当前位置:文档之家› 海南大学食品工程原理第二学期复习资料

海南大学食品工程原理第二学期复习资料

海南大学食品工程原理第二学期复习资料
海南大学食品工程原理第二学期复习资料

第六章以传热为特征的单元操作

1.概念:浓缩、蒸发、结晶、冷冻浓缩;各操作之间的关系。

浓缩:从均相溶液中去除部分溶剂的单元操作。是溶质与溶剂部分分离的过程。

又分为平衡浓缩和非平衡浓缩两种方法。

蒸发:利用溶质与溶剂挥发度的差异,通过加热使溶剂气化而将溶质浓度提高的单元操作。

结晶:从均相液态体系(蒸气、溶液、熔融体)中析出固态晶体而将溶质部分分离的单元操作。

冷冻浓缩:利用溶液中溶剂在其凝固点下固、液相平衡关系,使部分溶剂析出分离的单元操作。

各操作之间的关系:

①冷冻浓缩对溶液浓度有一定要求。即溶液浓度必须小于某一限度(低共熔点浓度),在一定范围内,温度下降到一定时,溶剂成为固态被析出而被分离。反之,若浓度大于低共熔浓度,则成为过饱和溶液,则随温度下降溶质析出,即为结晶。

②一般结晶操作的前处理工序之一是通过加热的方式使溶液中的溶剂发生气化,增加溶质浓度,使溶液达到过饱和状态。故蒸发与结晶关系密切。

③冷冻是通过降低物料温度使其特性发生变化,是冷冻浓缩、结晶的工具;以产品贮运加工和保藏为目的,是食品工业中近几十年来发展最快的行业之一,被视为食品工程中最重要的单元操作之一。

2.蒸发

⑴食品工程中的蒸发操作的主要对象,蒸发操作的基本原理;

主要对象:蒸发操作指将含有不挥发性溶质溶液中的溶剂受热气化分离,使溶质浓度提高的单元操作。食品工程中的蒸发特指除去溶液中水分的操作。基本原理:通过向溶剂提供使其发生相态变化的汽化热,使溶剂受热挥发而分离。溶剂分离的量和速率受供热量和速率的影响。

⑵蒸发的基本流程和设备特征;

基本流程:由两个组成部分,一是加热使水分气化,二是蒸气冷凝。前者在蒸

发器中进行,后者在冷凝器中完成。

设备特征:有足够的蒸发空间,足够的加热面积,溶液沸腾,可内部循环,足

够的分离空间,具冷凝装置,在规定的浓度时排出,能连续和稳定的工作。

⑶蒸发在食品工业中的用途;

应用:获得浓缩溶液,利于保藏、包装、运输;去除杂质,制取纯净溶剂;为

冷冻浓缩和结晶提供前期条件;作为干燥工艺的预处理;喷雾干燥的预处理工序。

⑷常用蒸发操作的方法及特点,单效蒸发和多效蒸发;

方法及特点:

1)常压蒸发和减压蒸发

减压蒸发优点:① 使溶液沸点降低,加大平均温度差;②适于处理热敏性高的物料;③ 系统热损失少。

缺点:传热系数小,动力耗能较大。

2)单效蒸发和多效蒸发

不凝气体

蒸发过程根据二次蒸气是否再用作另一蒸发器的加热蒸气而分为单效和多效蒸发。

单效蒸发:若二次蒸汽不被利用而直接将其冷凝称为单效蒸发。

多效蒸发:二次蒸汽被利用一次称双效蒸发,利用二次称三效蒸发,类推至n

效蒸发。

3)间歇蒸发和连续蒸发

间歇蒸发可分为:

①一次进性一次性出:一次加够料液,加热时不加料,浓度和沸点随蒸发

过程不断升高。

②连续进料一次性出:加热时同时加料,保持料液面不变,但蒸发器中溶

液的浓度和沸点随时间不断增大。

间歇式特点:溶液浓度和沸点随时间而变化,且传热温度差和传热系数也

随时间而变化,是非稳态过程。

连续式特点:连续蒸发则是连续进料和出料,蒸发器中的液面和压力不变,

蒸发器内各处的浓度与温度不随时间而变化,属稳态过程。

⑸多效蒸发的加料流程及特点(并流、逆流、平流);

特点:并流、逆流、平流、混流。

加料流程:

⑹食品工业蒸发的特点(结垢性、热敏性、粘稠性、腐蚀性、泡沫性); 结垢性:被蒸发的溶液易在加热面上产生垢层,是由于Ca 2+ 、 Mg 2+ 、糖、

蛋白质、果胶物质等受热沉积或变性沉淀所致。污垢增加热阻,降低了传热系数,增加能耗。

热敏性:物料在加热过程中因其成分多由蛋白质、脂肪、维生素、糖类等生物

活性物质组成,受热易被破坏。氧化、挥发、风味变、色变。

粘稠性:被浓缩的溶液往往粘度较大,流动缓慢,易形成层流内层,传热速率

降低。浓度越大速率越低。

腐蚀性:如水果汁多为酸性,会对设备造成腐蚀,故对设备选材有一定要求。 泡沫性:多数食品溶液在加热蒸发时会产生泡沫,影响操作或造成浪费,应及

时去除。

⑺二次蒸气,温差损失的概念及计算;

二次蒸气:食品工业供热采用的多为水蒸气(也称生蒸气),且料液蒸发物也多

为水蒸气,由此产生的水蒸气称为“二次蒸汽”。排除二次蒸汽最常用的方法是冷凝。

温差损失:蒸发过程中因溶液沸点升高引起的理论传热温差与实际传热温差的

差,它表示的是蒸发推动力下降的数值。

温差损失在数值上为溶液沸点高于二次蒸汽温度的值,也即溶液沸点升高的值: 理论传热温差:蒸发常用水蒸气作热源,其与二次蒸汽的区别是二者温位(或t t f '

-=?

压强)不同。在蒸发过程中,蒸发器加热蒸汽温度 t 和二次蒸汽的温度 t ′之温度差称为理论传热温差。 有效传热温差 △t m :是加热蒸气温度 t 与溶液真实沸点t f 之差。 因溶液真实

沸点 t f

高于二次蒸汽温度 t ′,故蒸发器中的有效传热温差要小于理论传热温差,二者之差称温差损失。

⑻单效蒸发的蒸发水量和热量计算、经济性比较;

蒸发水量W 的衡算:设原料液的质量流量为F (kg/s )、固形物质量分数为 ω0

水蒸发量为 W (kg/s ),浓缩液中固形物质量分数为 ω1,则溶质的衡算式

温及沸点、比热容、加热蒸汽冷凝水温度等一系列与传热系数有关的参数,其实质是热量衡算。

在实际操作中,如将料液温度预先处理至沸点时进料,且忽略

QL ,则上式可变为: ,物料比热容为C p0 (kJ/ kg ·k),

料液沸点为t 1 (k),进料温度为t 0 (K),水分蒸发量为W (kg/s) , 进料

质量流量为 F (kg/s),加热蒸气汽化热为 r (kJ/kg),二次蒸气汽化热为 r ′(kJ/kg) ,蒸发热量损失为Q L (kJ/s, kW )。

经济性比较:

,即:每一公斤蒸气可蒸发出一公斤水分 如果考虑到实际过程中有热损失等原因,可以取实际的 D/W ≈

1.1~1.2。 对某蒸发器而言,W / D =e 称为加热蒸气的经济性。其值表示了加热蒸气的利用率,是该蒸发器蒸发操作时是否合理、经济的重要指标。

经济性越大,操作的合理性就越高。

t t t '-=

'?m t t ?-'?=?W D ≈

⑼了解多效蒸发的优化途径。

①真空蒸发;

②提高K值(去污垢、搅拌);

③抽取二次蒸气(抽出蒸汽量<补加蒸汽量);

④二次蒸气的再压缩;

⑤冷凝水热量的利用。

⑽了解蒸发设备工作原理(P365~P373)。

多效蒸发原理:若将多个蒸发器串联起来则可将前一蒸发器产生的二次蒸气引入到后一个蒸发器的加热室作为加热蒸气再利用。这一过程称为多效蒸发。多效蒸发时,后一效的蒸发器作为前一效的冷凝器,直至最后一效的二次蒸气送去冷凝。

