当前位置:文档之家› Kirwan-Novikov inequalities on a manifold with boundary

Kirwan-Novikov inequalities on a manifold with boundary

Kirwan-Novikov inequalities on a manifold with boundary
Kirwan-Novikov inequalities on a manifold with boundary

a r

X i

v

:m

a

t h /

4

3

4

7

3

v

2

[

m

a

t h

.

D

G ]

9

A

p

r

2

4

KIR W AN-NOVIKOV INEQUALITIES ON A MANIFOLD WITH BOUNDARY MAXIM BRAVERMAN AND VALENTIN SILANTYEV Abstract.We extend the Novikov Morse-type inequalities for closed 1-forms in 2directions.First,we consider manifolds with boundary.Second,we allow a very degenerate structure of the critical set of the form,assuming only that the form is non-degenerated in the sense of Kirwan.In particular,we obtain a generalization of a result of Floer about the usual Morse inequalities on a manifold with boundary.We also obtain an equivariant version of our inequalities.Our proof is based on an application of the Witten deformation technique.The main novelty here is that we consider the neighborhood of the critical set as a manifold with a cylindrical end.This leads to a considerable simpli?cation of the local analysis.In particular,we obtain a new analytic proof of the Morse-Bott inequalities on a closed manifold.Contents 0.Introduction 11.Preliminaries and the main result 42.Equivariant Kirwan-Novikov inequalities on a manifold with boundary 83.Reformulation in terms of a manifold with a cylindrical end 114.The Witten deformation of the Laplacian https://www.doczj.com/doc/bf16767359.html,putation of the kernel of the Witten Laplacian 176.Deformation of the Laplacian on the normal bundle to a minimizing manifold 257.Proof of the Kirwan-Novikov inequalities https://www.doczj.com/doc/bf16767359.html,parison between the Laplacians on the manifold and on the normal bundle 31References 34

0.Introduction

0.1.The main results.In [7,10],Michael Farber and the ?rst author extended the Novikov Morse-type inequalities for a closed 1-form ωon a closed manifold to the case when the critical set of ωconsists of a disjoint union of smooth submanifolds non-degenerate in the sense of Bott.The Novikov inequalities were also considerably strengthen by means of twisting by an arbitrary ?at vector bundle F

.

2MAXIM BRAVERMAN AND VALENTIN SILANTYEV

In this paper we further extend the results of[7,10]by considering a manifold M with boundary and by allowing much more degenerate critical sets ofω.For our inequalities to be valid we have to assume that near the boundary the1-form is exact and can be written as1

ω=d f(x)t m/m ,m>0,(0.1) where x is a coordinate on the boundaryΓ=?M of M,t>0is an additional coordinate such thatΓ={t=1},and f is a smooth function onΓfor which zero is a regular value.Set

U?:= x∈Γ:f(x)<0 .

If the formωis exact than the role of the Betti numbers in our Morse-type inequalities is played by the dimensions of the relative cohomology H?(M,U?;F)of the topological pair(M,U?) with coe?cients in a?at vector bundle F.In general,we de?ne the relative Novikov numbers of the topological pair(M,U?)with coe?cients in a?at vector bundle F,which enter our inequalities,cf.De?nition1.10.Our construction of the relative Novikov numbers is similar to the Pazhitnov’s construction of the usual Novikov numbers as generic values of the dimensions of the cohomology of a1-parameter family of?at connections[25](see also[10]).

When applied to an exact1-formω=dh our inequalities extend the Kirwan-Morse inequalities to manifolds with boundary.For the case when the critical points ofωare isolated and F=C is a trivial line bundle,similar inequalities were obtained by Floer[19].

The condition(0.1)is equivalent to the assumption thatωcan be extended to a homogeneous 1-form on the manifold

M=M∪ Γ×[1,∞) ,(0.2) which does not have zeros onΓ×[1,∞),cf.Section3.We refer to M as a manifold with a cylindrical end.Thus we also obtain Morse-type inequalities for homogeneous1-forms on a manifold with a cylindrical end,which generalize the Morse inequalities for generating functions quadratic at in?nity,used in the theory of Lagrangian intersections[29,16].

We also obtain an equivariant version of our inequalities,which extends the results of[8,9] to manifolds with boundary and to1-forms whose critical sets are not manifolds.In particular we obtain equivariant Morse inequalities on a manifold with boundary.It is also important that we consider Morse-type inequalities twisted by a?at vector bundle F.In many examples,this gives much stronger inequalities than the usual Morse-type inequalities with coe?cients in C, cf.Example1.7of[10].This is even more important for equivariant inequalities,cf.[8]and also the discussion in Section2.

0.2.The method of the proof.Our proof is based on an application of a version of the Witten deformation technique applied to the extension of all the structures to the manifold (0.2).Though a large part of our proof is quite standard,there are two new ideas involved. First,the structure of our Witten-type deformation near the critical set ofωis new.To explain the novelty,let us temporary assume thatωis non-degenerate in the sense of Bott.Recall that the Witten technique is based on considering a one-parameter deformation?T(T∈R)of

KIRW AN-NOVIKOV INEQUALITIES ON A MANIFOLD WITH BOUNDARY3 the Laplacian and comparing the spectrum of?T for large T with the spectrum of a similar

operator?N T on the normal bundle to the critical set ofω.It is crucial for the method to work

that the eigenfunctions of both operators?T and?N T concentrate near the critical set for large

T.It is well known,however,that if the critical points ofωare not isolated and if we endow

the bundle N with a natural“bundle-like”Riemannian metric then the naive generalization of

the Witten construction does not work,because the eigenfunctions of?N T do not concentrate

to the critical set as T→∞,cf.[5].This problem was solved by Bismut[5],who proposed a

smart two-parameter family of deformations of the Laplacian(the Bismut deformation).It is

not clear,however,how to de?ne this two-parameter family when the critical set ofωis not a

manifold.

In this paper we apply a di?erent idea.We consider the bundle N as a manifold with a

cylindrical end and introduce a Riemannian metric on N which is conical on the cylindrical end,

cf.Sections4and6.One of the advantages of this approach is that now the analysis of the

spectrum of the operator?N T is exactly the same as the analysis of the spectrum of the operator ? M T on the manifold M.In particular,the eigenfunctions of?N T concentrate near the critical set and the kernel of?N T can be calculated in cohomological terms,cf.Sections4and5.

The second new element of our proof is the study of the Witten Laplacian on a manifold with a cylindrical end(which we need for the study of both operators?N T and? M T).In Section5,we calculate the dimension of the kernels of the Witten Laplacians on a manifold with a cylindrical end and show that they are equal to the relative Novikov numbers of the topological pair(M,U?) with coe?cients in a?at vector bundle F.This is probably the most non-trivial part of our paper.

0.3.The structure of the paper.In Section1we formulate our main result and discuss some

of its applications and implications.

In Section2we present an equivariant version of our inequalities.

In Section3we reformulate our main theorem in terms of a manifold with a cylindrical end

and show the equivalence of the two formulations.

In Section4we de?ne the Witten-type deformation of the Laplacian on a manifold with a

cylindrical end and show that it has a discreet spectrum.

In Section5we show that the dimension of the kernel of the Witten Laplacian is given by

the relative Novikov numbers.

In Section6we introduce a structure of a manifold with a cylindrical end on a neighborhood

of the critical set ofωand describe the structure of our Witten-type deformation near the critical

set.

In Section7we present a proof of the Kirwan-Novikov inequalities,based on a result about

a comparison between the spectrum of the Witten Laplacians on M and on N.This result is proven in Section8.

Acknowledgment.Some of the ideas used in this paper were developed several year ago in a

joint un?nished project of M.Farber,M.Shubin and the?rst author.We are very grateful to

4MAXIM BRAVERMAN AND VALENTIN SILANTYEV

M.Farber and M.Shubin for helping to develop these ideas and for allowing us to use them in this paper.

1.Preliminaries and the main result

1.1.Let M be a compact manifold with boundaryΓ=?M.Note that we don’t exclude the case whenΓis empty.If the boundary is not empty we will identify its tubular neighborhood U with the productΓ×(0,1]and we will identify points of U with pairs(x,t),x∈Γ,t∈(0,1]. Letωbe a closed1-form on M such that the restriction ofωto U is exact.In other words we assume that there exists a smooth function h:Γ×(0,1]→R such that

ω(x,t)=dh(x,t)=dΓh(x,t)+

?h

?t (x,1)dt=0for all x∈Γ.This implies thatωdoes not have zeros at

a neighborhood of?M.Without loss of generality we can and we will assume thatω

does not have zeros atΓ×(0,1].

(B2)0is a regular value of the function?h

?t

(x,1)=0then

dΓh(x,1)=?λ·dΓ ?h

?t

(x,1)<0 ×{1}??M(1.3) has a smooth boundary.

The assumption(B3)is more restrictive.It is essentially equivalent to the fact that the closure

m f(x)t m,m>0.Then condition

(B3)is automatically satis?ed,while conditions(B1)and(B2)hold if and only if0is a regular value of f(x).This example is the most important for applications.In fact,in Section3we will show that if the conditions(B1)-(B3)are satis?ed,then one can always extendωand h to a bigger manifold M′=M∪(Γ×[1,A])without producing new zeros so that near the boundary of M′we have h(x,t)=f(x)t2/2.

KIRW AN-NOVIKOV INEQUALITIES ON A MANIFOLD WITH BOUNDARY5 1.4.Non-degeneracy assumptions on the zeros ofω.We assume that the set

C= x∈M:ω(x)=0 ,

called the critical set ofω,belongs to M\U and satis?es the following non-degeneracy condition of Kirwan[22]:

De?nition1.5.A closed1-formωis called minimally degenerate or non-degenerate in the sense of Kirwan if it satis?es the following conditions

(C1)The critical set C is a?nite union of disjoint closed subsets C?C called critical subsets ofω.In a neighborhood of each subset C there exists a smooth function h C such that ω=dh C and h C(x)=0for all x∈C.

(C2)For every C?C there exists a locally closed connected submanifoldΣC,called a mini-

≥0and

mizing manifold,containing C such that h C|Σ

C

C= x∈ΣC:h C(x)=0 .(1.4) In other words,C is the subset ofΣC on which h C takes its minimum values.

(C3)At every point x∈C the tangent space T xΣC is the maximal among all subspaces of T x M on which the Hessian H x(h C)is positive semi-de?nite.

The minimal degeneracy means that critical subsets can be as degenerate as a minimum of a function,but not worse.

Remark1.6.The condition(C3)can be reformulated as follows.Let p:ν(ΣC)→ΣC be the normal bundle toΣC in M.Fix a Euclidian metric onν(ΣC)and let|y|denote the norm of a vector y∈ν(ΣC)with respect to this metric.Then by the generalized Morse lemma[21,Ch.6] the condition(C3)is equivalent to the existence of a neighborhood W of the zero section in ν(ΣC)and of an embedding i:W→M such that

|y|2

(h C?i)(y)=h C(p(y))?

6MAXIM BRAVERMAN AND VALENTIN SILANTYEV

whereˇH i(C,F|C?o(C))denotes theˇCech cohomology of C with coe?cients in the?at vector bundle F|C?o(C).De?ne the following Morse counting polynomial

Mω,F(λ)= C∈Cλind(C)P C,F(λ),(1.7) where the sum is taken over all critical subsets C?C.

1.9.The generalized Novikov numbers.Assume that F is a complex?at?nite dimensional vector bundle over M and let

?:??(M,F)→??+1(M,F)

denote the covariant di?erential on F.

A closed1-formω∈?1(M)on M with real values determines a family of connections on F (the Novikov deformation)parameterized by the real numbers T∈R

?T:?i(M,F)→?i+1(M,F);?T=?+T e(ω).(1.8) Here e(ω)denotes the operator of exterior multiplication byω.All the connections?T are?at, i.e.,?2T=0,if the formωis closed.Hence,for any T∈R the pair(F,?T)is a?at vector bundle over M.Sometimes we will denote this?at bundle by F T for short.

