当前位置:文档之家› Model neutron star atmospheres with low magnetic fields. 1. Atmospheres in radiative equili

Model neutron star atmospheres with low magnetic fields. 1. Atmospheres in radiative equili

a r X i v :a s t r o -p h /9604072v 1 13 A p r 1996

A&A manuscript no.

(will be inserted by hand later)

1.Introduction

Thermal radiation from the surfaces of neutron stars (NSs)provides important information about their ther-mal histories and the properties of the high-density mat-ter in their interiors (Pethick 1992;Tsuruta 1995).The NS thermal-like radiation has been observed recently in

the soft X-ray range with ROSAT (¨Ogelman 1995;and

references therein)and EUV E (e.g.,Foster et al.1996;Halpern et al.1996)and in the UV-optical range with HST (Pavlov et al.1996).For the proper interpretation of these observations,one should take into account that NSs are not perfect blackbody emitters —properties of their radiation are determined,like in usual stars,by the radiative transfer in their atmospheres,and the emergent spectra can di?er substantially from the Planck spectrum,depending on the chemical composition,magnetic ?eld,energy ?ux and gravity in surface layers (Pavlov et al.1995,and references therein).

There are at least two factors which make NS atmo-spheres di?erent from those of normal stars:the immense gravity and huge magnetic ?elds.The ?rst factor is im-portant for all NSs;it leads to strong compression and non-ideality of the atmospheric matter,which a?ects con-siderably equation of state (EOS)and opacity.Even much greater and more complicated e?ects on the opacity and EOS can be expected from the very high magnetic ?eld which,in particular,makes the NS atmospheres essentially anisotropic.

First NS atmosphere models have been developed by Romani (1987;hereafter R87).He employed (nonmag-netic)opacities from the Los Alamos Opacity Library (LAOL)to calculate atmosphere models and emergent spectra for a few e?ective temperatures,5.5≤log T e?≤6.5,and chemical compositions (pure helium,carbon,oxy-gen,iron,and a mixture of elements with cosmic abun-dance)and showed that the spectrum could indeed be quite di?erent from the blackbody,especially for the he-

2V.E.Zavlin,G.G.Pavlov and Yu.A.Shibanov:Model neutron star atmospheres with low magnetic?elds

lium models.Further work has been concentrated on NS atmospheres with“typical”(strong)NS magnetic?elds, B=1011?1013G,which drastically change opacities and EOS(Miller1992;Shibanov et al.1992;Shibanov et al. 1993;Ventura et al.1993;Pavlov et al.1994;Pavlov et al.1995;Shibanov&Zavlin1995;Shibanov et al.1995a; Zavlin et al.1995a).These papers(except that of Miller) were devoted to pure hydrogen NS atmospheres because no reliable opacities and EOS had been developed for non-ideal partly ionized gases of heavier elements.It has been demonstrated that the strong magnetic?elds not only dra-matically a?ect the emergent spectra,but they also lead to remarkable anisotropy and strong polarization of the NS thermal radiation.

Importance of the magnetic?eld depends on how large is the electron cyclotron energy,hνB=heB/m e c,in com-parison with other characteristic energies.For instance, if we consider a completely ionized(hot)atmosphere, where the main source of opacity is the free-free transitions and/or scattering on electrons,the opacity is not a?ected by the?eld for hνB?hν,k B T(see,e.g.,Kaminker et al.1983).Since the energy transfer in the atmosphere is mainly driven by photons with hν~(1?10)k B T,one can neglect the magnetic e?ects if B?(m e c/he)k B T~1010(T/106K)G.If a substantial fraction of bound atoms or ions is present,the magnetic e?ects are determined by the ratio hνB/Z2Ry~(B/109G)Z?2,where Z is a char-acteristic ion charge,and Ry=13.6eV is the Rydberg energy.When this ratio is<~1,magnetic e?ects on the bound-bound transitions between lower quantum levels, as well as on the bound-free transitions well above pho-toionization thresholds,can be neglected.Although tran-sitions which involve highly excited levels may be a?ected by much lower?elds,they usually are not important for conditions typical for NS atmospheres.

Thus,depending on atmospheric temperature and chemical composition,one can neglect the magnetic e?ects on opacities and EOS if B?108?1010G.This means that there exists at least one class of NSs,millisecond pul-sars,for which the magnetic e?ects can be expected to be small.Four millisecond pulsars have been detected in soft X-rays(Halpern1996,and references therein).The radiation from at least one of them–a nearby,bright PSR J0437?4715,with the?eld B~3×108G–has been shown to have a thermal-like component apparently originating from the NS surface(Becker&Tr¨u mper1993; Edelstein et al.1995;Halpern et al.1996).To interpret these data properly,the observed spectra and the light curves should be compared to nonmagnetic atmosphere models.One cannot exclude also that high magnetic?elds of ordinary pulsars are concentrated in small“platelets”, whereas a substantial fraction of the NS surface has much lower?elds(Page et al.1995).Finally,since the NS mag-netic?elds are subject to decay(although characteristic time of this decay remains highly uncertain—see,e.g., Bhattachrya1995),one can expect that very old NSs,most of which do not show pulsar activity,have magnetic?elds su?ciently low for nonmagnetic atmosphere models could be applied to analyze their thermal radiation.Detection of two old NS candidates has been reported recently(Stocke et al.1995;Walter et al.1996).Although identi?cation of these objects as NSs requires further con?rmation,the amount of dead pulsars observable through their thermal radiation should exceed considerably that of active pul-sars,so that one can expect more such objects to be dis-covered in near future.

Thus,investigation of the nonmagnetic NS atmosphere models can be justi?ed not only by their relative simplicity —the models can be applied to analysis of observations of real objects.Although a set of such models has been pre-sented in R87,there exist several reasons to re-examine the previous results and to continue work on the nonmag-netic models.

(i)New,much improved opacity codes have been de-veloped by the OPAL group,and a comprehensive set of the opacity data has been computed(Iglesias et al.1992; Rogers&Iglesias1994).These new opacities substantially exceed those from LAOL for heavy elements just at the densities and temperatures characteristic for the NS at-mospheres.Particularly interesting for the application to NS atmospheres is a set of monochromatic opacities for pure iron composition,generated at request of,and in collaboration with,Roger Romani(Romani1996,private communication).Rajagopal and Romani(1996;hereafter RR96;see also Romani et al.1996)have used the results to develop modi?ed NS atmosphere models.1

(ii)No hydrogen atmosphere models and only three helium models(for T e?=105.5,106and106.5)were presented in R87,and a few hydrogen and helium non-magnetic models were presented in our previous pa-pers(Shibanov et al.1992;Zavlin et al.1994;Pavlov et al.1995),mainly for comparison with the magnetic mod-els,without a systematic analysis.However,the low-?eld NSs,including the millisecond pulsars,are assumed to have been passed,during their long life,through an ac-cretion stage when a substantial amount of light elements have been accumulated at the NS surface.(It may even be that the surface magnetic?elds are low because of accretion-induced?eld decay—see,e.g.,Bhattacharya 1995).Due to gravitational strati?cation(Alcock&Illar-ionov1980)and/or nuclear spallation reactions which de-stroy heavy elements(Bildstein et al.1992,1993),the up-per atmospheric layers can be expected to consist mainly of lightest elements unless they have been dragged down-ward by convection or burned in nuclear reactions.Only two hydrogen atmosphere models(for T e?=105.5and 106K)were presented in RR96,which is not enough for a detailed analysis of how the atmospheric structure and emergent spectra depend on the model parameters.

V.E.Zavlin,G.G.Pavlov and Yu.A.Shibanov:Model neutron star atmospheres with low magnetic?elds3

(iii)Only the(local)?ux spectra of the emergent radi-ation have been studied in both R87and RR96.However, the temperature distribution over the NS surface should be,as a rule,nonuniform due to either the presence of a hot polar cap in active pulsars(which is demonstrated by the light curve of PSR J0437?4715—Becker& Tr¨u mper1993)or anisotropy of the heat conduction in the NS crust(Shibanov&Yakovlev1996).This means that the?ux from a NS is to be determined by integra-tion of the angle-dependent speci?c intensities over the observable NS surface;this?ux may di?er substantially from the local?ux due to the frequency-dependent limb-darkening e?ect which has not been investigated for the nonmagnetic models.In addition,gravitational bending of the photon trajectories is to be taken into account to obtain correct light curves of the NS thermal radiation (Shibanov et al.1995b;Zavlin et al.1995b,c).

(iv)It would be desirable to verify the models pre-sented in R87and RR96using an alternative,more mod-ern numerical approach which has been applied by our group to modeling magnetic NS atmospheres.In partic-ular,that approach takes into account anisotropy of ra-diation in both solving the radiative transfer and calcu-lating the atmosphere temperature distribution,whereas the Lucy-Uns¨o ld method employed in R87and RR96for calculating the temperature distribution is correct only in the case of isotropic radiation?eld.In addition,Thomson scattering,treated in R87with an oversimpli?ed approach, and excluded from consideration in RR96,may be impor-tant for light element atmospheres at T e?>~106K and is to be included consistently in the atmosphere modeling.

In this paper we present a set of nonmagnetic NS at-mosphere models of di?erent chemical compositions com-puted with an advanced atmosphere modeling code com-bined with the OPAL opacities.We study the atmospheric structure,and the spectra and angular distribution of emergent radiation in a wide range of e?ective temper-atures and surface gravities.We consider the atmospheres in radiative equilibrium,which means that the total en-ergy?ux is transferred only by radiation,whereas other heat transport mechanisms(convection,electron heat con-duction)are of no importance.The models with convec-tion,which plays a role at lower T e?,will be analyzed elsewhere(see Zavlin et al.1996for preliminary results). Our estimates show that,for the models considered,con-tribution of electron heat conduction to the heat?ux never exceeds a few tenths of percent at unit optical depth.It may reach several percent only at very bottoms of heavy element atmospheres with lowest e?ective temperatures; the intensities of far Wien tails of the emergent radiation formed at these layers are too low to be of any practical importance.It should be mentioned that our estimates of the conductive opacity exceed those of RR96(making electron heat conduction less important)because RR96 used an approximate equation with the Coulomb loga-rithm omitted.On the other hand,the equations we use (Hochstim&Massel1969)also become inaccurate at high densities and low temperatures,so that the problem needs further consideration.

We describe our approach to atmosphere modeling in Section2,and present the results in Section3.Some ob-servational implications are discussed in Section4.

2.General description of the model

2.1.Basic equations

Since a characteristic thickness of the NS atmosphere,~0.01?1cm,is much smaller than the NS radius,and characteristic densities are rather high,we consider the plane-parallel atmospheres in local thermodynamic equi-librium.Following a standard approach(e.g.,Mihalas 1978),we proceed from the radiative transfer equation in the form of a second-order boundary problem:

μ2

d

d

d

2

(I+ν+I?ν),I+ν=Iν(y,+μ)and I?ν=Iν(y,?μ)are the speci?c spectral intensities of the outward-and inward-directed streams of radiation,y is the column density(d y=?ρd z),and Bν=Bν(T(y)) is the Planck function.The monochromatic opacity kν= kν(y)=αν(y)+σν(y)is the sum of the true absorption opacityανand scattering opacityσν.For the source func-tion Sν=Sν(y)we use

Sν=(σνJν+ανBν)k?1ν,(3) where Jν=Jν(y)= 10uνdμis the mean intensity.This form of the source function implies the isotropic scatter-ing approximation which proved to be very accurate even in the case when scattering dominates over true absorp-tion(e.g.,Mihalas1978).The boundary conditions(2) assume that there is no incident radiation at the outer boundary y=0,and the photon energy density tends to its equilibrium value at large depths.