3.结晶

⑴结晶的概念,结晶过程,过饱和现象,形成过饱和溶液的方法;

结晶:由蒸气、溶液、熔融物中析出固态晶体的现象(操作),是固相从液相中部分分离的过程。广义而言,是从均相体系中形成异相颗粒的过程。

结晶过程:经过两个过程,晶核产生;晶体成长。结晶过程的发生须有浓度差存在,称过饱和度即浓度超过结晶临界点以上的部分。

过饱和现象:理论上,在某温度下,当溶液中溶质的量超过溶解度时即有结晶析出。但实际上是只有当溶质含量超过溶解度一定程度时才会有结晶析出。

即溶质含量超出溶解度仍未结晶的现象。

形成过饱和溶液的方法:①降低温度;②增加浓度。

⑵饱和度对结晶的影响;

溶液中溶质浓度大于其饱和度是结晶的必要条件。

饱和度又受到温度和溶液浓度的影响。

⑶结晶的物料衡算;

基于结晶前后的溶质质量总和不变,可得衡算内容及衡算方程式为: 作物料衡算时,要考虑晶体中是否含有结晶水。若有,则w 2 要按溶质分子量与晶体分子量之比计算。

4.冷冻浓缩

——冷冻浓缩的概念,冻结曲线,杠杆法则及应用;

冷冻浓缩:利用冰与水溶液之间固液相平衡的原理将溶剂分离而进行溶液浓缩

的单元操作。

冻结曲线:冻结曲线是指描述液态食品中溶质质量分数与其冻结点关系的曲线。 杠杆法则及应用:

如果已知冷冻开始时溶液的浓度,则用冻结曲线即可知其达一定

低温时的平衡浓度,再根据杠杆法则即可求得冰晶量和浓缩液量。

设原料量为 100kg ,冰晶量为X ,则浓缩液量为 100-X 。

5.冷冻过程

⑴冷却、冻结、制冷;

冷却:使物料温度降低至冻结点以上的过程。在此温度下进行的保藏称冷(却

保)藏。

冻结:使物料温度降低至冻结点以下的过程。在此温度下进行的保藏称冻(结

保)藏。

()1

26321----+= w G W F w G w F FC

BC =浓缩液量冰晶量

制冷:利用某些物质物理状态改变时产生的冷效应而获得低温源的过程。总体

上分为自然制冷和人工制冷。

⑵过冷、过冷度;

过冷:液体冷却到平衡的凝固点(或液相线温度)以下,而没有凝固的现象。这

是不稳定平衡状态,较平衡状态的自由能高,有转变成固态的自发倾向。 过冷度:每一种物质都有自己的平衡结晶温度或者称为理论结晶温度,但是,

在实际结晶过程中,实际结晶温度总是低于理论结晶温度的,这种现象称为过冷现象,两者的温度差值被称为过冷度。

⑶解冻比冻结困难的原因;

①先外后内,液态吸热能力增强;

②C pi =0.5C pw ;l i = 4λw ;a i = 9 a w

③冻结和解冻的温度要求不同;

④冻结时水分向胞外移动,组织持水力下降。

⑷水分冻结率公式 的应用; ⑸最大冰晶生成带,食品制冷量的估算方法;

最大冰晶生成带:水分冻结率变化最大的温度区域。

食品的最大冰晶生产带

???

? ??-=e f t T 1ψ

放热量Q (kJ / kg ):

冷却放热 —— q c

冻结放热 —— q f

冻后放热 —— q i

⑹蒸气机械压缩制冷的原理,采用多级制冷的适用条件;

蒸气机械压缩制冷的原理:低压低温的液态制冷剂吸收热量而沸腾蒸发,成为

低温低压的蒸气;经压缩成为高温高压气体;再经冷凝成为高压常温的液体;经膨胀成低温低压的液体;吸热蒸发进入下一循环。

采用多级制冷的适用条件:压缩比大于 8 ,或需要低于-30℃以下的制冷环境

或冷蒸气压强大于1.2MPa 。

6.了解热力杀菌的有关原理,D 值、F 值、Z 值。

巴氏杀菌

热杀菌

高温灭菌(阿氏杀菌)

商业无菌:用高温灭菌的方法,杀死食品中致病菌、腐败菌和绝大多数微生物,

使残存的非致病菌在食品正常贮藏条件下不能生长繁殖。

杀菌对象菌:指作为确定杀菌达到指标的几种具有代表性的微生物。 D 值:在一定的致死温度条件下,杀死90%微生物所需的加热时间。

F 值:罐头食品杀菌中,确定达到商业无菌的理论杀菌值 (时间、min) 。当杀

菌温度为121.1℃ 时记为F 0。

Z 值:某温度下 对应杀菌致死时间的常用对数值变化为1 时所对应的温度变化

量。

()

i f c q q q m ++=放Q

第七章传质应用

1.传质

⑴传质概念,传质的推动力,N、J表示的传质通量的区别;

传质:物质从一相向另一相转移的过程——质量传递,食品工程中重要的传质过程:气体吸收、吸附、离子交换膜分离,固液浸提、萃取超临界流体萃取,蒸馏、精馏,干燥。

传质的推动力:质量传递的推动力是浓度差(温度,压力,电场)。

传质通量------传质速率:单位时间通过垂直于传质方向单位面积上物质的量,是传质速度与浓度的乘机。

N——以绝对速度表示。n i= ρi u i n = ∑n i kg / ( ㎡·s)

N i = c i u i N = ∑N i kmol / (㎡· s) J——以扩散速度表示。j I= ρi (u i-u) j =∑j kg / ( ㎡· s)

J i= c i(u i-u )J =∑J i kmol / (㎡·s)

⑵分子扩散、涡流扩散、对流扩散的含义,主体流动与扩散流的区别,单向扩散和等分子逆向扩散举例;

分子扩散(分子传质):因浓度差引起的仅靠分子无规则热运动而产生的宏观统计结果的传质现象。传质速率与浓度梯度的大小成正比。

涡流扩散:依靠流体湍动和漩涡而引起的质点物质的扩散。

对流扩散:指两相界面间因流体流动引起的物质传递过程。

主体流动与扩散流的区别:扩散流是微观运动的宏观表现,传递的是组分A或B;主体流动是宏观运动,携A、B流向界面2。

单向扩散和等分子逆向扩散举例:P / P BM (C/C BM)的作用如顺水推舟。即主体流动将加强分子扩散,使其通量加大,故称为“漂流因子”或移动因子。当

A 组分浓度很小时,P / P BM≈1,则单向扩散近于等分子扩散。例如:理想

态的精馏、离子交换属于等分子双向扩散;结晶、吸收、吸附、浸取属于单向扩散(如下图)。

对传质设备的基本要求:设法增加两相充分接触的机会。①增加相间接触面积;

②增大湍动程度;③相间有较大的推动力(物理、浓度);④传质后能分离

完全;⑤结构简单,操作方便,能耗小等。

⑶填料塔和板式塔的特性及特点

填料塔特性(微分传质设备):塔内以填料为气液接触的元件,液体自上而下在填料上分布,形成大面积液膜,气体自下而上与液体充分接触,进行传质。

塔内浓度沿塔高呈连续性变化,且自上而下逐渐增加,故称之为连续性接触式气液交换设备,也称微分接触式传质设备

特点:结构简单,压降低,适于真空蒸馏,属大气量的气液传质设备,填料种类选择多,耐腐蚀

板式塔特性板(分级传质设备):在塔中设置带孔道的塔板,可供上升气体通过并与下降的液体在塔板上充分接触,液体靠自然重力下降,气体靠压强上升,在宏观上气液呈逆流接触状态,塔内溶液浓度自上而下逐渐增加。因每板上气液呈错流交换,呈分级状,故称之为分级接触式传质设备。

