于灭菌EP管中,加入连接反应产物5ul ,混匀,不要产生气泡,在冰上放置5 min。

⑹将混匀后得200ul菌液移入电击杯中。

⑺使用电击穿孔仪进行转化,设置为电压2500 V,时间5 ms。

⑻电击后,往电击杯中加入800ul SOC培养基,冲洗出菌体,转移至灭菌1.5 ml EP管中。37℃,150 rpm ,轻摇45~60 min。

⑼取全部均匀涂布于含Zeocin 25 ug/ml 的LLB-Zeocin平板上,正放,待涂布液不在流动,37℃培养12~16小时。

*注:设空载体做对照。

3.4 毕赤酵母电转化方法

3.4.1 菌体的准备:

1. 挑取酵母单菌落,接种至含有5ml YPD培养基的50ml三角瓶中,30℃、250~300r/min培养过夜;

2. 取100~500μl的培养物接种至含有500ml新鲜培养基的2L三角摇瓶中,28~30℃、250~300r/min培养过夜,至OD600达到1.3~1.5;

3. 将细胞培养物于4℃,1500g离心5min,用500ml的冰预冷的无菌水将菌体沉淀重悬;

4. 按步骤3离心,用250ml的冰预冷的无菌水将菌体沉淀重悬;

5. 按步骤3离心,用20ml的冰预冷的1mol的山梨醇溶液将菌体沉淀重悬;

6. 按步骤3离心,用1ml的冰预冷的1mol的山梨醇溶液将菌体沉淀重悬,其终体积约为1.5ml;

7. 备注:可将其分装为80μl一份的包装冷冻起来,但会影响其转化效率(2周之内)。

3.4.2 电击转化:

8. 将5~20μg的线性化DNA溶解在5~10μl TE溶液中,与80μl的上述步骤6所得的菌体混匀,转至0.2cm冰预冷的电转化杯中;

9. 将电转化杯冰浴5min;

10. 根据电转化仪提供的资料,参考其他文献及多次摸索,确定合适的电压、电流、电容等参数,按优化的参数,进行电击;

11. 电击完毕后,加入1ml冰预冷的山梨醇溶液将菌体混匀,转至1.5ml的EP管中;

12. 将菌体悬液涂布于MD或RDB平板上,每200~600μl涂布一块

平板;

13. 将平板置于30℃培养,直至单个菌落出现。

推荐:电压1.5kV;电容25μF;电阻200Ω。电击时间为4~10msec。

3.5 Pichia酵母表达直接PCR鉴定重组子的方法

3.5.1 模板的处理:

1. 平板上的菌落长到肉眼可见时(约12小时);

2. 将除了模板之外的其它PCR反应液的组分准备好,并分装。引物最好使用Kit中已有的检测专用的引物,或者或者一条使用载体上的引物,一条使用基因的特异性引物(这样做可以鉴定非定向克隆的方向);

3. 用半根灭菌的牙签(节约,而且好用)挑取菌落,在PCR管中涮以下,放入一个灭菌的1.5毫升离心管,对PCR管和1.5毫升离心管编号;

4. PCR扩增,1%agarose电泳;

5. 对于PCR扩增显现特异性条带的克隆,把置于1.5毫升离心管中的半截牙签扔到5毫升YPDZ培养基中,30度培养,8-12小时后提质粒,酶切鉴定确认。

注意:本试验方法应用在需要挑取的克隆较多(也就是克隆效率低),使用PCR初筛可以使工作量大为降低。

3.5.2 PCR反应体系:

以TaKaRa Taq DNA聚合酶反应为例:

组分50μl体系20μl体系:

10xReaction Buffer 5.0μl 2.0μl

25mmol/L MgCl2 3.0μl 1.2μl

2.5mmol/L dNTPs 5.0μl

3.0μl

Primer 1(10μmol/L) 2.5μl 1.0μl

Primer 2(10μmol/L) 2.5μl 1.0μl

ddH2O 31.5μl 12.6μl

Taq DNA聚合酶0.5μl 0.2μl

TOTAL 50.0μl 20.0μl

3.5.3 PCR反应条件:

初始变性94℃4min

变性94℃30s 34个循环

退火50~54℃30s

延伸72℃30s

结束延伸72℃10min

保存于4℃冰箱或跑电泳检测一下。

3.6 毕赤酵母基因组提取方法

⑴接种重组和空质粒转化子于5ml YPDZ培养基,GS115菌于YPD 培养基作对照,30℃,培养16~18小时。

⑵室温下,1500 g离心5-10min收集菌体

⑶100 ulTE(pH 7.0)重悬,加入300 ul EDTA(pH 8.0),0.07M Tris -HCl,3 ulβ-巯基乙醇,1ul Lyticase ,37℃水浴30 min。

⑷10000g离心5~10min,取沉淀,加90ul TE重悬。

⑸200ul 饱和酚,200ul氯仿,混匀,离心30s ,取上层水相。

⑹加入两倍体积无水乙醇以及1/10体积的NaAC,-20℃放置30min。

⑺10000g离心20min,弃去上清;75%乙醇漂洗沉淀一次;

⑻干燥后,加入15 μl的TE或H2O溶解,-20℃备用。

3.7 Mut+表型重组酵母的诱导表达实验

1. 挑选一单菌落,置于装有25ml MGY、BMG或BMGY培养基的250ml摇瓶中,于28-30°C/250-300 rpm培养至OD600 = 2-6 (~16-18 h);

2. 室温下1500~3000g离心5min,收集菌体,用MM、BMM或BMMY重悬菌体,使OD600 =1.0左右(约100~200ml);

3. 将步骤2所得的菌液置于1L的摇瓶中,用双层纱布或粗棉布封口,放置于28-30°C/250-300 rpm的摇床上继续生长;

4. 每24h向培养基中添加100%甲醇至终浓度为0.5~1.0%;

5. 按时间点分别取菌液样品,取样量为1ml,置于1.5ml EP管中,最大转速离心2~3min,分别收集上清液和菌体,分析目的蛋白的表达量和菌液最佳收获时间。时间点一般取:0、6、12、24、36、48、60、72、84和96h。

6. 对分泌表达,分离样品的上清液;对胞内表达,分离样品的菌体沉淀,带检测样品用液氮或干冰速冻后,于-80°C保存备用;

7. 可以用SDS-PAGE、Western-Blot及活性实验检测与鉴定重组蛋

白的表达。

3.7 Muts表型重组酵母的诱导表达实验

1. 挑选一单菌落,置于装有25ml MGY、BMG或BMGY培养基的250ml摇瓶中,于28-30°C/250-300 rpm培养至OD600 = 2-6 (~16-18 h);

2. 室温下1500~3000g离心5min,收集菌体,用1/5到1/10原培养体积的MM、BMM或BMMY重悬菌体(约10~20ml);