In the present paper we consider only atmospheres in radiative equilibrium,where convection and electron heat conduction are negligible,and the energy is trans-ferred solely by radiation.In this case the radiative?ux is independent of y and coincides with the total?ux, F≡σSB T4e?,

Fνdν=4π ∞0dν 10dμμ2d y=σSB T4e?,(4)

where Fν(y)is the spectral?ux,σSB is the Stefan-Boltzmann constant,and T e?is the e?ective temperature.

4V.E.Zavlin,G.G.Pavlov and Yu.A.Shibanov:Model neutron star atmospheres with low magnetic ?elds

It follows from Eqs.(1)and (4)

that the

radiative

equilib-

rium

condition

can be

also presented in the form

αν(J ν?B ν)d ν=0.(5)

We consider the atmospheres in hydrostatic equilib-rium,which implies that the gas pressure is P =g y ,where g is the gravitational acceleration (the radiative force is in-signi?cant for the temperatures of interest,T e??107K).The above equations are to be supplemented with EOS,P =P (ρ,T ),and true absorption and scattering opac-ities,αν(ρ,T )and σν(ρ,T ).The opacities can be either extracted from opacity libraries or calculated with the use of atomic data (radiative cross sections).In the latter case,the set of equations of ionization equilibrium (EOIE)should be solved to ?nd the fractions of ions in di?erent stages of ionization as well as the electron number density N e (ρ,T ).

The input parameters of a model are the e?ective tem-perature T e?,surface gravitational acceleration g (or the NS mass and radius)and chemical composition.Solving these equations yields the atmospheric structure (T (y ),ρ(y ),N e (y ),etc.),and the radiative ?eld in the atmo-sphere (F ν(y ),J ν(y ),u ν(y,μ),including the angular and spectral distribution of the emergent radiation,I ν(0,μ)=2u ν(0,μ)).

It should be noted that the models give the radiation and the atmospheric structure for a local element of the NS surface.If the surface conditions are not uniform (e.g,the e?ective temperature may be higher at the magnetic poles),the observable photon ?ux should be obtained from integration of I ν(0,μ)over the visible NS surface,with allowance for the gravitational redshift and bending of the photon trajectories (e.g.,Shibanov et al.1995b;Zavlin et al.1995b,c).

2.2.Method of solution

Solving the system of the model equations splits into two parts,each of which can be solved with the knowledge of the other:calculation of the radiation ?eld given the structure of the atmosphere,and calculation the structure given the radiation ?eld.We start from calculating the temperature distribution in the Eddington approximation,integrating the equation d T e?

=3

T 3

(6)

with the boundary condition T (0)=0.841T e?.Here k R =k R (T,ρ)is the Rosseland mean opacity which is calculated at each step of the integration,with ρ(y )being found from EOS and hydrostatic equilibrium.The initial atmospheric structure is used to obtain a ?rst approximation for the radiation ?eld.

Computing the radiation ?eld starts from calculating the Eddington factors,f ν=

J ?1ν

1

μ2

u νd μ

and h ν=

J ?1ν

1

μu νd μ.(7)

In deep layers,where the radiation is nearly isotropic and the di?usion approximation is valid,we have f ν?1

2.The dependences of f νand h νon y account for the depth dependence of anisotropy of radiation.Integrat-ing Eqs.(1)and (2)over μyields the ordinary di?erential equation for the mean intensity,d k ν

d

k ν

d d y 1d y f νJ ν=αν(J ν?B ν)?(10)

?αν

d B ν

αν′(d B ν′/d T )d ν′

,

with the boundary conditions (9)and with the Eddington factors calculated as described above.Since the spectral ?ux is F ν=

4πd y f νJ ν,

(11)

the additional (as compared to Eq.(8))integral term in Eq.(10)automatically provides the total radiative ?ux F to be constant throughout the atmosphere at any given it-eration.Moreover,this integral term turns into zero iden-tically when the radiation ?eld and atmospheric structure satisfy the radiative equilibrium condition (5).

The mean intensity found from Eq.(10)is used to cal-culate a new temperature T +δT for each atmospheric

V.E.Zavlin,G.G.Pavlov and Yu.A.Shibanov:Model neutron star atmospheres with low magnetic?elds5 layer,with the correctionδT equal to the ratio of the two

integrals in the additional term in Eq.(10).Once the new

T(y)is obtained,we can complete calculation of the at-

mospheric structure(and new opacities)making use of the

hydrostatic equilibrium,EOS and EOIE,and then com-

pute the corresponding radiation?eld as described above

(starting with calculation of the Eddington factors).The

global iterations continue until the maximum relative cor-

rection|δT/T|becomes smaller than a given value(typi-

cally~1%).Note that using the modi?ed transfer equa-

tion(10)substantially accelerates the global iterations(a

reasonable accuracy is reached in2–4iterations).

We solve the model equations numerically by discretiz-

ing on the depth variable y,photon energy E=hνand

angular variableμ.Typically,we use a grid with100?150

depth points logarithmically spaced between10?8?10?6

and1?10g cm?2,100?200energy points logarithmi-

cally spaced between0.1k B T e?and60k B T e?,and50an-

gular points forμbetween0and1.A fourth-order Hermi-

tian discretization method(Auer1976)is applied to solve

Eqs.(8),(9)and(10).We also use the elimination scheme

suggested by Rybicki&Hummer(1991),which provides

a higher accuracy in comparison with the standard Gaus-

sian method.

Since the monochromatic opacities of heavy elements

(particularly iron)include many thousands of spectral

lines,their frequency dependence should be properly

binned to use them for construction of the atmosphere

models.We average the original monochromatic opacities

arithmetically in each bin of the logarithmic frequency

grid(typically(1?2)×103frequency points per bin)and

use these binned opacities to compute the atmospheric

structure and a“smoothed”spectrum as described above.

We checked by varying the number of bins that~100?200

bins provide su?cient accuracy(a relative error<~1?2%)

of the atmospheric structure and the total?ux.To obtain

the spectrum with a?ne spectral resolution,we calcu-

late the intensities of the outward-and inward-directed

streams,

I+ν(y,μ)=1

μ y1y kνd y2

d y1(12)

and

I?ν(y,μ)=1

μ y y1kνd y2

d y1,(13)

with the original monochromatic opacities(at~104fre-quency points).The spectral?ux is then computed as Fν(y)=2π 10[I+ν(y,μ)?I?ν(y,μ)]μdμ.(14)

These“output”spectra can be further smoothed,if needed,with a standard spline procedure.2.3.Opacities and EOS

The true absorption opacityανis due to the free-free, bound-free and bound-bound transitions;σνis dominated by the Thomson scattering on electrons.The main distinc-tion of the opacities,EOS and EOIE in a NS atmosphere from those in usual stars is due to high non-ideality(pres-sure e?ects).For modeling hydrogen/helium atmospheres, we calculate the opacities and EOIE of non-ideal gases using the occupation probability formalism(Hummer& Mihalas1988)as described by Zavlin et al.(1994).The re-sults of these calculation agree fairly well with the OPAL data(Iglesias et al.1992)obtained with a quite di?erent approach(Rogers1986).

For modeling iron atmospheres,we use the opacities and EOS computed by the OPAL group,in collaboration with R.Romani.The opacities kνwere computed for the domain log R=?5(1)1,log T=4.5(0.25)7.5(R≡ρ/T36,ρin g cm?3,T6=T/(106K)).They are provided on a grid of104photon energies linearly spaced in the range 2×10?3k B T≤E≤20k B T.To obtain kνat given T andρ, we use the cubic spline interpolation of log kνwith respect to log R and log T.For E>20k B T we use additional tables for the same R and T and1eV≤E≤10keV. 3.Results

We have computed a set of the atmosphere models for NSs with various e?ective temperatures T e?,gravitational accelerations g and chemical compositions.In this paper we demonstrate representative models for pure hydrogen, helium and iron compositions.The hydrogen and helium models are presented for log T e?=4.7(0.3)6.5;higher ef-fective temperatures are not expected to be observed in cooling NSs,and at lower T e?the helium atmospheres be-come convectively unstable.The iron atmosphere models, where convection can develop at higher T e?,are presented for log T e?=5.3(0.3)6.5.We chose a“basic”gravita-tional accelerations g14≡g/(1014cm s?2)=2.43(it cor-responds to standard NS mass M=1.4M⊙and radius R=10km);a few examples are given for g14=0.5and 4.5.

3.1.Atmospheric structure

The atmospheric structure has not been analized thor-oughly in the previous works;however,it is not only in-teresting in itself—it also allows one to better under-stand properties of the emergent radiation.Quite di?er-ent structures of atmospheres composed of light and heavy elements are due to very di?erent opacities.An example of the energy dependence of the opacities at the depths log y=?6,?4and?2is shown in Fig.1for the hydrogen, helium and iron atmosphere models with log T e?=5.9, g14=2.43.We see that the Fe opacities,dominated by numerous spectral lines,are,on average,greater than H

6V.E.Zavlin,G.G.Pavlov and Yu.A.Shibanov:Model neutron star atmospheres with low magnetic

?elds

Fig.1.Monochromatic opacities vs .photon energy at the layers y =10?6,10?4and 10?2g cm ?2of the hydrogen,helium and iron atmospheres with T e?=105.9K and g =2.43×1014cm s ?2.The upper right panel shows the original Fe opacities (104energy points);the binned opacities (200points)are shown in the bottom right panel.The horizontal dashed lines demonstrate the Rosseland mean opacities k R at the corresponding layers.

and He opacities,and their mean slope at the most im-portant frequency range is almost ?at.On the contrary,H and He opacities are dominated by the free-free and bound-free transitions (k ν∝ν?3∝E ?3)at moderate and low frequencies (energies),whereas at high frequen-cies they are dominated by Thomson scattering (indepen-dent of ν).These distinctions are responsible for di?erent atmospheric structures and properties of the emergent ra-diation.

Particularly important component of the atmospheric structure is the depth dependence of temperature,T (y ).Examples of T (y )for several values of T e?and for three chemical compositions are demonstrated in Fig.2.We see that,for any T e?,the temperature at a given depth y is systematically higher for iron atmospheres.In other words,a characteristic depth,y e?,which can be de?ned by the equation T (y e?)=T e?,is smaller for iron atmo-spheres (?4.6

e? y

0k R d y ,are due to higher Rosseland mean opacity k R (cf.Fig.1).Substantially higher surface temperatures (T s [≡T (0)]=(0.78?0.81)T e?for Fe vs .T s =(0.31?0.53)T e?for H,at log T e?=5.3?6.5)can be explained by generally ?at-ter frequency dependence of the Fe opacity,which results in temperature pro?les and surface temperatures close to those for the grey atmosphere (T s ?0.811T e?).The dif-ferences between the hydrogen and helium temperature pro?les depend on the degree of ionization in the

atmo-

Fig.2.Temperature pro?les T (y )of the models with di?erent e?ective temperatures and chemical compositions.The ?lled circles mark the points where T (y )=T e?;the corresponding y =y e?can be considered as a characteristic depth of the atmosphere.

sphere,which,in turn,is determined by T e?and g .In par-ticular,at high T e?the light element plasma is completely ionized,and its opacity in deep,dense layers is mainly de-termined by the free-free transitions:k R ~Z 3A ?2ρT ?7/2,where Z is the ion charge,and A the atomic https://www.doczj.com/doc/bd17072563.html,ing this expression for k R ,Eq.(6),and EOS for the ideal gas,ρ∝A (Z +1)?1gyT ?1,we obtain T 15/2d T ∝

V.E.Zavlin,G.G.Pavlov and Yu.A.Shibanov:Model neutron star atmospheres with low magnetic?elds

7 Fig. 3.Mass density pro?lesρ(y)for two values of

log T e?=5.3and6.5and three chemical compositions.The

?lled circles indicate the characteristic densitiesρe?=ρ(y e?)