特点:空塔气速高,生产能力大气液比范围较广,放大生产稳定性好,结构复杂,压降高。

2.吸收与解吸

吸收的概念及在食品工业中的应用举例,吸收传质方向的判定。

吸收:依不同气态组分在溶剂中溶解度的差异,用适当的液体与混合气体接触,

使气体中的一个或几个组分溶解于溶剂中,形成溶液,而难溶组分保留在气相中,从而达到使混合气体分离的单元操作。

概念:液体—吸收剂;被溶解的气态组分—吸收质,不被吸收的组分—惰性气体(载体)。

食品工业中的应用:碳酸饮料、净化气体、水果香精的回收、氢化油脂制造、CO2气体在葡萄酒表面吸收起抑菌保藏作用。

传质方向:视溶质气体在气相中的分压p A 与其液相平衡分压p﹡的大小比较而定。

3.蒸馏

⑴蒸馏的分类,蒸馏和精馏的概念,自由度计算公式;

蒸馏distiling:利用液体中组分具挥发性而成为蒸气的特性,借不同组分挥发成气态能力的差异,分离液体混合物的单元操作。

精馏rectify:溶液受热沸腾气化后,易挥发组分在气相中的浓度高,难挥发组分在液相中的浓度高,若经多次气化和冷凝,最终在气相中得到较纯的易挥发组分,在液相中得到高浓度难挥发组分,这一单元操作即为精馏。

相率和拉乌尔定律:相律是研究相平衡关系的基本规律,是确定气液平衡参数的理论基础。当相平衡时:F(自由度数)=N(分组数)- Φ(相数)。

⑵用相对挥发度 判别体系能否用蒸馏进行分离的数值范围;

此式意义:可用于衡量某体系是否适于用蒸馏的方法进行分离。

通常情况下,如用y、x 表示易挥发组分,α≥ 1 , α越大越利于用蒸馏的方法分离;当α = 1 , y =x ,混合物不宜用一般蒸馏法分离。

一般情况下,α是温度、压强和浓度的函数,T 升高α略减;当压强增加α也略减。

※食品工业中物料相对挥发度变化不是很大。

⑶精馏中回流比的概念及其产生的影响(全回流、适宜回流比、R大、R小的影

响)。

L为回流量,D为产品量,R=L/D称回流比。

回流比的影响:R 增大,塔内的气液两相的推动力加大,分离所需的理论塔板数减少,说明分离效率高,但所消耗的能量加大。R 为无穷大时称全回流。

此时精馏、提馏线与对角线重合。在生产中无实际意义,只用来开工初期测定全塔效率或进行研究。R 减小,分离效果差,能耗小。因此需选择合适的回流比,以塔效率和达到产品的要求为评价标准。

第九章食品干燥原理

(1)去湿,去湿方法,狭义干燥和广义干燥;

目的:保藏性能、运输性能、加工性能。

去湿( dehumidification ):用各种方法去除食品原料、半成品、成品中绝大部分水分的操作。

去湿方法:机械法、理化法、热能法。

广义干燥:将物料中水分汽化排除的操作。

狭义干燥:将固体中水分汽化排除的操作。

副作用:营养、组织、外观、复水。

(2)目前常用的食品干燥方法;

按压力状况分为——真空、常压;

按操作方式分为——间歇、连续;

按传热方式分为——气流、传导、辐射干燥。

特殊干燥法——冷冻干燥(真空冷冻、冷冻升华)喷雾干燥、高频介电干燥。

补充:干燥过程中既有热量传递又有质量传递;

食品工业中最具规模化应用的是气流干燥;

食品工业中干燥所用的能量为热能或电磁能。

(3)RH在干燥中的意义,湿球温度计温度形成原理及作用,判断干燥过程在水分大量逸出时物料温度的方法;

RH在干燥中的意义:越小越容纳多的水蒸气,反之无能力容纳湿空气。RH 大的气体不能作干燥介质。

湿球温度计温度形成原理:当湿球置于未饱和空气中时湿球表面水分蒸发,此汽化过程要吸收热量,故使水温下降,此时外界热量因温度差而向湿球转移。如果外界传给水的热量小于汽化吸热,则水温继续下降。当外界热量补偿能力增加到足以与汽化吸收热量平衡时,湿球水温将不再发生变化则此时温度即为湿空气的湿球温度。

湿球温度的意义:

①表示了物料处在水分大量蒸发时物料的温度;

②可据此判断空气的湿度;

③可用于计算湿空气的湿度。

判断干燥过程在水分大量逸出时物料温度的方法:

当加热温度为200℃时,大量外逸湿空气的温度为106℃,若此时湿球温度为65℃,则物料的温度必不超过65℃。

(4)湿基含水量和干基含水量的概念及二者间的换算;

水分蒸发量的计算;

(5)

(6)内扩散和外扩散,表面汽化控制与内部汽化控制;

外扩散——物料受热后表面水分汽化,蒸汽压上升。与环境空气蒸气压形成压差,水蒸气必向外扩散。

内扩散——因温度梯度作用,引起内部水分双向移动;同时因表面水分蒸发引起的 d w / d x 导致水分向外扩散。

表面汽化控制——因表面汽化作用受阻而使得内部水分扩散受阻的现象。

内部扩散控制——因内部扩散受阻而引起表面水分蒸发受阻的现象。

(7)干燥特性曲线的变化规律及相互关系。

食品工程原理课程设计

设计任务书 1、设计题目:年处理量为4400吨桃浆蒸发器装置的设计; 试设计一套三效并流加料的蒸发器装置,要求将固形物含量10%的桃浆溶液浓缩到42%,原料液沸点进料。第一效蒸发器的饱和蒸汽温度为103℃,冷凝器的绝对压强为20kPa。 2、操作条件: (1)桃浆固形物含量:入口含量10%,出口含量42%; (2)加热介质:温度为103℃的饱和蒸汽,各效的冷凝液均在饱和温度下排出,假设各效传热面积相等,并忽略热损失; (3)每年按330天计,每天24小时连续生产。 3、设计任务: (1)设计方案简介:对确定的工艺流程及蒸发器型式进行简要论述。 (2)蒸发器的工艺计算:确定蒸发器的传热面积。 (3)蒸发器的工艺计算:确定蒸发器的传热面积。 (4)蒸发器的主要结构尺寸设计。 (3)绘制蒸发装置的流程图,并编写设计说明书。

目录 设计任务书 (1) 第1章绪论 (3) 1.1蒸发技术概况 (3) 1.1.1蒸发 (3) 1.1.2发生条件 (3) 1.1.3蒸发的两个基本过程 (3) 1.1.4影响因素 (3) 1.1.5影响蒸发的主要因素 (4) 1.2蒸发设备 (4) 1.2.1蒸发器 (4) 1.2.2蒸发器分类 (4) 1.2.3蒸发器的特点 (5) 1.3蒸发操作的分类 (7) 1.4蒸发在工业生产中的应用 (8) 第2章设计方案 (9) 2.1蒸发器的选择 (9) 2.2蒸发流程的选择 (9) 2.3操作条件 (10) 第3章蒸发器的工艺计算 (11) 3.1估计各效蒸发量和完成液浓度 (11) 3.2估计各效溶液的沸点和有效总温度 (11) 3.3 加热蒸汽消耗量和各效蒸发器水量的初步计算 (13) 3.4蒸发器传热面积的估算 (14) 3.5有效温差的分配 (15) 3.6校正 (15) 3.7设计结果一览表 (17) 符号说明 (18) 参考文献 (20) 结束语 (21)

食品工程原理重点

食品工程原理复习 第一章 流体力学基础 1.单元操作与三传理论的概念及关系。 不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉 碎、乳化萃取、吸附、干燥 等。这些基本的物理过程称为 单元 操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。凡是遵循流体流动基本规律的单元操作, 均可用动量传递的理论去研究。 热量传递 : 物体被加热或冷却的过程也称为物体的传热过程。凡 是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。 质量传递 : 两相间物质的传递过程即为质量传递。凡是遵循传质 基本规律的单元操作,均可用质量传递的理论去研究。 单元操作与三传的关系 “三传理论”是单元操作的理论基础,单元操作是“三传理论” 的具体应用。 同时,“三传理论”和单元操作也是食品工程技术的理论和实践 基础 2.粘度的概念及牛顿内摩擦(粘性)定律。牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。 μ比例系数,其值随流体的不同而异,流体的黏性愈大,其值愈 大。所以称为粘滞系数或动力粘度,简称为粘度 3.理想流体的概念及意义。 理想流体的粘度为零,不存在内摩擦力。理想流体的假设,为工