The?at bundle F T admits the following alternative description.For T∈R,let E Tωdenote the?at real line bundle over M with the monodromy representationρTω:π1(M)→R?given by the formula

ρTω(γ)=exp(?T γω)∈R?,γ∈π1(M).(1.9) Then F T is isomorphic to the tensor product F?E Tω.

Assume now thatωis a non-degenerate in the sense of Kirwan closed1-form and let U?be as in(1.3).Let H?(M,U?;F T)be the relative cohomology of the pair(M,U?)with coe?cients in the?at bundle F T.

The dimension of the cohomology H?(M,U?;F T)is an integer valued function of T∈R. This function has the following behavior:There exists a discrete subset S?R,such that the dimension dim H?(M,U?;F T)is constant for T/∈S(the corresponding value of the dimension we will call the background value;the corresponding value of T is called generic)and for T∈S the dimension of H?(M,U?;F T)is greater than the background value.Cf.,for example,[18, Theorem2.8],where a more precise information for the case of general elliptic complexes is given.The subset S above will be called the set of jump points.

De?nition1.10.For each i=0,1,...,n,the background value of the dimension of the coho-mology H i(M,U?;F T)is called the i-th generalized Novikov number and is denoted byβi(ω,F). Remark1.11.Note that if the boundary of M is empty thenβi(ω,F)are the usual Novikov numbers[23,24,25]with coe?cients in F,cf.[7,10].In this caseβi(ω,F)depends only on the cohomology class ofω.More generally,letω1andω2be closed1-form representing the same cohomology class in H1(M,C)and satisfying the assumptions(B1)-(B3)of Subsection1.2.Let

KIRW AN-NOVIKOV INEQUALITIES ON A MANIFOLD WITH BOUNDARY7 U?1,U?2be the sets de?ned by(1.3)using the formsω1andω2respectively.If the topological pairs(M,U?1)and(M,U?2)are homotopically equivalent thenβi(ω1,F)=βi(ω2,F).

We de?ne the Novikov type polynomial by the formula

Nω,F(λ)=dim M

i=0λiβi(ω,F),(1.10)

The main result of this paper is the following Morse-type inequalities for a di?erential1-form

on a manifold with boundary:

Theorem1.12.Assume thatωis a closed1-form on M which satis?es the assumptions(B1)-

(B3)of Subsection1.2and all whose zeros are non-degenerate in the sense of Kirwan,cf.

Subsection1.4.Then there exists a polynomial Q(λ)=q0+q1λ+q2λ2+...with non-negative

integer coe?cients q i≥0,such that

Mω,F(λ)?Nω,F(λ)=(1+λ)Q(λ).(1.11) The proof of the theorem occupies most of the remaining part of the paper.

Remark1.13.Another version of Morse-type inequalities for di?erential1-forms on manifolds

with boundary were suggested by M.Farber and the?rst author in[8].The conditions on the

behaviour ofωnear the boundary was,however,quite di?erent in[8].In this sense Theorem1.12

complements the results of[8].Note also that in[8]the zeros of the form were assumed to be

non-degenerate in the sense of Bott,while in Theorem1.12we allow a much more complicated

structure of the set of zeros.

1.14.Corollaries and applications.We will now discuss some special cases of Theorem1.1

2.

First,consider the case when the boundary of M is empty.Thenβi(ω,F)are the usual Novikov

numbers with coe?cients in F associated to the cohomology class ofω,cf.[10].Theorem1.12

in this case generalizes the classical Novikov inequalities in two directions:?rst,we allow non-

isolated zeros ofω(assuming they are non-degenerate in the sense of Kirwan).And,second,

we strengthen the inequalities by twisting them with the vector bundle F(cf.example1.7in

[10],which shows that the obtained inequalities are really stronger than the classical inequalities

with coe?cients in C.We also refer to[1]where the Kirwan inequalities with coe?cients in a

non-trivial bundle are used to obtain a topological information about the symplectic reduction

of a Hamiltonian T-space).For the case when the zeros ofωare non-degenerate manifolds(i.e.,

whenωsatis?es Bott non-degeneracy conditions)these results were obtained by M.Farber and

the?rst author in[7,10].

Let us return to the case when M has boundary.Assume that the cohomology class ofω

vanishes,i.e.,there exists a function h:M→R such thatω=dh.Thenβi(ω,F)are just

the dimensions of the cohomology of the pair(M,U?)with coe?cients in F.Thus our result generalizes the classical Morse inequalities to the case of a manifold with boundary.For the

special case when h is a Morse function(i.e.,has only isolated non-degenerate critical points)

and F=C is the trivial bundle,similar inequalities were obtained by Floer[19].

8MAXIM BRAVERMAN AND VALENTIN SILANTYEV

In Section2we use Theorem1.12to obtain the equivariant version of the Kirwan-Novikov inequalities on a manifold with boundary.Note,that the use of cohomology with coe?cients in a?at vector bundle F(rather than just complex values cohomology)is very important for this application,cf.Remark2.7for details.

1.15.The necessity of the condition(B3).We?nish this section with a very simple exam-ple,which shows that without the assumption(B3)(cf.Subsection1.2)Theorem1.12is not valid.

Consider the cylinder M=S1×[1,2].ThenΓ=?M=(S1×{1})?(S1×{2}).Set

h(x,t)=t2sin x,(1.12) where x∈S1,t∈[1,2].Letω=dh.One easily checks that all the conditions of Theorem1.12 except(B3)hold.The condition(B3)fails at the points(0,1)and(π,1).2

Clearly,

U?= (0,π)×{1} ? (π,2π)×{2} .

Let F=C be the trivial line bundle.Since the formωis exact,βi=βi(ω,F)equals to the dimension of the relative cohomology H i(M,U?).An easy calculation shows that

β0=β2=0,β1=2.

So Nω,F(λ)=2λin this case.Butωdoes not have zeros on M.Hence,the Morse counting polynomial is equal to0and the left hand side of(1.11)equals?2λ.Thus(1.11)can not hold. Let us enlarge the manifold M by setting M′=S1×[?2,2].The formω=dh extends naturally to the bigger manifold.Now the condition(B3)is easily seen to be satis?ed.We still have Nω,F(λ)=2λ.But nowωvanishes on S1×{0}?S1×[?2,2].The Morse counting polynomial equals2λand(1.11)holds with Q=0.

This example illustrates an important phenomenon to be discussed in the next section:the condition(B3)allows a natural extension ofωfrom U=Γ×(0,1)to the in?nite cylinder Γ×(0,∞)without producing new zeros ofω.

2.Equivariant Kirwan-Novikov inequalities on a manifold with boundary

In this section we present a generalization of the equivariant Novikov inequalities obtained by M.Farber and the?rst author in[8,9]to manifolds with boundary and to1-forms which are not non-degenerate in the sense of Bott(but are non-degenerate in the sense of Kirwan).The constructions and the proofs are very similar to[9],so we will be very brief in this section and we will refer the reader to[9]for details.

Throughout this section G is a compact Lie group and M is a compact G-manifold with boundaryΓ=?M.

KIRW AN-NOVIKOV INEQUALITIES ON A MANIFOLD WITH BOUNDARY9 2.1.Basic1-forms.Recall that a smooth1-formωon a G-manifold M is called basic(cf.[3]) if it is G-invariant and its restriction on any orbit of the action of G equals to zero.

Note that,if the group G is?nite,thenωis basic if and only if it is G-invariant,i.e.,if g?ω=ωis satis?ed for every g∈G.Also,if M is connected and if the set of?xed points of the action of G on M is not empty,then any closed G-invariant1-form on M is basic,cf.Lemma3.4of[9]. Note also that any exact invariant formω=d f is basic.

2.2.The equivariant Novikov numbers.Let F→M be a G-equivariant?at vector bundle over M,cf.Section2of[9].Supposeωis a closed basic1-form on M which satis?es assumptions (B1)-(B3)of Subsection1.2.Let U??Γbe as in(1.3).We denote by H?G(M,U?;F)the equivariant cohomology of the pair(M,U?)with coe?cients in F.3

Every closed basic1-formωdetermines an equivariant?at line bundle Eω(withωbeing its connection form),cf.Subsection1.9(see also§2.2of[9]).Using these constructions we de?ne the equivariant Novikov numbers as follows.

Given an equivariant?at bundle F over M,consider the one-parameter family F T=F?E Tωof equivariant?at bundles,where T∈R,(the Novikov deformation)and consider the twisted equivariant cohomology

H i G(M,U?;F?E Tω),where t∈R,

as a function of T∈R.The same arguments as in the proof of Lemma1.5of[9]show that,for each i=0,1,...,there exists a?nite subset S?R such that the dimension of the cohomology H i G(M,U?;F?E Tω)is constant for T/∈S and the dimension of the cohomology H i G(M,U?;F?E Tω)jumps up for T∈S.

The subset S,is called the set of jump points;the value of the dimension of H i G(M,U?;F?E Tω)for T/∈S is called the background value of the dimension of this family.

De?nition 2.3.The i-dimensional equivariant Novikov numberβG i(ω,F)is de?ned as the background value of the dimension of the cohomology of the family H i G(M,U?;F?E Tω). Remark 2.4.If the boundary of M is empty then the numbersβG i(ω,F)coincide with the equivariant Novikov numbers with coe?cients in F de?ned in[9].In this caseβG i(ω,F)depends only on the cohomology class ofω.More generally,βi(ω1,F)=βi(ω2,F)if[ω1]=[ω2]∈H1G(M) and the topological pairs(M,U?1)and(M,U?2)are homotopically equivalent(here U?1,U?2∈Γare the sets de?ned by(1.3)using the formsω1andω2respectively).

The formal power series

∞ i=0λiβG i(ω,F)

N Gω,F(λ)=

is called the equivariant Novikov series.

10MAXIM BRAVERMAN AND VALENTIN SILANTYEV

2.5.The equivariant Morse series.We assume thatωis non-degenerate in the sense of Kirwan and we use the notation introduced in Subsections1.4and1.8.Let C?C be a component of the critical set ofω.If the group G is connected then C is a G-invariant subset of M.In general case we denote by

G C:= g∈G:g·C?C

the stabilizer of C in G.Let|G:G C|denote the index of G C as a subgroup of G.Since G C contains the connected component of the unity in G,this index is?nite.

The compact Lie group G C acts on C and the?at vector bundles F|C and o(C)(cf.Subsec-

tion1.8)are G C-equivariant.LetˇH?G

C (C,F|C?o(C))denote the equivariantˇCech cohomology

of the?at G C-equivariant vector bundle F|C?o(C).Consider the equivariant Poincar′e series of C

P G C C,F (λ)=

∞ i=0λi dim C H i G C(C,F|C?o(C))

and de?ne using it the following equivariant Morse counting series

M Gω,F(λ)= Cλind(C)|G:G C|?1P G C C,F(λ),

where the sum is taken over all components C of C.

The main result of this section is the following:

Theorem2.6.Suppose that G is a compact Lie group and F is a?at G-equivariant vector bundle over a compact G-manifold M with boundary.Letωbe a closed basic1-form on M which satis?es the assumptions(B1)-(B3)of Subsection1.2and all whose zeros are non-degenerate in the sense of Kirwan,cf.Subsection1.4.Then there exists a formal power series Q(λ)with non-negative integer coe?cients,such that

M Gω,F(λ)?N Gξ,F(λ)=(1+λ)Q(λ).

The theorem follows from Theorem1.12by exactly the same arguments as were used in[9]to derive the equivariant Novikov inequalities for a non-degenerate in the sense of Bott one form on a closed manifold from the Novikov-Bott inequalities of[10].We leave the details to the interested reader.

Remark2.7.Let us remark that the use of the cohomology twisted by a?at vector bundle F considerably strengthen the inequalities of Theorem2.6.For example,assume that the group G is?nite and the formωis exact.An application of the equivariant Morse inequalities of Atiyah and Bott[2,6]leads to estimates which are often weaker than the standard Morse inequalities(ignoring the group action).However,the application of the inequalities twisted by an equivariant?at bundle leads to a much better estimates,cf.[8].This was used in[1],where an application of Theorem2.6to a?nite group but with a non-trivial equivariant vector bundle provided a new topological information about the cohomology of the symplectic reduction of a Hamiltonian T-manifold.