(cf.Fig.2).

gZ3[A(Z+1)]?1y d y,which yields the following equation

for the asymptotic behavior of the temperature of a fully

ionized atmosphere at large y:

T(y)∝ Z3A T4e? 2/17y4/17.(15)

The value of the multiplier in front of y4/17for He ex-

ceed that for H by3%only;this means that the temper-

ature pro?les are essentially the same at su?ciently large

depths,which we observe for the models with log T e?=

6.5.At log T e?=5.9,the hydrogen atmosphere is com-

pletely ionized at the most important depths,whereas the

helium atmosphere contains a few percent of once-ionized

helium,HeII(see Fig.4),which substantially increases the

bound-free opacity(Fig.1).This leads to a greater di?er-

ence between the He and H temperatures at y~y e?.At

log T e?=5.3the di?erence is even more pronounced be-

cause a larger fraction of HeII,>~10%,is available.Finally,

at log T e?=4.7,the H atmosphere contains~10%of neu-

tral atoms HI,and the He atmosphere is mainly composed

of HeII,with an admixture of HeI.In both cases opacity

is dominated by the bound-free transitions,and the tem-

perature pro?les are close to each other at y~y e?.

The temperature dependence of the He atmosphere

with log T e?=4.7shows an interesting anomaly at small

y:it slightly increases outward at log y<~?7.5.This in-

verse behavior is due to substantial growth with y of

the HeI fraction at log y<~?7(see Fig.4),accompa-

nied by increasing role of the HeI photoionization absorp-

tion at E>

20?25eV.To provide the radiative equilib-

rium(Eq.(5))at small y,the local blackbody intensity

Bν(T(y))is to be greater than the mean intensity Jν(y)

Fig.4.Depth dependences of ionization for models with dif-

ferent values of log T e?(numbers near the curves).Two upper

panels show pro?les of non-ionized hydrogen and helium,x0(y),

and once-ionized helium,x1(y),for pure hydrogen and helium

models.The bottom panel shows the depth dependences of the

mean ion charge Z?(y)for pure iron models.The?lled circles

show the corresponding quantities at y=y e?.

at low energies(below the main photoionization jump),

and smaller than Jν(y)at high E(above the jump).At

log y<~?8the main jump(provided by HeII)arises at

?50?55eV,whereas at?7<~log y<~?6the jump is

shifted to?20?25eV due to a greater fraction of HeI.

Therefore,for energies between approximately20?55eV,

Bν>~Jνat log y<~?8,while the opposite inequality holds

at?7<~log y<~?6.Since Jνis practically independent

of y in all these layers,the Planck function at log y<~?8

should be higher than at?7<~log y<~?6.This decrease

of Bνat these depths is possible if only the surface temper-

ature T(0)is higher than the temperature in the deeper

layers.

Figure3shows the depth dependence of the mass

densityρ(y)for the models with log T e?=5.3and6.5.

The density grows with y linearly(exponentially with the

geometrical depth z)at the upper(exponential)atmo-

sphere,where the temperature is close to T s.In deep lay-

ers,the density grows more gradually due to the steeper

temperature growth.The density can be estimated as

8V.E.Zavlin,G.G.Pavlov and Yu.A.Shibanov:Model neutron star atmospheres with low magnetic?elds

ρ~m H A(Z?+1)?1gy(k B T)?1,where Z?=Z?(y)= N e Am H/ρis the mean ion charge de?ned as the ratio of the electron number density N e to the summed number densities of atoms in all stages of ionization.Since the hy-drogen and helium atmospheres at the temperatures con-sidered are strongly ionized(Z??Z),the density of a helium atmosphere at a given y exceeds that of a hydro-gen atmosphere with the same T e?and g.In particular, for deep layers of fully ionized atmospheres the curvesρ(y) has a universal slope,

ρ∝Z?6/17(Z+1)?15/17A19/17g15/17T?8/17

e?

y13/17(16) so thatρ(He)(y)/ρ(H)(y)?2.6.Iron atmospheres at these temperatures are only partially ionized,and the di?er-ent disposition of theρ(Fe)(y)with respect toρ(He)(y) at log T e?=5.3and6.5is explained by di?erent de-grees of ionization(Z??5?7and21?22,respec-tively—see Fig.4).Characteristic densities in di?erent models,ρe?=ρ(y e?),are generally lower for iron at-mospheres,ρe?~0.003?0.02g cm?3,than for hydro-gen/helium atmospheres,ρe?~0.005?1g cm?3,for the range log T e?=5.3?6.5.The ratio z e?=y e?/ρe?gives a characteristic scale height in an atmosphere;it varies from~0.01cm for Fe at log T e?=5.3to~2cm for H at log T e?=6.5.

The atmospheric opacity and,hence,the temperature, density and properties of the emergent radiation depend essentially on the ionization state at di?erent depths.Fig-ure4demonstrates the depth pro?les of the fractions of ions in di?erent stages of ionization,x j=N j/(N0+N1+ ...+N Z)(j=0,1,...,Z is the ion charge).We show the nonionized fraction x0for the hydrogen models,nonion-ized and once-ionized fractions,x0and x1,for the helium models,and the mean ion charge Z?= Z j=1jx j for the iron models.The hydrogen atmospheres are strongly ion-ized at the considered temperatures(even at log T e?=4.7 the nonionized fraction does not exceed17%);however, the contribution of the bound-free transitions into opacity is not negligible at x0as small as10?3?10?2(cf.Fig.1). At log y<~?2.5the values of x0are determined by the usual Saha equation:x0grows with y at very outer lay-ers,where the temperature is almost constant,due to increasing density;the growth decelerates in deeper lay-ers due to increasing temperature.At large depths,where ρ>~10?2?10?1g cm?3,the fraction x0decreases steeply due to pressure ionization.Similar behavior is seen for the helium fractions x0and x1,although the ionization degree is lower than for hydrogen due to higher ionization poten-tials.At moderate temperatures,the main contribution to the opacity comes from the bound-free transitions of HeII;the non-ionized HeI plays a role at lower T e?.The iron atmospheres are only partly ionized even at high T e?and very deep layers(e..g.,Z?does not exceed21?22 through the whole atmosphere with log T e?=6.5)due to very high ionization potentials and binding energies.

The atmospheric structure depends also on the gravi-tational acceleration g.Our computations show that vary-ing g in the range expected for the surfaces of NSs a?ects the temperature pro?le only slightly:T∝g2/17in very deep layers(see Eq.(15)),and the e?ect on the surface temperature is even smaller.The characteristic depth and density depend on g much stronger;in particular,ρ∝g in surface layers,andρ∝g15/17in deep layers.The ioniza-tion degree is a?ected accordingly:generally,the ionized fractions grow with g,particularly at the surface layers.

3.2.Spectral?ux

In Fig.5we show the spectral?uxes of the emergent radi-ation for selected e?ective temperatures and three chemi-cal compositions.The blackbody?uxesπBν(T e?)are also shown for comparison.

We see that the model spectra are substantially di?er-ent from the blackbody spectra with the same T e?.The most striking distinction is much harder high-energy tails of the spectra emergent from H and He atmospheres(see also R87,Pavlov et al.1995,and RR96).The reason for such behavior is that the H and He free-free and bound-free opacities rapidly decrease with increasing photon en-ergy(∝E?3in a wide energy range—see Fig.1),so that the radiation of higher energies is formed in deeper and hotter layers.The maxima of the spectra of strongly ionized atmospheres(at log T e?>~5.0and5.5for H and He,respectively)lie at E=(4.6?5.0)k B T,i.e.,they are shifted by a factor of1.6?1.8from the correspond-ing blackbody maxima towards higher energies.Thom-son scattering dominates the opacities at high energies (Fig.1),which must be taken into account for calculating the high-energy tails(i.e.,at E>~1keV for the models with log T e?=5.9).

At lower T e?,the light element atmospheres are less ionized,and photoionization edges and spectral lines are seen in their spectra.In particular,the Lyman jump and Lyman-αline of HeII become perceptible in the helium atmosphere spectra at log T e?<~6,when the fraction of the once-ionized helium is as small as a few percent(see Fig.4).The same fraction of neutral hydrogen is needed to form the hydrogen Lyman features which become well pronounced at log T e?<~5.

The low-energy tails(E?k B T)of the model spectra follow the Rayleigh-Jeans law(∝E2)corresponding to the surface temperature T s(

1.This occurs because the opacities grow with decreasing

E so that the low-energy radiation emerges from the very surface layers.The low-energy?ux is most strongly sup-pressed(by a factor of up to?3.2)in hot H and He atmospheres because of smallness of the ratio T s/T e?(see Fig.2).

The spectra emitted from the iron atmospheres are much more complicated,mainly due to numerous spectral lines and photoionization edges produced by ions in vari-

V.E.Zavlin,G.G.Pavlov and Yu.A.Shibanov:Model neutron star atmospheres with low magnetic?elds

9 Fig.5.Spectral?uxes of emergent radiation for hydrogen,helium and iron atmospheres with di?erent values of log T e?(numbers near the curves).Dotted curves show the corresponding blackbody?uxesπBν(T e?

).

Fig.6.Spectral?uxes emergent from helium atmospheres with

T e?=105K and di?erent surface gravities g=g14×1014cm

s?2:g14=0.5(dashed curve),g14=2.43(solid)and g14=4.5

(dot-dashed).

ous stages of ionization.Generally,they are closer to the

blackbody spectra,and their high-energy tails are,on av-

erage,softer than those emitted from light element atmo-

spheres;their low-energy tails lie only slightly below the

blackbody(Rayleigh-Jeans)spectra.The reason is that

the energy dependence of the iron opacities,in spite of

its complexity,is,on average,?atter than that for H and

He.This makes the emergent spectrum to be closer to the

grey atmosphere spectrum which,in turn,only slightly

di?ers from the blackbody spectrum.However,the local

deviations from the blackbody spectra are quite substan-

tial,especially in the regions of the photoionization edges,

and strongly dependent on the e?ective temperature.

Figure6demonstrates how the gravitational accelera-

tion a?ects the spectral?ux emitted by the helium atmo-

sphere with log T e?=5.0.The e?ect is seen most vividly

in the Lyman continuum of HeII(E>54eV):the Ly-

man discontinuity becomes progressively smoothed,and

the trough at E~0.1keV becomes shallower,with in-

creasing g.This occurs because the density grows with

g and the pressure e?ects smooth out the photoioniza-

tion jump in the opacity spectra(Zavlin et al.1994).The

gravity e?ect(pressure broadening)is also seen in the pro-

?les of the absorption lines,particularly of the20eV line

of HeI.At higher temperatures,when the light element

atmospheres are strongly ionized and the spectra are con-

tinuous,the gravity e?ect becomes insigni?cant.In the

case of iron composition the e?ect of surface gravity can

be seen at higher temperatures.

10V.E.Zavlin,G.G.Pavlov and Yu.A.Shibanov:Model neutron star atmospheres with low magnetic?elds

Fig.7.Spectra of the speci?c intensity of emergent radiation for the hydrogen and iron atmospheres with T e?=105.9K at di?erent values ofμ=cosθ(numbers near the curves);θis the angle between the surface normal and direction of emission. 3.3.Speci?c intensities:spectra and angular distributions

Figure7demonstrates spectra of the speci?c intensities of

the emergent radiation at di?erent anglesθ=arccosμbe-

tween the direction of emission and the surface normal for

the models with hydrogen and iron compositions and the

e?ective temperature of105.9K.We see that the inten-

sity is rather anisotropic—it decreases with increasing

θ(limb-darkening e?ect).This is explained by the fact

that radiation emitted at largerθescapes from shallower

atmospheric layers where the temperature is lower.The

anisotropy depends on photon energy(the intensity spec-

trum varies withθ)and on chemical composition of the

atmosphere.Note that the maximum of the intensity spec-

trum shifts towards lower energies with increasingθ.