3. 将步骤2所得的菌液置于100ml的摇瓶中,用双层纱布或粗棉布封口,放置于28-30°C/250-300 rpm的摇床上继续生长;

4. 每24h向培养基中添加100%甲醇至终浓度为0.5~1.0%;

5. 按时间点分别取菌液样品,取样量为1ml,置于1.5ml EP管中,最大转速离心2~3min,分别收集上清和菌体,分析目的蛋白的表达量和菌液最佳收获时间。时间点一般取:0、24、48、72、96和120h;

6. 对分泌表达,分离样品的上清液;对胞内表达,分离样品的菌体沉淀,带检测样品用液氮或干冰速冻后,于-80°C保存备用;

7. 可以用SDS-PAGE、Western-Blot及活性实验检测与鉴定重组蛋白的表达。

4. 试验的注意事项

4.1 信号肽识别位点的设计

以质粒pPICZαA为例。在利用PCR反应在外源基因两端引入酶切位点的试验中。如果质粒pPICZαA双酶切中丢失了KEX2蛋白酶的酶切位点Lys-Arg,应该在上游中,增加了编码Lys、Arg的密码子

AAA、AGA 。酵母细胞膜中的KEX2蛋白酶是α-factor信号肽的切割酶,它能有效识别酶切位点Lys-Arg,通过对信号肽的切割使基因表达产物释放至胞外。

4.2 PCR产物酶切保护碱基的设计

利用PCR转换酶切位点,通过P3、P4两引物的扩增在rhEGF的两端加上XhoⅠ、XbaⅠ的识别位点和5个保护碱基。

根据限制性核酸内切酶的工作原理,内切酶首先需要结合到核苷酸序列上,并在上面进行滑行,直至识别到酶切位点,为了能使内切酶有效的结合到序列上以利于其的有效加工。在利用PCR进行酶切位点转换的时候,通常应在5'端限制酶位点外再加3个保护碱基GC[6],防止引物合成中因为合成效率和纯化问题而导致的酶切位点的残缺。核苷酸保护碱基之为了保证限制型内切酶的工作效率,在其识别位点的两侧应该保证一定的旁侧序列,换言之,识别位点是限制型内切酶识别并特异性切割底物的必要而不充分的条件。鉴于NEB(New England Biolabs)公司在限制酶领域的总体研究水平和对保护碱基方面的独到理解,在设计引物时可以参照NEB公司的产品目录后面的附录:Cleavage to the end of DNA fragments进行[7],但是,一些不常用的酶或虽有推荐的保护碱基序列但酶切效率仍不高的酶还是很难设计保护碱基。本次实验中,根据美国基因动力实验室文献的报道[8];XbaI、NheI和SpeI位点5’端保护碱基须在5个左右才容易被酶切割,以及一些前人的经验总结,我们在设计引物时在识别位点5’端,设计了5个保护碱基。以保证较高的酶切效率。

毕赤酵母实验操作技巧介绍材料

毕赤酵母表达实验手册 大肠杆菌表达系统最突出的优点是工艺简单、产量高、生产成本低。然而,许多蛋白质在翻译后,需经过翻译后的修饰加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等过程才能转化成活性形式。大肠杆菌缺少上述加工机制,不适合用于表达结构复杂的蛋白质。另外,蛋白质的活性还依赖于形成正确的二硫键并折叠成高级结构,在大肠杆菌中表达的蛋白质往往不能进行正确的折叠,是以包含体状态存在。包含体的形成虽然简化了产物的纯化,但不利于产物的活性,为了得到有活性的蛋白,就需要进行变性溶解及复性等操作,这一过程比较繁琐,同时增加了成本。 与大肠杆菌相比,酵母是低等真核生物,具有细胞生长快,易于培养,遗传操作简单等原核生物的特点,又具有真核生物时表达的蛋白质进行正确加工,修饰,合理的空间折叠等功能,非常有利于真核基因的表达,能有效克服大肠杆菌系统缺乏蛋白翻泽后加工、修饰的不足。因此酵母表达系统受到越来越多的重视和利用。 大肠杆菌是用得最多、研究最成熟的基因工程表达系统,当前已商业化的基因工程产品大多是通过大肠杆菌表达的,其主要优点是成本低、产量高、易于操作。但大肠杆菌是原核生物,不具有真核生物的基因表达调控机制和蛋白质的加工修饰能力,其产物往住形成没有活性的包涵体,需要经过变性、复性等处理,才能应用。近年来,以酵母作为工程菌表达外源蛋白日益引起重视,主更是因为酵母是单细胞真核生物,不但具有大肠杆菌易操作、繁殖快、易于工业化生产的特点,还具有真核生物表达系统基因表达调控和蛋白修饰功能,避免了产物活性低,包涵体变性、复性等等间题[1]。 与大肠杆菌相比,酵母是单细胞真核生物,具有比较完备的基因表达调控机制

毕赤酵母表达实验手册

xx酵母表达实验手册 (作参考) 部分试剂中英文名称: 小牛肠碱性磷酸酶(CIP)、AOX1(alcohol oxidase,醇氧化酶) 10*YNB(含有硫酸铵、无氨基酸的 13.4%酵母基础氮源培养基) 500*B( 0.02%生物素Biotin)、100*H( 0.4%Histidine组氨酸) 10*D(20%Dextrose葡萄糖)、10*M(5%Methanol甲醇) 10*GY(10%Glycerol甘油)、100*AA( 0.5% of each Amino Acid,各种氨基酸)、1M磷酸钾溶液(potassium phosphate buffer,pH 6.0) Sorbitol (山梨醇)、磷酸钾溶液(potassium phosphate buffer) YEPDM(Yeast Extract Peptone Dextrose Medium,酵母浸出粉/胰蛋白胨/右旋葡萄糖培养基) Minimal Glycerol Medium(最小甘油培养基) YPD培养基的配制: 每(L)液体预混合物(50g/L)终浓度酵母提取物10g250g1%蛋白栋 20g500g2%葡萄糖20g500g2%※注:

配制YPD培养基时,20%(10×)葡萄糖溶液最好采用单独过滤除菌或高压灭菌(在灭菌后再加入到其他各种成分),以免在高压灭菌时培养基变黑并妨碍酵母菌的最佳生长。 ※极限培养基{合成葡萄糖(SD)培养基} 每(L)液体预混合物(50g/L)终浓度YNB-AA/AS 1.7g68g 0.17%(NH 4) 2SO 45g200g 0.5%葡萄糖20g800g2%注: 这种极限培养基可以培养没有特殊营养要求的酵母菌,但更多时候这种培养基是作为一种待添加其他成分的极限培养基(见下文提到的CM省却成分培养基)。 完全极限(CM)省却成分培养基(每L中含): 省却成分粉剂 1.3g(见表 13.1.1) YNB-AA/AS 1.7g (NH 4)