KIRW AN-NOVIKOV INEQUALITIES ON A MANIFOLD WITH BOUNDARY11

3.Reformulation in terms of a manifold with a cylindrical end

In this section we reformulate Theorem1.12as Morse-type inequalities for di?erential forms on a manifold with a cylindrical end.This new formulation is more suitable for our analytical proof,but also has an independent interest.In particular,it generalizes the Morse inequali-ties for generating functions quadratic at in?nity,which are used in the theory of Lagrangian intersections[29,16].

3.1.A manifold with a cylindrical end.By a manifold with a cylindrical end we understand

a smooth(non-compact)manifold M without boundary which has the formΓ×(1,∞)near in?nity.More precisely,we suppose that there exists a compact submanifold M? M with smooth boundaryΓsuch that

M=M∪ Γ×[1,∞) (3.1) with?M being identi?ed withΓ×{1}.

The submanifold T=Γ×(1,∞)is called the cylindrical end of M.

Of course,M is not unique.For example,it may be replaced by M t

=M∪(Γ×(1,t0]). Similarly,the decomposition T into a direct product is not unique.But we will?x M and the decomposition T=Γ×(1,∞)for the sake of simplicity of the notation.

3.2.Homogeneous1-forms.Let M=M∪(Γ×[1,∞))be a manifold with a cylindrical end. Every point of T=Γ×(1,∞)may be identi?ed with a pair(x,t)where x∈Γ,t>1.

Letτs:T→T(s≥1)denote the multiplication by s:τs(x,t)=(x,s·t).

A di?erential1-formαon M is called homogeneous of degree m at in?nity if there exists t0>1such that

τ?s(α|

Γ×(t0,∞))=s mα|

Γ×(t0,∞)

,for every s>1.(3.2)

Ifωis a homogeneous1-form of degree m,then its restriction toΓ×(t0,∞)may be written as

α|

Γ×(t0,∞)

=t m a+f(x)t m?1dt,

where a is a1-form onΓ.If,in addition,αis closed,dα=0,then a=1

m

f(x)t m .(3.3) In particular,the restriction of a closed homogeneous at in?nity1-form to the cylindrical part T is always exact.

3.3.Non-degeneracy at in?nity.Suppose thatωis a closed1-form on M which is homoge-neous at in?nity.We say thatωis non-degenerate at in?nity if the restrictionω(x,t)ofωto the cylindrical part T does not have zeros for t?1.

Letωbe represented as in(3.3).Thenωis non-degenerate at in?nity if and only if0is a regular value of the function f:Γ→R.

12MAXIM BRAVERMAN AND VALENTIN SILANTYEV

3.4.Example:a vector bundle over a compact manifold.One of the most important examples of a manifold with a cylindrical end is a vector bundle over a compact manifold.

Let C be a smooth compact manifold without boundary and let E be a?nite dimensional vector bundle over C.Fix a Hermitian metric h E on E.For a vector y∈E we denote by|y|its norm with respect to the metric h E.

Fix r>0and de?ne

B r= y∈E:|y|≤r ;S r= y∈E:|y|=r

Then B r is a compact manifold,the boundary of B r equals S r,and E\B r is di?eomorphic to the product S r×(1,∞).Hence,E has a natural structure of a manifold with a cylindrical end. Assume now that the bundle E splits into orthogonal direct sum E=E+⊕E?.Consider

the function

h(y)=|y+|2

2

,(y+,y?)∈E=E+⊕E?.

Then the formω=dh is homogenous of degree2on E and is non-degenerate at in?nity.

More generally,if V is a manifold with a cylindrical end and N→ V is a vector bundle over V,then one can introduce a structure of a manifold with a cylindrical end on the total space of N.A version of this example will allow us to consider the normal bundle to a neighborhood of the critical set C in the minimizing manifoldΣC(cf.De?nition1.5)as a manifold with a cylindrical end.We refer to Subsection6.1for details.

3.5.The Novikov numbers.Letωbe a closed1-form on M which is homogeneous and non-degenerate at in?nity.Let f(x)be as in(3.3).

Let F be a?at vector bundle over M.As in Subsection1.9we construct a family F T(T∈R) of?at vector bundles over M using the1-formω.

For every c>0de?ne

U?c= (x,t)∈Γ×(1,∞):f(x)t m/m

N

ω, F(λ)by(1.10).

If all the zeros ofωare non-degenerate in the sense of Kirwan we de?ne the Morse counting

polynomial M

ω, F(λ)as in Subsection1.8.

Theorem3.6.Let M be a manifold with cylindrical end and let F be a?at vector bundle over M.Letωbe a closed1-form on M which is homogeneous and non-degenerate at in?nity. Assume also that all the zeros ofωare non-degenerate in the sense of Kirwan.Then there exists

a polynomial Q(λ)with non-negative integer coe?cients such that the Morse-type inequalities

(1.11)hold.

The following proposition shows that this theorem is equivalent to Theorem1.12.

KIRW AN-NOVIKOV INEQUALITIES ON A MANIFOLD WITH BOUNDARY13 Proposition3.7.Theorem3.6is equivalent to Theorem1.12.Moreover,Theorem3.6(and, hence,Theorem1.12)follows from its particular case whenωis homogeneous of degree2. Thus,to prove Theorems1.12and3.6,it is enough to prove Theorem3.6for the case when ωis homogeneous of degree2.This will be done in the subsequent sections.The rest of this section is occupied with the proof of Proposition3.7.

3.8.Theorem1.12implies Theorem3.6.Letωbe homogeneous,non-degenerate at in?nity closed1-form on a manifold M with cylindrical end.

Fix a decomposition(3.1)of M and let t0≥0be as in(3.2).Set

M′=M? Γ×(1,t0+2] .

Introducing a new coordinate t′=t?t0?1we identify a neighborhood U of?M′with the productΓ×(0,1].From(3.3)we conclude that on U the formω=dh(x,t′)where

1

h(x,t′)=

(x,1)<0,t′=1 = (x,t′):f(x)<0,t′=1 .

?t′

Recall that U?c is de?ned in(3.4).Clearly,the pair( M, U?c)is homotopic to the pair(M′,U?). Thus the relative cohomology H?( M, U?c; F T)is naturally isomorphic to H?(M,U?; F T|M′). Theorem3.6follows now from application of Theorem1.12to the formω|M′. To show the implication in the other direction we need the following

Lemma3.9.Let h:Γ×(0,1]→R be a smooth function satisfying the conditions(B1)-(B3) of Subsection1.2.According to the condition(B1)of Subsection1.2,dh=0onΓ×(0,1],cf. Subsection1.2.Set

?h

f(x)=

for t>1?ε,x∈Γ;(3.7)

2

d h(x,t)=0for all t>0,x∈Γ.(3.8) Proof.From th

e conditions(B3)o

f Subsection1.2we see that there existε∈(0,1/3)such that for all t∈(1?3ε,1]we have

dΓh(x,t)=?λdΓf(x)for allλ>0and all x∈Γsuch that|f(x)|<2ε.(3.9)

?h(x,t)

sup |h(x,t)|:x∈Γ,0

ε

14MAXIM BRAVERMAN AND VALENTIN SILANTYEV

Letχ:R→[0,1]be a smooth non-decreasing function such thatχ(t)=0for t≤1?2εand χ(t)=1for t≥1?ε.Set

h(x,t)=(1?χ(t))h(x,t)+χ(t)m f(x)t2

dΓf(x)=0.

2

?If1?2ε≤t≤1and|f(x)|>ε,then

? h(x,t)2?h(x,t) +(1?χ(t))?h(x,t)

(x,1).Hence,

?t

mt2

dh(x,t)=m f(x)t dt+

KIRW AN-NOVIKOV INEQUALITIES ON A MANIFOLD WITH BOUNDARY15 forωfollow from application of Theorem3.6to the form ω.The proof of Proposition3.7is complete.

4.The Witten deformation of the Laplacian

Let M=M∪ Γ×[1,∞) be a manifold with a cylindrical end and letωbe a closed1-form on M which is homogeneous of degree2at in?nity,cf.Subsection3.2.Let F be a?at vector bundle over M endowed with a?at connection?.

In this section we introduce a“conical at in?nity”metric on M and use it to construct the Laplacian?T associated to?T.This Laplacian plays a crucial role in our proof of Theorem1.12. In Section5,we prove that the dimension of the kernel of the restriction of?T to the space of p-forms is equal to the generalized Novikov numberβp(ξ, F).In Section6,we estimate the di-mension of the Ker?T by comparing it with the kernel of a certain Laplacian on a neighborhood of C.That will prove Theorem3.6(and,hence,in view of Proposition3.7,Theorem1.12). 4.1.Metrics on the cylindrical end.The tangent bundle T T to the cylindrical end T=Γ×(1,∞)splits into the Whitney sum TΓ⊕R of the tangent bundle TΓtoΓand the tangent bundle to the ray(1,∞)(which we identify with R).

Choose a Riemannian metric gΓonΓand let g R denote the standard(transitionally invariant) metric on R.Let g T denote the metric on T given by the formula

g T=t2gΓ⊕g R.(4.1) This metric is homogeneous of degree2in the following sense:Letτs:T→T(s≥1)denote the multiplication by s:τs(x,t)=(x,s·t).Then

τ?s g T=s2g T.(4.2) We will refer to g T as conical metric on T.

We also?x a Hermitian metric h F|T on the restriction F|T of the bundle F to T which is?at along the ray{(x,t):t>1}?T for any x∈Γ.

4.2.Metrics on the manifold.Let g M be a Riemannian metric on M whose restriction on the cylindrical end T is equal to the conical metric g T(cf.Subsection4.1).

We also?x a Hermitian metric h F on F whose restriction to T is equal to h F|T.

4.3.The deformation of the Laplacian.Let?T=?+T e(ω)be the Novikov deformation of the covariant derivative,cf.Subsection1.9.Denote by??T the formal adjoint of?T with respect to the metrics g M,h F.

De?nition4.4.The Witten Laplacian is the operator

1

?T:=

16MAXIM BRAVERMAN AND VALENTIN SILANTYEV

It is well known(cf.,for example,[12],[20,Th.1.17],[11])that the operator?T is essentially self-adjoint with initial domain smooth compactly supported forms.By a slight abuse of notation we will denote by?T also the self-adjoint extension of this operator to the space L2??( M, F) of square-integrable forms.

Proposition4.5.For every T>0the spectrum of the operator?T is discrete.

We prove the proposition in Subsection4.8after we study the behaviour of the restriction of ?T to the cylindrical end T.

4.6.The restriction of the deformed Laplacian to the cylindrical end.Let v denote the vector?eld on M which corresponds to the1-formωvia the Riemannian metric g M.Since ωis homogeneous of degree2,it follows immediately from(4.2)that the restriction of v to T is homogeneous of degree0,i.e.,is independent of t:

v(x,st)=τs?v(x,t),for all s>1.(4.3) We denote by L v the Lie derivative along v.An easy calculations(cf.[14,Proposition11.13])

show that

1

?T=

KIRW AN-NOVIKOV INEQUALITIES ON A MANIFOLD WITH BOUNDARY 17

From (4.6),we conclude that there exists t 0>1such that

a (x,t )+

b (x,t )>1/ε,

for all x ∈Γ,t ≥t 0.Then,using (4.4)and (4.5),we obtain Γ×[t 0,∞)|α|2dμ<ε

Γ×[t 0,∞) (a +b )α,α dμ≤ε Γ×[t 0,∞) ?T α,α dμ.

Theorem 4.9.For every T >0,the dimension of the kernel Ker ?T of ?T is equal to the dimension of the relative cohomology H ?( M,

U ?; F T ).In particular,dim Ker ?i T =βi (ω,F )for a generic value of T .

