当前位置:文档之家› 酚树脂成形材料︵电木粉︶

酚树脂成形材料︵电木粉︶

酚树脂成形材料︵电木粉︶
酚树脂成形材料︵电木粉︶

c 版

.

Phenolic molding compound

匡子龙

Jacky.kuang@https://www.doczj.com/doc/bf16505053.html,

目錄

1.電木粉定義

2.電木粉之填料添加劑及作用

3.電木產品的特性

4.電木粉儲存環境及用途

5.合進電木粉簡介

6.各種電木粉物性表

7.電木模具設計要點

這份資料花了很多時,閱讀了大量有關電木粉的資料才整理完成,非常感謝文員辛勤的打字,雖經再三校對,但疏漏之處在所難免,盼各界人士賜予指正.俟再版時加以修正.

一.電木粉定義

1,電木就是phenolic resin,是由酚(phenol)與甲醛(formaldehyde)進行聚縮合反應所得到的交聯態聚合物,若甲醛量大於酚並以酸為媒介所得到的phenolic為novolac(酚醛清漆)type,屬線性結構,若再加入hexamethyltetramine(六甲銨)作為硬化劑則可使其進行交聯反應;另一種phenolic則是resol(甲階酚醛樹脂) type,其乃是以鹼為媒介,屬交聯態聚合物..是一種高分子化合物.

2.電木粉屬熱固性塑膠,在注塑成型過程中受熱發生聚合反應,透過交聯劑(或稱做架橋劑)的作用分子鏈間產生化學交鏈形成緊密的綱狀結構.故為綱狀聚合物.

3.交聯反應就是將線性高分子再反應成為綱狀高分子,經過交鏈反應後的高分子大概會有下面幾個特點.

(1).彈性減少(2).硬度增加

(3).熱塑性喪失,也就是變成熱固形高分子 (4).不易分解

交鏈反應簡圖:

--------------- cross-linking --+--+-+----+--

--------------- -------------> --+-++-+-+--+--

--------------------- ----+----+--+---++--+-

交聯反應

二. 電木粉之填料添加劑及作用

各種填料及添加劑的作用

1.石棉:提高耐熱性能.(已采用別的添加劑代替).

2.玻璃纖維:增高絕緣性能和材料的韌性. (已采用別的纖維代替).

3.六甲銨:是一種硬化劑,提高硬化性能,但反應時會產生NH3.

4.雲母:提高絕緣性能.

5.橡膠:提高韌性. (已采用別的添加劑代替).

6. 酚醛樹脂:電木粉的主要原料

7.木粉:電木粉的主要原料

novolac型(T375J PM-8375) resol 型(PM-9820 PM-9630…)添加六甲銨會產生刺激性銨气! 自我反應沒有銨气,有水蒸汽.

三. 電木產品的特性

1,電木產品,因是交聯反應而成的緊密綱狀結構,而交聯反應本身是不可逆的化學反應,因此電木粉在加工後并不會象熱塑性塑膠般受熱軟化,若溫度過高則發生裂解而不會有軟化變形的現象.如圖為電木對溫度之示意圖:

固體(粉末顆粒)

熔融 架橋固化 裂解 2,電木粉成型時要求的成型條件.

3,電木產品之優异特性.

1優异的耐熱性. ○

2優异的耐物理性(硬度高,膨脹系數低) ○

3優异的耐化學性 ○

4高耐電弧 4, 常見的熱固性塑料包括環氧樹脂(epoxy)、酚系樹脂(phenolics)、聚酯樹脂(polyester)、PU(Polyurethane)等

加 熱

加 熱

加 熱

四,電木粉儲存環境及用途1.電木粉儲存環境

20℃以下之陰涼干燥處,堆放高度為6~8層.

2.電木粉用途

a.電器開關.

b.變壓器骨架.

c.斷電器.

d.繼電器.

e.剎車何服器,汴塞.

f.煙灰缸.

g.皮帶輪

h.電腦SLOT.

…………..

五.合進電木粉簡介

1,長春T375J和住友PM-8375是同等級的一般電木粉,耐熱﹑耐燃.T375J流動性略優于PM-8375,T375J熱變形溫度180℃浸錫溫度:400℃ 3秒,PM-8375熱變形溫度170~190℃, 浸錫溫度:400℃ 3秒,此兩款材質適用于耐熱﹑耐燃﹑體積大﹑厚重之線架.由於此兩款材料生產中有加入六甲銨作硬化劑會產生NH3,生產時故對模具有腐蝕性.

2,住友PM-9820和日立之CP-J-8800是同等級的無銨氣高耐熱級電木粉,難燃﹑耐熱﹑耐電壓.PM-9820熱變形溫度200℃~220℃.浸錫溫度:400℃ 3秒,CP-J-8800熱變形溫度為190℃,浸錫溫度:400℃ 5秒,此兩款材質適用于小型化﹑高信賴性﹑細小的線架.屬自身反應不會產生NH3,故對模具無腐蝕作用.

3,住友PM-9630和日立之CP-J-8600是同等級的無銨氣高強度,高耐熱性電木粉,PM-9630熱變形溫度為250℃~270℃,浸錫溫度為400℃ 3秒,CP-J-8800熱變形溫度為195℃焊錫溫度為450℃ 5秒,此兩款材質適用于制做輕﹑薄﹑短﹑小化﹑高信賴度,SMT化(多葉片型)線架. 屬自身反應不會產生NH3,故對模具無腐蝕作用.