酵母表达系统使用心得

Pichia酵母表达系统使用心得 甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。不少人在操作中会遇到这样那样的问题,收集了部分用户在使用EasySelect Pichia Expression System这个被誉为最简单的毕赤酵母表达的经典试剂盒过程中的心得体会。其中Xiang Yang是来自美国乔治城大学(Georgetown University)Lombardi癌症中心(Lombardi Cancer Center),部分用户来自国内。 甲醇酵母部分优点: 1.属于真核表达系统,具有一定的蛋白质翻译后加工,有利于真核蛋白的表达; 2.AOX强效启动子,外源基因产物表达量高,表达产物可以达到每升数克的水平; 3.酵母培养、转化、高密度发酵等操作接近原核生物,远较真核系 统简单,非常适合大规模工业化生产; 4.可以诱导表达,也可以分泌表达,便于产物纯化; 5.可以甲醇代替IPTG作为诱导物,部分甲醇酵母更可以用工业甲醇替代葡萄糖作为碳源,生产成本低。 产品性能:优点——使用简单,表达量高,His-tag便于纯化;缺点——酵母表达蛋白有时会出现蛋白切割问题。 巴斯德毕赤酵母(Pichia pastoris)是一种能高效表达重组蛋白的酵母品种,一方面由于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。 毕赤酵母表达载体pPICZ在多克隆位点(MCR)3'端带有his-tag和c-myc epitopes,这些tag有利于常规检测和纯化,而且在MCR5'端引入了alpha factor(α-factor)用以分泌表达,并且在表达后α-factor可以自动被切除。在进行克隆的时候,如果你选择的是EcoRI,那么只需在目标蛋白中增加两个氨基酸序列即可完成。另外pPICZ系列选用的是Zeocin抗生素作为筛选标记,而诱导表达的载体需要甲醇——甲醇比一般用于大肠杆菌表达诱导使用的IPTG便宜。 第一步——构建载体 Xiang Yang:pPICZ系列有许多克隆位点可供选择,同时也有三种读码框以便不用的用户需要。 红叶山庄:有关是选择pPIC9K还是pPICZ系列?pPIC9K属于穿梭质粒,也可以在原核表达,而pPICZ系列比较容易操作,大肠和毕赤酵母均用抗Zeocin筛选(PIC9K操作麻烦一点,大肠用amp抗性,而毕赤酵母先用His缺陷筛选阳性克隆,在利用G418筛选多拷贝),而且对于大小合适(30—50KD)的蛋白在产量上是pPIC9K无法比拟的。 leslie:要做毕赤酵母表达实验,首先当然就要了解这个可爱的酵母了(椭圆形,肥嘟嘟的,十分可爱),她和大肠杆菌长得有较大区别(大肠杆菌是杆状的),因此在培养的过程中要区别这两种菌体,除了气味,浓度,颜色以外,也可以取样到显微镜中观测。大家做毕赤表达的时候应该都遇过这种情况吧,表达过程中染菌(我们实验室曾经污染过各种颜色形状的细菌,那真是一段可怕的经历),如果在不知情的情况下继续做下去,那可以就是浪费大把的

毕赤酵母表达系统研究进展

毕赤酵母表达系统研究进展 作者:齐连权, 陈薇, 来大志, 于长明, 王海涛 作者单位:军事医学科学院微生物学流行病学研究所,北京,100071 刊名: 中国生物工程杂志 英文刊名:JOURNAL OF CHINESE BIOTECHNOLOGY 年,卷(期):2002,22(6) 被引用次数:11次 参考文献(21条) 1.Trinh L;Noronha S B;Fannon M Recovery of mouse endostatin producedby Pichia pastoris using expanded bed adsorption[外文期刊] 2000(04) 2.查看详情 3.Barr KA;Hopkins S A;Sreekrishna K Protocol for efficient secretion of HSA developed from Pichia pastoris 1992 4.Cereghino J L;Cregg J M Heterologous protein expression in the methylotrophic yeast Pichia pastoris[外文期刊] 2000(1) 5.Kjeldsen T;Pettersson A F;Hach M Secretory expression and characterization of insulin in Pichia pastoris[外文期刊] 1999(29) 6.Bewley M C;Tam B M;Grewal J X ray crystallography and massspectroscopy reveal that the N lobe of human transferrin expressed in Pichia pastorisis folded correctly but is glycosylated on serine 32 [外文期刊] 1999(08) 7.Kalidas C;Joshi L;Batt C Characterization of glycosylated variantsof beta lactoglobulin expressed in Pichia pastoris[外文期刊] 2001(03) 8.Briand L;Perez V;Huet J C Optimization of the production ofa honeybee odorant binding protein by Pichia pastoris[外文期刊] 1999(03) 9.Rydberg E H;Sidhu G;Vo H C Cloning mutagenesis and structural analysis of human pancreatic alpha amylase expressed in Pichia pastoris[外文期刊] 1999(03) 10.Guo R T;Chou L J;Chen Y C Expression in Pichia pastoris andcharacterization by circular dichroism and NMR of rhodostomin[外文期刊] 2001(04) 11.Zani M;Brillard Bourdet M;Lazure C Purification and characterization of active recombinant rat kallikrein rK9[外文期刊] 2001(02) 12.ChirulovaV;Cregg J M;Meagher M M Recombinant protein production in an alcohol oxidase defective strain of Pichia pastoris in fed batch fermentations[外文期刊] 1997 13.Hasslacher M;Schall M;Hayn M High level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts[外文期刊] 1997(1) 14.Takahashi K;Takai T;Yasuhara T Effects of site directed mutagenesis in the cysteine residues and the N glycosylation motif in recombinant Der f 1on secretion and protease activity[外文期刊] 2001(04) 15.Boado R J;Ji A;Pardridge W M Cloning and expression in Pichia pastoris of a genetically engineered single chain antibody against the rat transferrin receptor[外文期刊] 2000(06)