程研究带来方便。 4.热力体系:指某一由周围边界所限定的空间内的所有物质。边 界可以是真实的,也可以是虚拟的。边界所限定空间的外部称为 外界。 5.稳定流动:各截面上流体的有关参数(如流速、物性、压强) 仅随位置而变化,不随时间而变。 6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的截面流向总能量小的截面。 7.1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。 8. 实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项。 柏努利方程的三种表达式 p1/ρ+gz1+u12/2 = p2/ρ+gz2+u22/2 p1/ρg+z1+u12/2g = p2/ρg+z2+u22/2g p1+ρgz1+ρu12/2 = p2 +ρgz2+ρu22/2

食品工程原理试题

食工原理复习题及答案(不含计算题) 一、填空题: 1. 圆管中有常温下的水流动,管内径d=100mm,测得其中的质量流量为15.7kg.s-1,其体积流量为_________.平均流速为______。 ***答案*** 0.0157m3.s-1 2.0m.s-1 2. 流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的____倍; 如果只将管径增加一倍,流速不变,则阻力损失为原来的_____倍。 ***答案*** 2;1/4 3. 离心泵的流量常用________调节。 ***答案*** 出口阀 4.(3分)题号2005 第2章知识点100 难度容易 某输水的水泵系统,经管路计算得,需泵提供的压头为He=25m水柱,输水量为20kg.s-1,则泵的有效功率为_________. ***答案*** 4905w 5. 用饱和水蒸汽加热空气时,换热管的壁温接近____________的温度,而传热系数K值接近____________的对流传热系数。 ***答案*** 饱和水蒸汽;空气 6. 实现传热过程的设备主要有如下三种类型___________、_____________、__________________. ***答案*** 间壁式蓄热式直接混合式 7. 中央循环管式蒸发器又称_______________。由于中央循环管的截面积_______。使其内单位容积的溶液所占有的传热面积比其它加热管内溶液占有的

______________,因此,溶液在中央循环管和加热管内受热不同而引起密度差异,形成溶液的_______________循环。 ***答案*** 标准式,较大,要小,自然 8. 圆管中有常温下的水流动,管内径d=100mm,测得中的体积流量为0.022m3.s-1,质量流量为_________,平均流速为_______。 ***答案*** 22kg.s-1 ; 2.8m.s-1 9. 球形粒子在介质中自由沉降时,匀速沉降的条件是_______________ 。滞流沉降时,其阻力系数=____________. ***答案*** 粒子所受合力的代数和为零24/ Rep 10. 某大型化工容器的外层包上隔热层,以减少热损失,若容器外表温度为500℃, 而环境温度为20℃, 采用某隔热材料,其厚度为240mm,λ=0.57w.m-1.K-1,此时单位面积的热损失为_______。(注:大型容器可视为平壁) ***答案*** 1140w 11. 非结合水份是__________________。 ***答案*** 主要以机械方式与物料相结合的水份。 12. 设离心机转鼓直径为1m,转速n=600 转.min-1,则在其中沉降的同一微粒,比在重力沉降器内沉降的速度快____________倍。 ***答案*** 201 13. 在以下热交换器中, 管内为热气体,套管用冷水冷却,请在下图标明逆流和并流时,冷热流体的流向。 本题目有题图:titu081.bmp

食品工程原理-课程设计-橙汁

.. . .. . . 食品工程原理课程设计说明书 题目:日产量72吨浓缩橙汁的初步设计 年级:2014级 学院:农学院 专业:食品1404班 指导老师: 苑博华 成员:吴悠

目录 第一章前言 1.1 选题的意义 (4) 1.2 立题的意义 (4) 1.3厂址的选择 (4) 第二章设计方案简介 2.1 选题 (5) 2.2 设计拟定工作容 (5) 第三章工艺设计 3.1工艺流程图 (6) 3.2工艺操作要求 (7) 第四章设计计算 4.1 物料衡算 (8) 4.1.1 各流程物料衡算 (8) 4.1.2 调配衡算 (9) 4.1.3 设备选型 (10) 4.2 管路设计计算及泵的选型 4.2.1选管 (11) 4.2.2选泵 (11) 第五章设计评述 (13) 第六章参考文献 (14)

第一章前言 1 . 1选题的意义 橙子是世界上栽培最广、经济价值最高的橙子类水果,成熟后变成黄色果肉酸甜适度,汁多,富有香气,是生产饮料的重要原料。橙子营养丰富,含有丰富的维生素C、钙、磷、钾、β-胡萝卜素、柠檬酸、皮甙以及醛、醇、烯等物质,常常食用可以强化免疫系统,抑制肿瘤细胞生长,明显减少胆结石的发生,增强毛细管韧性,减少人体体的胆固醇吸收,降低血脂,深受人们喜爱。由于橙子出汁率高,有良好的风味,营养丰富,经过加工可制成酸甜可口的橙子饮料,既可以保留其大部分的营养成分和风味物质,又可以增加其附加价值,为农民的创收提供帮助。 1 . 2立题的意义 作为食品专业的学生,通过本次果蔬汁加工工艺学设计,我们已初步通过学习掌握果汁加工原料的质构与加工特性、果汁加工工艺、果汁加工设备、果汁在加工生产过程中常见的质量问题、果汁加工中物料衡算及管路设计等相关基本知识。参考果蔬汁现代生产加工相关文献,我们设计日产72吨橙子生产线,在设计过程中选择橙汁加工中合理的工艺流程,选择合适的加工设备,为实际生产加工橙子提供一定的用途。 1 . 3厂址的选择 橙汁工厂的选择一般倾向于设在原材料产地附近,厂址在城市外围,原材料产地附近的郊区,有利于销售,便于辅助材料和包装

食品工程原理重点

食品工程原理复习 第一章 流体力学基础 1.单元操作与三传理论的概念及关系。 不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉 碎、乳化萃取、吸附、干燥 等。这些基本的物理过程称为 单元 操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。凡是遵循流体流动基本规律的单元操作, 均可用动量传递的理论去研究。 热量传递 : 物体被加热或冷却的过程也称为物体的传热过程。凡 是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。 质量传递 : 两相间物质的传递过程即为质量传递。凡是遵循传质 基本规律的单元操作,均可用质量传递的理论去研究。 单元操作与三传的关系 “三传理论”是单元操作的理论基础,单元操作是“三传理论” 的具体应用。 同时,“三传理论”和单元操作也是食品工程技术的理论和实践 基础 2.粘度的概念及牛顿内摩擦(粘性)定律。牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。 μ比例系数,其值随流体的不同而异,流体的黏性愈大,其值愈 大。所以称为粘滞系数或动力粘度,简称为粘度 3.理想流体的概念及意义。 理想流体的粘度为零,不存在内摩擦力。理想流体的假设,为工 程研究带来方便。 4.热力体系:指某一由周围边界所限定的空间内的所有物质。边

界可以是真实的,也可以是虚拟的。边界所限定空间的外部称为 外界。 5.稳定流动:各截面上流体的有关参数(如流速、物性、压强) 仅随位置而变化,不随时间而变。 6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的截面流向总能量小的截面。 7.1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。 8. 实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项。 柏努利方程的三种表达式 p1/ρ+gz1+u12/2 = p2/ρ+gz2+u22/2 p1/ρg+z1+u12/2g = p2/ρg+z2+u22/2g p1+ρgz1+ρu12/2 = p2 +ρgz2+ρu22/2 9.管中稳定流动连续性方程:在连续稳定的不可压缩流体的流动中,流体流速与管道的截面积成反比。截面积愈大之处流速愈小,反之亦然。对于

《食品工程原理》试题

2004 – 2005 学年第二学期食品科学与工程专业 食品工程原理试卷(A)卷 题号一二三四五…合计 得分 阅卷人 一、填空题(20分) 1. 71dyn/cm= N/m(已知1N=105 dyn); 2. 给热是以和的差作为传热推动力来考虑 问题的; 3. 金属的导热系数大都随其温度的升高而 , 随其纯度 的增加而 ; 4. 能够全部吸收辐射能的物体(即A=1)称为 体; 5. 蒸发操作中,计算由于溶液蒸汽压下降而引起的温度差损失 的方法有 、 ; 6. 蒸发器主要由 室和 室组