4,住友AM-113是DAP系列產品,高耐路經性(CTI為0),尺寸安定性.絕緣破壞強度受溫度影響不大,比較穩定.長期使用溫度130℃,熱變形溫度180℃,焊錫溫度360℃5秒,主要用于電腦SLOT.SMD BOBBIN 等短﹑小化類在高溫情下仍要求很高絕緣性的產品. 屬自身反應不會產生NH3,故對模具無腐蝕作用.

曲折伸長率: PM-9630

沖擊強度: AM-113

六.各種電木粉物性表

七.電木模具設計要點

1.電木粉成型時要求料筒前溫度為80℃~90℃,後筒溫度為60℃~80℃,模具溫度為

160℃~180℃,故模具設計時需加熱裝置,通常采用發熱管.

2.模具型腔,型芯鍍鉻可使成型產品容易射出.

3.電木粉受熱後發生交聯反應時會產生氣體,故模具設計時必須于結合線部位或流

道末端設計排氣槽通常深度為0.03~0.05MM,寬度為4~6MM.

4.電木產品硬度較高,而且要求模具溫度較高,故需選用耐磨的模具鋼材.通常要求

鋼材強度,耐磨性和耐熱性都很好的鋼材,如粉末工具鋼.

5.電木粉含有各種填料,特別是含有硬質礦物填料, 硬質礦物填料像磨砂一樣磨損

模壁,在熔體高速沖刷下, 電木粉注射模的流道和型腔磨損都很嚴重,尤其是澆口.

所以電木粉澆口通常用鑲件式,以便隨時替換.因為此樣所以公司電木粉模具壽命定為:25萬模

热固性树脂

树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,也不能溶解。热固性树脂其分子结构为体型,它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是机械性能较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 指在加热、加压下或在固化剂、紫外光作用下,进行化学反应,交联固化成为不溶不熔物质的一大类合成树脂。这种树脂在固化前一般为分子量不高的固体或粘稠液体;在成型过程中能软化或流动,具有可塑性,可制成一定形状,同时又发生化学反应而交联固化;有时放出一些副产物,如水等。此反应是不可逆的,一经固化,再加压加热也不可能再度软化或流动;温度过高,则分解或碳化。这也就是与热塑性树脂的基本区别。 在塑料工业发展初期,热固性树脂所占比例很大,一般在50%以上。随着石油化工的发展,热塑性树脂产量剧增,到80年代,热固性树脂在世界合成树脂总产量中仅占10%~20%。 热固性树脂在固化后,由于分子间交联,形成网状结构,因此刚性大、硬度高、耐温高、不易燃、制品尺寸稳定性好,但性脆。因而绝大多数热固性树脂在成型为制品前,都加入各种增强材料,如木粉、矿物粉、纤维或纺织品等使其增强,制成增强塑料。在热固性树脂中,加入增强材料和其他添加剂,如固化剂、着色剂、润滑剂等,即能制成热固性塑料,有的呈粉状、粒状,有的作成团状、片状,统称模塑料。热固性塑料常用的加工方法有模压、层压、传递模塑、浇铸等,某些品种还可用于注射成型。 热固性树脂多用缩聚(见聚合)法生产。常用热固性树脂有酚醛树脂、脲醛树脂、三聚氰胺-甲醛树脂、环氧树脂、不饱和树脂、聚氨酯、聚酰亚胺等。热固性树脂主要用于制造增强塑料、泡沫塑料、各种电工用模塑料、浇铸制品等,还有相当数量用于胶粘剂和涂料。 从发展看,热固性树脂还在进一步改进质量,研制新品种,以满足新加工工艺开发的要求。用弹性体和热塑性树脂进行改性、开发注塑级热固性模塑料以及反应注射成型用专用树脂及配方,近年来已受到很大重视。采用互穿聚合物网络技术将为热固性树脂的合成开辟新途径。[1] 固化和玻璃化是两个完全不同的过程,热固型树脂固化温度以上才能发生交联反应,而玻璃态到高弹态转变是相变问题。一个是化学过程、一个是物理过程,研究玻璃化的时候可以不理固化的问题。对应到工程上就是固化的时候看固化温度,树脂的最高工作温度看玻璃化温度。 环氧树脂溶解液固化剂

古建中国详解合成树脂瓦施工步骤

古建中国详解合成树脂瓦施工步骤 合成树脂瓦作为新一代轻型屋面建筑材料,产品节能环保,并可再生利用,其色泽丰富亮丽、经久不褪色,造型美观且富立体感,符合中国建筑文化特色;同时具有绝缘、防水抗风、耐酸碱、绿色环保、轻质易安装等优点,是各类建筑屋面的理想材料,普遍适用于商场、住宅小区、别墅、仿古建筑等屋面,尤其适用于目前大力推广的“平改坡”工程。 合成树脂瓦的特点 1、合成树脂瓦施工简便,使用专用的固定件安装牢固,可用于坡度为20~80度的钢结构屋面、混凝土屋面和木结构屋面;瓦片可根据不同坡屋面按施工需要的尺寸定做(长度为节距的整数倍),整片纵向长度最长可达6米,铺装效率高。 2、合成树脂瓦表面致密、光滑,能产生“荷叶效应”,不易吸附灰尘,具有超强的自清洁性能,施工后维护成本低;耐候性和耐久性好,在紫外线、温、湿、热、寒环境下能保持其颜色和物理性能稳定,使用寿命可达50年。