The energy-dependent degree of anisotropy can be de-

scribed by the ratio

Iν(μ=1)?Iν(μ=0)

aν=

V.E.Zavlin,G.G.Pavlov and Yu.A.Shibanov:Model neutron star atmospheres with low magnetic ?elds

11

Fig.9.Polar diagrams of the speci?c spectral intensities (in units of 1019erg cm ?2s ?1keV ?1ster ?1)emitted from hydro-gen,helium and iron atmospheres (dash-dotted,dashed and solid lines,respectively)with T e?=105.9K,g =2.43×1014cm s ?2at three values of photon energy depicted at the up-per-right corners of the panels.The atmosphere normal is directed upward.The dotted lines show the corresponding (isotropic)blackbody intensities.

Figure 9shows representative angular distributions of the speci?c intensity emergent from hydrogen,helium and iron atmospheres at di?erent photon energies.Although these distributions do not show the prominent features characteristic of radiation emitted from strongly magne-tized NS atmospheres (see Fig.4in Shibanov &Zavlin 1995),this picture clearly illustrates strong dependences of the distributions on both the energy and chemical com-position.4.Discussion

The presented examples of the atmosphere models show that the atmospheric structure and the properties of emergent radiation depend substantially on the chemi-cal composition of radiating layers and on the value of the e?ective temperature T e?.For the light element at-mospheres with a relatively high e?ective temperatures

(log T e?>~5.3for hydrogen,log T e?>~6for helium),the

atmospheric matter is strongly ionized,the (continuous)

spectrum is much harder at X-ray energies than the black-body spectrum,and the ?ux is lower than the blackbody ?ux at low (UV/optical)energies.For lower T e?,spec-tral features arise in the emergent spectra,particularly in the UV/EUV domain.These distinctions mean that ?tting thermal spectra observed from NSs with a black-body model may be quite misleading.In particular,the blackbody ?t of the high-energy (X-ray)tail of an ob-served spectrum would yield systematically overestimated e?ective temperature and underestimated A/d 2ratio (A is the area of the radiating surface,and d is the distance).The error introduced depends on the energy range and response function of the speci?c detector;e.g.,for the ROSAT PSPC the temperature may be overestimated by a factor of up to ?3,and A/d 2underestimated by more than an order of magnitude,at detectable NS tempera-tures.On the contrary,at low (UV-optical)energies T e?is underestimated or A/d 2overestimated ,typically by a factor of 2?3.To obtain reliable estimates of these quan-tities,one should ?t the results with various model atmo-sphere spectra.It may happen that several models (e.g.,with di?erent chemical compositions)would equally well ?t the data in a narrow spectral range.To avoid the ambi-guity,multiwavelength (e.g.,optical through X-ray)ob-servations should be carried out,whenever possible,and ?tted with the atmosphere models.

Spectra of heavy element atmospheres are much more complicated —mainly because of numerous spectral lines,as we see from the examples of iron atmospheres.Note that although the shapes of our model spectra are qualita-tively similar to those obtained in RR96,the quantitative di?erences are signi?cant,especially in domains around the strong photoionization features.The di?erence may arise from both the di?erent procedures for opacity bin-ning and di?erent numerical approaches used for the mod-eling (e.g.,due to the inaccuracy of the Lucy-Uns¨o ld tem-perature correction procedure used in RR96).Although the overall shape of the iron atmosphere spectra is not so drastically di?erent from the blackbody,using black-body models for ?tting in narrow energy intervals may be even more misleading than for light element atmospheres because even the smoothed shape of the atmosphere spec-trum depends very sharply on T e?.For instance,we see from Fig.5that increasing T e?by a factor of 2completely changes the shape of the iron atmosphere spectrum,and ?tting the spectra with the blackbody in a range of,e.g.,0.2?0.6keV would lead to quite di?erent (and quite ir-relevant)results.

We do not know a priori what is the chemical compo-sition of the NS surfaces.We can only expect that if there are light elements,they should concentrate at the very surface,but we cannot exclude that the light elements are virtually absent,and the surface layers are composed of heavier elements.To investigate the chemical composition,observations with higher spectral resolution in the soft X-

12V.E.Zavlin,G.G.Pavlov and Yu.A.Shibanov:Model neutron star atmospheres with low magnetic?elds ray range would be very useful.Our examples of the iron

models show that the main spectral features(groups of

lines and/or photoionization edges)can be resolved with

a quite moderate resolution,~3?30,which can be eas-

ily achieved with modern CCD detectors.Thus,soft X-ray

observations of NSs with future missions(AXAF,XMM,

AST RO-E)and their interpretation with the NS atmo-

sphere models will be able to determine directly which

elements reside at the NS surface.

Our results also show a very important property of the

atmospheric radiation—it is anisotropic,with anisotropy

depending on frequency.This dependence is di?erent for

di?erent chemical compositions and e?ective tempera-

tures.This means that if the temperature is not uniform

over the NS surface(which is very plausible for real NSs),

one not only should take the anisotropy into account to

explain the light curves,but also one cannot?t properly

the spectra without allowance for anisotropy.To calculate

the?ux as measured by a distant observer,one should

integrate the speci?c?uxes,Iνcosθ,over the visible NS

surface with allowance for the gravitational redshift and

bending the photon trajectories.For instance,if the radi-

ation originates from a small hot spot(polar cap)with a

uniform T e?and chemical composition,the?ux as mea-

sured by a distant observer is given by the equation(Zavlin

et al.1995c)

F obs ν=

A a

(1+z)3

(μc),(18)

where A a is the apparent area of the hot spot,z=[1?(2GM/c2R)]?1/2?1is the gravitational redshift,ν0= (1+z)ν,μc is the cosine of the angleθc between the radius-vector of the spot center and wave vector of the photon which travels to the observer along the bended trajectory. For realistic NS radii,R>~5.6(M/M⊙)km(z<~0.45),the apparent area can be estimated as A a?πR2γ2μc,where γis the angular size of the spot.The important feature of Eq.(18)is that the observed?ux is proportional not to the local?ux,but to the speci?c intensity whose spectrum (see Figs.5and7)is substantially di?erent from that of the redshifted local?ux used in RR96(their Eq.(7)).

The low-?eld atmosphere models can be directly ap-plied to the nearby(d~140pc)millisecond pulsar PSR J0437?4715(P=5.75ms)detected with the ROSAT PSPC(Becker&Tr¨u mper1993)and EUV E DS(Edel-stein et al.1995;Halpern et al.1996).Fitting the ROSAT spectrum of this low-?eld(B~3×108G)pulsar with the single-component blackbody model proved to be un-satisfactory—the best-?t blackbody?ux(correspond-ing to T=1.5×106K)is lower than the observed?ux in high-energy PSPC channels(above?1keV).How-ever,the ROSAT spectrum can be satisfactorily?tted with double-component models.For the“power-law+ blackbody”?t,Becker&Tr¨u mper(1993)obtained T= 1.7×106K and the radiating area A=0.05km2,while Halpern et al.(1996)obtained T=(1.0?3.3)×106K and A=0.008?1.1km2.In this model,the power law spectrum is of a nonthermal origin,whereas the blackbody spectrum is produced by the hot polar cap of the pulsar.It remains unclear with this interpretation why there is no a phase shift between the pulsations at low energies(power law component)and high energies(thermal component)—being generated at di?erent distances from the NS sur-face,these components are expected to be phase-shifted and to have di?erent shapes.The values of the emitting area are also uncomfortably low in comparison with that expected from standard models for the radio pulsar po-lar cap,A=2π2R3/(cP)~10km2(Arons1981).Edel-stein et al.(1995)ruled out that this two-component?t is compatible with the EUV E data,whereas Halpern et al. (1996)came to the opposite conclusion and explained the EUV E?ux with the power law component.

It is natural to expect that?tting of the same data with the model atmosphere spectra and light curves would yield quite di?erent results.Indeed,our preliminary anal-ysis of both the ROSAT and EUV E data indicates that a single-component model,in which the soft X-ray radiation originates from two polar caps of areas A?2?3km2cov-ered with hydrogen or helium with T e??(0.9?1.0)×106 K,?ts satisfactorily both the spectra and the light curves (Becker et al.1996).These results di?er substantially from those of RR96who?tted the J0437-4715spectrum with the local?ux spectra,without allowance for the limb dark-ening and gravitational lensing.It worths noting that the atmosphere models can be used to predict the?ux from the NS in the far-UV range(λ<~2000?3000?A),where it should overtake the?ux of the cold(T?4000K)white dwarf companion.Measuring this?ux(e.g.,with HST) would be a critical test to distinguish between di?erent models of the radiating region.Another important test of the models would be to observe the pulsar radiation in the soft X-ray range with a spectral resolution su?cient to resolve spectral features;observations at moderate X-ray energies(~1?10keV)would be useful to constrain the power law component.Such observations would be quite feasible with future X-ray missions(SAX,AXAF, XMM,AST RO-E).

Acknowledgements.We thank F.J.Rogers and C.A.Iglesias for providing the OPAL library data,J.Tr¨u mper for stimulat-ing discussions.We are grateful to the referee,R.W.Romani, whose remarks helped us to improve this paper.This work was partly supported by RFFI grant RBRF96-02-16870A,INTAS grant94-3834and NASA grant NAG5-2807.V.E.Zavlin ac-knowledges the Max-Planck fellowship.

References

Alcock C.,Illarionov A.F.,1980,ApJ,235,534

Arons J.,1981,ApJ,248,1099

Auer L.H.,1976,JQSRT,16,931

Auer L.H.,Mihalas,D.,1968,ApJ,151,311

Becker W.,Tr¨u mper,J.,1993,Nat.,365,528

V.E.Zavlin,G.G.Pavlov and Yu.A.Shibanov:Model neutron star atmospheres with low magnetic?elds13

Becker W.,Tr¨u mper,J.,Pavlov,G.G.,Zavlin,V.E.,1996(in preparation)

Bhattacharya D.,1995,in:Alpar M.A.,Kizilo?g lu¨U.,van Paradijs J.(eds).The Lives of the Neutron Stars.Kluwer, Dordrecht,p.153

Bildstein L.,Salpeter E.E.,Wasserman I.,1992,ApJ,384,143 Bildstein L.,Salpeter E.E.,Wasserman,I.,1993,ApJ,406, 615

Chandrasekhar S.,1960,Radiative Transfer.Dover Publica-tions,New York

Edelstein J.,Foster R.S.,Bowyer,S.,1995,ApJ,454,442 Foster,R.S.,Edelstein,J.,Bowyer,S.,1996,in Bowyer S.

and Malina R,(eds.),Proc.IAU Colloq.152.Kluwer,Dor-drecht,p.437

Halpern J.P.,1996,ApJ,459,L9

Halpern J.P.,Martin C.,Marshall H.L.,1996,ApJ(in press) Hochstim,A.R.,and Massel,G.A.,1969,in:Hochstim,A.R.

(ed.).Kinetic processes in Gases and Plasmas.Academic Press,New York,p.142

Hummer D.G.,Mihalas D.,1988,ApJ,331,794

Iglesias C.A.,Rogers F.J.,Wilson B.G.,1992,ApJ,397,717 Kaminker A.D.,Pavlov G.G.,Shibanov Yu.A.,1983,Ap&SS, 86,249

Mihalas D.,1978,Stellar Atmospheres.Freeman,San Francisco Miller M.C.,1992,MNRAS,255,109

¨Ogelman H.,1995,in:Alpar M.A.,Kizilo?g lu¨U.,van Paradijs J.(eds).The Lives of the Neutron Stars.Kluwer,Dordrecht, p.101

Page D.,Shibanov Yu.A.,Zavlin,V.E.,1995,ApJ,451,L21 Pavlov G.G.,Shibanov Yu.A.,Ventura J.,Zavlin,V.E.,1994, A&A,289,837

Pavlov G.G.,Shibanov Yu.A.,Zavlin V.E.,Meyer R.D.