成; 7. 喷雾干燥中,热空气与雾滴的流动方式有 、 、 三种; 8. 形状系数不仅与 有关,而且 与 有关; 9. 粉碎的能耗假说比较著名的三种是 、 、 ; 10. 圆形筛孔主要按颗粒的 度进行筛分,长形筛孔主要按颗粒 的 度进行筛分。

二、选择题(10分)(有一项或多项答案正确) 1. 揭示了物体辐射能力与吸收率之间关系的定律是( ) (A)普朗克定律;(B)折射定律;(C)克希霍夫定律; (D)斯蒂芬-波尔兹曼定律 2. 确定换热器总传热系数的方法有() (A)查样本书;(B)经验估算;(C)公式计算;(D)实 验测定 3. 为保证多效蒸发中前一效的二次蒸汽可作为后一效的加热蒸 汽,前一效的料液的沸点要比后一效的() (A)高;(B)低;(C)相等;(D)无法确定; 4. 对饱和湿空气而言,下列各式正确的是() (A)p=p S,φ=100%,;(B)p=p S,φ=0;(C)p=0,φ=0; (D)t=t w=t d=t as 5. 粉碎产品粒度分析中,一般认为,筛分法分析的下限是( ) (A)100μm;(B)50μm;(C)10μm;(D)5μm。 三、判断题(10分)(对者打“”号,错者打“”号。) 1. ()算术平均温度差是近似的,对数平均温度差才是准确的; 2. ()两固(灰)体净辐射传热的热流方向既与两者温度有关, 又与其黑度有关; 3. ()NaOH溶液的杜林线不是一组相互平行的直线; 4. ()恒速干燥阶段干燥速率的大小决定于物料外部的干燥条 件; 5. ()泰勒标准(Tyler Standard)筛制中,相邻两筛号的网眼净宽 度之比为1∶2。 四、计算题(60分) 1. (10分)外径为426mm的蒸汽管道,其外包扎一层厚度位 426mm的保温层,保温材料的导热系数可取为0. 615 W/(m· ℃)。若蒸汽管道的外表面温度为177℃,保温层的外表面温度 为38℃,试求每米管长的热损失以及保温层中的温度分布。 2. (10分) 一单程列管式换热器,由若干根长为3m、直径为 φ25×2.5mm的钢管束组成。要求将流量为1.25kg/s的苯从350K 冷却到300K,290K的冷却水在管内和苯呈逆流流动。若已知 水侧和苯侧的对流传热系数分别为0.85和1.70kW/(m2.K),

食品工程原理课程设计

食品工程原理课程设计 ---管壳式冷凝器设计

目录 食品工程原理课程设计任务书 (2) 流程示意图 (3) 设计方案的确定 (4) 冷凝器的造型计算 (6) 核算安全系数 (8) 管壳式冷凝器零部件的设计 (10) 设计概要表 (12) 主要符号表 (13) 主体设备结构图 (14) 设计评论及讨论 (14) 参考文献 (15)

(一)食品科学与工程设计任务书 一、设计题目: 管壳式冷凝器设计 二、设计任务: 将制冷压缩机压缩后制冷剂(如F-22、氨等)过热蒸汽冷却、冷凝为过冷液体,送去冷库蒸发器使用。 三、设计条件: 1、冷库冷负荷Q0=1700KW; 2、高温库,工作温度0~4℃,采用回热循环; 3、冷凝器用河水为冷却剂,取进水温度为26~28℃; 4、传热面积安全系数5~15%。 四、设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5. 编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图; ⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) 6.绘制工艺流程图、管壳式冷凝器的的结构(3号图纸)、花板布置图(3号或4号图纸)。

(二)流程示意图 流程图说明: 本制冷循环选用卧式管壳式冷凝器,选用氨作制冷剂,采用回热循环,共分为4个阶段,分别是压缩、冷凝、膨胀、蒸发。 1 2 由蒸发器内所产生的低压低温蒸汽被压缩机吸入压缩机气缸,经压缩后温度升高; 2 3 高温高压的F—22蒸汽进入冷凝器;F—22蒸汽在冷凝器中受冷却水的冷却,放出热量后由气体变成液态氨。 4 4’ 液态F—22不断贮存在贮氨器中; 4’ 5 使用时F—22液经膨胀阀作用后其压力、温度降低,并进入蒸发器; 5 1 低压的F—22蒸汽在蒸发器中不断的吸收周围的热量而汽化,然后又被压缩机吸入,从而形成一个循环。 5’1是一个回热循环。 本实验采用卧式壳管式冷凝器,其具有结构紧凑,传热效果好等特点。所设计的卧式管壳式冷凝器采用管内多程式结构,冷却水走管程,F—22蒸汽走壳程。采用多管程排列,加大传热膜系数,增大进,出口水的温差,减少冷却水的用量。

食品工程原理期末复习单项选择题

食品工程原理期末复习 单项选择题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

单项选择题:(从每小题的四个备选答案中,选出一个正确答案,并将正确答案的号码写在题干后面的括号内) 1、一个标准大气压,以mmHg为单位是( B ) (A) 761 (B) 760 (C) (D) 9、一个标准大气压,以mH2O柱为单位是( B ) (A) (B) (C) (D) 2、表示流体流动形态类型可用雷诺数来表示,当流体流动属于层流时,雷诺数为( D ) (A) Re ≤ 1500 (B) Re ≤ 1600 (C) Re ≤ 1800 (D) Re ≤ 2000 10、表示流体流动形态类型可用雷诺数来表示,当流体流动属于湍流时,雷诺数为( C ) (A) Re >3500 (B) Re >3800 (C) Re >4000 (D) Re >4200 16、一个标准大气压,以cm2为单位是( B ) (A) (B) (C) (D) 25、一个标准大气压,以Pa为单位应为( B ) (A) ×104 (B) ×105 (C) ×106 (D) ×105 3、流体内部流动时产生的摩擦力,对流体的流动有阻碍的作用,称为流体的 ( D ) (A) 比热 (B) 密度 (C) 压力 (D) 粘性 5、流体流过任一截面时,需要对流体作相应的功,才能克服该截面处的流体压力,所 需的功,称为( C ) (A) 位能 (B) 动能 (C) 静压能 (D) 外加能量 6、流体流动时,上游截面与下游截面的总能量差为( D ) (A) 外加能量减动能 (B) 外加能量减静压能 (C) 外加能量减位能 (D) 外加能量减能量损失 7、输送流体过程中,当距离较短时,直管阻力可以( C ) (A) 加倍计算(B) 减半计算(C) 忽略不计(D) 按原值计算 8、泵在正常工作时,实际的安装高度要比允许值减去( B ) (A) 0.3m (B) 0.5-1m(C) 1-1.5m(D) 2m 12、流体流动时,由于摩擦阻力的存在。能量不断减少,为了保证流体的输送需要( D ) (A) 增加位能 (B) 提高动能 (C) 增大静压能 (D) 外加能量 13、利用柏努利方程计算流体输送问题时,需要正确选择计算的基准面,截面一般与 流动方向(C) (A) 平行(B) 倾斜(C) 垂直(D) 相交 14、输送流体时,在管道的局部位置,如突扩,三通,闸门等处所产生的阻力称为( B) (A) 直管阻力(B) 局部阻力(C) 管件阻力(D) 输送阻力 15、泵在正常工作时,泵的允许安装高度随着流量的增加而( B ) (A) 增加(B) 下降(C) 不变(D) 需要调整 17、离心泵启动时,泵内应充满输送的液体,否则会发生( A ) (A) 气缚 (B) 汽蚀 (C) 气阻 (D) 气化 19、流体内部的压强,以绝对零压为起点计算的是( C ) (A) 真空度 (B) 表压 (C) 真实压强 (D) 流体内部的静压 20、流体流动时,如果不计摩擦损失,任一截面上的机械能总量为( D ) (A) 动能加位能 (B) 动能加静压能 (C) 位能加静压能 (D) 总能量为常量 21、利用柏努利方程计算流体输送问题时,要正确的选择合理的边界条件,对宽广水 面的流体流动速度,应选择(C) (A) U = 1 (B) 0 < u < 1 (C) u = 0 (D) u < 0 22、输送流体时,泵给予单位质量流体的能量为( C ) (A) 升扬高度(B) 位压头 (C) 扬程(D) 动压头 23、往复式泵的分类是依据不同的(A) (A) 活塞(B) 连杆(C) 曲柄(D)汽缸 26、离心泵的实际安装高度,应该小于允许安装高度,否则将产生( B ) (A) 气缚 (B) 汽蚀 (C) 气阻 (D) ) 气化