3、为防止单向搭接造成的倾斜和不平整现象,主瓦横向安装要一上一下排列,即第二张瓦扣压第一张瓦和第三张瓦,第四张瓦扣压第三张和第五张瓦并各搭接一个瓦波,其余以此类推;主瓦、正脊瓦、斜脊瓦安装选用不同规格的自攻螺钉固定,固定瓦时先将防水圈置于保护垫下面的凹槽内,并将自攻钉穿过保护垫中心孔(弧面朝下),与檩条固定牢固,最后安装防水帽。 合成树脂瓦施工步骤: 第一步、首先安装屋顶主瓦,特别是第一张瓦的安装非常重要,抱枕瓦底边与CC1线或DD1线保持垂直。第一张瓦摆好后将最下的槽条和波峰固定好。然后依次安装其他主瓦。 第二步、安装好主瓦之后,将正脊瓦安装上。正脊瓦指的就是安装在顶端屋脊上的瓦。从靠近主瓦区的一侧开始安装,第一张正脊瓦不能和主瓦搭接重叠,每两张正脊瓦要搭接一个波形。

材料成形的方法

金属液态成形——液态金属在铸型中冷却、凝固形成零件。液态成形是机械制造中生产机器零件或毛坯的主要方法之一。常用的铸造。 一 铸造定义 铸造(最广泛):将液态合金浇注到与零件的形状、尺寸相适应的铸型空腔中,使其冷却凝固,得到毛坯或零件的成形工艺(生产方法)。 二 铸造分类 1.按铸型材料来分:砂型铸造、金属型铸造、石墨型铸造、陶瓷铸造; 2.按充型方式来分:重力充型、高压充型、低压充型、离心力充型; 3.按液态成形工艺方法的作用力不同又可分为两类: 重力作用下的液态成形工艺方法:砂型铸造、金属型铸造、熔模铸造、气化模铸造、陶瓷型铸造等; 外力作用下的液态成形工艺方法:离心铸造、压力铸造、低压铸造、挤压铸造等。 三 其铸造工艺如图所示 四 铸造的特点 1.能制成形状复杂、特别是具有复杂内腔的毛坯:如阀体、泵体、叶轮、螺旋浆等。 2.铸件的大小几乎不受限制,重量从几克到几百吨。 3.常用原材料来源广泛,价格低廉,成本较低,其应用及其广泛。如机床、内燃机中铸件70~80%;农业机械40~70%。 4.但铸造生产过程较复杂,废品率一般较高,易出现浇不足,缩孔,夹渣、气孔、裂纹等缺陷。 五 铸造常见的主要问题 组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能,特别是冲击性能较低。 基本工艺过程 制作模样 配制型砂 制作芯盒 制作芯砂

锻压: 对坯料施加外力,使其产生塑性变形、改变尺寸、形状及改善性能,用以制造机械零件、工件或毛坯的成形加工方法。 主要方法: 锻造:将坯料加热到高温状态后进行加工. 冲压:将坯料在常温下进行加工. 特点: (1)改善金属组织、提高力学性能 (2)节约金属材料 (3)较高的生产率 (4)毛坯或零件的精度较高 (5)不能加工脆性材料 (6)不能获得形状复杂的毛坯或零件 一自由锻: 1.定义:利用冲击力或压力,使金属在上、下砧铁之间,产生塑性变形而获得所需形状、尺寸以及内部质量锻件的一种加工方法。自由锻造时,除与上、下砧铁接触的金属部分受到约束外,金属坯料朝其它各个方向均能自由变形流动,不受外部的限制,故无法精确控制变形的发展。 2.分类:手工锻造和机器锻造两种。手工锻造只能生产小型锻件,生产率也较低。机器锻造是自由锻的主要方法。 3. 特点:工具简单、通用性强,生产准备周期短。自由锻件的质量范围可由不及一千克到二、三百吨,对于大型锻件,自由锻是唯一的加工方法,这使得自由锻在重型机械制造中具有特别重要的作用,例如水轮机主轴、多拐曲轴、大型连杆、重要的齿轮等零件在工作时都承受很大的载荷,要求具有较高的力学性能,常采用自由锻方法生产毛坯。 由于自由锻件的形状与尺寸主要靠人工操作来控制,所以锻件的精度较低,加工余量大,劳动强度大,生产率低。自由锻主要应用于单件、小批量生产,修配以及大型锻件的生产和新产品的试制等。 4自由锻工序 自由锻工序:基本工序、辅助工序和修整工序。 (1)基本工序