1995,in:Alpar M.A.,Kizilo?g lu¨U.,van Paradijs J.(eds).

The Lives of the Neutron Stars.Kluwer,Dordrecht,p.71 Pavlov G.G.,Stringfellow G.S.,C′o rdova,F.A.,1996,ApJ (in press)

Pethick C.J.,1992,Rev.Mod.Phys.,64,1133

Rajagopal M.,Romani R.W.(RR96),1996,ApJ(in press) Rogers F.J.,1986,ApJ,310,723

Rogers F.J.,Iglesias C.A.,1994,Science,263,50

Romani R.W.(R87),1987,ApJ,313,718

Romani R.W.,Rajagopal M.,Rogers F.J.,Iglesias C.A., 1996,in:Bowyer S.,Malina R.F.(eds).IAU Colloquium 152,Astrophysics in the Extreme Ultraviolet.Kluwer,Dor-drecht,p.443

Rybicki G.B.,Hummer D.G.,1991,A&A,245,171 Shibanov Yu.A.,Yakovlev D.G.,1996,A&A(in press) Shibanov Yu.A.,Zavlin V.E.,1995,Astron.Let.,21,3 Shibanov Yu.A.,Zavlin V.E.,Pavlov G.G.,Ventura J.,1992, A&A,266,313

Shibanov Yu.A.,Zavlin V.E.,Pavlov G.G.,Ventura J., Potekhin,A.Yu.,1993,in:Van Riper K.A.,Epstein R.I., Ho C.(eds).Isolated Pulsars.Cambridge Univ.Press,Cam-bridge,p.174

Shibanov Yu.A.,Zavlin V.E.,Pavlov G.G.,Ventura J., 1995a,in:Alpar M.A.,Kizilo?g lu¨U.,van Paradijs J.(eds).

The Lives of the Neutron Stars.Kluwer,Dordrecht,p.91 Shibanov Yu.A.,Pavlov G.G.,Zavlin V.E.,Qin L.,Tsuruta S.,1995b,in:B¨o hringer H.,Mor?ll G.E.,Tr¨u mper J.(eds).

17th Texas Symposium on Relativistic Astrophysics.An-nals of New York Academy of Science759,p.291Stocke J.T.,Wang Q.D.,Perlman E.S.,Donahue M.E., Schachter J.F.,1995,AJ,109,1199

Tsuruta,S.,1995,in:Alpar M.A.,Kizilo?g lu¨U.,van Paradijs J.

(eds).The Lives of the Neutron Stars.Kluwer,Dordrecht, p.133

Ventura J.,Shibanov Yu.A.,Zavlin V.E.,Pavlov G.G.,1993, in:Van Riper K.A.,Epstein R.I.,Ho C.(eds).Isolated Pulsars.Cambridge Univ.Press,Cambridge,p.168 Walter F.M.,Wolk S.J.,Nueh¨a user R.,1996,Nature,379, 233

Zavlin V.E.,Pavlov G.G.,Shibanov Yu.A.,1994,Astron.

Astrophys.Transact.,4,307

Zavlin V.E.,Pavlov G.G.,Shibanov Yu.A.,Ventura J., 1995a,A&A,297,441

Zavlin V.E.,Pavlov G.G.,Shibanov Yu.A.,1995b,in:Voges W.,Wiedenmann G.,Mor?ll G.E.,Tr¨u mper J.(eds).17th Texas Symposium on Relativistic Astrophysics.MPE Repot 261,p.49

Zavlin V.E.,Shibanov Yu.A.,Pavlov G.G.,1995c,Astron.

Let.,21,149

Zavlin V.E.,Pavlov G.G.,Shibanov Yu.A.,Rogers F.J.,and Iglesias C.A.,1996,in:Zimmermann H.-U.,Tr¨u mper J., Yorke H.(eds).R¨o ntgenstrahlung from the Universe.MPE Report263,p.209

This article was processed by the author using Springer-Verlag L a T E X A&A style?le L-AA version3.

star法撰写成就故事范例

1. 由于是浙江选考生,在高中第一次选考中化学只取得了91分的成绩,只剩下一次选考机会,成绩说好不算好,说坏不算坏的情况下,提升有些困难。不知道该放弃还是继续参加考试。如果不能达到97或100的成绩,可能会被目标大学相同的同学在高考上拉开差距。晚上也睡不好觉,经过一段时间的调整心态,说服自己还是奋力一搏。于是到选考前我每天利用下课时间翻看化学书和整理笔记,努力记住容易混淆的基础知识点,每天晚自习刷一张化学模拟卷,自批订正纠错,找到了自己很多弱点和盲点,并针对的做专题练习。终于在四月选考中达到了97的目标。虽然很累,但是为了实现离考上理想大学的目标更进一步,还是值得的。 专业知识技能——基础化学知识 可迁移技能——记忆、纠错(找到自己的弱点)、反省、整理、权衡利弊 自我管理技能——自我控制、抗压、调整心态、坚持不懈 2. 上个学期选专业时想要进入生物科学专业,但是看到报名的人数有点多,招收人数与报名人数之比大约是1/2,要经过面试淘汰一部分人。而且在看到身边的同学都非常优秀的情况下,竞争压力有些大,我心中也有些底气不足。但我还是迫使自己鼓起勇气报了名。报名之后,我上网了解记住了一些生物科学的知识,回忆了我高中时期学习生物的一些知识和经历,找到一些我可能在面试中能够用到的素材。并在脑海中模拟了几个面试中可能会提到的问题,并想了想如何回答。此外也找到我们寝室作为生命科学学院教授的新生之友询问了一些情况。到了面试那天,我准备的其中一些素材和回答派上了用场,顺利地应对面试教授提出的问题,通过了面试,成功进入生物科学专业,提升了我的信心。 专业知识技能——生物科学部分知识 可迁移技能——记忆、模拟(假想)、询问求助、面试交流、做好充分准备 自我管理技能——鼓起勇气(自我调节心态)、有信心的、自我控制 3. 小时候老师说我钢笔字写的挺好的,在小学的钢笔字比赛中获了奖,我可能

万科物业与中海物业的分析比较

万科物业与中海物业的分析比较 在物业管理行业激烈的市场竞争中,万科和中海物业管理脱颖而出。其中万科以观念超前、服务精品见长,中海以管理优势和市场规模领先,形成了自身的特色和优势,对提高企业经济效益和开拓市场起到了重要的推动作用。两者都有各自的管理模式,为自己的企业赢得品牌。本文通过万科和中海物业管理模式的比较分析,试图总结出中国物业管理发展的规律性东西,用以指导物业管理的进一步发展。 前言 综观物业管理在深圳20年的发展,有这样几个重要的转折点: 从第一家物业公司成立,到公房改制扩大物业管理的覆盖面,物业管理走向千家万户的普通居民为第一转折点; 以莲花二村"一体化"管理为标志,确立深圳物业管理模式为第二个转折点; 鹿丹村物业管理公开招投标,拉开了市场竞争的序幕为第三个转折点。 作为全国物业管理发源地的深圳,物业管理能取得全国瞩目的成绩,与深圳的经济发展水平、市场经济的成熟程度等各方面因素有着密切的关系。尤为重要的是政府主管部门的积极引导、努力探索对深圳物业管理行业的发展直接起着重要的推动作用。 随着社会的发展,业主的服务需求不断增长,物业管理服务事项和内容由简单基本的房屋维修、清洁卫生、园林绿化、安全护卫等,再拓展到机电维护、环境设计、企业策划、家政服务、社区文化、商业代理等,力求满足业主从办公、学习、安全、环境到居家生活、邻里交往、文体活动等系列需求。 一些有品牌的公司潜心揣摩,结合不同的物业硬件和业主需求,提出并实践了一些新概念、新做法,形成自己鲜明的、独特的个性特色,突出企业形象和显示管理实力的同时,也为整个行业的发展提供了可供借鉴的经验;如万科物业从早期提出的"酒店式管理"到近期的"无人化管理"、"个性化管理"和"管理报告制度";中海物业管理倡导的"一拖N模式"、"氛围管理";深业物业实施的"精品战略";金地物业实行的"产学联手";"保姆计划"、"四点半学校"等均取得了良好的市场效益。 这里不能不提及贯穿全市物业管理企业发展历程,使物业管理意识深入民心的一项重要工作内容--社区文化。莲花物业在莲花二村率先倡导社区文化活动和万厦物业在莲花北村通过社区文化活动的开展建立起"全国城市文明第一村"的社会效益,在市场上均得到了良好的品牌效应。事实证明,多样化、多层次的社区文化活动是最能体现物业管理人文精神和关怀的有效手段,因为它较好地调整了业主与企业之间、业主与业主之间的关系,同时将物业管理工作通过社区活动去宣传,更容易得到业主的接受和认同。 1996年以来,万科、中海、中航、国贸、金地、莲花等物业管理公司,在全国物业管理行业率先通过了ISO9002国际标准质量认下,使物业管理的技术标准和质量规范管理纳入了国际轨道,对物业管理操作经营中的每个岗位、每个人员、每一个环节都有严格科学的管理规范和检验标准。到目前为止,100多家物业管

中海物业管理方案——管理

中海物业管理方案-管理 第一部分 中海物业简介 深圳市中海物业管理有限公司(以下简称“中海物业”)为中国海外集团旗下,专门从事物业管理业务、具有独立法人资格的企业。公司在香港中海物业管理公司的基础上,于1991年在深圳注册成立,为建设部首批甲级资质物业管理企业。自成立以来,严格遵循“业主至上、服务第一”的工作宗旨,大力倡导“严格苛求、自觉奉献”的工作精神。在掌握并导入香港先进物业管理模式的基础上,融汇世界各国先进物业管理经验,结合中国大陆的实际国情,探索出具有中国特色的中海物业管理模式。公司以此模式为手段开展科学管理和优质服务,全心全力为业主及物业使用人提供一个安全、清洁、优美、舒适、方便的生活及工作环境。 多年来,中海物业以优质的服务质量和先进的管理技术不仅得到广大业主的信任,而且赢得了良好的社会声誉,先后获得国家建设部、广东省、深圳市各级政府部门授予的各种奖牌、奖旗100余面。中央电视台、深圳各大报刊以及香港《文汇报》、《大公报》、《商报》、《星岛日报》,国内的《人民日报》、《经济日报》、《工人日报》、《法制日报》等新闻媒体对中海物业管理经营情况的报道多达700余次,慕名前来公司参观考察的国内外各界人士已逾两万人次。 随着中海物业在行业内地位的日益显著和中海物业管理模式的日益完善,并应国内广大地产消费者和房地产界对先进物管模式的迫切需求,中海物业管理模式除在香港、深圳、北京、广州、上海几大城市取得骄人的成绩外,更已输出至长春、沈阳、青岛、烟台、杭州、南京、天津、重庆、珠海、贵阳、武汉、昆明、长沙、石家庄、郑州、东莞……等30多个全国各大城市。正在管理的写字楼、商场、商住区、别墅区等高档物业120余处,管理面积逾二千

STAR法成就故事复习过程

S T A R法成就故事

1、由于家里比较贫穷,因此大学以前就没有接触过电脑,第一节上计算机文化基础时,一点也不明白,年轻人难免有好胜之心,因此我认真学习课本,遇到不懂的问题及时向同学及老师请教,由于考试考word等办公软件,因此我上网浏览资料,下载了office教程,一有时间就去机房实践,不明白就请教机房老师,经过许多次的练习,我终于掌握了计算机基础知识,通过了考试。 这个故事中,琢磨、实践是可迁移技能,word等软件知识是专业知识技能,认真是自我管理技能。 2、大一的时候,我没有拿到奖学金,看到有的同学拿到奖学金后的兴奋,我心里暗暗下定决心要在大二拿到奖学金。为了实现这个目标,我付出了许多。上课时认真听讲,做好课堂笔记,课下认真做好老师布置的作业,有不懂的问题及时向老师和同学请教,考前做好复习。经过一年的努力,获得了染整专业知识,并且在大二成功获得了奖学金。 这个故事中,认真是自我管理技能,请教、获得是可迁移技能,染整知识是专业技能。 3、大学寒假春节我在超市当售货员。我主要销售零食。一方面加强了有关销售零食知识的学习,虚心向其他店员请教。一方面了解实际情况,在短时期适应下来。及时上岗工作走上正轨,负起了超市店员的职责。工作几周后对商品的规划与陈列有了了解,感受到市场的学问与超市零售的知识是如此的深广。在期间发生过意外但通过冷静的自省,认识自己的不足,整体上因参与营运时间较短,操作不够自如外,这是由于经验少。经过超市员工的共同的努力,我们