食品工程原理练习题

传热练习题 1、 某加热器外面包了一层厚度为300mm 的绝缘材料,该材料的热导率为0.16W/(m ·℃),已测得该绝缘层外缘温度为30℃,距加热器外壁250mm 处为75℃,试求加热器外壁面的温度为多少? 2、 用套管换热器将果汁从80℃冷却到30℃,果汁比热为3.18kJ/kg ℃,流量为240kg/h 。冷却水与果汁呈逆流进入换热器,进口和出口温度分别为10℃和20℃,若传热系数为450W/m 2℃,计算换热面积和冷却水用量。 3、在一内管为Φ25mm×2.5mm 的套管式换热器中,用水冷却苯,冷却水在管程流动,入口温度为290K ,对流传热系数为850W/(m 2·K),壳程中流量为1.25kg/s 的苯与冷却水逆流换热,苯的进、出口温度分别为350K 、300K ,苯的对流传热系数为1700 W/(m 2·K),已知管壁的热导率为45 W/(m·K),苯的比热容为c p =1.9 kJ/(kg·℃),密度为ρ=880kg/m 3。忽略污垢热阻。试求:在水温不超过320K 的最少冷却水用量下,所需总管长为多少(以外表面积计)? 4、 在一单程列管式换热器中,用130℃的饱和水蒸汽将36000kg/h 的乙醇水溶液从25℃加热到75℃。列管换热器由90根Ф25mm×2.5mm ,长3m 的钢管管束组成。乙醇水溶液走管程,饱和水蒸汽走壳程。已知钢的热导率为45W/(m·℃),乙醇水溶液在定性温度下的密度为880kg/m 3,粘度为1.2×10-3Pa·s ,比热为4.02kJ/(kg·℃),热导率(即导热系数)为0.42W/(m·℃),水蒸汽的冷凝时的对流传热系数为104W/(m 2·℃),忽略污垢层热阻及热损失。试问此换热器是否能完成任务(即换热器传热量能否满足将乙醇水溶液从25℃加热到75℃)? 已知:管内对流传热系数关联式为4.08.0Pr Re )/(023.0d λα=,λμ/Pr p C =。 干燥练习题 5、 某物料在连续理想干燥器中进行干燥。物料处理量为3600kg/h, 物料含水量由20%降到5%(均为湿基)。空气初始温度为20℃,湿度为0.005kg/kg 绝干气,空气进干燥器时温度为100℃, 出干燥器时温度为40℃。试求:(1)空气消耗量;(2)预热器传热量。 6、 在某干燥器中干燥砂糖晶体,处理量为100kg/h ,要求将湿基含水量由40%减至5%。干燥介质为干球温度20℃,相对湿度15%的空气,经预热器加热

食品工程原理课程设计

华中农业大学HUAZHONG AGRICULTURAL UNIVERSITY 题目:食品工程原理课程设计 班级:食工1002班 姓名:张国秀 学号: 2010309200212 日期: 指导老师:

列管式换热器设计任务书 一、设计题目:列管式换热器的设计 二、设计任务及操作条件 1、处理能力:6000㎏/h 2、设备形式:列管式换热器 3、操作条件 ①油:进口温度140℃,出口温度40℃; ②冷却介质:循环水,进口温度30℃,出口温度40℃; ③允许压强降:不超过107 Pa; 4、确定物性数据: 定性温度:可取流体进出口温度的平均值。 壳程油品的定性温度T=(140+40)/2=90℃ 管程循环水的定性温度t=(30+40)/2=35℃ 根据定性温度分别查取壳程和管程流体的有关物性数据:油在90℃时密度ρ0=825㎏/m3 比热容Cp0 =2.22 kJ/(㎏·℃) 黏度μ0=0.000715Pa·s 导热系数λ0=0.140 W/(m·℃) 水在35℃时密度ρi=994㎏/m3 比热容Cp i=4.08 kJ/(㎏·℃) 黏度μi=0.000725Pa·s 导热系数λi=0.626W/(m·℃) 5、每年按330天计算,每天24小时连续运行。

目录 第一节概述及设计方案简介 (5) 1 概述 (5) 1.1 换热器 (5) 1.2换热器的选择 (5) 1.3 流动空间的选择 (7) 1.4 流速的确定 (7) 1.5 材质的选择 (7) 1.6 管程结构 (8) 1.7 壳程结构 (9) 1.8 壳程接管 (10) 2 设计方案 (10) 3 主要符号参考说明 (11) 第二节工艺计算及主体设备设计计算 (12) 2.1 计算传热系数 (12) 2.1.1 计算管程对流传热系数 (12) 2.1.2 计算壳程对流传热系数 (12) 2.1.3 计算总传热系数 (12)

食品工程原理重点70750

食品工程原理复习 第一章流体力学基础 1.单元操作与三传理论的概念及关系。 不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉碎、乳化萃取、吸附、干燥等。这些基本的物理过程称为单元操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。凡是遵循流体流动基本规律的单元操作,均可用动量传递的理论去研究。 热量传递: 物体被加热或冷却的过程也称为物体的传热过程。凡是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。 质量传递: 两相间物质的传递过程即为质量传递。凡是遵循传质基本规律的单元操作,均可用质量传递的理论去研究。 单元操作与三传的关系 “三传理论”是单元操作的理论基础,单元操作是“三传理论” 1

2 的具体应用。 同时,“三传理论”和单元操作也是食品工程技术的理论和实 践基础 2.粘度的概念及牛顿内摩擦(粘性)定律。牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。 μ比例系数,其值随流体的不同而异,流体的黏性愈大,其 值愈大。所以称为粘滞系数或动力粘度,简称为粘度 3.理想流体的概念及意义。 理想流体的粘度为零,不存在内摩擦力。理想流体的假设, 为工程研究带来方便。 4.热力体系:指某一由周围边界所限定的空间内的所有物质。 边界可以是真实的,也可以是虚拟的。边界所限定空间的外部称 为外界。 5.稳定流动:各截面上流体的有关参数(如流速、物性、压 强)仅随位置而变化,不随时间而变。 6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的 截面流向总能量小的截面。 7.1kg 理想流体在管道内作稳定流动而又没有外功加入时,其柏努