复合材料成型工艺

树脂基复合材料成型工艺介绍(1):模压成型工艺 模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。模压成型工艺的主要优点:①生产效率高,便于实现专业化和自动化生产;②产品尺寸精度高,重复性好;③表面光洁,无需二次修饰;④能一次成型结构复杂的制品;⑤因为批量生产,价格相对低廉。 模压成型的不足之处在于模具制造复杂,投资较大,加上受压机限制,最适合于批量生产中小型复合材料制品。随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展,压机吨位和台面尺寸不断增大,模压料的成型温度和压力也相对降低,使得模压成型制品的尺寸逐步向大型化发展,目前已能生产大型汽车部件、浴盆、整体卫生间组件等。 模压成型工艺按增强材料物态和模压料品种可分为如下几种:①纤维料模压法是将经预混或预浸的纤维状模压料,投入到金属模具内,在一定的温度和压力下成型复合材料制品的方法。该方法简便易行,用途广泛。根据具体操作上的不同,有预混料模压和预浸料模压法。 ②碎布料模压法将浸过树脂胶液的玻璃纤维布或其它织物,如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块,然后在金属模具中加温加压成型复合材料制品。③织物模压法将预先织成所需形状的两维或三维织物浸渍树脂胶液,然后放入金属模具中加热加压成型为复合材料制品。④层压模压法将预浸过树脂胶液的玻璃纤维布或其它织物,裁剪成所需的形状,然后在金属模具中经加温或加压成型复合材料制品。⑤缠绕模压法将预浸过树脂胶液的连续纤维或布(带),通过专用缠绕机提供一定的张力和温度,缠在芯模上,再放入模具中进行加温加压成型复合材料制品。⑥片状塑料(SMC)模压法将SMC片材按制品尺寸、形状、厚度等要求裁剪下料,然后将多层片材叠合后放入金属模具中加热加压成型制品。⑦预成型坯料模压法先将短切纤维制成品形状和尺寸相似的预成型坯料,将其放入金属模具中,然后向模具中注入配制好的粘结剂(树脂混合物),在一定的温度和压力下成型。 模压料的品种有很多,可以是预浸物料、预混物料,也可以是坯料。当前所用的模压料品种主要有:预浸胶布、纤维预混料、BMC、DMC、HMC、SMC、XMC、TMC及ZMC等品种。 1、原材料 (1)合成树脂复合材料模压制品所用的模压料要求合成树脂具有:①对增强材料有良好的浸润性能,以便在合成树脂和增强材料界面上形成良好的粘结;②有适当的粘度和良好的流动性,在压制条件下能够和增强材料一道均匀地充满整个模腔;③在压制条件下具有适宜的固化速度,并且固化过程中不产生副产物或副产物少,体积收缩率小;④能够满足模压制品特定的性能要求。按以上的选材要求,常用的合成树脂有:不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基树脂、呋喃树脂、有机硅树脂、聚丁二烯树脂、烯丙基酯、三聚氰胺树脂、聚酰亚胺树脂等。为使模压制品达到特定的性能指标,在选定树脂品种和牌号后,还应选择相应的辅助材料、填料和颜料。 (2)增强材料模压料中常用的增强材料主要有玻璃纤维开刀丝、无捻粗纱、有捻粗纱、连续玻璃纤维束、玻璃纤维布、玻璃纤维毡等,也有少量特种制品选用石棉毡、石棉织物(布)和石棉纸以及高硅氧纤维、碳纤维、有机纤维(如芳纶纤维、尼龙纤维等)和天然纤维(如亚麻布、棉布、煮炼布、不煮炼布等)等品种。有时也采用两种或两种以上纤维混杂料作增

材料焊接成型方法的选择原则与依据

材料焊接成型方法的选择原则与依据 摘要:工程材料除切削加工以外有各种成型方法包括金属液态成型、金属塑性成形、材料连接成型、粉末冶金成型以及塑料、橡胶、陶瓷等非金属材料成型及复合材料成型等。材料成型技术主要讲述金属材料成型和非金属材料成型,现对其进行详细论述。金属液态成型又称为铸造是将液态金属在重力或外力作用下充填到型腔中,待其冷却凝固后,获得所需形状和尺寸的毛坯或零件即铸件的方法,它是成形毛坯或机器零件的重要方法之一。金属塑性成形昰利用金属材料所具有的塑性变形规律,在外力作用下通过塑性变形,获得具有一定形状、尺寸、精度和力学性能的零件或毛坯的加工方法。 关键词:材料成型金属非金属 一、材料成型方法概述金属液态成形 金属材料在液态下成形,具有很多优点:1最适合铸造形状复杂、特别是复杂内腔的铸件。2适应性广,工艺灵活性大。3成本较低。但液态成形也有很多不足,如铸态组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能特别是冲击性能低于塑形成行件。 铸件涉及的工序很多,不易精确控制,铸件质量不稳定。由于目前仍以砂型铸造为主自动化程度还不够高,工作环境较差,大多数铸件只是毛坯件,需经过切削加工才能成为零件。砂型铸造是将熔融金属浇入砂质铸型中,待凝固冷却后,将铸型破坏,取出铸件的铸造方法,是应用最为广泛的传统铸造方法,它适用于各种形状、大小及各种常用合金铸件的生产。砂型铸造的工艺过程称为造型。造型是砂型铸造最基本的工序,通常分为手工造型和机器造型两大类。手工造型时,填砂、紧实和起模都用手工和手动完成。其优点是操作灵活、适应性强、工艺装备简单、生产准备时间短。但生产效率低、劳动强度大、铸件质量不易保证。故手工造型只适用于单件、小批量生产。机器造型生产率很高,是手工造型的数十倍,制造出的铸件尺寸精度高、表面粗糙度小、加工余量小,同时工人劳动条件大为改善。但机器造型需要造型机、模板以及特质砂箱等专用机器设备,一次性投资大,生产准备时间长,故适用于成批大量生产,且以中、小型铸件为主。 冲模的种类一般分为成形模、冲裁模湾曲模3种,模具结构可根据压力使用情况做更详细的划分。成形模的种类有拉延、成形、整形和压印等;冲裁模的种类有落料、冲孔、修边、切断和切废料等;弯曲模的种类有翻边、弯曲、折弯和卷边等。 二、材料成形方法选择的依据选择材料成形方法的主要依据有: (一)零件类别、功能、使用要求及其结构、形状、尺寸、技术要求等根据零件类别、用途、功能、使用性能要求、结构形状与复杂程度、尺寸大小、技术要求等,可基本确定零件应选用的材料与成形方法。而且,通常是根据材料来选