的销售有了明显的增长。而我在严格要求的基础之上,发现问题,消减漏洞,作一名称职的超市店员。 这个故事中,严格、虚心是自我管理技能,适应、发现、请教是可迁移技能,销售零食知识是专业技能。 4、我学会了使用CAD软件。这学期我们学习了AUTO CAD 课程,我真切地体 会到了这种绘图系统的实用性。首先熟悉用户界面,学习新建图形、绘制简单图形的操作。掌握坐标及数据的输入方法,绘出下面所示图形,打开工具栏的方法,打开“对象捕捉”工具栏。同时学会利用栅格绘制图形。设定CAD图形界限的方法,掌握绘制CAD图形的基本绘图命令熟练运用对象捕捉定点工具,精确绘制图形熟悉圆、圆弧、椭圆、点等画法掌握CAD各种图形编辑命令,如镜像、偏移、阵列等的用法和功能了解选择图形对象的多种方法掌握设定图层的方法养成按照图层绘制不同属性对象的画图习惯。在今后的学习工作中,好好利用CAD,再接再厉,更加努力的学习,希望在以后的学习中能够熟练掌握这门技术。 这个故事中,熟悉、学会、利用是可迁移技能,CAD知识是专业知识技能,努力、熟练是自我管理技能。 5、上大学以来,一直就想找个机会锻炼一下自己,在大二暑假我去了浙江向胜体育器材厂做社会实践。在工作中,我对机械的自动化有了更深的了解,对工作中出现的问题,我也及时地向老师傅请教,很快就学会了机器的操作方法,由于车间条件恶劣,养成了吃苦耐劳的精神,看着生产线上我做的零件,我感觉特别有成就感。 这个故事中,请教是可迁移技能,吃苦耐劳是自我管理技能,机器操作方法是专业知识技能。

中海物业管理有限公司

中海物业管理有限公司 案例:中海广场 中海广场位于北京CBD核心地段,南面鸟瞰长安街,东侧毗邻国贸中心,占据国贸商务圈显要位置,由世界500强成员企业——中海地产根据国际甲级写字楼标准倾力打造。 中海物业管理有限公司是中国现有三代物业管理模式及“中海物业”、“中海·深蓝”服务品牌的创造者和中国现代物业管理事业的开拓者。在中国海外集团公司30年的仆仆风尘中,中海物业得到了良好的孕育和萌生。 1986年,在香港注册成立的中海物业,全盘引进英国物业管理模式,有机地融入以和谐为主题的中国文化传统,使东方人文精华与西方服务礼仪互为补充,相得益彰地提炼出适合中国国情需要的现代物业管理新概念,锻造出具有中国特色的“中海物业”服务品牌。 辛勤耕耘,厚积薄发 1991年,中海物业由香港挺进内地,从深圳起跑,相继在广州、上海北京、成都、长春、南京、西安、苏州、中山、宁波等地,开办了19家分公司和8家专业化物业服务公司。这些专业涵盖了楼宇自动化、物业机电维修、电梯安装保养、环境工程施工、园林景观 设计、建筑装修工程、酒店经营管理及物业管理教育等。迄今,北起哈尔滨、南至三亚,东 濒青岛、西逾兰州,华夏大地的60多个中心城市都飘扬着中海物业的旗帜。 2006年4月,中海物业率先跨出国门,为越南胡志明市高端项目提供高品质的物 业服务,开创了国内物业管理国际化输出之先河。中海物业致力于管理信息化、服务人性化、技术智能化、企业规范化的研究与探索,开企业风气之先。其所构筑的优秀文化基因,以及

海纳百川的兼容能力,为内地物业管理行业奠定了发展的基石;给改革开放中蓬勃进取的神州,带来了现代人居服务的春风。 桃李不言,下自成蹊 鲜红的COB标志,是中海物业铸就的一方民族之印、中国之印,将它盖上城市的高 楼大厦时,深邃宽广的海文化,以其博爱和包容,凝聚起广大民众的心.中海物业已累计管理5000多万平米的各类写字楼、商场、住宅区、别墅等高档物业和工厂、学校、场馆等公共 物业,并以其完整的体系、完善的组织、完备的手段,实现完美的服务。 成为建成国家优秀示范小区最多、通过ISO9000、ISO14000、OHSAS18000体系最早、 获得国家部委和各省市荣誉最丰、接待或指导国内外参观者最广的物业管理企业。中央电视台、《人民日报》、《经济日报》、《工人日报》、《法制日报》等新闻媒体,北京、上海、 广州、成都深圳等地方性报刊,以及香港、澳门各大传媒一直关注着中海物业的成长和进 步,相关报道不胜枚举。在国内各大门户网站的行业专栏中,中海物业受到广大业主、用户、合作商、发展商和政府管理部门的好评和肯定,成为国内少有的最受客户欢迎、最具影响 力、信誉度最高的集群式大型物业管理企业。 超前启动--建设期物业全面介入服务 多年的从业经验,使我们最贴近业主的需求;集专业化运作之优势,中海物业将从规划设计、材料和设备选型、施工管理、销售等多角度,为合作方提供最符合现实使用情况和最 贴近业主实际需求的专业建议。 项目规划阶段物业管理介入工作 提供项目规划顾问建议

中海物业全套工作流程图

目录管理工作流程图 1.文件控制流程图 2.记录控制流程图 3.人员和培训管理流程图 4.采购管理流程图 5.物业服务管理流程图 6.顾客满意管理流程图 7.不合格品(服务)管理流程图 8.业主投诉处理流程图 安保工作流程图 1.安保管理流程图 2.物业管理部工作流程图 3.安保主管工作流程图 4.班长日检查工作流程图 5.样板房安保员岗位工作流程图 6.侧门岗安保员工作流程图 7.巡楼安保员操作流程图 8.业主搬迁操作流程图 9.外来人员出入管理流程图 10.消防应急方案出来流程图 11.突发事件处理流程图 12.安保工作重大事项处置流程图 13.电梯困人处理流程图 意外停电处理流程图 意外停水处理流程图

意外停气处理流程图 14.管理处火灾处理流程图 15.车库(场)岗位工作流程图 16.车库(场)收缴费管理流程图 17.车库(场)异常情况处置流程图 18.车辆冲卡处理流程图 19.可疑车辆出场处置流程图 清洁绿化工作流程图 1.清洁管理流程图 2.清洁不合格处理流程图 3.绿化管理流程图 4.绿化不合格处理流程图 5.清洁绿化主管检查流程图工程工作管理流程图 1.基础设施和工作环境管理流程图 2.机电设备管理流程图 3.业主报修接待处理流程图 4.消防报警信号处理流程图 5.电梯故障处理流程图 6.恒压变频生活供水系统操作流程图 7.低压变配电设备维修保养流程图 8.新接楼宇入伙管理流程图 9.业主入伙手续办理流程图 10.房屋装修管理流程图 11.物业接管验收流程图 12.业主看房收楼流程图

编号: ZH/NJ 05 版号/状态: C/0 发放号:中海物业管理有限公司 南京公司 工作流程图 编制:物业管理部日期:2005年9月日 审核:质量管理部日期:2005年9月日 批准:日期: 文件受控章 责任部门:物业管理部声明:未经许可,不得翻印。

STAR简历法则

STAR法则,即为Situation Task Action Result的缩写,具体含义是: Situation: 事情是在什么情况下发生 Task: 你是如何明确你的任务的 Action: 针对这样的情况分析,你采用了什么行动方式 Result: 结果怎样,在这样的情况下你学习到了什么 简而言之,STAR法则,就是一种讲述自己故事的方式,或者说,是一个清晰、条理的作文模板。不管是什么,合理熟练运用此法则,可以轻松的对面试官描述事物的逻辑方式,表现出自己分析阐述问题的清晰性、条理性和逻辑性。 详细释义 STAR法则,500强面试题回答时的技巧法则,备受面试者成功者和500强HR的推崇(宝洁HR培训资料有专门的讲座讨论如何用此法则检验面试者过往事迹从而判断其能力)。 如果对面试技巧和人力资源招聘理论有所了解的同学应该听说过,没听说也无所谓,现在知道也不迟。由于这个法则被广泛应用于面试问题的回答,尽管我们还在写简历阶段,但是,写简历时能把面试的问题就想好,会使自己更加主动和自信,做到简历,面试关联性,逻辑性强,不至于在一个月后去面试,却把简历里的东西都忘掉了(更何况有些朋友会稍微夸大简历内容) 在我们写简历时,每个人都要写上自己的工作经历,活动经历,想必每一个同学,都会起码花上半天甚至更长的时间去搜寻脑海里所有有关的经历,争取找出最好的东西写在简历上。 但是此时,我们要注意了,简历上的任何一个信息点都有可能成为日后面试时的重点提问对象,所以说,不能只管写上让自己感觉最牛的经历就完事了,要想到今后,在面试中,你所写的经历万一被面试官问到,你真的能回答得流利,顺畅,且能通过这段经历,证明自己正是适合这个职位的人吗? 编辑本段 示例 写简历时就要准备好面试时的个人故事,以便应付各种千奇百怪的开放性问题。 为了使大家轻松应对这一切,我向大家推荐“个人事件模块”的方法,以使自己迅速完成这看似庞大的工程。 一,头脑风暴+STAR法则——〉个人事件模块 1.1,头脑风暴。 在脑海里仔细想出从大一到大四自己参与过所有活动(尤其是能突出你某些能力的活动),包括: 1,社团活动职务时间所做事情 2,在公司实习的经历职务时间所做过的事情 3,与他人一起合作的经历(课题调研,帮助朋友办事) (回忆要尽量的详细,按时间倒序写在纸上,如大一上学期发生。。。。。。大一下学期发生。。。。。。。如此类推) 我相信这一步,很多朋友都已经做了,但是仅仅这样就满足了,就直接写在简历上当完事了,那是不行的,想提高竞争力,还得继续。。 1.2,STAR法则应用 将每件事用S T A R 四点写出,将重要的事情做成表格 例大一辩论比赛获得冠军 S 系里共有5支队伍参赛,实力。。。,我们小组。。。。。