The prove of the theorem occupies the next section of the paper.

https://www.doczj.com/doc/bf16767359.html,putation of the kernel of the Witten Laplacian

In this section we prove Theorem 4.9.

https://www.doczj.com/doc/bf16767359.html,plex ??T ( M, F ).The kernel of the Witten Laplacian Ker ?T has the following coho-mological interpretation.De?ne

??T

( M, F )= ζ∈L 2??( M, F ):?T ζ∈L 2??( M, F ) and consider the complex 0→ ?0T ( M, F )?T ????→ ?1T ( M, F )?T ????→···?T ????→ ?n T ( M, F )→0.(5.1)

Let H ?( ??T ( M, F ),?T )denote the cohomology of this complex.Proposition 5.2.H k ( ??T ( M, F ),?T )=dim Ker ?k T for all k =0,1,...,n .Proof.Since the spectrum of ?T is discrete (cf.Proposition 4.5)the space L 2??( M,

F )splits into the orthogonal direct sum of closed subspaces

L 2??( M,

F )=Ker ?T ⊕Im ?T .Hence,every κ∈ ??T

( M, F )can be represented as the sum κ=?+?T ψ=?+1T ??T ?T ψ,(5.2)

where ?∈Ker ?T and ψ∈Dom(?T )?L 2??( M, F ).Since ?2T =0all 3summands in the right hand side of (5.2)are mutually orthogonal and belong to L 2??( M,

F ).The ellipticity of ?T implies that the forms φand ψare smooth.Hence,so are the forms ?T ψ,

??T ψ,?T ??T ψ,and ??T ?T ψ.Moreover,?T ψ,??T ψ∈L 2??( M, F )because of the inequality

?T ψ 2+ ??T ψ 2=T ?T ψ,ψ <∞(5.3)

18MAXIM BRAVERMAN AND VALENTIN SILANTYEV (here ·,· and · stand for the scalar product and the norm in L2??( M, F)respectively).We conclude that?Tψ,??Tψ∈ ??T( M, F).Hence,(5.2)implies that the following“Hodge-type”decomposition holds

??T( M, F)=Ker?T⊕Im ?T| ??T( M, F) ⊕Im ??T| ??T( M, F) .(5.4) The statement of the proposition follows now from the standard“Hodge theory”arguments.

Theorem4.9follows now from the following

Proposition5.3.The cohomology of the complex(5.1)is isomorphic to the relative cohomology H?( M, U?; F T).

The proof of the proposition occupies the rest of this section.

5.4.The cone complex.Let c be an arbitrary positive constant and let U?c be as in(3.4). We denote by j c: U?c→ M the inclusion and by j?c:??( M, F)→??( U?c, F| U?c)the restriction map.

Consider the cone complex Cone T(j?c)of the map j?c which is de?ned as follows:

Cone k T(j?c)=?k( M, F)⊕?k?1( U?c, F)

(j?c)is given by

and the di?erential D T,c:Cone k T(j?c)→Cone k+1

T

D T,c(η,η1)= ?Tη,??Tη1+j?cη ,(η,η1)∈Cone?T(j?c)

It is well-known(see eg.[15])that

H?(Cone T(j?c))~=H?( M, U?c; F T).

Thus,to prove Proposition5.3(and,hence,Theorem4.9)it su?ces to show that the space H?(Cone T(j?c))is isomorphic to the cohomology H?( ??T( M, F),?T)of the complex(5.1).This is done in the next subsection,where we construct an explicit map from ??T( M, F)to Cone T(j?c) and show that this map is a quasi-isomorphism(i.e.,induces an isomorphism on cohomology).

A similar construction was used by Farber and Shustin[17,§3]in a slightly di?erent situation.

5.5.A map from ??T( M, F)to Cone T(j?c).Recall that we assumed thatωis homogeneous of degree2and non-degenerate at in?nity.Thus,cf.(3.3),there exist t0>0and a smooth function f:Γ→R such that

ω(x,t)=d f(x)t2/2 ,x∈Γ,t≥t0,

and0is a regular value of f.Changing the parameter t if needed,we can and we will assume that t0=1.Set

h(x,t)=f(x)t2/2.

The restriction of any formζ∈??( M, F)to the cylindrical end T can be written as

ζ(x,t)=dt∧ζ (x,t)+ζ⊥(x,t),x∈Γ,t>1,(5.5)

KIRW AN-NOVIKOV INEQUALITIES ON A MANIFOLD WITH BOUNDARY19 whereζ (x,t)andζ⊥(x,t)are F-valued forms onΓdepending smoothly on the parameter t∈(0,∞).Set

?ζ(x,t)=?e?T h(x,t) ∞t e T h(x,τ)ζ (x,τ)dτ

=? ∞t e T f(x)(τ2?t2)/2ζ (x,τ)dτ,(x,t)∈ U?c,(5.6) where we use the?at connection?to identify the?bers of F along the rays{(x,τ):τ>0}. The integral in(5.6)converges sinceζ∈L2??( U?c, F)and f(x)<0for(x,t)∈ U?c. De?ne the mapΦT,c: ??T( M, F)→Cone T(j?c)by the formula

ΦT,c:ζ→(ζ,?ζ)(5.7) Lemma5.6.For every c>0the mapΦT,c is a chain map from ??T( M, F;?T)to Cone T(j?c), i.e.,

D T,c?ΦT,c=ΦT,c??T.(5.8) Proof.Letζ∈ ??T( M, F).The equality(5.8)reduces to

?T e?T h(x,t) ∞t e T h(x,τ)ζ (x,τ)dτ +ζ(x,t)=?e?T h(x,t) ∞t e T h(x,τ)(?Tζ(x,τ)) dτfor(x,t)∈ U?c′.The last equality follows from the following calculation,in which we denote by ?Γthe connection induced by?onΓand by??/?τthe covariant di?erential along the vector

?eld?/?τ:

?T e?T h ∞t e T hζ dτ +ζ=e?T h? ∞t e T hζ dτ+ζ

=?dt∧ζ +e?T h ∞t?Γ(e T hζ )dτ+ζ=ζ⊥+e?T h ∞t?Γ(e T hζ )dτ

=e?T h ∞t ?Γ(e T hζ )???/?τ(e T hζ⊥) dτ=?e?T h ∞t e T h(?Tζ) dτ.

Let

ΦT,c,?:H?( ??T( M, F),?T)?→H?(Cone T(j?c))~=H?( M, U?c; F T)

be the map induced byΦT,c.To prove Proposition5.3we need now to show that the mapΦT,c,?

is an isomorphism.

5.7.Injectivity ofΦT,c,?.The proof of the injectivity ofΦT,c,?is based on the following tech-

nical lemma.

Lemma5.8.Letζ∈ ??T( M, F)be a“harmonic”form,?Tζ=0.Suppose that

D T,c(α,α1)=ΦT,cζ,for some(α,α1)∈Cone T(j?c).(5.9) Then there existε>0and a formβ∈??( M, F)such that

20MAXIM BRAVERMAN AND VALENTIN SILANTYEV

(i)?Tβ=ζ;

(ii)β(x,t)=?ζ(x,t)=? ∞t e1

幼儿园大班语言教学案例

幼儿园大班语言教学案例《好饿的毛毛虫》 永清县养马庄中心小学王艳苓 教学目标: 1、引导幼儿感悟故事创意,获得阅读快乐,产生持续阅读的愿望,培养自主阅读能力。 2、引导幼儿尝试用图表的方式表达、迁移自己对作品的理解和想象,建立初步的读和写的信心,培养幼儿的书面表达能力。 活动准备: 1、故事录音《好饿的毛毛虫》。 2、毛毛虫吃过的实物图片一套,色彩标志与数字卡片一套。 3、《幼儿习得手册》下学期2册2——3页》。 活动一:多重阅读,初步认识作品 活动过程: 一、引题 (出示小毛毛虫图片)小朋友看,这是谁?(毛毛虫) 这只毛毛虫又瘦又小,它是一直好饿好饿的毛毛虫。小毛毛虫饿了,它会自己找吃的吗?它会吃什么?吃多少呢?小朋友们想不想知道呀? 二、猜想故事内容 幼儿翻看《幼儿习得手册》,提醒幼儿从前往后仔细观察画面,猜猜故事内容。S三、幼儿讨论故事内容 幼儿自由结组,和同伴一起看图,讨论故事内容。 三、集体阅读 老师引导幼儿仔细观察画面,图上画了什么?会是什么意思呢?是这样吗? 四、听故事录音 小朋友听故事录音,提醒幼儿边听边指相应的画面。 五、找对应画面 幼儿听故事指相对应画面。 六、讲故事 和幼儿一起看书,完整的讲一遍故事。 活动二理解作品,感悟故事创意 一、幼儿讲故事 请两名幼儿边指点画面,边讲故事内容。 二、分组讨论 讨论:从这个故事中,你发现了什么,或者认识了什么,学到了什么。老师参与到幼儿的讨论中去,倾听、鼓励、启发、指导。提醒幼儿把大家的发现及时地用图片或符号的形式记录下来。 三、集体讨论 各组代表发言,其他幼儿补充。同时,老师将幼儿发现按不同的线索,同于表的形式加以概括:1、从时间上说,故事从一个星期开始,到下一个星期日,又过了些天。 老师将故事发生的时间按顺序从上到下排成一列。 2、小毛毛虫的成长过程:一个小小的“蛋”——又小又饿的毛毛虫_-------………又肥又大的毛毛虫——茧——一只漂亮的蝴蝶。 老师可让一名幼儿到前面来,把相关的小图片按毛毛虫从小到大的顺序,从上到下对应

幼儿园大班绘本教案:你是特别的 你是最好的

活动名称:诗歌:你是最好的活动目标: 1、欣赏诗歌,理解诗歌内容,学习用轻松和有力的语言有表情地朗读诗歌。 2、感知诗歌画面,结合自己的生活经验,尝试用“ⅹⅹⅹ没关系”的句型方便诗歌。 3、积极参与游戏,乐意在集体面前大胆地讲述自己的长处,增强自信心。活动准备: 1、幼儿用书人手一册,实物展示仪一台。 2、幼儿对自己有一定的认识,知道自己的长处。活动过程: 一、击鼓传花:我喜欢我自己,…… 1、教师:你喜欢你自己吗?你能用“我喜欢我自己,……”讲述喜欢自己的理由。 2、介绍游戏规则:大家击鼓传花,当鼓声停止时,红花就在谁的上,谁就在集体面前用“我喜欢我自己,……”的句型夸奖自己的长处,然后继续听鼓声传花。 3、游戏2~3遍。 二、欣赏诗歌,初步理解故事内容。 1、教师:我们每个小朋友都喜欢自己,因为我们每个小朋友都是最好的,虽然有一点小问题,但是没关系。下面。老师给小朋友念一首诗歌《你是最好的》 2、教师有感情地朗诵诗歌。 3、教师:你听见诗歌里说了什么? 三、展示诗歌画面,学习朗诵诗歌,并通过提问,感知理解诗歌。 1、引导幼儿观察幼儿用书诗歌画面,并请幼儿有表情地朗诵诗歌。 2、带领幼儿看图学习朗诵诗歌。 3、提问:为什么掉了一颗牙没关系?为什么个子太小了也没关系? 4、教师:在我们说没关系的时候,我们可以用怎样的声音朗诵? 5、教师带领幼儿有表情的朗诵诗歌。 四、采用多种方式念儿歌。 1、幼儿念诗歌的前四句,教师念最后一句。 2、请8为幼儿上台来,依次轮流念一句“没关系”全体幼儿念每段的最后一句。 五、启发幼儿想象并仿编诗歌。 1、教师:你觉得还有什么事没关系? 2、教师整理幼儿的讲述,并抓住诗歌里面的关键词,在黑板上画出简笔画。 3、引导幼儿看图标有表情的朗诵新的诗歌《你是最好的》。 活动反思:击鼓传花这个游戏很适合幼儿,活动中幼儿很积极、开心,特别是在说“我喜欢我自己,……”这句话,很多幼儿充满了自信。 “你是特别的,你是最好的”,这句话说起来很简单,但对于大班的孩子来说真的是那么自信,还是连他们自己都不知道呢?简单的几幅画面,孩子们解读出的却很多。每一幅让我们期待,而读完又若有所思。笑中思索,思索后讨论,不同于以前的画册。每个孩子都能用自己的方式认识自身、认识世界。缺少了自信和个性,都是很令人遗憾的事情,而读完这首诗歌,我觉得对于我来说也有一定的意义,真希望平时每个人(包括孩子、保育员、老师等)时刻都能充满自信。在提问“为什么掉了一颗牙没关系?为什么个子太小了也没关系?”等问题时,很多幼儿很不能理解,后来经过一番解释后幼儿方才有点懂。