合成树脂瓦多少钱一平方米

合成树脂瓦是新式建筑材料,具有色彩持久、耐腐蚀、隔热隔音、防水防火、使用寿命长等性能。合成树脂瓦的价格主要看质量,若低端树脂瓦它的工艺和材料肯定是差一点的价格有十几二十元的,高质量的合成树脂瓦大概在30-50左右。 下面,就给大家说一下为什么合成树脂瓦的价格会差那么多? 1.不惜在树脂瓦的厚度上做文章,厂家通过把树脂瓦的厚度做成了 2.0mm、 2.3mm、2.5mm2.7mm,这样看来原材料是节省了,价格甚至可相差10元。也具有竞争优势,但是寿命却大打折扣。 2.ASA合成树脂瓦,起决定性作用的还是面层的一层抗老化、抗紫外线的优质ASA,当然现在ASA工程树脂也分好的和差的,好的ASA价格达到三万多近四万一吨,差的一万多也有,差的ASA抗老化性能比较差,易褪色。所以核算整体造价至少相差6元。 3.现在有些厂家更是用ABS作为面层,因为ABS原材料几千元/吨,非常便宜。但是根据理论,ASA的抗老化耐候性能是ABS的十倍,也就是说ABS的寿命相对于ASA要差近10年。且易褪色(几个月就褪色)易脆裂(脆化温度-7℃)。 4.再有就是原材料的配比,这些原材料的价格不一样,有些通过增加碳酸钙

来增加重量,所以整体造价要低,有些通过多添加增塑剂,达到瓦具有一定的柔韧性,但增塑剂不防火,所以不达标。 5.当然以聚氯乙烯(PVC)为主要材料的价格也是决定树脂瓦价格和质量好坏的材料。有些不负责的厂家为了提高利润降低质量,用再生PVC粉料生产树脂瓦。 6.最后大家都知道每个地方的生产成本、厂房租金、人工、水电等费用也不一样,相差一两元也是决定树脂瓦整体的成本。 以上就是为大家介绍的关于合成树脂瓦多少钱一平方米的相关内容,希望对大家有所帮助!大家要记得,价格和质量是成正比的。市面上合成树脂瓦价格繁多,质量也是参差不齐,大小工厂上万家,看似一样的树脂瓦有的可以卖到四十多,有的甚至可以只卖二十多,很多人因为贪便宜,买了便宜的瓦,最后造成了一些不是很好的后果。

材料成形工艺期末复习总结

7.简述铸造成型的实质及优缺点。 答:铸造成型的实质是:利用金属的流动性,逐步冷却凝固成型的工艺过程。优点:1.工艺灵活生大,2.成本较低,3.可以铸出外形复杂的毛坯 缺点:1.组织性能差,2机械性能较低,3.难以精确控制,铸件质量不够稳定4.劳动条件太差,劳动强度太大。 8.合金流动性取决于哪些因素?合金流动性不好对铸件品质有何影响? 答:合金流动性取决于 1.合金的化学成分 2.浇注温度 3.浇注压力 4.铸型的导热能力5.铸型的阻力 合金流动性不好:产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣和缩孔缺陷的间接原因。 9.何谓合金的收缩,影响合金收缩的因素有哪些? 答:合金的收缩:合金在浇注、凝固直至冷却到室温的过程中体积或缩减的现象 影响因素:1.化学成分 2 浇注温度 3.铸件的结构与铸型条件 11.怎样区别铸件裂纹的性质?用什么措施防止裂纹? 答:裂纹可以分为热裂纹和冷裂纹。 热裂纹的特征是:裂纹短、缝隙宽,形状曲折,裂纹内呈氧化色。 防止方法:选择凝固温度范围小,热裂纹倾向小的合金和改善铸件结构,提高型砂的退让。 冷裂纹的特征是:裂纹细小,呈现连续直线状,裂缝内有金属光泽或轻微氧化色。 防止方法:减少铸件内应力和降低合金脆性,设置防裂肋 13.灰铸铁最适合铸造什么样的铸件?举出十种你所知道的铸铁名称及它们为什么不用别的材料的原因。 答:发动机缸体,缸盖,刹车盘,机床支架,阀门,法兰,飞轮,机床,机座,主轴箱 原因是灰铸铁的性能:[组织]:可看成是碳钢的基体加片状石墨。按基体组织的不同灰铸铁分为三类:铁素体基体灰铸铁;铁素体一珠光体基体灰铸铁;珠光体基体灰铸铁。 [力学性能]:灰铸铁的力学性能与基体的组织和石墨的形态有关。灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁。同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁。故工业上较多使用的是珠光体基体的灰铸铁。 [其他性能]:良好的铸造性能、良好的减振性、良好的耐磨性能、良好的切削加工性能、低的缺口敏感性 14.可锻铸铁是如何获得的?为什么它只适宜制作薄壁小铸件? 答:制造可锻铸铁必须采用碳、硅含量很低的铁液,以获得完全的白口组织。 可锻铸铁件的壁厚不得太厚,否则铸件冷却速度缓慢,不能得到完全的白口组织。 17. 压力铸造工艺有何缺点?它熔模铸造工艺的适用范围有何显著不同? 答:压力铸造的优点: 1.生产率高 2.铸件的尺寸精度高,表面粗糙度低,并可直接铸出极薄件或带有小孔、 螺纹的铸件 3.铸件冷却快,又是在压力下结晶,故晶粒细小,表层紧实,铸件的强 度、硬度高 4.便于采用嵌铸法 压力铸造的缺点: 1.压铸机费用高,压铸型成本极高,工艺准备时间长,不适宜单件、不批生产。 2.由于压铸型寿命原因,目前压铸尚不适于铸钢、铸造铁等高熔点合金的铸造。