毕赤酵母手册

毕赤酵母表达实验手册 作者:Jnuxz 来源:丁香园时间:2007-9-5 大肠杆菌表达系统最突出的优点是工艺简单、产量高、周期短、生产成本低。然而,许多蛋白质在翻译后,需经过翻译后的修饰加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等过程才能转化成活性形式。大肠杆菌缺少上述加工机制,不适合用于表达结构复杂的蛋白质。另外,蛋白质的活性还依赖于形成正确的二硫键并折叠成高级结构,在大肠杆菌中表达的蛋白质往往不能进行正确的折叠,是以包含体状态存在。包含体的形成虽然简化了产物的纯化,但不利于产物的活性,为了得到有活性的蛋白,就需要进行变性溶解及复性等操作,这一过程比较繁琐,同时增加了成本。 大肠杆菌是用得最多、研究最成熟的基因工程表达系统,当前已商业化的基因工程产品大多是通过大肠杆菌表达的,其主要优点是成本低、产量高、易于操作。但大肠杆菌是原核生物,不具有真核生物的基因表达调控机制和蛋白质的加工修饰能力,其产物往住形成没有活性的包涵体,需要经过变性、复性等处理,才能应用。近年来,以酵母作为工程菌表达外源蛋白日益引起重视,原因是与大肠杆菌相比,酵母是低等真核生物,除了具有细胞生长快,易于培养,遗传操作简单等原核生物的特点外,又具有真核生物时表达的蛋白质进行正确加工,修饰,合理的空间折叠等功能,非常有利于真核基因的表达,能有效克服大肠杆菌系统缺乏蛋白翻译后加工、修饰的不足。因此酵母表达系统受到越来越多的重视和利用。[1]。 同时与大肠杆菌相比,作为单细胞真核生物的酵母菌具有比较完备的基因表达调控机制和对表达产物的加工修饰能力。酿酒酵母(Saccharomyces.Cerevisiae)在分子遗传学方面被人们的认识最早,也是最先作为外源基因表达的酵母宿主。1981年酿酒酵母表达了第一个外源基因----干扰素基因[2],随后又有一系列外源基因在该系统得到表达[3、4、5、6]。干扰素和胰岛素虽然已经利用酿酒酵母大量生产并被广泛应用,当利用酿酒酵母制备时,实验室的结果很令人鼓舞,但由实验室扩展到工业规模时,其产量迅速下降。原因是培养基中维特质粒高拷贝数的选择压力消失[7、8],质粒变得不稳定,拷贝数下降。拷贝数是高效表达的必备因素,因此拷贝数下降,也直接导致外源基因表达量的下降。同时,实验室用培养基成分复杂且昂贵,当采用工业规模能够接受的培养基时,导致了产量的下降[9]。为克服酿酒酵母的局限,1983年美国Wegner等人最先发展了以甲基营养型酵母(methylotrophic yeast)为代表的第二代酵母表达系统[10]。 甲基营养型酵母包括:Pichia、Candida等.以Pichia.pastoris(毕赤巴斯德酵母)为宿主

酵母表达体系

毕赤酵母是甲醇营养型,甲醇代谢的第一步是:醇氧化酶利用氧分子将甲醇氧化为甲醛和过氧化氢。为避免过氧化氢的毒性,甲醛代谢主要在过氧化物酶体里进行,使得有毒的副产物远离细胞其余组分。由于醇氧化酶与O2 的结合率较低,因而毕赤酵母代偿性地产生大量的酶。而调控产生醇氧化物酶的启动子也正是驱动外源基因在毕赤酵母中表达的启动子。 毕赤酵母含有两种醇氧化物酶,AOX1 AOX2。细胞中大多数的醇氧化酶是AOX1 基因产物。甲醇可紧密调节、诱导 AOX1 基因的高水平表达,为Mut+菌株,可占可溶性蛋白的 30%以上。AOX2 基因与 AOX1 基因有 97%的同源性,但在甲醇中带 AOX2 基因的菌株比带 AOX1 基因菌株慢得多,通过这种甲醇利用缓慢表型可分离 Muts 菌株。 毕赤酵母表达外源蛋白:分泌型和胞内表达。利用含有α因子序列的分泌型载体即可。 翻译后修饰:酿酒酵母与毕赤酵母大多数为 N-连接糖基化高甘露糖型,毕赤酵母中蛋白转录后所增加的寡糖链长度(平均每个支链 8-14 个甘露糖残基)比酿酒酵母中的(50-150 个甘露糖残基)短得多。 菌株:GS115 ( Mut+, Muts)和 KM71(Muts) 分泌型载体: pPICZα A,B,and C (5’AOX1启动子,紧密型调节,甲醇诱导表达,α分泌信号介导的分泌表达,Zeocin抗性基因,C端含有6XHis标签) 胞内表达型载体: pPICZ A,B,and C,

一:分子克隆 1.设计引物 分泌型载体图谱: 见酵母表达说明书(p13-pPICZ A,p14-pPICZ B,p15-pPICZ C) 2.PCR扩增基因 PCR反应体系(50μl) 模板DNA 1μl Forward Primer(10μM)1μl Reverse Primer(10μM)1μl dNTP Mixture(各2mM): 4μl 5×PrimerSTAR buffer(Mg2+ plus)10μl PrimerSTAR DNA Polymerase 0.5μl ddH O up to 50μl 2 PCR 反应流程 预变性98℃ 2min 变性98℃ 10sec 退火56℃ 10sec 30个循环 延伸72℃ 30sec 完全延伸72℃ 10min 保存4℃ 3.双酶切及其回收 双酶切反应体系(40μl) DNA(空载体或目的基因) 30μl BamHⅠ 1.5μl XholⅠ 1.5μl 10×Buffer K 4.0μl 4.酶连接 首先利用1%的琼脂糖电泳将双酶切后的PCR产物和载体进行分离,并通过胶回收试剂盒回收,按照目的基因和空载体的碱基摩尔比在1:3--1:9之间,一共吸取目的基因和空载体的总体积为5μl,在加入等量的5μl DNA快速连接试剂盒SolutionⅠ,16℃连接4-6h。 转化到克隆型感受态(DH5α和Top10),使用低盐LB培养基,加入25 μg/ml

毕赤酵母发酵手册

毕赤酵母发酵手册 总览 简介: 毕赤酵母和酿酒酵母很相似,都非常适合发酵生长。毕赤酵母在有可能提高总体的蛋白质产量的发酵中能够达到非常高的细胞浓度, 我们建议只有那些有过发酵经验或者能得到有经验的人的指导的人参与发酵。因为发酵的类型很多,所以我们很难为您的个人案例提高详细的过程。下面所给出的指导是基于Mut+和Mut s两种基因型的毕赤酵母菌株在15L的台式玻璃发酵罐中发酵而成。请在您的发酵开始前先阅读操作员手册。下面所给出的表就 发酵参数: 在整个发酵过程中监测和调控下列参数非常重要。下面的表格描述了这些参

设备推荐: 下面是所推荐设备的清单: ·发酵罐的夹套需要在发酵过程中给酵母菌降温,尤其是在甲醇流加过程中。你需要一个固定的来源来提供冷却水(5-10℃)。这可能意味着你需要一个冷冻装置来保持水的冷却。 ·一个泡沫探针就像消泡剂一样不可或缺。 ·一个氧气的来源——空气(不锈钢的发酵罐需要1-2vvm)或者纯氧(玻璃发酵罐需要0.1-0.3vvm)。 ·添加甘油和甲醇的补料泵。 ·pH的自动控制。 培养基的准备: 你需要准确配置下列溶液: ·发酵所需的基本盐类(第11页) ·PTM1补充盐类(第11页) ·75ml的50%的甘油每升初始发酵液,12ml的PTM1补充盐每升甘油。 ·740ml的100%的甲醇每升初始发酵液,12ml的PTM1补充盐每升甲醇。毕赤酵母生长的测定: 在不同的时间点通过测OD600的吸光值和湿细胞的重量来检测毕赤酵母的生长。培养的代谢速率通过通过观察溶氧浓度对应于有效碳源来测定。