幼儿园大班绘本教案

幼儿园大班绘本教案:你是特别的你是最好的 活动目标: 1、欣赏诗歌,理解诗歌内容,学习用轻松和有力的语言有表情地朗读诗歌。 2、感知诗歌画面,结合自己的生活经验,尝试用“ⅹⅹⅹ没关系”的句型方便诗歌。 3、积极参与游戏,乐意在集体面前大胆地讲述自己的长处,增强自信心。 活动准备: 1、幼儿用书人手一册,实物展示仪一台。 2、幼儿对自己有一定的认识,知道自己的长处。 活动过程: 一、击鼓传花:我喜欢我自己,…… 1、教师:你喜欢你自己吗?你能用“我喜欢我自己,……”讲述喜欢自己的理由。 2、介绍游戏规则:大家击鼓传花,当鼓声停止时,红花就在谁的上,谁就在集体面前用“我喜欢我自己,……”的句型夸奖自己的长处,然后继续听鼓声传花。 3、游戏2~3遍。 二、欣赏诗歌,初步理解故事内容。 1、教师:我们每个小朋友都喜欢自己,因为我们每个小朋友都是最好的,虽然有一点小问题,但是没关系。下面。老师给小朋友念一首诗歌《你是最好的》 2、教师有感情地朗诵诗歌。 3、教师:你听见诗歌里说了什么? 三、展示诗歌画面,学习朗诵诗歌,并通过提问,感知理解诗歌。 1、引导幼儿观察幼儿用书诗歌画面,并请幼儿有表情地朗诵诗歌。 2、带领幼儿看图学习朗诵诗歌。 3、提问:为什么掉了一颗牙没关系?为什么个子太小了也没关系? 4、教师:在我们说没关系的时候,我们可以用怎样的声音朗诵? 5、教师带领幼儿有表情的朗诵诗歌。 四、采用多种方式念儿歌。 1、幼儿念诗歌的前四句,教师念最后一句。

2、请8为幼儿上台来,依次轮流念一句“没关系”全体幼儿念每段的最后一句。 五、启发幼儿想象并仿编诗歌。 1、教师:你觉得还有什么事没关系? 引导幼儿把它画下来,并仿编一句诗句。 2、教师整理幼儿的讲述,并抓住诗歌里面的关键词,在黑板上画出简笔画。 3、引导幼儿看图标有表情的朗诵新的诗歌《你是最好的》。 活动反思: 击鼓传花这个游戏很适合幼儿,活动中幼儿很积极、开心,特别是在说“我喜欢我自己,……”这句话,很多幼儿充满了自信。 “你是特别的,你是最好的”,这句话说起来很简单,但对于大班的孩子来说真的是那么自信,还是连他们自己都不知道呢?简单的几幅画面,孩子们解读出的却很多。每一幅让我们期待,而读完又若有所思。笑中思索,思索后讨论,不同于以前的画册。每个孩子都能用自己的方式认识自身、认识世界。缺少了自信和个性,都是很令人遗憾的事情,而读完这首诗歌,我觉得对于我来说也有一定的意义,真希望平时每个人(包括孩子、保育员、老师等)时刻都能充满自信。在提问“为什么掉了一颗牙没关系?为什么个子太小了也没关系?”等问题时,很多幼儿很不能理解,后来经过一番解释后幼儿方才有点懂。 大班语言:你是特别的,你是最好的 活动目标: 1、感知诗歌画面内容,尝试用语言和图画大胆的表达表现。 2、用自我欣赏的眼光,发现自己与众不同,分享自己的特别之处。 活动准备: 1、自制《我的书》诗歌ppt 3、视频笔和纸音乐 设计思路: 《纲要》中指出:要建构后继学习及终身发展的基础,培养好奇探究,勇敢自信的面向21世纪的儿童。结合大班幼儿的年龄特点,我选择了《你是特别的,你是最好的》这个绘本,意在透过言简意赅的文字与生动的图画,让孩子学会用自

幼儿园大班绘本故事教案

幼儿园大班绘本故事教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

幼儿园大班绘本故事教案:老鼠娶新娘 活动目标: 1.理解故事内容,知道故事含义,明白任何事务、人物都不是完美的,是有缺点的。 2.喜欢自己的长处和别人的长处,承认自己的短处,学习取长补短。 3.体验婚嫁带来的喜悦气氛和抬轿子游戏带来的乐趣。 活动准备: 1.欢庆音乐一段。 2.《老鼠娶新娘》系列图画。 3.故事背景音乐一段。 4.汉字卡片:太阳------照;乌云------遮;风------吹;高墙------挡;老鼠--------打洞;猫-------抓; 取长补短 活动过程: 1、导入: (1)今天,我给大家带来了一段音乐,你来听听看在这段音乐里人们会在做些什么事? 幼儿讨论(高兴的事、结婚)都是高兴的事情,今天老鼠村也发生了一件高兴的事情! (2)_出示图片:花轿 提问:什么时候会坐轿子?今天老鼠美叮当也坐上欧陆花轿,当了新娘。 2、老鼠娶新娘 (1)美叮当要出嫁了,她要找一个世界上最强的新郎(出示循环图)她找到了太阳、云、风、高墙、老鼠小阿郎、猫。你们觉得他们中间谁是最强大的新郎呢为什么 (2)美叮当到底会嫁给谁呢?我们来听听故事。 讲故事(边讲边演示图片,故事背景音乐轻轻响起) 提问:你觉得在这个故事里谁是最强的新郎呢他有什么本领幼儿讲到谁就出示子卡。 小结:他们都有自己最强的地方,分别是……,但是没有人是最强的。

3.最强的你: 小朋友你们有最强的地方吗我们把最强的地方叫做长处,你知道自己的长处是什么吗每个人都有长处,有长处,可真好,因为长处会让我们很棒。 4.不强的你: 每个人都有自己最强的地方,但每个人也有不够强的地方,我们把不强的地方叫做短处,你知道你的短处是什么吗?请2—3个幼儿回答。你们能够知道自己的短处,真好,因为只有发现自己的不足,才能够进步! 5.朋友圈: 我们都有长处和短处,今天老师带你们来玩一个朋友圈的游戏(用你的长处去帮助别人,你的短处请别人来帮助你,这就是取长补短)出示子卡。 小结:每个人都有自己的长处和短处,当我们取长补短,互相帮助时,就会变得很强大。 6.美叮当的新郎。 世界上没有最强的人,那美叮当到底该找谁当新郎呢(可提示:找不到最强的,但可以找最喜欢的,谁最喜欢她呢)美叮当嫁给了老鼠小阿郎,他们结婚了!看图片(结婚音乐起) 7.游戏:《抬花轿》 美叮当坐着花轿结婚了,我们也来玩抬花轿的游戏。 游戏开始:选一个女孩子来当新娘,新娘抛绣球选新郎!请2个男生来抬花轿,迎亲队伍出发了! 推荐理由:我推荐此活动的理由是: 1、有效提问,让孩子正确的评价自己的能力和客观困难。 自信是确立自己能力,有把握去完成所承担的任务,敢于追求目标的情感体验。《老鼠娶新娘》,原本是一个带有浓浓气息的绘本故事,经过编者对教材的挖掘和设计,巧妙的寻找到了切入点,抓住绘本的中心思想及其精髓,通过几个有效提问,把“每个人都有自己的强项和弱项”的人性特点,通过这次教学活动让幼儿理解,让幼儿自豪的找出自己的强项。 2、积极合作,真诚欣赏他人的强项。 自信心强的孩子能在新的活动任务前不胆怯,能主动参加;讨论时能大胆发表意见,不轻易改变主意。活动中通过“抬花轿”这个游戏,让幼儿尝试与同伴积极合作,共同组队、讨论游戏的形式,提供了让幼儿理解人与人之间和谐共处的教育平台。

幼儿园大班绘本教案幼儿园绘本教案

幼儿园大班绘本教案幼儿园绘本教案 培养幼儿的观察能力和大胆的表现能力。在理解故事内容的基础上,大胆表现故事中的拟声词,感受故事的童真童趣。以下是精心的幼儿园绘本教案的相关资料,希望对你有帮助! 《好饿的小蛇》 活动名称:绘本《好饿的小蛇》 活动目标: 1.激发幼儿喜欢阅读的兴趣。 2.培养幼儿的观察能力和大胆的表现能力。 3.在理解故事内容的基础上,大胆表现故事中的拟声词,感受故事的童真童趣。 重难点分析: 重点:在理解故事内容的基础上,大胆表现故事对话。

难点:喜欢阅读,感受故事的童真童趣。 活动准备:《好饿的小蛇》绘本书、故事课件等 活动过程: 一、导入 教师出示绘本《好饿的小蛇》引导幼儿观察图书封面 提问:封面上有什么?小蛇饿了,它会找什么吃呢?会发生一件什么有意思的事情? @_@我是分割线@_@二、展开 1.出示小蛇吃东西的图片,引导幼儿进行猜测。 提问:请你猜一猜小蛇肚子里吃了什么?(引导幼儿发挥想象力大胆猜测) 2.教师根据课件生动的讲述故事

指导语:让我们一起完整的听一听故事,看看小蛇是究竟吃到了什么好东西。 提问:故事的名字叫什么?小蛇都找到了些什么好吃的东西? 总结:苹果是圆圆的、红色的;香蕉是长长的、黄色的;饭团是三角形的;葡萄是一串一串的、紫色的;菠萝是带刺的。 3.教师带领幼儿一起学小蛇吃东西的样子。 双手分开表示小蛇的嘴巴,生动的表情表现“啊呜”和“咕嘟”这两个拟声词。 4.教师第二遍完整的讲述故事 (1)教师和幼儿共同分享图画书《好饿的小蛇》 (2)教师讲故事,幼儿进行大胆表演。 三、结束

讨论:最后小蛇会怎样?会发生什么事情呢?引导幼儿进行观察后环衬和封底。 小结:小蛇吃饱了在呼呼呼的睡觉呢。 我的幸运一天 【设计意图】绘本讲述的是一个小猪误闯了狐狸家,小猪在危险时刻,沉着冷静,用自己的智慧逃离险境,使贪婪狐狸幸运的一天竟变成了小猪幸运的一天。大班幼儿具有初步的推理、表达能力,在活动中,运用启发式语言引导幼儿看看、想想、猜猜、说说,大胆推测故事情节,表达自己的想法,用动静结合来体验绘本学习的宽松氛围和乐趣,懂得在生活中提高安全意识,遇到危险和突发事件时,不要慌张害怕,要勇敢面对,用自己的智慧战胜敌人。 【活动目标】 1、通过猜猜、想想、说说等方式理解绘本内容,大胆表达自己的想法。 2、感受小猪如何使危险变为幸运的机智,知道在遇到危险时沉着、冷静,用智慧战胜敌人。

幼儿园大班绘本教案带反思——我爸爸

幼儿园大班绘本教案带反思:我爸爸 设计意图: 爸爸是幼儿非常熟悉和亲近的人。绘本《我爸爸》以孩子的口吻描写了一位高大、温柔的父亲形象,他样样事情都能干,温暖得像太阳。绘本中的爸爸开始被比喻成各种动物形象,最后作者突然笔锋一转,抒发了对爸爸的深深爱意。这是个幽默十足又感人至深的故事,让人久久不能忘怀。在本活动设计中,我首先让幼儿结合自己的生活经验谈论自己的爸爸,诸如他们的职业和爱好;再通过分段欣赏,引导幼儿理解绘本中布朗爸爸的高大形象,并尝试用“像……一样”的语句来赞美自己的爸爸;最后通过观看自己和爸爸的照片,让幼儿了解爸爸为自己做了很多事情,从而萌发对自己爸爸深深的爱。 目标: 1 理解故事内容,感受布朗爸爸真的很棒。 2 尝试用“像……一样”的句式夸夸自己的爸爸。 3 感受布朗父子间浓浓的情意,萌发爱自己爸爸的情感。 准备: 1 经验准备: 了解爸爸的职业、爱好。