(万科企业管理)万科与中海物业管理的模式比较

万科与中海物业管理的模式比较 前言 综观物业管理在深圳20年的发展,有这样几个重要的转折点:从第一家物业公司成立,到公房改制扩大物业管理的覆盖面,物业管理走向千家万户的普通居民为第一转折点;以莲花二村"一体化"管理为标志,确立深圳物业管理模式为第二个转折点;鹿丹村物业管理公开招投标,拉开了市场竞争的序幕为第三个转折点。作为全国物业管理发源地的深圳,物业管理能取得全国瞩目的成绩,与深圳的经济发展水平、市场经济的成熟程度等各方面因素有着密切的关系。尤为重要的是政府主管部门的积极引导、努力探索对深圳物业管理行业的发展直接起着重要的推动作用。 随着社会的发展,业主的服务需求不断增长,物业管理服务事项和内容由简单基本的房屋维修、清洁卫生、园林绿化、安全护卫等,在展到机电维护、环境设计、企业策划、家政服务、社区文化、商业代理等,力求满足业主从办公、学习、安全、环境到居家生活、邻里交往、文体活动等系列需求。一些有品牌的公司潜心揣摩,结合不同的物业硬件和业主需求,提出并实践了一些新概念、新做法,形成自己鲜明的、独特的个性特色,突出企业形象和显示管理实力的同时,也为整个行业的发展提供了可供借鉴的经验;如万科物业从早期提出的"酒店式管理"到近期的"无人化管理"、"个性化管理"和"管理报告制度";中海物业管理倡导的"一拖N模式"、"氛围管理";深业物业实施的"精品战略";金地物业实行的"产学联手";"保姆计划"、"四点半学校"等均取得了良好的市场效益。这里不能不提及贯穿全市物业管理企业发展历程,使物业管理意识深入民心的一项重要工作内容--社区文化。莲花物业在莲花二村率先倡导社区文化活动和万厦物业在莲花北村通过社区文化活动的开展建立起"全国城市文明第一村"的社会效益,在市场上均得到了良好的品牌效应。事实证明,多样化、多层次的社区文化活动是最能体现物业管理人文精神和关怀的有效手段,因为它较好地调整了业主与企业之间、业主与业主之间的关系,同时将物业管理工作通过社区活动去宣传,更容易得到业主的接受和认同。 1996年以来,万科、中海、中航、国贸、金地、莲花等物业管理公司,在全国物业管理行业率先通过了ISO9002国际标准质量认下,使物业管理的技术标准和质量规范管理纳入了国际轨道,对物业管理操作经营中的每个岗位、每个人员、每一个环节都有严格科学的管理规范和检验标准。到目前为止,100多家物业管理企业通过了ISO9002质量认证,其数量和比例居全国同行业之首。其中高新技术产业园区物业管理公司是全世界首家获得ISO9002、ISO14001及SA8000三个标准国际认证的物业管理公司。通过规范化管理的推广,深圳市相当数量的物业管理企业及其所管理的物业管理企业及其所管理的物业水平已接近或达到国际水准。 本文将就万科、中海两家物业管理公司的物业管理模式进行分析、探讨中国高水平物业管理的发展特色,以摸索出有利于中国物业管理进一步发展的东西。 一、万科物业管理的特点 1、万科物业管理公司的概况 万科物业管理有限公司成立于一九九二年初,为万科企业股份有限公司全资附属机构。公司现有总资产3000万元,各类专业服务人员3000余人,管理面积300余万平方米。公司现已发展为国内最具规模及极负盛誉的物业管理机构之一,专业提供全方位的物业管理服务、工程完善配套服务、房屋租售及绿化工程服务。通过十多年的物业管理研究与实践,公司在市场上取得了骄人的业绩,在物业管理行业奠定了坚实的地位,成为国家建设部首批认定的物业管理一级资质企业、深圳市物业管理甲级

《中海地产企业发展战略研究》

中海地产企业发展战略研究 1中海地产发展概况 ............................................. 1.1中海地产企业简介....................................... 1.2 中海地产的企业背景和历程 ............ 错误!未定义书签。 2 中海地产企业战略............................................. 2.1中海地产业务布局战略................................... 2.2 中海地产战略目标....................................... 2.3 中海战略模式的转变 .................................... 2.4 中海地产产品战略....................................... 2.5 战略执行要点........................................... 3 中海地产企业文化............................................. 3.1企业文化观点........................................... 3.2 中海地产企业愿景....................................... 3.3中海地产核心价值观..................................... 3.4 中海地产形象文化....................................... 3.5 中海地产制度文化....................................... 4 管控模式 (38) 4.1企业管控体系与组织架构.................................

智慧树大学生就业与创业指导章节标准答案

第一章单元测试 ?名称大学生就业与创业指导 ?对应章节第一章 ?成绩类型分数制 ?截止时间 2017-12-01 23:59 ?题目数5 ?总分数 100 ?说明: ?评语: ?提示:选择题选项顺序为随机排列,若要核对答案,请以选项内容为准100 ?第1部分 ?总题数:5 ? 1 【多选题】(20分) 关于职业发展模型,以下描述正确的是:() A. 职业选择或定位时,自我方面主要考虑能力与需求,职业方面要了解要求与回馈。 B. 当个人的能力符合职业的要求时,组织对个人较满意。 C. 当职业的回馈满足个人的需求时,个人对组织较满意。 D. 任何职业选择要同时考虑组织满意度与职业满意度两个维度。 正确 查看答案解析 ? ?本题总得分:20分 2 【多选题】(20分)

职业对技能的要求通常可分为三种类别,分别是:( ) A. 知识技能 B. 可迁移技能 C. 管理技能 D. 自我管理技能 正确 查看答案解析 ? ?本题总得分:20分 3 【多选题】(20分) STAR成就故事深度分析法,是有效分析个人能力的方式。对“STAR”原则描述正确的是:() A. Situation情境——当时面对什么困难? B. Target目标——你的目标是什么? C. Action行动——你做了什么? D. Result结果——效果如何?你有什么收获? 正确 查看答案解析 ? ?本题总得分:20分 4 【多选题】(20分)

参加大型招聘会时,应注意:() A. 最好提前通过招聘会网络发布的信息了解企业和岗位 B. 带一个版本的简历即可,看到中意的企业就投递 C. 要有针对性地投递简历,主动提问交流 D. 及时记录投递简历情况、公司名称、应聘岗位、联系人等。 正确 查看答案解析 ? ?本题总得分:20分 5 【多选题】(20分) 获取就业信息的渠道有:() A. 网络 B. 招聘会 C. 实习实践 D. 人际资源 E. 直接与用人单位联系 正确 第二章单元测试 ?名称大学生就业与创业指导

中海地产公司各部门职责

******** 管理制度 索引 1.目的:―――――――――――――――――――――――――――――――― 2.范围:―――――――――――――――――――――――――――――――― 3.参考资料:―――――――――――――――――――――――――――――――― 4.定义:―――――――――――――――――――――――――――――――― 5.公司各部门岗位职责:――――――――――――――――――――――――――― 5. 1. 行政部―――――――――――――――――――――――――――――― 5. 2. 人事部―――――――――――――――――――――――――――――― 5. 3. 财务部―――――――――――――――――――――――――――――― 5. 4. 地产部―――――――――――――――――――――――――――――― 5. 5. 工程部―――――――――――――――――――――――――――――― 5. 6. 合约部―――――――――――――――――――――――――――――― 5. 7. 营业部―――――――――――――――――――――――――――――― 5. 8. 物资部―――――――――――――――――――――――――――――― 5. 9. 机电部―――――――――――――――――――――――――――――― 5. 10. 地盘――――――――――――――――――――――――――――――- 6.行政管理:――――――――――――――――――――――――――― 6. 1. 公文管理―――――――――――――――――――――――――――――― 5. 2. 印鉴管理――――――――――――――――――――――――――――― 5. 3. 例会制度――――――――――――――――――――――――――――― 5. 4. 行政档案管理――――――――――――――――――――――――――― 5. 5. 固定资产管理―――――――――――――――――――――――――――― 5. 6. 通讯管理―――――――――――――――――――――――――――

物业管理顾问方案

第一部分 中海物业简介 市中海物业管理(以下简称“中海物业”)为中国海外集团旗下,专门从事物业管理业务、具有独立法人资格的企业。公司在中海物业管理公司的基础上,于1991年在注册成立,为建设部首批甲级资质物业管理企业。自成立以来,严格遵循“业主至上、服务第一”的工作宗旨,大力倡导“严格苛求、自觉奉献”的工作精神。在掌握并导入先进物业管理模式的基础上,融汇世界各国先进物业管理经验,结合中国大陆的实际国情,探索出具有中国特色的中海物业管理模式。公司以此模式为手段开展科学管理和优质服务,全心全力为业主及物业使用人提供一个安全、清洁、优美、舒适、方便的生活及工作环境。 多年来,中海物业以优质的服务质量和先进的管理技术不仅得到广大业主的信任,而且赢得了良好的社会声誉,先后获得国家建设部、省、市各级政府部门授予的各种奖牌、奖旗100余面。中央电视台、各大报刊以及《文汇报》、《大公报》、《商报》、《星岛日报》,国的《人民日报》、《经济日报》、《工人日报》、《法制日报》等新闻媒体对中海物业管理经营情况的报道多达700余次,慕名前来公司参观考察的国外各界人士已逾两万人次。 随着中海物业在行业地位的日益显著和中海物业管理模式的日益完善,并应国广产消费者和房地产界对先进物管模式的迫切需求,中海物业管理模式除在、、、、几大城市取得骄人的成绩外,更已输出至、、、、、、、、、、、、、、、……等30多个全国各大城市。正在管理的写字楼、商场、商住区、别墅区等高档物业120余处,管理面积逾二千多万平方米,成为物业管理行业的中国之最;已经建成国家优秀示小区(大厦)17个,占全国国优总数的3%强,雄居国同业国优拥

中海物业安全管理手册

编号:WI/B-01 版本:D 安全管理手册 编制: 社区环境管理部 日期: 2006年6月1日 审核: 质量管理部 日期:2006年7月1日 批准: 日期: 文件受控章 声明:安全管理手册未经许可,不得翻印。 责任部门:社区环境管理部

ZHPM安全管理手册D/0 1/6 序号编号标题版号/状态 01WI/B --- 001基础管理(社区环境管理部职责)D/0 02WI/B --- 002基础管理(社区环境管理部经理职责)D/0 03WI/B --- 003基础管理(社区环境管理部助理职责Ⅰ)D/0 04WI/B --- 004基础管理(社区环境管理部助理职责Ⅱ)D/0 05WI/B --- 005基础管理(社区环境管理部助理职责Ⅲ)D/0 06WI/B --- 006基础管理(管理处护卫主管职责)D/0 07WI/B --- 007基础管理(管理处护卫领队职责)D/0 08WI/B --- 008基础管理(管理处护卫领班职责)D/0 09WI/B --- 009基础管理(管理处护卫员职责)D/0 10WI/B --- 010基础管理(护卫员工作权限)D/0 11WI/B --- 011基础管理(护卫员禁止行为)D/1 12WI/B --- 012基础管理(护卫员职业道德规范)D/0 13WI/B --- 013基础管理(护卫员纪律)D/0 14WI/B --- 014礼仪规范(仪容仪表)D/0 15WI/B --- 015礼仪规范(言谈举止)D/0 16WI/B --- 016礼仪规范(接人待物)D/0 17WI/B --- 017礼仪规范(礼节礼貌)D/0 18WI/B --- 018管理规程(大堂岗管理规程)D/0 19WI/B --- 019管理规程(道口岗管理规程)D/0 20WI/B --- 020管理规程(车场岗管理规程)D/0

中海地产管理制度汇编(200)页

目 录 中海地产管理制度汇编 规划设计类 中海地产所辖公司开发项目一期交房配套设施配置标准 (3) 中海地产所辖公司开发项目配套设施配置最低参考标准 (4) 集团总部规划设计中心与所辖公司相关部门职责细分条例 (6) 《中海地产规划设计中心与所辖公司相关部门职责细分条例》 (10) 补充规定 (10) 关于所辖各公司选择室内设计单位的规定 (13) 工程管理类 (14) 建设工程施工质量控制管理办法(2010年版) (14) 建设工程施工进度控制办法(试行) (20) 建设工程安全文明施工监督控制办法 (21) (试行) (21) 施工质量与安全综合评比排序实施细则 (25) (2010年版) (25) 物管公司物业接管和维修控制办法 (28) 建设工程施工成本控制与管理办法(修订版) (33) 工程施工任务招投标实施细则 (41) 建设工程施工签证管理实施细则 (51) (修订版) (51) 工程承包商考评办法 (54) 工程施工成本控制管理考评实施细则 (56) (修订版) (56) 工程结算资料保管规定 (58) 附 表 目 录 (59) 工程物资采购类 (93) 工程物资采购管理制度 (93) 工程物资采购招标管理办法 (98) (试行) (98) 物资采购计划管理制度 (108) 工程物资出入库及票据管理办法 (110) 工程物资货款支付管理办法 (113)