环氧树脂生产工艺

环氧树脂生产工艺 摘要:对环氧树脂进行简单的介绍,包括其定义,发展概况,分类及其生产工艺等等。选取了双酚A型环氧树脂为例,介绍其生产工艺中的原料,流程,设备以及后期的“三废”的处理。 关键词:环氧树脂发展概况生产工艺 定义及发展概况 1.环氧树脂定义 环氧树脂(Epoxy Resin)是指分子结构中含有2个或2个以上环氧基并在适当的化学试剂存在下能形成三维网状固化物的化合物的总称,是一类重要的热固性树脂。最常用的双酚A 型环氧树脂含2个环氧基。化学名称:双酚A二缩水甘油醚. 英文名称: Diglycidyl ether of bis phenol A(缩写DGEBP A),其结构为: 2.发展概况 环氧树脂的发明曾经历了相当长的时期,它的工业化生产和应用仅是近40年的事情。 在19世纪末和20世纪初两个重大的发现揭开了环氧树脂发明的帷幕。远在1891年德国的Lindmann用对苯二酚和环氧氯丙烷反应生成了树脂状产物。1909年俄国化学家Prileschajew发现用过氧化苯甲醚和烯烃反应可生成环氧化合物。这两种化学反应至今仍 是环氧树脂合成中的主要途径。 我国的环氧树脂的开发始于1956年,在沈阳、上海两地首先获得了成功。1958年上海开始工业化生产。经过40余年的努力,我国环氧树脂生产和应用得到了迅速的发展。目前生产厂家已达100余家。生产的品种、产量日益增多,质量不断提高,在现代化的建设中正起着越来越重要的作用。 环氧树脂的分类及其合成工艺 1.分类 按化学结构差异:环氧树脂可分为缩水甘油类环氧树脂和非缩水甘油类环氧树脂2大类。 按分子中官能团的数量:环氧树脂可分为双官能团环氧树脂和多官能团环氧树脂。 按室温下的状态:环氧树脂可分为液态环氧树脂和固态环氧树脂。 2.生产工艺 环氧树脂的种类繁多,不同类型的环氧树脂的合成方法不同。环氧树脂的合成方法主要有两种:(1) 多元酚、多元醇、多元酸或多元胺等含活泼氢原子的化合物与环氧氯丙烷等含环氧基的化合物经缩聚而得。(2) 链状或环状双烯类化合物的双键与过氧酸经环氧化而成。

材料成型方法

材料成型方法 绪论 “材料成型方法”是材料成型及控制工程专业学生的一门重要的技术基础课程,主要研究机器零件的常用材料和材料成形方法,即从选择材料到毛坯或零件成形的综合性课程。通过本课程的学习,可获得常用工程材料及材料成形工艺的知识,培养学生工艺分析的能力,了解现代材料成形的先进工艺、技术和发展趋势,为后续课程学习和工作实践奠定必要的基础。 材料是科学与工业技术发展的基础。先进的材料已成为当代文明的主要支柱之一。人类文明的发展史,是一部学习利用材料、制造材料、创新材料的历史。如果查看一下诺贝尔物理、化学奖的获得者,不难发现20世纪的物理学家和化学家们曾对材料科学做过一系列的贡献。Laue(1914)发现X光晶体衍射,Guillaume(1920)发现合金中的反常性质,Bridgeman (1946)发现高压对材料的作用,Schockley、Bardeen、Brattain(1956)三人发现了半导体晶体管,Landau(1962)的物质凝聚态理论,Townes(1964)发现导致固体激光的出现,Neel (1970)发现材料的反铁磁现象,Anderson、Mott、van Vleck(1977)研究了非晶态中的电子性状,Wilson(1982)对相变的研究成功,Bednorz、Müller(1987)发现了30°K的超导氧化物,Smaller、Kroto(1996)发现C-60,Kilby(2000)发明第一块芯片,上述物理领域的诺贝尔获奖者的不少工作是直接针对材料的。至于化学家们,可以举出Giauque(1949)研究低温下的物性,Staudinger(1953)研究高分子聚合物,Pauling(1954)研究化学键,Natta、Ziegler(1963)合成高分子塑料,Barton、Hassel(1969)研究有机化合物的三维构象,Heegler、Mcdermild、白川英树(2000)三人发现导电高分子。 近年来,材料科学的发展极为迅速。以钢铁工业为例,2003年,我国钢产量2.2亿t,是世界钢产量9.6亿t的23%,从1890年张之洞创办汉阳铁厂,直到1949年半个多世纪,中国产钢总量只有760万t,不足现在一个大型钢铁厂的年产量。1949年,全国产钢15.8万t,占世界钢产量的0.1%,只相当于现在全国半天的产量。1996年至今,我国钢产量年年超过1亿t,成为世界第一产钢大国。从6000万t增长到1亿t钢,美国经过13年,日本经过6年,中国为7年。这对于我国立足于工业化、现代化的世界,意义重大。但是我国又是一个钢的消费大国,2003年我国钢消费2.67亿t。我国钢厂结构不合理,10%以上的钢是由规模不到50万t以下的小型钢铁企业完成的,70%以上的生产能力是由150万t以下的中小钢铁企业完成的。因此,我国钢铁企业的能耗大,产品品质不高,许多高附加值的优质钢材仍需进口,2003年就进口了3717万t的优质钢材。为此,新一代钢铁材料的主要目标是探索提高钢材强度和使用寿命。经研究证明,纯铁的理论强度应能高于8000MPa,而目前碳素钢为200MPa级,低合金钢(如16Mn)约400MPa级,合金结构钢也只有800MPa级。日本拟于2010年将钢的强度和寿命各提高1倍,2030年再翻一番(即1t钢可相当于现在的4t),这个计划展示了材料挖潜的前景。 类比钢铁,其他材料也有很大潜力可挖。现代材料逐步向高比强度、比模量方向发展。20世纪上半叶,材料科学家利用合金化和时效硬化两个手段,把铝合金的强度提高到700MPa,这样,铝的比强度(强度/密度)达到2.64×106cm,是钢的比强度(0.64×106cm)的4倍有余。要达到同样的强度,铝合金的用量只有钢的1/4,这就是铝合金作为结构材料的极大优势。 美国1980年汽车平均质量为1500kg,1990年则为1020kg。每台车的铸铁用量由225kg 降至112kg,铸铁的比例由15%减至11%;而铝合金由4%增至9%;高分子材料由6%增