溶氧的测定: 简介: 溶解氧的浓度时指氧气在培养基中的相关比例,溶氧100%是指培养基中氧达到饱和。毕赤酵母的生长需要消耗氧气,减少溶解氧的满度。毕赤酵母在生长时会消耗氧气,减少溶氧的程度。然而,因为代谢甲醇的最初阶段需要氧气,所以将溶氧浓度维持在一个适当的水平(>20%)来确保毕赤酵母在甲醇上的生长就至关重要。准确测定和监测培养中的溶氧浓度将会为您提供关于培养状态和健康程度之类的重要信息。因此,精确校正您的发酵设备非常重要,请查阅您的操作手册。 溶氧浓度的维持: 1、很难依靠发酵罐的氧气转换速率(OTR)将溶氧浓度维持在20%,特别是在 小型的玻璃罐中。在玻璃发酵罐中,通气一般约为0.1-0.3vvm(1L发酵液每分钟1L氧气)来提供氧气使DO保持在20%。氧气消耗的变化依赖于所添加的甲醇的总量和蛋白质的表达。 2、在通气为0.1-0.3vvm时,氧气可达到足够的水平,这在许多玻璃发酵罐中可 以通过通入无菌空气来实现。在不锈钢发酵罐中,压力可增加OTR(与K L a 有关)。 3、如果一个发酵罐不能提供足够水平的氧气,甲醇的添加需要因此适当降低。 请注意降低甲醇的总量可能导致蛋白质表达水平的降低。 4、为了使蛋白质表达水平达到最大,发酵时间应被分割来以较低的流加速度添 加相似水平的甲醇。对许多重组蛋白质来说,可以观察到甲醇消耗的总量和蛋白质产生的总量有直接的关系。 DO测量的用处: 在毕赤酵母生长阶段,消耗氧气而使DO浓度维持在较低水平。请注意不管是在甘油或甲醇中生长,都要消耗氧气。DO浓度可用来衡量代谢速率和碳源是否受抑制,代谢速率则是培养健康程度的一个指标。如果你希望能够完全的诱导AOX1启动子,确定碳源是否受抑制就非常重要。例如:DO浓度的改变可让你确定是否在添加甲醇前所有的甘油都已耗尽,其次还可以确定甲醇流加的速率是否超过消耗的速率。过多的甲醇(>1-2%vvm)可能会产生毒害。 DO的调控: 如果碳源受到抑制,关闭碳源的添加将会导致培养理工甲醇的速率降低,DO值会上升。终止碳源的添加,观察在碳源的流加关闭后需要多长时间来使DO值上升10%。如果延迟时间很短(<1min),说明碳源受抑制。

毕赤酵母表达手册

版权声明: 本站几乎所有资源均搜集于网络,仅供学习参考,不得进行任何商业用途,否则产生的一切后 果将由使用者本人承担! 本站仅仅提供一个观摩学习与交流的平台, 将不保证所提供资源的完 整性,也不对任何资源负法律责任。所有资源请在下载后 24 小时内删除。如果您觉得满意, 请购买正版,以便更好支持您所喜欢的软件或书籍! ☆☆☆☆☆生物秀[https://www.doczj.com/doc/b417282101.html,] ☆☆☆☆☆中国生物科学论坛[https://www.doczj.com/doc/b417282101.html,/bbs/] ☆☆☆☆☆生物秀下载频道[https://www.doczj.com/doc/b417282101.html,/Soft/] 生物秀——倾力打造最大最专业的生物资源下载平台! ■■■ 选择生物秀,我秀我精彩!!■■■ 欢迎到生物秀论坛(中国生物科学论坛)的相关资源、软件版块参与讨论,共享您的资源,获 取更多资源或帮助。

毕赤酵母多拷贝表达载体试剂盒 用于在含多拷贝基因的毕赤酵母菌中表达并分离重组蛋白 综述: 基本特征: 作为真核生物,毕赤酵母具有高等真核表达系统的许多优点:如蛋白加工、折叠、翻译后修饰等。不仅如此,操作时与E.coli及酿酒酵母同样简单。它比杆状病毒或哺乳动物组织培养等其它真核表达系统更快捷、简单、廉价,且表达水平更高。同为酵母,毕赤酵母具有与酿酒酵母相似的分子及遗传操作优点,且它的外源蛋白表达水平是后者的十倍以至百倍。这些使得毕赤酵母成为非常有用的蛋白表达系统。 与酿酒酵母相似技术: 许多技术可以通用: 互补转化基因置换基因破坏另外,在酿酒酵母中应用的术语也可用于毕赤酵母。例如:HIS4基因都编码组氨酸脱氢酶;两者中基因产物有交叉互补;酿酒酵母中的一些野生型基因与毕赤酵母中的突变基因相互补,如HIS4、LEU2、ARG4、TR11、URA3等基因在毕赤酵母中都有各自相互补的突变基因。 毕赤酵母是甲醇营养型酵母: 毕赤酵母是甲醇营养型酵母,可利用甲醇作为其唯一碳源。甲醇代谢的第一步是:醇氧化酶利用氧分子将甲醇氧化为甲醛,还有过氧化氢。为避免过氧化氢的毒性,甲醛代谢主要在一个特殊的细胞器-过氧化物酶体-里进行,使得有毒的副产物远离细胞其余组分。由于醇氧化酶与O2的结合率较低,因而毕赤酵母代偿性地产生大量的酶。而调控产生醇过氧化物酶的启动子也正是驱动外源基因在毕赤酵母中表达的启动子。 两种醇氧化酶蛋白: 毕赤酵母中有两个基因编码醇氧化酶-AOX1及AOX2。细胞中大多数的醇氧化酶是AOX1基因产物。甲醇可紧密调节、诱导AOX1基因的高水平表达,较典型的是占可溶性蛋白的30%以上。AOX1基因已被分离,含AOX1启动子的质粒可用来促进编码外源蛋白的目的基因的表达。AOX2基因与AOX1基因有97%的同源性,但在甲醇中带AOX2基因的菌株比带AOX1基因菌株慢得多,通过这种甲醇利用缓慢表型可分离Muts菌株。 表达: AOX1基因的表达在转录水平受调控。在甲醇中生长的细胞大约有5%的polyA+ RNA 来自AOX1基因。AOX1基因调控分两步:抑制/去抑制机制加诱导机制。简单来说,在含葡萄糖的培养基中,即使加入诱导物甲醇转录仍受抑制。为此,用甲醇进行优化诱导时,推荐在甘油培养基中培养。注意即使在甘油中生长(去抑制)时,仍不足以使AOX1基因达到最低水平的表达,诱导物甲醇是AOX1基因可辨表达水平所必需的。 AOX1突变表型: 缺失AOX1基因,会丧失大部分的醇氧化酶活性,产生一种表型为Muts的突变株(methanol utilization slow),过去称为Mut,而Muts可更精确地描述突变子的表型。结果细胞代谢甲醇的能力下降,因而在甲醇培养基中生长缓慢。Mut+(methanol utilization plus)指利用甲醇为唯一碳源的野生型菌株。这两种表型用来检测外源基因在毕赤酵母转化子中的整合方式。 蛋白胞内及分泌表达: 外源蛋白可在毕赤酵母胞内表达或分泌至胞外。分泌表达需要蛋白上的信号肽序列,将外源蛋白靶向分泌通路。几种不同的分泌信号序列已被成功应用,包括几种外源蛋白本身分 制作者:陈苗商汉桥