2 材料准备: (1)幼儿收集爸爸带自己出去玩拍下的照片,教师将这些照片做成相册“大手牵小手,心会跟爱一起走”。 (2)完整的绘本《我爸爸》,以及从中节选9页编成的分段式绘本。 3 邀请幼儿的爸爸来参与活动。 过程: 一、谈谈自己爸爸的职业和爱好 师:每个人都有爸爸。谁愿意来介绍一下自己的爸爸是做什么工作的,有什么爱好? (幼儿自由介绍,教师加以提炼:威武勇敢的警察爸爸,享受美味的美食家爸爸,厨艺高超的厨师爸爸,喜欢爬山的爱运动爸爸,善于传授知识并且爱学习的教授爸爸,等等。) 师:你们的爸爸从事着不同的职业,都在努力工作,他们爱学习,爱运动,每个爸爸都与众不同。你们的爸爸真了不起! 二、分段欣赏绘本《我爸爸》 (一)欣赏绘本第一部分,认识布朗的爸爸。 师:今天,我请来了一位外国小朋友的爸爸,他是布朗的爸爸。我们一起来认识一下。 师(出示布朗爸爸的图画):你们看到的布朗爸爸是什

幼儿园大班语言教案:小猫的故事

教学资料参考范本 幼儿园大班语言教案:小猫的故事 撰写人:__________________ 部门:__________________ 时间:__________________

活动目的 1.启发幼儿在观察小猫图片的基础上,大胆地进行想象,创编小 猫的故事,并运用粘、剪、画的技能绘制连环画。 2.幼儿根据自己所编的《小猫的故事》,设计制作成四幅连环画。画面要求色彩丰富、鲜艳,内容简单,有意义,并能讲出自己所画的 故事内容。 3.培养幼儿想象力、创造力,发展幼儿的口语表达能力。 活动准备 1.连环画纸若干 2.八个不同动态,不同表情的线描小猫图样。 3.水彩笔若干,各色电光纸若干,胶水、剪刀、订书机等。 4.木偶小猫一只,连环画范样两幅。 活动过程 一、用木偶小猫表演形式引出课题。 1.木偶小猫:小朋友们好!我是小猫咪咪。今天,我给小朋友带 来的礼物是两张画,一张画的是我的故事,一张画是用彩色电光纸剪 贴成的小猫妙妙的故事(教师从小猫手中接过两幅连环画,并向幼儿 展示)。我的许多好朋友小花猫、小白猫、小黑猫都想请小朋友把它 们的故事编到连环画里。 教师:咪咪,我们小朋友都非常愿意给你帮忙。等小朋友们画好后,我就给你送去,好不好? 木偶小猫:"好!谢谢小朋友们,再见!" 二、教师出示、讲解范画。

1.教师出示范画(一),是用水彩笔绘制成的四幅连环画,请幼儿观看。教师讲解连环画内容:(1)小猫咪咪是一只非常玩皮的猫。一天早上,它从窗户里往屋外跳。一不留神,将猫爸爸放在窗台上的一盆花碰倒在地。(2)猫爸爸看见了,非常生气,气得胡子都撅了起来。(3)调皮的咪咪跳到家门口的树上,冲着猫爸爸做鬼脸。(4)咪咪认识到了自己的错误,将碰翻在地的花盆重新放回到了窗台上。 2. 教师出示范画(二),是用彩色电光纸剪贴而成的四幅连环画,请幼儿观察看,讲出连环画的故事内容:(1)一天中午,小猫妙妙正坐在树下玩耍。(2)忽然她看到前面小桥对岸,山羊老公公拄着拐仗正要过桥去。 (3)妙妙赶忙跑过桥去,扶着山羊公公过了桥。(4)山羊公公过了桥,高兴地对小猫妙妙说:"你真是一个爱帮助别人的好孩子啊!" 三、教师给幼儿出示八只不同动态、不同表情的小猫范样,如图2,启发幼儿大胆想象,开启幼儿的思路,编出小猫的故事。 1.幼儿编故事时要有时间、地点、人物及发生的事情的内容。 2.教师请幼儿将自己编的故事,用四幅画面表现出来。 3.教师请几名幼儿将自己编的故事讲给大家听。故事讲完后,教师进行讲评,肯定最合理的故事情节,要求幼儿编的故事内容要有意义。 四、幼儿进行创作连环画练习,教师巡回指导。 1.教师将活动分成两组:一组用彩色水笔来绘制连环画;一组用彩色电光纸粘贴连环画。

幼儿园大班语言教案春天里的故事

幼儿园大班语言教案春天里的故事设计意图: 我们班的幼儿在回答问题时,大部分会较完整地表达, 但讲述的语言不够优美,情节性不强。所以我通过利用多媒体课 件特有的情感功能,让幼儿在看一看,选一选,讲一讲的过程中 进行编述活动,引导幼儿自由想象,加入适当的表情、语言来连 贯表达,使幼儿的想象力、创造力、表达力得到充分的发展。 活动目标: 1、引导幼儿运用连贯、完整、优美的语言表述出课件中 实物的内容、情节。 2、引导幼儿合理地选择背景、主角,鼓励幼儿大胆地运 用不同的音量、声调,有表情地进行讲述,体验讲述活动的快乐。 活动准备:自制课件 活动过程: 一、感知理解讲述对象。 春姑娘悄悄地送来了许多美丽的图片,我们一起来欣赏、观察一下。 1、逐一显示图1至图5,引导幼儿运用已有词汇进行描述。 参考语:这是柳树,这是一棵怎样的柳树呢? 2、逐一显示图6至图8,引导幼儿运用优美词汇组合成 一句或一段完整的话。

参考语:谁在放风筝?心情怎样?用一句完整的话来说一说。 二、引导幼儿选图,运用已有经验讲述。 全屏显示8张图片,再现讲述对象。 1、想不想用这些图片来编述成一个完整的故事? 2、我们先一起来讨论一下,该怎样编故事?要注意哪些 问题? A、完整:比如,什么时候?在什么地方?有谁?干什么?发 生了什么事?心情如何?结果怎样?要让人听明白是怎么一回事。 B、运用优美的词语讲述,要给人一种美的享受。 C、运用不同的音量、声调,有表情地讲述。 D、加上一个恰当的故事名字,围绕故事名字讲述。 采用自由式或结伴式先进行编述,再在集体面前个人讲述。 采用幼儿点评与对比点评进行评价,提高孩子讲述能力。 回家把自己选择的图片画在纸上,组合成一幅美丽的画,然后请爸爸妈妈帮助你,把你编的完整、优美的故事写在图画的 下面,带来让大家一起来分享。

幼儿园大班绘本教案:小黑鱼

幼儿园大班绘本教案:小黑鱼活动目的: 1、体会高兴、快乐、伤心、惊喜、、惊讶、兴奋、生气、害怕的情绪。 2、懂得用积极的方式缓解消极的情绪。 准备活动: 1.《小黑鱼》视频、课件 2.各种情绪图片、字卡 3.黑色布袋子活动过程: 一、观看《小黑鱼》课件1. 出示课件"今天李老师又把小游给你们带来了,不过这次他出现在电视上,让我们来看看吧!"2.出示课件教师点击课件,同时教师引导孩子体会一些情绪,--"小黑鱼生活在大海里有一大群小红鱼朋友,这时候他的心情是很高兴(同时出示高兴地字卡),看到这两个字就想笑,谁来说说自己有哪些让你笑让你高兴的事情呢?……--"但是在一个倒霉的日子里,大金枪鱼吃掉了所有的小红鱼,小游自己游到了深海里,他的心情是伤心、害怕、孤单(出示伤心、害怕字卡)"……就像小游一样伤心害怕,但是一直是这样的心情吗? --"不是的,因为遇到了很多海洋生物,他们是谁呢?"(课件让孩子们一一观看到海葵)教师总结"原来自己生活的环境有这么多的奇迹,是这样的丰富多彩,后来小游又遇到了一群小红鱼,这时候他的心情是很兴奋地(出示兴奋地字卡)""怎么会又出现了小红鱼呢?哪里来的啊!"孩子们会说没有被大鱼吃掉,"那大鱼知道了一定会很生气喽!""你在什么时候会这样的兴奋啊?"……3. "你的爸爸妈妈有没有生气的时候,你是怎么看出来的"引导孩子们说说爸爸妈妈生气的样子,"不管是生气高兴伤心害怕,从表情上是可以看出来的。"二、对表情图片分类1、自己观察自己手里的表情,猜测此时是什么样的心情。 "孩子们,你们的桌子上呢有一些人的表情,我们要通过这些的表情来猜一猜他们是什么样的心情,是高兴还是兴奋和伤心或者害怕呢?然后放在相对应的情绪字卡下面,请每位小朋友取一张表情图片,给你们十秒钟的时间来辨别。"2.把表情图片进行分类3.教师进行总结分析"我们来看看这些心情下是什么样的表情。" 一一看过之后,三、把情绪分为正面和负面,并引导孩子用积极的心态缓解负面的情绪。 1.为情绪分类(点击课件看相应的小黑鱼课件)"我们来把这些心情分成两类,可以怎样分?" (让孩子们自己来分)2.讨论负面的情绪"孩子们你们喜欢这些感觉吗?(手指正面的情绪)"孩子们回答喜欢"这些呢是正面的情绪,积极向上的。""那你们喜欢这些感觉吗?"(手指负面的情绪)孩子回答不喜欢"这些呢是负面情绪,是消极的,遇到这些情绪那一天都会让人很失落的,但是我们时常会遇到这些情绪,就像小游,(出示小红鱼被金枪鱼吃掉的场景,自己在深海里游)伤心害怕都在自己的身上,在你害怕伤心的时候你怎么处理的呢?用得什

幼儿园大班绘本教案:快乐

幼儿园大班绘本教案:快乐 Picture book teaching plan of kindergarten large class: happine ss 编订:JinTai College

幼儿园大班绘本教案:快乐 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 教学目标 1.在阅读画面语言的基础上欣赏故事,感受故事表达的 温情。 2.理解故事角色对快乐的认识,能寻找并发现自己生活 中的快乐。 3.学习用“××的快乐是……”的句式完整地说出自己 或他人的快乐。 教学准备 1.将绘本《快乐是什么》制作成PPT (插入与画面相匹 配的音乐数段),微笑表情图,大字卡:“××的快乐就是……”、“快乐是什么?”。 2.事先向幼儿发放“快乐调查表”。 教学过程 1.谈话导入

师:(出示快乐的表情)看,这是什么表情?人的心情怎样就会微笑? 师:当我们心情高兴、快乐时,就自然会在脸上流露出微笑。老师今天很开心,很快乐,因为我能和小朋友在一起。老师知道你们一定也有很多快乐的事情,你愿意大声说出来和大家一起分享吗?谁来说说,你什么时候很快乐? 幼:我在做游戏的时候很快乐。 幼:画画时我很快乐。 师:小朋友都有自己的快乐,快乐真是一种美好的感觉。可是有一只小老鼠,(点击封面)它经常问妈妈:快乐是什么?(出示字卡)想知道鼠妈妈是怎么回答的吗?我们一起来看书吧。 自评:以笑的表情图导出“快乐”的主题,让幼儿结合自身经验说说自己的快乐,从而自然引出了《快乐是什么》这本图画书,又为阅读的开展积累了前期经验。 2.阅读感知 (1)师:(点击第一页)猜猜这是什么季节?你从哪里看出来的?(引导幼儿观察樱花盛开的景象。)