树脂基复合材料成型工艺介绍

树脂基复合材料成型工艺介绍 树脂基复合材料成型工艺介绍(1):模压成型工艺 模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。 模压成型工艺的主要优点: ①生产效率高,便于实现专业化和自动化生产; ②产品尺寸精度高,重复性好; ③表面光洁,无需二次修饰; ④能一次成型结构复杂的制品; ⑤因为批量生产,价格相对低廉。 模压成型的不足之处在于模具制造复杂,投资较大,加上受压机限制,最适合于批量生产中小型复合材料制品。随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展,压机吨位和台面尺寸不断增大,模压料的成型温度和压力也相对降低,使得模压成型制品的尺寸逐步向大型化发展,目前已能生产大型汽车部件、浴盆、整体卫生间组件等。 模压成型工艺按增强材料物态和模压料品种可分为如下几种: ①纤维料模压法 是将经预混或预浸的纤维状模压料,投入到金属模具内,在一定的温度和压力下成型复合材料制品的方法。该方法简便易行,用途广泛。根据具体操作上的不同,有预混料模压和预浸料模压法。 ②碎布料模压法 将浸过树脂胶液的玻璃纤维布或其它织物,如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块,然后在金属模具中加温加压成型复合材料制品。 ③织物模压法 将预先织成所需形状的两维或三维织物浸渍树脂胶液,然后放入金属模具中加热加压成型为复合材料制品。 ④层压模压法 将预浸过树脂胶液的玻璃纤维布或其它织物,裁剪成所需的形状,然后在金属模具中经加温或加压成型复合材料制品。 ⑤缠绕模压法 将预浸过树脂胶液的连续纤维或布(带),通过专用缠绕机提供一定的张力和温度,缠在芯模上,再放入模具中进行加温加压成型复合材料制品。 ⑥片状塑料(SMC)模压法 将SMC片材按制品尺寸、形状、厚度等要求裁剪下料,然后将多层片材叠合后放入金属模具中加热加压成型制品。 ⑦预成型坯料模压法 先将短切纤维制成品形状和尺寸相似的预成型坯料,将其放入金属模具中,然后向模具中注入配制好的粘结剂(树脂混合物),在一定的温度和压力下成型。 模压料的品种有很多,可以是预浸物料、预混物料,也可以是坯料。当前所用的模压料品种主要有:预浸胶布、纤维预混料、BMC、DMC、HMC、SMC、XMC、TMC及ZMC

图文详解安装合成树脂瓦时屋面节点的防水处理

图文详解安装合成树脂瓦时屋面节点的防水处理 目前,合成树脂瓦已得到广泛使用,但是在安装时,往往还是会出现各种问题,导致后期房屋漏雨。最主要的原因就是,合成树脂瓦在安装时不够规范,各个屋面节点位置处理的不好。下面坤宝建材小编就图文结合的详细介绍一下合成树脂瓦各个节点的防水处理方法: 1、挑檐处理 为使边檐和屋檐有效排水,同时保护下面檐板,檐口部位宜选用合成树脂封檐板。无檐沟挑檐,合成树脂封檐板由屋面边檐向内伸进100mm向下弯曲盖住檐口,在安装瓦前先将合成树脂封檐板按图6-1所示固定在檐口及檩条上。钢筋混凝土檐沟挑檐的安装方法也是一样的,节点处理如图6-2所示。 2、山墙封檐泛水的处理 屋面与女儿墙体交接处的泛水处理:合成树脂瓦板按图6-3尺寸加工完毕后,一端用射钉固定在墙面上,另一端固定在瓦波上。 盖板泛水:当屋面与垂直于屋面的墙体交接处的泛水处理完毕后,将合成树脂瓦泛水盖板分别固定在山墙两侧,见图6-5所示。

备注:水箱、烟囱泛水与屋面瓦为四面相交,可分正面泛水,弯折泛水。正面上泛水是指屋面瓦位于构筑物斜上坡,可将合成树脂瓦板按图6-3尺寸加工,下端固定在构筑物腰线下面,上端固定在屋面瓦下檩条上面。正面下泛水是指屋面瓦位于构筑物斜下坡,可将合成树脂瓦板按图6-4尺寸加工,上端固定在构筑物腰下面,下方固定在瓦面上。弯折泛水是指屋面瓦位于构筑物两侧斜面相交,加工方式与正面下泛水是一样的,如图6-5所示。 3、天窗泛水处理 在屋面瓦安装前可先将天窗两侧和上坡的金属板固定在屋面上,当天窗下坡的瓦安装完毕后再将金属排水板覆盖在瓦上,如图6-6所示。