酵母菌实验报告

山东大学实验报告2009年11月日 姓名郑冲冲系年级08级生科一班组别同组者张健康于政达 学号200800140207题目酵母菌的培养、形态观察、死活鉴定和子囊孢子的观察 一、目的要求 1、掌握酵母培养基的配置和酵母菌的接种方法 2、观察酵母菌的细胞形态及出芽生殖方式。 3、学习掌握区分酵母菌死、活细胞的实验方法。 4、学习并掌握酵母菌子囊孢子的观察方法。 二、基本原理 1、培养基:酵母菌的能源主要是糖,一般用麦芽汁琼脂培养基培养。但实验要求不是很严格时,可以用由酵母膏、蛋白胨、葡萄糖配置的培养基来培养;但酵母菌子囊孢子的观察要用麦氏培养基,其有利于子囊孢子的形成。 2、酵母菌的形态:酵母菌是多形的、不运动的单细胞真核微生物,菌体比细菌大。繁殖方式也较复杂,无性繁殖主要是出芽生殖;有性繁殖是通过接合产生子囊孢子。本实验通过用美蓝染色浸片和水-碘液来观察生活的酵母形态和出芽生殖方式。 3、美蓝染色液:美蓝为无毒性染料,其氧化型为蓝色,而还原型为无色。用它对酵母菌染色时,由于活细胞的新陈代谢作用,使细胞内具有较强的还原能力,能使美蓝从蓝色的氧化型变为无色的还原型,所以酵母的活细胞无色;对于死细胞或代谢缓慢的老细胞,则因它们无此还原能力或还原能力极弱,而被美蓝染成蓝色或淡蓝色。因此,用美蓝水浸片不仅可观察酵母的形态,还可以区分死、活细胞。 4、水-碘液染色液:该染液将革兰氏染液用碘液用水稀释4倍后得到的,亦可用于酵母形态和出芽生殖的观察。 4、子囊孢子的观察:酵母菌形成子囊孢子需要一定的条件,麦氏培养基有利于酿酒酵母子囊孢子的形成,能否形成子囊孢子及其形态是酵母菌分类鉴定的重要依据之一。 三、实验器材 1.菌种:酿酒酵母培养数天的酵母-麦氏培养基斜面 2.溶液与试剂:0.1% 吕氏碱性美蓝染液,5%孔雀绿,0.5%沙黄、95%乙醇,水-碘染液 3.培养基:酵母液体培养基,麦氏培养基。 4.仪器或其他用具:显微镜,载玻片,盖玻片,酒精灯、接种环等。 四、实验步骤 1、酵母培养基的配置:蛋白质2%,酵母膏1%葡萄糖2%,加冷水100Ml,自然PH,在115℃下高压蒸汽灭菌30min。 2、接种和培养:无菌操作下,在灭菌的培养基中倒入少许酵母菌液即可。在28℃下培养48h 左右。 3、美蓝染色操作: 1>在载玻片中央加一滴吕氏碱性美蓝染色液,用接种环挑取少量酵母菌液,混合均匀; 2>用镊子取一块盖玻片,先将一边与菌液接触,然后慢慢将盖玻片放下使其盖在菌液上,避免产生气泡; 3>将制片放置约3min,先低倍镜后高倍镜观察酵母形态和出芽情况,并根据颜色区别死活细胞。 4>染色开始到过30min期间,观察死活细胞数量的变化; 4、水-碘液浸片法:滴加一滴水-碘液在载玻片的中央,无菌操作挑取少许酵母菌液至于染

毕赤酵母表达操作手册(精译版)

毕赤酵母多拷贝表达载体试剂盒 用于在含多拷贝基因的毕赤酵母菌中表达并分离重组蛋白 综述: 基本特征: 作为真核生物,毕赤酵母具有高等真核表达系统的许多优点:如蛋白加工、折叠、翻译后修饰等。不仅如此,操作时与E.coli及酿酒酵母同样简单。它比杆状病毒或哺乳动物组织培养等其它真核表达系统更快捷、简单、廉价,且表达水平更高。同为酵母,毕赤酵母具有与酿酒酵母相似的分子及遗传操作优点,且它的外源蛋白表达水平是后者的十倍以至百倍。这些使得毕赤酵母成为非常有用的蛋白表达系统。 与酿酒酵母相似技术: 许多技术可以通用: 互补转化基因置换基因破坏另外,在酿酒酵母中应用的术语也可用于毕赤酵母。例如:HIS4基因都编码组氨酸脱氢酶;两者中基因产物有交叉互补;酿酒酵母中的一些野生型基因与毕赤酵母中的突变基因相互补,如HIS4、LEU2、ARG4、TR11、URA3等基因在毕赤酵母中都有各自相互补的突变基因。 毕赤酵母是甲醇营养型酵母: 毕赤酵母是甲醇营养型酵母,可利用甲醇作为其唯一碳源。甲醇代谢的第一步是:醇氧化酶利用氧分子将甲醇氧化为甲醛,还有过氧化氢。为避免过氧化氢的毒性,甲醛代谢主要在一个特殊的细胞器-过氧化物酶体-里进行,使得有毒的副产物远离细胞其余组分。由于醇氧化酶与O2的结合率较低,因而毕赤酵母代偿性地产生大量的酶。而调控产生醇过氧化物酶的启动子也正是驱动外源基因在毕赤酵母中表达的启动子。 两种醇氧化酶蛋白: 毕赤酵母中有两个基因编码醇氧化酶-AOX1及AOX2。细胞中大多数的醇氧化酶是AOX1基因产物。甲醇可紧密调节、诱导AOX1基因的高水平表达,较典型的是占可溶性蛋白的30%以上。AOX1基因已被分离,含AOX1启动子的质粒可用来促进编码外源蛋白的目的基因的表达。AOX2基因与AOX1基因有97%的同源性,但在甲醇中带AOX2基因的菌株比带AOX1基因菌株慢得多,通过这种甲醇利用缓慢表型可分离Muts菌株。 表达: AOX1基因的表达在转录水平受调控。在甲醇中生长的细胞大约有5%的polyA+ RNA 来自AOX1基因。AOX1基因调控分两步:抑制/去抑制机制加诱导机制。简单来说,在含葡萄糖的培养基中,即使加入诱导物甲醇转录仍受抑制。为此,用甲醇进行优化诱导时,推荐在甘油培养基中培养。注意即使在甘油中生长(去抑制)时,仍不足以使AOX1基因达到最低水平的表达,诱导物甲醇是AOX1基因可辨表达水平所必需的。 AOX1突变表型: 缺失AOX1基因,会丧失大部分的醇氧化酶活性,产生一种表型为Muts的突变株(methanol utilization slow),过去称为Mut,而Muts可更精确地描述突变子的表型。结果细胞代谢甲醇的能力下降,因而在甲醇培养基中生长缓慢。Mut+(methanol utilization plus)指利用甲醇为唯一碳源的野生型菌株。这两种表型用来检测外源基因在毕赤酵母转化子中的整合方式。 蛋白胞内及分泌表达: 外源蛋白可在毕赤酵母胞内表达或分泌至胞外。分泌表达需要蛋白上的信号肽序列,将外源蛋白靶向分泌通路。几种不同的分泌信号序列已被成功应用,包括几种外源蛋白本身分