幼儿园大班语言教案我是大班的小朋友

幼儿园大班语言教案我是大班的小朋友 活动目标: 1、对诗歌内容感兴趣,激发做大班小朋友的自豪感. 2、初步学习有表情地朗诵诗歌. 活动准备; 课件-照片:拥抱的孩子,朋友之间的礼让,上课的时候。 活动过程: 一、导入 1.照片-拥抱,谈话引出课题 (1)你们看,这两个小朋友在干什么?(拥抱) 他们为什么要拥抱呢? (引导幼儿说一说,暑假小朋友很长时间没见面,见了面 很亲热) (2)暑假你们在家都做了哪些什么有意义的事呢? 我们都来说一说好吗? (鼓励幼儿大胆讲述) 二、展开 1.开学了,小朋友都长大了,成了一名大班的小朋友了。

有一首诗歌,名字是《我是大班的小朋友》,你们想听吗? 2.帮助幼儿欣赏并熟悉诗歌内容 (1)教师有感情的朗诵诗歌 这首诗歌叫什么名字? (我是大班的小朋友) 听了这首诗歌,你们心里有什么样的感觉? (让幼儿充分发表自己的见解,说一说自己的感受) (2)第二遍欣赏诗歌 你们再听一听, 诗歌里的小朋友帮助别人做了那些事? 你们最喜欢哪一句? 3.借助课件-照片,引导幼儿理解诗歌内容。 (1)成了大班的小朋友,应该怎样做呢? 诗歌里是怎样说的? 上课时是怎样做的? 帮助小弟弟小妹妹做了哪些事? (2)引导幼儿在教师的提示下练习念诗歌 4.教师和幼儿一起朗诵诗歌,激发幼儿产生做大班小朋友的自豪感。 三、结束

1.你们喜欢诗歌里的大班的小朋友吗?为什么? 2.你们现在也是大班的小朋友了,你们想怎样做大班的小朋友呢? 诗歌 我是大班的小朋友 开学了,我高高兴兴的来到幼儿园, 从现在起,我就是大班的小朋友了。 小弟弟,你听过老师讲课吗? 来!看我上课多认真,举手发言动脑筋。 小妹妹,你会穿衣服吗? 来!我帮你把衣服穿整齐; 小朋友,你会做玩具吗? 来!我折一个小纸球送给你。 老师老师您别夸奖我, 因为,我是大班的小朋友了。

(完整版)幼儿园大班绘本阅读教学设计

幼儿园大班绘本阅读教学设计《爷爷一定有办法》 一、活动目标: 1、关注故事的发展线索,感受爷爷的聪明才智。 2、养成从插图里仔细观察,善于发现的良好读书习惯。 3、体会爷爷在缝制毯子、外套、背心、手帕、纽扣时密密缝进了爷爷的一片爱,体会爷爷和约瑟之间的浓浓亲情。 二、活动重点: 养成从插图里仔细观察,善于发现的良好读书习惯。 三、活动难点: 体会爷爷在缝制毯子、外套、背心、手帕、纽扣时密密缝进了爷爷的一片爱,体会爷爷和约瑟之间的浓浓亲情。 四、活动准备: 1、绘本PPT、绘本《爷爷一定有办法》 2、剪刀、蓝色布料、毛毯、外套。。。。等教具、废旧布料、风车、玉米皮小人 五、活动过程: (一)出示剪刀和蓝色布料引起幼儿兴趣 1、孩子们,你们好!今天老师给你们带来了两样东西,来看一

看你认识它们吗?(出示剪刀)这是什么?(幼回答剪刀)剪刀是用来干什么的?(剪东西的)它又是什么?(出示蓝色布料)布料是用来干什么的?那你说一说布料可以做什么?(衣服、裤子、手绢等)哦,原来布料这么有用啊! 2、今天老师还给你们带来了一本特别好看的图画书,这把剪刀和布料就藏在这本图画书里面,让我们来看看吧! (二)引出故事,出示图画书 1、封面上都有谁?(一个白胡子老爷爷和一个小男孩) 2、那你猜一猜老爷爷和这个小男孩是什么关系呢? 3、上面还有一行字,就是故事的名字,叫爷爷一定有办法,爷爷会有什么办法呢?他是怎么做的?我们一起来看一下。 (三)介绍扉页 我们再来看扉页,你有看到了什么?(许多小星星)它的背景是什么颜色的?(蓝色)对,这就是一块带小星星的蓝色布料,故事就从这块蓝色的布料开始了。 (四)播放课件,幼儿观看课件,回答问题 1、这个故事叫什么名字? 2、约瑟小时候的小毯子是谁为他缝制的? 3、约瑟渐渐地长大了,奇妙的蓝毯子变得怎样了?妈妈说了什

幼儿园大班绘本教案《艾玛捉迷藏》

幼儿园大班绘本教案《艾玛捉迷藏》 1、通过阅读图书,观察艾玛和群象的神态,初步了解故事内容,了解艾玛的"特殊",体会艾玛的调皮、紧张的心理,感受幽默快乐的情绪。 2、能专注的阅读图书,产生阅读的兴趣。。 活动过程: (一)拼花格子大象,引发兴趣。 集体拼图游戏师:"请小朋友将自己手中的一张卡片拼在背景图上。"幼1:哎呀,是一只花格子大象。 幼2:身上五颜六色的真好看。 师:"今天我们讲的就是这只花格子大象的故事。 此环节安排用心良苦,有两点巧妙之处:利用操作游戏很自然的导入关于"大象"的阅读活动,吊足了孩子的胃口;"拼出的大象"与图书相吻合,将大象的特别之处前置,一目了然。 (二)师生第一次阅读,在教师引导下理解内容。 1、认识封面、书名、作者师:封面上有什么?数一数身上有哪些颜色? 幼1:花格子大象;幼2:有红色、黄色、绿色……师:这个故事的名字就叫《花格子大象艾玛》,是大卫.麦基着、任溶溶翻译的。 2、逐幅观察图1--图8,了解内容,感受色彩鲜艳的画面。 师:(图1)这些大象长得什么样? 幼儿观察后很快发现:有的大象年纪大了,都有皱纹了;有的大象高大;有的大象胖胖的……师:(图2、3)这是谁?它们在干什么? 幼:这是艾玛,它们在玩游戏。 幼:它们把艾玛抛起来了,玩得很高兴……(师朗读文本文字)师:(图4、5)灰象们都睡了,艾玛睡了吗?猜猜它想干什么? 幼:艾玛睡不着,想出去玩。 幼:艾玛的眼睛偷偷看看大象,在想怎么逗它们玩的主意……师:图6、7、

8:艾玛在干什么?它会变成什么样子? 幼儿一页一页专注的翻看,手指图边看边说。特别是学一学艾玛用鼻子卷树干摇果子,幼儿模仿角色动作,有的皱着眉头用劲的样子,有的摇头晃脑的样子……个个都很投入到角色中。 3、重点观察图9、11、12、14,观察艾玛和群像的神态细节,感受艾玛的调皮、幽默和快乐。 图9:艾玛涂上果汁变成灰色回到象群中,找一找哪个是艾玛?为什么? 幼儿立即手指中间的一只大象叫起来:在那儿。 师:在哪儿?从哪里看出来的? 幼1:其他大象都闭着眼睛,艾玛睁着眼睛四处看。 幼2:他翘着鼻子、抬着腿走路的样子,一下子看出来了……师:艾玛的动作、眼神看出他心里正高兴呢,有点得意、有点调皮的样子,大家学一学。 图11:艾玛回来很长时间了,其他大象什么表情?大象们认出艾玛了吗?艾玛在哪里?它又是什么表情? 幼:大象还是闭着眼睛一动不动。幼:它们没认出来,艾玛高兴的笑了。 幼:至于艾玛是翘着鼻子,眼睛斜看大象。 师阅读原文文字,问:艾玛眼睛瞪大,卷起长鼻子笑起来,大家学一学图12:突然大象们怎么了?BOOO!什么意思? 幼:耳朵竖起来,吓了一跳。 幼一边说一边做着眼神:大象被吓了一跳,瞪大眼睛,眼珠子都朝上翻。 大家听了哈哈笑起来,很自然的也学起大象吓了一跳,吃惊的样子,唯妙唯肖。 图14:下雨了,艾玛的花格子图案又出现了,大象们看到了是什么反应呢?每只大象笑的样子不一样,大家学一学。 幼儿:有的坐着,鼻子翘上天大笑;有的捂着嘴笑;有的背靠背笑;有的张大嘴笑……大家学动作把活动推向了高潮,孩子们尽情地学起大象们的动作、表情。

幼儿园大班绘本教案:我的幸运一天

幼儿园大班绘本教案 :我的幸运一天 【活动目标】: 1、理解故事内容,大胆想象情节的发展,感受故事中小猪在遇到狐狸时通过自己的机智,从而使危险变成了幸运。 2、愿意向小猪学习,并尝试以故事中小猪的身份,大胆想出各种可以帮助自己逃脱危险的方法。 3、知道在生活中遇到危险或困难时,不要害怕和慌张,要立刻开动脑筋想出好办法,就一定能化险为安,解决困难。 【活动准备】:《我的幸运一天》PPT 【活动过程】: ㈠引发幼儿对故事的兴趣 教:有一只小猪想去找好朋友小兔子玩,可是他不知道小兔子的家在哪里,于是便决定自己去找。当他看到一间房子时,便走过去想试试自己的运气。你们猜,这会不会是小兔子的家?(幼儿自由猜测)你们想知道,这间房子到底是谁的家吗?请听故事(拿出故事书) ㈡教师边翻图画书,边分段讲述故事,并鼓励幼儿大胆想象情节的发展。 1、讲述开始部分,并引导幼儿想象情节的发展。 教:你们猜,后来怎样了? 2、接着讲述中间部分,引导幼儿想象结尾。 教:(引导幼儿看图)瞧,这时狐狸已经变成什么样子了?那你们猜,狐狸最终有没有吃到小猪?为什么呢?小猪后来有怎么样了呢? 3、讲述故事结尾部分 ㈢通过提问,使幼儿回忆故事情节,感受小猪在遇到狐狸时通过机智,从而使危险变成了幸运。 1、小猪在遇到狐狸后,被狐狸抓住了,他害怕吗?他有没有放弃救自己?有没有惊慌?在这么危险的时候,他怎么做的呢?