目 录 附件1 北京市中海实业(集团)有限公司采购中心 (115) 定厂定价通知书 (115) 附件2 北京市中海实业(集团)有限公司采购中心 (116) 核价通知书 (116) 附件3 材料设备申购计划表 NO.0000 (117) 附件4 材料设备核价申请表 (114) 附件5 (116) 工程材料设备采购周期 (116) 营销管理类 (118) 第一部分 中海地产营销节点管理制度 (118) (附件1) 项目营销节点管理操作指引 (126) (附件2) 房地产项目定位管理制度 (130) 营销部工作评估、排序办法 (134) 第二部分中海地产客户服务管理制度 (148) 客户服务中心对客户服务分部工作的管理及考评办法 (148) 关于接管验收房屋过程中处理工程质量缺陷的处罚规定 (166) 第三部分 中海地产品牌管理制度 (170) (附件3) 广告公司甄选评分表 (187) (附件4) (188) 中海 项目营销周报(格式) (188) (附件5) (189) __项目 月份营销月报(格式) (189) (附件6) 2010年x月中海项目主要销售数据汇总表 (191) (附件7) (193) 中海 公司广告备案表 (193) (附件8) (195) 中海 公司活动备案表 (195) (附件9) (195) 中海地产 项目VI审批表 (195)

顾问服务方案

顾问服务方案的编写 一、物业管理顾问业绩 从2000年至今顾问项目已达106个(列表说明)。 二、顾问服务概述 1、发展商将开发项目物管工作全权委托给发展商即将成立/下属的物业管理公司(以下称“管理商”),管理商负责发展商开发项目物管工作的具体实施运作;同时,为保证开发项目有一个高起点的物业管理水平及服务质量,发展商拟聘请中海物业管理有限公司为本物业管理工作的顾问商,以便利用中海物业在人力资源、经验、管理经验、技术、模式、制度以及规范化的服务体系等诸多方面的优势为管理商提供物业管理顾问服务。 2、双方合作关系一旦确定,顾问商将会把发展商开发项目的物管工作列入中海物业相应的策划、考核、检查、评比序列中,由公司组建顾问团及委派驻场顾问,根据本项目物业的具体情况,负责跟踪其设计、施工、销售、竣工验收、入伙以及日后的物业管理工作,指导管理商制订本物业的全套管理方案、程序文件、管理制度、服务质量标准等,并督促其有效运行,按照双方约定的顾问服务内容为管理商提供全方位、全过程、专业化的顾问管理服务。 3、为保证管理目标的实现及更有力地推行中海物业管理模式,顾问商将于项目现场派驻一/二/三名物业管理资深人仕任驻场顾问,作为管理商核心管理的实体“核心”;并同时辅之以公司顾问团以及公司各专业部门、专业公司的技术支持,结合本物业物管工作的实际需要定期赴现场进行考察指导,根据项目现场发现的问题及时针对性地提出整改建议与整改措施。在公司顾问团与驻场顾问二者的共同努力下,将为管理商日后的物业管理工作打下良好的基础。 4、顾问商提供顾问管理服务的目的在于为管理商培养一支高水准、高质素的管理队伍,同时发展商可借助中海物业良好的品牌效应促进本物业的租售;在顾问期限内,顾问商允许发展商就本物业向外界使用“中海物业顾问管理”等文字进行宣传推广。 三、服务期限 顾问期限分为前期介入、实操指导和服务质量跟踪三个阶段。其中前期介

中海物业组织机构及人员配备、培训和管理

中海物业组织机构及人员配备、培训和管理遵循客户优先原则、有效性管理原则、安全第一的原则、成本控制的原则和持续改进的原则进行组织机构设置和人员配备。精英管理团队通过完善的培训体系和有效的管理机制为山东电视台的客户提供高品质的物业管理服务。 组织机构设置 山东电视台物业公司下设客户服务部、工程维修部、安全事务部、环境管理部四个专业职能部门,四个专业职能部门配备符合物业功能特点的专业管理服务人员,分别负责客户服务、设备管理、安全管理、环境管理等方面,向客户提供优质服务, 组织机构设置 (一)客户优先的原则 在山东电视台物业公司始终坚持“以人为本,以客为先”的管理理念,为客户提供安全、舒适、优质的物业管理服务,以满足和超越山东电视台业主和客户对物业管理服务不断增长的需求。 (二)有效性管理的原则 做正确的事比把事做正确更重要,在山东电视台实行计划目标考核管理体系,用高效的组织实现效率管理。 (三)安全第一的原则 安全是实现项目管理经营服务的前提,物业管理服务首先是为客户提供安全的生活工作环境。遵循安全第一的原则,以客户为中心,安全围绕每项工作的始终。 (四)成本控制的原则 不仅让业主和客户获得优质高效的服务,同时以有效的成本控制方式,在人力资源管理、品质管理、行政管理、财务管理等方面由公司进行统一的资源调配,节省山东电视台费用开支。

(五)持续改进的原则 持续有效地改进服务水平和服务标准,贯彻国际质量管理体系,是物业公司一贯遵循重要原则之一。 人员配备 基于山东电视台的功能分析和客户群体分析,在物业管理人员配备上将遵循以下原则: 物业管理是一个服务性行业,为业主和使用人提供一个安全舒适的生活和工作环境是我们物业管理人的职责。一支高素质的服务队伍必然是一个服务意识极强的组合。 着眼于管理现代化和组织科学化,为保障优质的物业管理服务,在组织上采用扁平架构,根据山东电视台功能需要和客户需求,在物业公司设四个部门,由总经理直接调配管理。这样既保证服务的高质量,又实现运行的高效率,来达到机构精简,人员精干,工作高效的目的。 各类人员的配备,均要求有较高的知识水平和专业技能。根据不同的岗位设置,配备相应文化水平和专业技能的人才,在此基础上,将通过不间断的物业管理专业知识培训,使员工处于不断完善和提高的最佳工作状态。 针对山东电视台的物业管理特点,将利用公司和外部的培训资源,通过入职培训、岗前培训和在职培训三级培训体系,开展不同方式的培训,提高各类人员的专业技能、职业道德意识、计算机应用知识和物业管理知识,使培训工作真正落到实处。 通过培训,提高员工的综合素质、业务技能和管理服务水平,培养一支作风优良、专业技术过硬的物业管理队伍,为山东电视台的业主和客户提供高效、优质、便利、安全的物业管理服务。 一、三级培训体系 (一)入职培训 1、企业培训:公司发展史、公司经营方针、公司理念、公司精神及管理目标等。 2、员工手册培训:员工守则、礼仪行为规范、职业道德教育等。 3、安全防范意识的培训,客户服务体系的培训,物业管理知识的培训。 4、军训与参观学习。

star法则成就故事例文

star法则成就故事例文 【--党风廉政建设】 在求职的时候我们会遇到各种各样的面试官,如何在面对不同面试官时都能从容的应对是很多人思考的问题,除了做好充分的准备之外,还需要了解star法则,因为它同基本企业管理中的十大定律一样是面试官常用的,而今天我们就来介绍几个star法则成就故事例文。本站为大家整理的相关的star法则成就故事例文,供大家参考选择。 star法则成就故事例文 什么叫star法则 首先我们需要先了解star法则的意思。所谓star法则是指情境、任务、行动、结果四个词的缩写,其中情境是指事情是在什么情况下发生的;任务是指你是如何明确任务的;行动是指针对这样的情况分析后采取了什么样的行动方式;结果是指最后取得什么样的结果并且学习到了什么。 如果将四项连接起来,star法则可以理解为:案例在什么情况下发生发生之后当事人如何明确案例中给到自己的任务对任务进行分析然后采取对应的行动最后取得什么样的结果并且从中学习到什么,简单的来说它就是一种让面试者讲述自己故事的方式,可以看出面试者阐述问题时的条理性和逻辑性等等。 star法则成就故事例文 用STAR法来撰写成就故事 请写下生活中令你有成就感的具体事件然后对其进行分析,看看你在其中使用了那些技能(尤其是可迁移技能)。 这些成就故事不一定是在工作或学习上的,也可以是课外活动或家庭生活中发生的,比如同学聚会,一次美好而难忘的旅游等等,他们不必是惊天动地的大事,只要符合两条标准就可以被视为成就 (1)你喜欢做这件事时体验到的感受 (2)你为完成他所带来的结果感到自豪。 如果你同时还获得了他人的认可和表扬那就更好了,不过这并不重要。 在撰写成就故事时,每一个故事都应当包含一下要素: 当时的情况(Situation)

中海物业组织结构及职责

中海物业组织结构及职责 总经理 1、贯彻执行国家的方针、政策、法规和上级公司的有关决议。 2、负责协调公司领导班子成员分管的有关工作,确保年度各项指标的完成。 3、负责质量管理部、艺术团、直接领导工作。 4、组织编制公司的发展规划,提升企业管理,提高经济效益,增强企业的竞争实力。 5、主持制定公司中长期发展规划、年度目标、经营计划和其它各项企业计划。 6、主持一体,化管理体系的策划工作,制定并颁布公司的管理方针、目标、并对实现管理方针、目标负责。 7、确保在整个组织内提高满足顾客、员工、相关方要求的意识。 8、负责调整公司组织架构,确保部门职责、权限得到规定和沟通。 9、负责主持召开管理评审,保证一体化管理体系持续有效运行和持续改进。 10、主持重大质量、环境和职业健康安全事故的调查分析会。 11、负责审批重大环境因素、重大危险源 12、负责公司一体化管理体系目标、指标和管理方案的审核和审批。 13、负责为实施和改进一体化管理体系提供必要的人、财、物资源,确保一体化管理体系的持续有效运行。 14、召集和主持总经理办公会,负责向总经理办公会报告半年或年度经营计划,讨论后提交上级公司或董事会批准。 15、负责提出公司经营管理决策建议,组织讨论公司财务预决算,提交董事会批准。 16、负责公司重大经营合约的签署和员工薪金、奖金分配方案的审批。 17、负责公司非生产性支出的审批。 18、批准公司领导班子成员的公出和假期安排。 19、负责直管部门经理的各种假期的审批。 20、负责《质量简报》的审核发布,并对重大问题做出指示。 21、负责审核《季度投诉分析报告》,确定公布范围并做出相应指示。 22、负责评估《顾客满意度测评报告》,并做出相应的改进指示。 副总经理 1、在总经理的领导下,负责社区服务部、社区环境管理部、工程部、全委项目、专业公司的领导工作。 2、负责安委会、质量管理委员会日常工作,主持召开安全会议,关注并维护员工的合法权益。 3、协助总经理贯彻实施管理方针和目标,领导全体员工提高质量、环境和职业健康安全意识。 4、协助总经理检查督促各单位经济指标、管理目标及其它各项工作任务的完成情况。 5、负责组织调查研究,不断拓宽家园服务领域,增加服务项目,提高家园服务网经营管理效益。 6、主持合同评审,对与顾客有关的过程进行管理,确定公司不断满足顾客需求。 7、负责组织开展与发展商、业主委员会双向沟通联络。 8、负责专业公司的市场拓展的领导工作。 9、负责专业公司产品设计、设备改造策划、评审的领导工作。 10、指导和监督物业供方的考核、审批合格的物业供方。 11、负责供方的招标、评估、合约的签订。 12、依照授权负责物业服务合同的签订与评审管理工作。 总会计师 1、负责公司财务管理工作。监督公司遵守国家财经法令、纪律,以及董事会决议。 2、负责会计部、财务审计部、的直接领导工作。 3、负责公司采购的领导工作。

相关主题
文本预览
相关文档 最新文档