(完整版)酵母菌实验

7.2 用酵母菌研究一个种群 实验原理 酵母菌繁殖快,是单细胞个体,常被用来研究种群。我们将观察在试管内肉汤培养基中的酵母菌种群的生长情况。 酵母菌的种群属于封闭种群类型。在自然条件下,开放种群的大小会随着生物个体的迁入或迁出而变大变小。在开放种群中,各种物质可通过种群进行循环。但在封闭种群中,情况有些不同,测定封闭种群的增长率比开放种群的增长率要容易得多。用浊度计测定培养液的浑浊度,就能知道酵母菌种群是如何随时间而发生变化的。通过细胞计数就可以知道酵母菌细胞的数量变化与浑浊度之间的关系。 目的要求 通过实验观察,说明种群是如何随时间而发生变化的。 学习酵母菌计数的方法以及取样法。 材料用具(2人一组) 2副护目镜;2支16mm×150mm有螺旋盖的试管,每支盛有10ml无菌肉汤培养液;2支18mm×150mm试管;盖玻片;有标尺的载玻片(2mm×2mm方格);有刻度的吸量管(1ml);滴管;比浊计或比色计;显微镜;试管架;玻璃标记笔;米尺;4张半对数坐标纸。 实验方法 请仔细阅读实验并提出3种假设,说明种群如何随时间而发生变化。把这些假设记在你的记录本上,并用你在实验中收集的数据对它们做出评价。 本实验采用的方法叫取样法—通过对样品中的酵母菌计数以估计试管中的种群大小。还可根据试管中培养液的浑浊度获得这一估算值。 实验步骤 实验从第0天—第7天。 (一)第0天: 1、在你的记录本上画好与表2.1类似的数据表。 2、用标记笔把两支螺旋盖的试管标上A和B,并在每支试管上标上你的组别。 表2.1酵母菌细胞的数目

3、教师将把0.1ml酵母菌贮存用培养物注入试管A中,轻轻倒转试管几次使酵母细胞分布均匀。试管B不加任何东西。将试管盖稍微拧松并将两支试管放在教师指定的地方。设置试管B的目的是什么? 4、试管A中为刚开始增长的酵母菌新种群。就下周期间你认为可能会发生的变化评论你的假设。 5、为了确定酵母菌种群的增长速率,必须在实验过程中对酵母菌进行计数。拧紧试管盖将试管A轻轻倒转几次使酵母菌细胞分布均匀,然后用滴管从试管A中取出一滴培养液移到载玻片方格上,小心盖上盖玻片,不要有气泡。在显微镜高倍镜下进行镜检。 注意:观察酵母菌细胞时光线不要太强。 6、为了计算中央方格内酵母菌细胞的数目,先将方格左上部置于高倍镜下并记下酵母菌细胞数目,接着按顺时针方向分别统计方格右上部、右下部和左下部的酵母菌数,直到把整个方格内全部酵母菌数量统计完为止。要确保你所观察到的是酵母菌细胞而不是其他的什么东西。酵母菌细胞常常粘附在一起,但可以数出任何一个分离团块中的每一个细胞,酵母菌出芽时的芽体也应算为独立的个体。 7、至少要数300个细胞,如果少于300就应在原方格周围的另一方格内进行计数,直到达到300为止。用细胞数除以方格数即可得到每方格内的平均数。 8、为了知道每立方厘米(cm3)体积(1ml)内的细胞数,可用计得的细胞数乘以2500。这是因为每方格的面积是2mm×2mm,盖玻片下的培养液厚度是0.1mm,所以每方格的体积就是 2mm×2mm×0.1mm=0.4mm3,而1cm3=1000mm3,因此:细胞数 1000mm32500×细胞数 为了知道试管A中的细胞总数,可将最终获得的细胞总数乘以10,因为试管A中含有10ml 培养液。 9、让同组的另一人对一个新样品做同样的工作,将结果写在记录本上并计算两次计数的平均值。把第0天观察到的种群大小填写在你的数据表中。 10、对试管B重复步骤5—9。 11、使用比浊计测定两试管的浑浊度。算出读数的平均值,并将第0天的平均值写入你的资料表和班长的表格中。当酵母菌种群增长时你预测会出现什么情况?把你的预测写入记录本。 (二)第1—7天 13、多次倒转试管A使酵母菌细胞分布均匀,测定浑浊度,将第1天的平均值记在你的资料表和班长的表格中,对试管B重复同样的工作。 14、分别使用试管A和试管B中的一滴培养液重复步骤5—9的计数工作,并将第1天的结果写入你的资料表和班长的表格中。