食品工程原理 第五章 习题解答

第五章习题解答 1. 什么样的溶液适合进行蒸发? 答:在蒸发操作中被蒸发的溶液可以是水溶液,也可以是其他溶剂的溶液。只要是在蒸发过程中溶质不发生汽化的溶液都可以。 2. 什么叫蒸发?为什么蒸发通常在沸点下进行? 答:使含有不挥发溶质的溶液沸腾汽化并移出蒸汽,从而使溶液中溶质浓度提高的单元操作称为蒸发。在蒸发操作过程中物料通常处于相变状态,故蒸发通常在沸点下进行。 3. 什么叫真空蒸发?有何特点? 答:真空蒸发又称减压蒸发,是在低于大气压力下进行蒸发操作的蒸发处理方法。将二次蒸汽经过冷凝器后排出,这时蒸发器内的二次蒸汽即可形成负压。操作时为密闭设备,生产效率高,操作条件好。 真空蒸发的特点在于: ①操作压力降低使溶液的沸点下降,有利于处理热敏性物料,且可利用低压强的蒸汽或废蒸汽作为热源; ②对相同压强的加热蒸汽而言,溶液的沸点随所处的压强减小而降低,可以提高传热总温度差;但与此同时,溶液的浓度加大,使总传热系数下降; ③真空蒸发系统要求有造成减压的装置,使系统的投资费和操作费提高。 4. 与传热过程相比,蒸发过程有哪些特点? 答:①传热性质为壁面两侧流体均有相变的恒温传热过程。 ②有些溶液在蒸发过程中有晶体析出、易结垢或产生泡沫、高温下易分解或聚合;溶液的浓度在蒸发过程中逐渐增大、腐蚀性逐渐增强。二次蒸汽易挟带泡沫。 ③在相同的操作压强下,溶液的沸点要比纯溶剂的沸点高,且一般随浓度的增大而升高,从而造成有效传热温差减小。 ④减少加热蒸汽的使用量及再利用二次蒸汽的冷凝热、冷凝水的显热是蒸发操作过程中应考虑的节能问题。 5. 单效蒸发中,蒸发水量、生蒸气用量如何计算? 答:蒸发器单位时间内从溶液中蒸发出的水分质量,可用热负荷来表示。也可作物料衡算求得。 在蒸发操作中,加热蒸汽冷凝所放出的热量消耗于将溶液加热至沸点、将水分蒸发成蒸汽及向周围散失的热量。蒸汽的消耗量可通过热量衡算来确定。 6. 何谓温度差损失?温度差损失有几种? 答:溶液的沸点温度t往往高于二次蒸汽的温度T’,将溶液的沸点温度t与二次蒸汽的温度T'之间的差值,称为温度差损失。 蒸发操作时,造成温度差损失的原因有:因蒸汽压下降引起的温度差损失'?、因蒸发器中液柱静压强而引起的温度差损失''?和因管路流体阻力引起的温度差

《食品工程原理》习题答案

《食品工程原理》复习题答案 第一部分 动量传递(流动、输送、非均相物系) 一.名词解释 1.过程速率:是指单位时间内所传递的物质的量或能量。 2.雷诺准数:雷诺将u 、d 、μ、ρ组合成一个复合数群。Re 值的大小可以用来判断流动类型。 3.扬程(压头):是指单位重量液体流经泵后所获得的能量。 4.分离因数:同一颗粒在同种介质中的离心沉降速度与重力沉降速度的比值。 二.填空题 1.理想流体是指 的流体。(黏度为零) 2.对于任何一种流体,其密度是 和 的函数。(压力,温度) 3.某设备的真空表读数为200mmHg ,则它的绝对压强为 mmHg 。当地大气压强为101.33×103 Pa 。(560mmHg ) 4.在静止的同—种连续流体的内部,各截面上 与 之和为常数。(位能,静压能) 5.转子流量计读取方便,精确,流体阻力 ,不易发生故障;需 安装。(小,垂直) 6.米糠油在管中作流动,若流量不变,管径不变,管长增加一倍,则摩擦阻力损失为原来的______倍。(2) 7.米糠油在管中作层流流动,若流量不变,管径、管长不变,油温升高,粘度为原来的1/2 ,则摩擦阻力损失为原来的 倍。(1/2) 8.米糠油在管中作层流流动,若流量不变,管长不变, 管径增加一倍,则摩擦阻力损失为原来的_____倍。 (1/16) 9.实际流体在直管内流过时,各截面上的总机械能 守恒,因实际流体流动时有 。 (不,摩擦阻力) 10.任何的过程速率均与该过程的推动力成 比,而与其阻力成 比。(正,反) 11.在离心泵吸入管底部安装带吸滤网的底阀,底阀为 。(逆止阀) 12. 是为了防止固体物质进入泵内,损坏叶轮的叶片或妨碍泵的正常操作。(滤网) 13.离心泵工作时流体流速与压力的变化为: 高压流体泵壳通道 逐渐扩大的的离心力机械旋转所造成的气压流体被甩出后常压流体)()((低速流体、高速流体) 14.泵的稳定工作点应是 特性曲线与 特性曲线式M 的交点。(管路,泵或H-q v ) 15.产品样本上离心泵的性能曲线是在一定的 下,输送 时的性能曲线。 (转速,20℃的水或水) 16.用离心泵向锅炉供水,若锅炉中的压力突然升高,则泵提供的流量_____,扬程_________。 (减少;增大) 17.根据操作目的(或离心机功能),离心机分为过滤式、 和 三种类型。 (沉降式、分离式) 18. 常速离心机、高速离心机、超速离心机是根据 的大小划分的。(分离因数) 19.某设备进、出口的表压分别为 -12 kPa 和157 kPa ,当地大气压为101.3 kPa ,试求此设备进、出口的压力差为多少Pa 。 (答:-169kPa ) kPa 16915712-=--=-=?出进P P P 三.选择题 1.在连续稳定的不可压缩流体的流动中,流体流速与管道的截面积( A )关系。 A .反比 B.正比 C.不成比 2.当流体在园管内流动时,管中心流速最大,层流时的平均速度与管中心的最大流速的关系为( B )。A. u =3/2 u max B. u =1/2 u max C. u =0.8u max 3.湍流的特征有( C )。 A.流体分子作布朗运动中 B.流体质点运动毫无规则,且不断加速 C.流体质点在向前运动中,同时有随机方向的脉动 D.流体分子作直线运动 4.微差压计要求指示液的密度差( C )。

食品工程原理课程设计——蒸发器的设计

食品工程原理 课程设计说明书 任务名称:蒸发器的设计 设计人: 指导教师: 班级组别: 设计时间: 成绩:

目录 1、设计说明书 (2) 2、设计方案的确定 (3) 3、方案说明 (4) 4、物料衡算 (5) 5、热量衡算 (5) 6、工艺尺寸计算 (9) 7、附属设备尺寸计算 (15) 8、主要技术参数 (17) 9、计算结果汇总 (17) 10、设备流程及装备图 (18) 11、参考文献 (21)

设计说明书 一、题目: 蒸发器的设计 设计蒸发量为4吨/小时的双效真空浓缩装置,用于浓缩番茄酱的生产。已知进料浓度为%,成品浓度为28%,第一效真空度为600mmHg,第二效真空度为700mmHg。加热蒸汽的压力为0.15 MPa 二、原始数据: 1、原料:浓度为%的番茄酱 2、产品:浓度为28%的番茄酱 3、生产能力:蒸发量四吨每小时,一天工作10个小时 4、热源:加热蒸汽为饱和水蒸汽,压力 5、压力条件:第一效为600 mmHg的真空度,第二效为700 mmHg的真空度 三、设计要求内容: 1、浓缩方案的确定:蒸发器的型式、蒸发操作流程、蒸发器的效数等。 2、蒸发工艺的计算:进料量、蒸发水量、蒸发消耗量、温差损失、传热量、 传热面积等。 3、蒸发器结构的计算:加热室尺寸、加热管尺寸及排列、蒸发室尺寸、接管尺 寸等。 4、附属设备的计算:冷凝器、真空系统的选用 5、流程图及装配图绘制

四.设计要求 1、设计说明书一份; 2、设计结果一览表;蒸发器主要结构尺寸和计算结果及设备选型情况等; 3、蒸发器流程图和装配图 设计方案的确定 1.蒸发器的确定:选用外加热式蒸发器,它的特点是加热室与分离室分开,便 于清洗和更换。这种结构有利于降低蒸发器的总高度,所以可以采用较长的加热管。并且,因循环管不受热而增大了溶液的循环速度,可达1.5m/s。 2.蒸发器的效数:双效真空蒸发。真空操作的压力小,故在蒸发器内物料的沸 点就低,对于番茄这种热敏性较高的物料,采用真空蒸发降低沸点是有必要的。采用多效蒸发是减少加热蒸汽耗用量,提高热能经济性的有效措施。然而也不能无限地增加效数。理由如下:(1)效数越多,节省地加热蒸汽量就越少。由单效改为双效时,加热蒸汽用量可减少50%,但由四效改为五效只能节省10%,热能经济性提高不大。(2)效数越多,温度差损失越大,分配到各效的有效温度差就越小。为了维持料液在溶液沸腾阶段,每效的有效温度差不能小于5--7摄氏度。这样也限制了效数的增加。(3)热敏性溶液的蒸发,一般不超过三效。 3.加热方式:直接饱和蒸汽加热,压力。 4.操作压力:Ⅰ效为600 mmHg真空度,Ⅱ效为700 mmHg真空度。