2、小猪想了几个办法?第1个是什么?他是怎么说的?狐狸有没有听小猪的话呢?为什么会听小猪的话,按小猪说的去做呢?后来,狐狸便忙了起来,他干了什么事呢?(可引导幼儿看图) 3、当狐狸把小猪洗干净后,有没有吃到小猪呢?为什么?原来小猪又想了第2个办法,狐狸有没有听小猪的话?狐狸是怎么想的?狐狸又忙了起来,他干了什么事呢?(可引导幼儿看图) 4、当小猪吃完了丰盛的午餐后,这次狐狸有没有吃到小猪呢?为什么?原来,小猪又想了第3个办法,狐狸有没有听小猪的话呢?狐狸是怎么想的?狐狸是怎么给小猪按摩的呢?(引导幼儿看图)瞧,这时狐狸的头上已经冒出什么了?可是,小猪有没有让他停下呢?小猪说什么?最后,狐狸累的都怎样啦?(引导幼儿看图) 5、最后,狐狸有没有吃到小猪呢?小猪后来怎么样啦?(引导幼儿看图)他一边往家跑,一边笑眯眯地说了什么呢?为什么小猪说“这是我最幸运的一天呢”? 6、你喜欢小猪吗?为什么? ㈣尝试以故事中小猪的身份,大胆想出各种帮助自己逃脱危险的办法。 教:小猪在遇到危险时,一点也不惊慌,冷静下来,想出了那么多可以说服狐狸的办法,真是一个既勇敢又聪明的小猪!我要向他学习,你们呢?如果你是这只小猪,当你被狐狸抓住了,你会不会害怕和放弃呢?你会怎么办?你会想什么办法帮助自己逃脱危险呢? ㈤回到生活中,迁移生活经验,使幼儿知道不管遇到什么危险或困难,都不要害怕和慌张,应立刻动脑筋,想办法,才能化险为安,解决困难。 幼儿园故事:七十二变 一天,孙悟空被儿子孙小圣缠上了:"爸爸,听人说您会七十二变?" 悟空说:"这不假,你爸爸样样都会变。" "教教我吧!" 悟空磨不过儿子,就教了他一招——变树。

幼儿园大班绘本的阅读教案

幼儿园大班绘本的阅读教案 作品分析: 《床底下》这本书自始至终都在以一种轻松、风趣、调侃的笔调描绘那些床底下的怪物,直到最后才将“镜头”从床底下拉到床上,推出那个大大的、具有震撼力的“你”——原来,正是这个作为人的“你”(即孩子),吓得床底下的妖物们“跌跌撞撞、失魂落魄”地逃窜!。“现在,床底下什么怪物也没有了。”全书到这儿戛然而止。如此轻描淡写的一笔,却既让人释怀,又令人回味。它其实是在含蓄地告诉孩子:你所惧怕的东西,恰恰是惧怕你的东西。战胜恐惧,说到底就是战胜自己——因为,那些床底下的妖物在现实生活中并不存在,它们都是你自己一手制造出来的。 每到午睡时候,在上床前,孩子们总爱趴到床下看看,在他们看来,床底下是一个非常神秘的地方,由此,我们利用孩子的这一兴趣点设计了《床底下》这一教学活动,目的在于满足孩子的好奇心,在游戏中培养幼儿的阅读兴趣,发展孩子的语言表达能力。 活动目标: 1、阅读故事,仔细阅读画面,帮助幼儿理解故事的内容。 2、通过故事让幼儿学会遇到困难要迎面而上,想办法克服困难。 活动准备: 绘本《床底下》PPT. 活动过程:

一、导入活动1.教师:小朋友,又到我们讲故事的时候了,开心吗? 2.今天老师给你们带来了一个非常有趣的故事,我们一起来看一看好吗? 二、阅读故事1.出示书的封面。 (1)教师:小朋友你们看,书的封面上有谁?他在干什么呢?(小男孩爬在床上朝床底下看)(2)教师:这本书的名字就叫做《床底下》。 (3)教师:床底下会有什么呢?谁来猜一猜?你们猜的对吗?我们继续往下看。 2.阅读第一页。 (1)教师:他的床底下究竟有什么东西呢?你看到了吗? 教师讲述画面:床底下有一只臭烘烘的鞋子,一块蓝绿相间的拼图玩具,一个苹果核。。。。。。可是床底下还有一些别的东西呢! (2)幼儿观察画面:(教师做嘘的动作)小男孩在干什么?(睡觉)他是独自一人睡觉,还是有人陪睡?(独自一人睡觉)他在睡觉之前做了一件什么事?你看出来了吗?(玩机器人玩具、看了一本书)(3)教师:那你猜猜他睡着了,容易干什么呢?(做噩梦)(4)教师:真的吗?他会梦见谁呢?我们一起来看。 3.阅读第二页。

幼儿园大班语言教案《我想…》含反思

幼儿园大班语言教案《我想…》含反思 大班语言教案《我想…》含反思适用于大班的语言主题教学活动当中,让幼儿学习用儿歌中的句式创编儿歌,理解儿歌的内容,感受儿歌的语言美,敢于在集体面前大胆地表达自己的想法,快来看看幼儿园大班语言《我想…》含反思教案吧。 活动设计背景 喜爱动物是幼儿的天性,好奇好问是幼儿的特点。这篇儿歌以简单的语句,启发性的提问激发幼儿展开大胆的想象,鼓励幼儿尝试用儿歌的语言表达奇思妙想和对动物的喜爱。同时,在欣赏和创编儿歌的过程中,幼儿可以观察、发现、认识小动物的不同特征,丰富一定的科学知识,萌发幼儿热爱大自然的情感。 活动目标 1.理解儿歌的内容,感受儿歌的语言美。 2.学习用儿歌中的句式创编儿歌。 3.敢于在集体面前大胆地表达自己的想法。

4.在感知故事内容的基础上,理解角色特点。 5.愿意分角色表演简单的故事情节。 教学重点、难点 重点:.理解儿歌的内容,感受儿歌的语言美,敢于在集体面前大胆地表达自己的想法 难点:学习用儿歌中的句式创编儿歌 活动准备 动物图片若干自制纸箱1个 活动过程 一:开始环节 观察动物图片,引出活动主题 1.请幼儿从纸箱中依次摸出一张动物图片,互相进行观察。 2.图片上的动物叫什么?它什么地方最特别?这些特别的地方能干什么? 3.假如你像动物一样有这些特别的地方,你想做什么?

4.有一首儿歌,写的就是刚才我们讲的事情,名字叫《我想…………》 二:基本环节 (一)引导幼儿欣赏儿歌,理解儿歌内容 1.教师有感情地朗诵儿歌,引导幼儿发现儿歌的排列句式 2.问:儿歌的题目是什么?有哪些词重复出现? (二)鼓励幼儿创编儿歌 1.如果你是小鸟(小兔小鱼),你想做什么? 2.鼓励幼儿展开想象,为每段儿歌续编一句话,如:我想有对翅膀,我用翅膀飞翔。 (三)导幼儿根据儿歌句式创编新的儿歌 1.还喜欢什么小动物?你想变成什么?想做什么? 2.教师示范创编,如:我看见小鸭,我想有双鸭蹼,我用鸭蹼游到海里玩。 3.以4人一组合作创编一段儿歌。(讨论) 三:结束环节

幼儿园大班绘本教案:纸真好玩

幼儿园大班绘本教案:纸真好玩 一、设计意图《纸真好玩》是一本与小朋友平时所看的完全不一样的书,它不是给小朋友讲一个故事,而是一本告诉小朋友怎么和纸玩游戏的书。在这本书中,作者从易到难呈现了22中制作纸质玩具所需的材料、制作步骤和玩法,根据这些提示,小朋友动动自己的小手,通过撕、折、剪、贴、画等多种方式就可以做出这些好看又好玩的玩具。在这些活动中,幼儿需要调动自己的感官,充分运用手指的小肌肉,因此能有效地锻炼手眼协调能力,提高感觉统合的水平,促进大脑前庭的发育。 《纲要》中指出,要培养幼儿对生活中常见的简单标记和文字符号的兴趣,这本书不只是一本手工操作书,当幼儿阅读这些图示步骤时,无形中就学会了操作说明,通过阅读,幼儿能获得操作的乐趣,也发展了阅读的兴趣,将进一步促进幼儿阅读能力的发展,值得我们和孩子一起阅读。 二、活动设计(一)活动目标1、学习阅读科学类的工具书。 2、阅读中能留意各种材料的汉字和贴、粘、撕、折等动作的汉字。 3、体验根据文字与图谱步骤提示制作纸玩具的乐趣。 (二)活动准备1、教学大书《纸真好玩》,纸质玩具若干。 2、材料:卡纸、色纸、图画纸、皱纹纸等各种操作用纸。 3、彩色笔、白胶、胶水、剪刀、回形针、水彩笔。 4、可以张贴挂图的活动操作板。 (三)活动过程1、出示纸质玩具,引发幼儿对纸质玩具的兴趣与好奇☆你们知道这些玩具都是用什么材料做的吗? ☆阅读绘本的封面。看看封面的照片和书名,猜猜书里会是什么? 2、阅读绘本,了解制作玩具的方法步骤。 ☆选择一张制作纸质玩具的图片说说图上有些什么内容(了解图上有4个部分的内容)☆看看玩具是如何制作的我们要做的这个玩具,名称是什么? 制作这个玩具需要什么工具? 我们怎么制作这个玩具?

幼儿园大班语言教案(6篇)

(一)语言:故事——月亮姑娘做衣裳 活动目的: 1. 使幼儿知道月亮时圆时缺,引起幼儿观察月亮的兴趣。 2. 学习词:量、衣裳、可惜。 活动准备: 月亮不同时期的图片实物投影仪 活动过程: 1. 提问引起幼儿兴趣:在晴朗的晚上,天上回看见什么呢?(月亮、星星)月亮是什么形状的? 2. 教:月亮姑娘她很爱美,一直都想穿上美丽的衣裳,可是怎么 也没办法,小朋友想不想知道是怎么回事呢? 3. 教师讲述故事《月亮姑娘做衣裳》,边讲边出示图片。 4. 在讲完以后,请小朋友想一想,为什么月亮姑娘的衣服一直都 穿不上呢?(因为月亮每天都在变化,所以穿不上) 5. 复述故事,听完以后讨论:小朋友有什么方法可以让月亮姑娘 穿上美丽的衣裳呢?请小朋友开动脑筋想办法。 6. 活动延伸:可以给小朋友讲一讲月亮为什么会有阴晴圆缺,太 阳地球和月亮的关系又是什么样子的。(月亮其实是地球的一颗卫星,它围绕地球旋转,白天看不见它,因为太阳太亮了,晚上看不到太阳的时候才会看见它,它反射的是太阳光,有的时候地球的影子遮住了太阳光,所以我们看到的月亮时圆时缺。) (二)大班语言:月亮姑娘做衣裳 教学目标: 1. 理解故事内容,进一步了解月亮的变化过程,知道月亮每天都在变化. 2. 学习故事中优美的语言,并根据故事展开丰富的想象. 准备: 月亮变化图4张,衣裳图3张 纸,剪刀,胶水,蜡笔,记号笔等. 过程: 1. 谈话导入,引出月亮做衣裳的课题. (1) 以猜谜语的形式导入活动.

师:有时圆圆像个盘子,有时弯弯像只船,要问这个是什么?晚上抬头向天看.(月亮) (2)师:冬天到了,天气冷了,人们都穿上厚厚的衣服.月亮姑娘呀她也觉得很冷,想去做一件衣裳,那你们想想月亮姑娘该做什么样的衣裳呀? 幼儿讨论 2. 结合图片,分段欣赏故事. (1) 教师讲述第一段 提问:a﹑哎呀,为什么裁缝师傅给她做的衣裳会穿不上呢?(因为她长胖了一点,好象弯弯的镰刀) b﹑那该怎么办呀? 幼儿回答。 (2)教师讲述第二段。 提问:a、这回裁缝师傅给她重新做的衣裳她能穿上吗?(不能) b、唉!到底是怎么回事呀?(月亮姑娘又长胖了,弯弯的像小船) (3)教师讲述第三段。 提问:a、这回月亮姑娘能穿上新衣裳吗?(不能)为什么?(因为她又像一只圆盘子了) b、裁缝师傅会不会再给她做衣裳了?(不会,因为她的身材量不准) c、为什么她的身材会量不准?(因为她每天都在变化) 师:今天我们学的这个故事的名字就叫“月亮姑娘做衣裳”。那我们接下来再完整欣赏一遍故事。 3. 结合图片,完整欣赏故事。 提问:月亮姑娘是怎么变的?(引导幼儿学习月亮变化词句,如细细的、弯弯的像眉毛,好象弯弯的镰刀,弯弯的像小船,圆圆的像盘子。 4. 给月亮姑娘做衣裳。 (1)师:原来月亮姑娘每天都在变化着,平时呢我们小朋友也可以观察一下月亮的变化。现在月亮姑娘还没有穿到合身的衣裳,晚上出来她会冷的呀!如果请你来当一回裁缝师傅,你会给月亮姑娘做一件什么样的衣裳?幼儿回答 (2)幼儿制作衣裳,教师指导。 (3)请幼儿介绍自己制作的衣裳。 (三)语言:月亮姑娘做衣裳(大班) 目标: 1、理解故事内容,学习描述月亮变化的语句。 2、初步了解故事中比喻手法的运用。 准备: 自制夜晚天空的背景图,月亮变化图。 过程: 1、以猜谜语的形式导入活动。 “有时圆圆像个盘子,有时弯弯像只船,要问这个是什么?晚上抬头向天看。”

相关主题
相关文档 最新文档