2020年毕赤酵母表达系统资料整理

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 毕赤酵母表达系统 Mut+和Muts 毕赤酵母中有两个基因编码醇氧化酶——AOX1及AOX2,细胞中大多数的醇氧化酶是AOX1基因产物,甲醇可紧密调节、诱导AOX1基因的高水平表达,较典型的是占可溶性蛋白的30%以上。AOX1基因调控分两步:抑制/去抑制机制加诱导机制。简单来说,在含葡萄糖的培养基中,即使加入诱导物甲醇转录仍受抑制。为此,用甲醇进行优化诱导时,推荐在甘油培养基中培养。注意即使在甘油中生长(去抑制)时,仍不足以使AOX1基因达到最低水平的表达,诱导物甲醇是AOX1基因可辨表达水平所必需的。AOX1基因已被分离,含AOX1启动子的质粒可用来促进编码外源蛋白的目的基因的表达。AOX2基因与AOX1基因有97%的同源性,但在甲醇中带AOX2基因的菌株比带AOX1基因菌株慢得多,通过这种甲醇利用缓慢表型可分离Muts菌株。在YPD(酵母膏、蛋白胨、葡萄糖)培养基中,不论是Mut+还是Muts其在对数期增殖一倍的时间大约为2h。Mut+和Muts菌株在没有甲醇存在的情况下生长速率是一样的,存在甲醇的情况下,Mut+在对数期增殖一倍的时间大约为4至6个小时,Muts在对数期增殖一倍的时间大约为18个小时。 菌株GS115、X-33、KM71和SMD1168的区别 GS115、KM71和SMD1168等是用于表达外源蛋白的毕赤酵母受体菌,与酿酒酵母相比,毕赤酵母不会使蛋白过糖基化,糖基化后有利于蛋白的溶解或形成正确的折叠结构。GS115、KM71、SMD1168在组氨酸脱氢酶位点(His4)有突变,是组氨酸缺陷型,如果表达载体上携带有组氨酸基因,可补偿宿主菌的组氨酸缺陷,因此可以在不含组氨酸的培养基上筛选转化子。这些受体菌自发突变为组氨酸野生型的概率一般低于10-8。GS115表型为Mut+,重组表达载体转化GS115后,长出的转化子可能是Mut+,也可能是Muts(载体取代AXO1基因),可以在MM和MD培养基上鉴定表型。SMD1168和GS115类似,但SMD1168基因组中的Pep4基因发生突变,是蛋白酶缺陷型,可降低蛋白酶对外源蛋白的降解作用。 其中X-33由于是野生型,因此耐受性比较好,如果担心转化率的话可以考虑这种酵母菌,而X33与GS115一样都是属于MUT+表现型,也就是说可以在含甲醇的培养基中快速生长,但是据说会对外源基因表达有影响, KM71的亲本菌在精氨酸琥珀酸裂解酶基因(arg4)有突变,在不含精氨酸的培养基中不能生长。用野生型ARG4基因(约2kb)插入到克隆的野生型AOX1基因的BamHI(AOX1基因15/16密码子)及SalI(AOX1基因227/228密码子)位点,取代了AOX1基因16-227密码子,此结构转化至KM71亲本菌(arg4his4)中,分离产生KM71 MutsArg+His-菌株,Arg+转化子遗传分析显示野生型AOX1被aox1::ARG4结构所取代,所以KM71所有转化子都是Muts 表型。AOX1位点没有被完全缺失,理论上可用你的目的结构通过基因取代方法替换

毕赤酵母表达经验总结

毕赤酵母表达经验总结 甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。不少人在操作中会遇到这样那样的问题,生物通编者特地收集了部分用户在使用EasySelect Pichia Expression System这个被誉为最简单的毕赤酵母表达的经典试剂盒过程中的心得体会。其中Xiang Yang是来自美国乔治城大学(Georgetown University)Lombardi癌症中心(Lombardi Cancer Center),部分用户来自国内。 甲基酵母部分优点与其他真核表达系统比较与原核表达系统比较 1.属于真核表达系统,具有一定的蛋白质翻译后加工,有利于真核蛋白的表达优点-+ 2.AOX强效启动子,外源基因产物表达量高,可以达到每升数克表达产物的水平++++ 3.酵母培养、转化、高密度发酵等操作接近原核生物,远较真核系统简单,非常适合大规模工业化生产。+++= 4.可以诱导表达,也可以分泌表达,便于产物纯化。=+ 5.可以甲醇代替IPTG作为诱导物,部分甲醇酵母更可以甲醇等工业产物替代葡萄糖作为碳源,生产成本低++++ + 表示优胜于;- 表示不如;= 表示差不多 EasySelect Pichia Expression System 产品性能: 优点——使用简单,表达量高,His-tag便于纯化 缺点——酵母表达蛋白有时会出现蛋白切割问题 全面产品报告及心得体会: 巴斯德毕赤酵母(Pichia pastoris)是一种能高效表达重组蛋白的酵母品种,一方面由于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。 毕赤酵母表达载体pPICZ在多克隆位点(MCR)3'端带有his-tag和c-myc epitopes,这些tag有利于常规检测和纯化,而且在MCR5'端引入了alpha factor(α-factor)用以增加表达,并且在表达后α-factor 可以自动被切除。在进行克隆的时候,如果你选择的是EcoRI,那么只需在目标蛋白中增加两个氨基酸序列即可完成。另外pPICZ系列选用的是Zeocin抗生素作为筛选标记,而诱导表达的载体需要甲醇——甲醇比一般用于大肠杆菌表达诱导使用的IPTG便宜。 第一步——构建载体 Xiang Yang:pPICZ系列有许多克隆位点可供选择,同时也有三种读码框以便不用的用户需要。 红叶山庄:有关是选择pPIC9K还是pPICZ系列?pPIC9K属于穿梭质粒,也可以在原核表达,而pPICZ系列比较容易操作,大肠和毕赤酵母均用 抗Zeocin筛选(PIC9K操作麻烦一点,大肠用amp抗性,而毕赤酵母先用His缺陷筛选阳性克隆,在利用G418筛选多拷贝),而且对于大小合适(30—50KD)的蛋白在产量上是pPIC9K无法比拟的。leslie:要做毕赤酵母表达实验,首先当然就要了解这个可爱的酵母了(椭圆形,肥嘟嘟的,十分可爱),她和大肠杆菌长得有较大区别(大肠杆菌是杆状的),因此在培养的过程中要区别这两种菌体,除了气味,浓度,颜色以外,也可以取样到显微镜中观测。大家做毕赤表达的时候应该都遇过这种情况吧,表达过程中染菌(我们实验室曾经污染过各种颜色形状的细菌,那真是一段可怕的经历),如果在不知情的情况下继续做下去,那可以就是浪费大把的时间了。 基本熟悉了毕赤酵母,了解了她生长的喜好(多糖偏酸环境),生长的周期等等情况后,当然更多的精力还是应该花在表达的目的蛋白上,我的表达蛋白有些恐怖,有100KD,本来当然应该放在大肠杆菌中表达,但是为了分泌表达(其实后来发现大肠杆菌pET系列分泌表达系列也不错)和糖基化修饰(主要是这个方面,因为我的蛋白是人源的,表达出来用于酵母双杂,因此需要有完备的糖基化修饰)。这样我的DNA片段由于较长,所以在做克隆的时候也要非常小心,需要注意的是: ①酶切位点不能出现在目的DNA片段中——如果片段长无法避免,可以采用平末端连接; ②虽然α-factor可以自动切除,但是在设计表达的时候,如果在N端不能出现任何多余的aa(比如药物蛋白表达),需要特别留意(说明书上有详细说明:P13); ③有三种不同的读码框(对于pPICZα系列来说就是对上α-factor序列),在设计克隆的时候要反复确

相关主题
文本预览
相关文档 最新文档