食品工程原理总复习

食品工程原理总复习 第0章引论 1.什么是单元操作? 2.食品工程原理是以哪三大传递为理论基础的?简述三大传递基本原理。3.物料衡算所依据的基本定律是什么?解质量衡算问题采取的方法步骤。4.能量衡算所依据的基本定律是什么?要会进行物料、能量衡算。 第一章流体流动 1.流体的密度和压力定义。气体密度的标准状态表示方法? 2.气体混合物和液体混合物的平均密度如何确定? 3.绝对压力Pab、表压Pg和真空度Pvm的定义。 4.液体静力学的基本方程,其适用条件是什么? 5.什么是静压能,静压头?位压能和位压头? 6.压力测量过程中使用的U型管压差计和微差压差计的原理。 7.食品工厂中如何利用流体静力学基本方程检测贮罐中液体存量和确定液封高度? 8.流体的流量和流速的定义。如何估算管道内径? 9.什么是稳定流动和不稳定流动?流体流动的连续性方程及其含义。10.柏努利方程及其含义。位能、静压能和动能的表示方式。 11.实际流体的柏努利方程,以及有效功率和实际功率的定义。 12.计算管道中流体的流量以及输送设备的功率。 13.什么是牛顿粘性定律?动力黏度和运动黏度的定义。 14.什么是牛顿流体?非牛顿流体?举例说明在食品工业中的牛顿流体和非牛顿流体。 15.雷诺实验和雷诺数是表示流体的何种现象? 16.流体在圆管内层流流动时的速度分布及平均速度表述,泊稷叶方程。17.湍流的速度分布的近似表达式。 18.计算直管阻力的公式—范宁公式。 19.层流和湍流时的摩擦因数如何确定? 20.管路系统中局部阻力的计算方法有哪两种?具体如何计算? 21.管路计算问题(重点是简单管路,复杂管路) 22.流体的流量测定的流量计有哪些?简述其原理。 第二章流体输送 1.简述离心泵的工作原理。什么是“气缚”现象? 2.离心泵主要部件有哪些?有何特点? 3.离心泵的主要性能参数有哪些? 4.离心泵的特性曲线是指那三条关系曲线? 5.影响离心泵特性曲线的因素有哪些?

食品工程原理课程设计-

食品工程原理课程设计说明书 列管式换热器的设计 姓名: 学号: 班级: 年月日

目录 一、设计任务和设计条件 (3) 1、设计题目 (3) 2、设计条件 (3) 3、设计任务 (5) 二、设计意义 (6) 三、主要参数说明 (6) 四、设计方案简介 (9) 1、选择换热器的类型 (9) 2、管程安排 (9) 3、流向的选择 (10) 4、确定物性系数据 (10) 五、试算和初选换热器的规格 (11) 1、热流量 (11) 2、冷却水量 (11) 3、计算两流体的平均温度差 (11) 4、总传热系数 (11) 六、工艺结构设计 (12) 1、计算传热面积 (12) 2、管径和管内流速 (12) 3、管程数和传热管数 (12) 4、平均传热温差校正及壳程数 (13) 5、传热管排列和分程方法 (14) 6、壳体内径 (14) 7、折流板 (14) 8、接管 (15) 9、热量核算 (15) 10、换热器主要结构尺寸和计算结果如下表: (20) 七、参考文献 (21) 八、浮头式换热器装配图 (22)

一、设计任务和设计条件 1、设计题目 列管式换热器设计 2、设计条件 ①设计内容 设计内容某生产过程中,需将6400kg/h的牛奶从140℃冷却至50℃,冷却介质采用循环水,循环水入口温度20℃,出口温度为40℃。允许压降不大于105Pa。试设计一台列管式换热器并进行核算。 牛奶定性温度下的物性数据: 密度1040kgm-3;黏度 1.103*10-4Pas;定压比热容2.11kJ/(kg ℃);热导率0.14W/(m ℃) 完成 日期 年月日 ②设计要求 序 号 设计内容要求 1 工艺计算热量衡算,确定物性数据,计算换热面积

食品工程原理论文

食品工程原理是一门不仅精于理论更重于实践的一门很重要的专业课,是食品学院的专业基础课。课程中详细的讲述了食品生产加工过程中的“三传理论”及常用单元操作中典型设备的工作原理、基本构造及设计计算等,教会我们运用所学的知识去解决食品工程设计及生产操作中各类实际问题的能力。这是一门非常重要的专业基础课,把我们之前所学的高等数学、大学物理、理论力学等等课程紧密的结合在一起去解决食品工程中的相关问题。同时也为以后的课程作了铺垫,在大学的课程中很好的起到了承上启下的作用。 三传理论之热量传递过程--------在自然界中,热量传递是一种普遍存在的现象。两物体间或同一物体的不同部位间,只要存在温差,且两者之间没有隔热层,就会发生热量传递,直到各处温度相同为止。在化工生产过程中,普遍遇到的物料升温、冷却或保温,都涉及热量传递。此外,有不少场合,热量传递是与其他传递同时进行的。例如在干燥操作中,热量传递与质量传递同时发生;而在反应器中,动量传递、热量传递、质量传递与化学反应同时发生。热量传递有热传导、对流传热和辐射传热三种基本方式。热传导依靠物质的分子、原子或电子的移动或(和)振动来传递热量,流体中的热传导与分子动量传递类似。对流传热依靠流体微团的宏观运动来传递热量,所以它只能在流体中存在,并伴有动量传递。辐射传热是通过电磁波传递热量,不需要物质作媒介。 三传理论值质量传递过程--------例如敞口水桶中水向静止空气中蒸发,糖块在水中溶解,烟气在大气中扩散,用吸收方法脱除烟气中的二氧化硫,以及催化反应中反应物向催化剂表面转移等,都是日常生活中或工程上常见的质量传递过程。在化工生产中,质量传递不仅是均相混合物分离的物理基础,而且也是反应过程中几种反应物互相接触以及反应产物分离的主要机理。研究质量传递规律,不仅对传质设备(如板式塔、填充塔等)的设计很重要,而且对反应器的设计,特别在涉及受质量传递控制的反应时,也是很重要的。此外,在环境工程、航天技术以及生物医药工程中,质量传递都起着重要作用。质量传递有分子扩散和对流扩散两种方式。分子扩散由分子热运动造成;只要存在浓度差,就能够在一切物系中发生。对流扩散由流体微团的宏观运动所引起,仅发生在流动流体中。质量传递的中心问题是确定浓度分布和传质速率。浓度分布可在已知速度分布的基础上,通过对流扩散方程解出。传质速率又称质量通量,是单位时间内通过单位传质面积所传递的质量。求取浓度分布可作为确定质量通量的基础。在对流扩散的研究和计算中,常将传质速率表述为传质分系数与传质推动力(浓度差)的乘积,于是确定传质分系数成了质量传递的计算和研究中的关键问题。质量传递的研究方法与热量传递的研究方法颇为相似;但热量传递过程中所传递的只是热量,而在质量传递时,物系中的一个或几个组分本身在迁移着。因之质量传递更为复杂。简称传质。物质系统由于浓度不均匀而发生的质量迁移过程。某一组分在两相中的浓度尚未达到相平衡即有浓度梯度存在时,这一组分就会由比平衡浓度高的一相转移入浓度低的一相,直至两相间浓度达到平衡为止。一相中若浓度不均,传质也可以在一相内发生,两相流体间的传质在工业过程中较为重要,可借以分离混合物。气体吸收,空气的增湿、减湿,以及液体的蒸馏、精馏,是属于气液系统的传质过程。液液萃取是属于液液系统的传质过程。固液萃取(即浸取)和离子交换是属于液固系统的传质过程。干燥和吸附则是属于气固系统的传质过程。 三传理论之动量传递过程--------在流动着的流体中动量由高速流体层向相邻的低速流体层的转移,与热量传递和质量传递并列为三种传递过程。动量传递影响到流动空间中速度分布的状况和流动阻力的大小,并且因此而影响热量和质量

相关主题
文本预览
相关文档 最新文档