4、老虎窗周边排水处理 为使老虎窗上面雨水有效排泄,应在老虎窗上方两侧设置排水槽,如图所示。

第十三章材料与成形工艺的选择原则

第十三章材料与成形工艺的选则 ●一个机械零件要实现其应有的功能,主要由两方面的因素决定:一是零件结构(形状、尺寸、精度、表面质量等),二是零件材料。零件设计不仅是结构设计,也包括材料选用。 ●选材对零件质量和工作寿命至关重要,影响零件生产成本和产品经济效益,复杂有难度工作,必须全面综合考虑。

第一节材料与成形工艺的选择原则 ●满足使用性能要求,兼顾工艺性、经济性和环保性。 ●一、使用性能足够的原则 ●指所选用的材料制造出的零件必须满足其使用性能要求,在规定的使用期内正常工作。使用性能零件设计功能的必要条件,选材最主要因素。首要的任务要准确判断零件所要求的主要使用性能有哪些。 ●选用材料使用性能要求,是在分析零件工作条件和失效形式的基础上提出的。

●零件的工作条件包括: ●(1)受力状况,主要有受力大小,受力形式(拉伸、压缩、 弯曲、扭转以及摩擦力等),载荷类型(静载、动载、交变载荷等)及其分布特点等; ●(2)环境状况,包括工作温度和介质情况(如高温、常温、 低温、有无腐蚀等); ●(3)特殊要求,例如要求导电性、导热性、磁性、密度、 外观等。

●当材料的使用性能不能满足零件工作条件的要求时,零件就以某种形式失去其应有的效能(即失效,如磨损失效)。 ●机械零件所要求的使用性能主要是材料的力学性能。 ●针对零件的具体工作条件和主要失效形式考虑对零件尺寸和重量的要求或限制及零件的重要程度(重要件有较高的安全系数),确定零件材料应具有的主要力学性能和分析计算将其转化为相应的力学性能指标,适当考虑物理、化学性能判据,作为选材基本依据。

●常用力学性能判据:一类直接用于设计计算如σs、σb、σ-1、E、KIC等;一类不直接用于计算,根据经验而 间接确定零件性能,如δ、ψ、ak等。 ●后一类性能判据往往是作为保证安全的性能判据,其 作用是增加零件的抗过载能力和使用安全性。 ●硬度判据(如HBS、HRC、HV等)不能直接用于计算, 但它在确定的条件与其它性能判据(如强度、塑性、 韧性、耐磨性等)密切相关,且试验方法简便、迅速、不破坏零件,习惯在零件的技术要求中以标注硬度值 来综合反映对其力学性能的要求,同时应注明材料的 处理状态。 ●注意解决好材料的强度和塑性、韧性合理配合。

常规脲醛树脂生产工艺

常规脲醛树脂生产工艺公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

常规脲醛树脂生产工艺 脲醛树脂是国内外木材工业的主要粘合剂.由于它胶合强度高、固化快、操作性好、生产成本低、原料丰富易得等一系列优点而得到广泛应用.但是脲醛树脂所含的游离甲醛具有毒性,树脂中的游离甲醛含量越低,其毒性就越小.降低脲醛树脂中游离甲醛的含量有各种各样办法,其中最有效的方法是降低甲醛对尿素的摩尔比,但减少甲醛的用量,将会带来脲醛树脂生产工艺复杂化、终点控制难、树脂固化时间延长和树脂胶合强度和储存稳定性降低等缺点.所以寻找一种有效消除低甲醛/尿素(F/U)摩尔比带来弊病的方法是很有现实意义的.本研究采用低F/U摩尔比合成脲醛树脂,从树脂合成的原理出发,通过实验找出最适宜的加料次数、加料比、加料时间,并确定树脂合成过程中最适宜的pH值、反应温度和反应时间,从而制备出低含醛量、稳定性好的脲醛树脂. 脲醛树脂的生产工艺规程有以下内容: 1.原料的检验。主要是检验甲醛和尿素的质量是否符合要求。根据甲醛的浓度和尿素的纯度,计算工艺配方中甲醛和尿素的用量。 2.备料。在脲醛树脂生产时一般总是先加甲醛,用泵把甲醛打入计量罐内,经计量后送入反应锅内,没有计量罐的可以把甲醛称量后用真空泵抽入反应锅内。尿素一般用磅秤称量。 3.搅拌与升温。经过计量的甲醛加入反应锅后,开动搅拌器加碱调PH 值至规定值,同时开蒸汽升温,由于尿素和甲醛的反应整甲醛溶液的是放热反应,因此在加尿素后,加热至一定的温度后应立即关汽,靠反应自发热升温至规定的温度,并在规定的温度保温一段时间。蒸汽加热时关汽的温度随设备材料及反应液用量多少而定。一般小反应锅用量少,反应热小,关汽温度稍高,另外还和所用蒸汽压力有关,蒸汽压力大,则关汽温度应低些。 4.反应液介质的PH值反应液介质的PH值对脲醛树脂合成是很重要的条件因素,在规程中应明确地规定:在反应开始时PH值应该是多少,升温至规定温度后, PH值又应在什么范围内,当保温结束后,PH 应该是多少.当用酸或氯化铵调酸处理时,PH 值也要有一定的范围。 5.反应终点。反应终点是脲醛树脂质量的关键。反应终点一般用4号涂料杯测定树脂液从杯中流出的时间(s)。一般规定在某一温度下测定树脂液流出的时间(有一个比较窄的范围);或者用树脂液在水中的混浊度表示,如规定取出的树脂液滴在20 ℃的水中出现混浊时为终点等。 6. 反应终点后的处理。反应终点到达后首先应立即中和,即在到达反应终点后立即加碱,使反应树脂液的PH 值升高至规定的数值,同时应开冷却水进行降温处理 7. 称量和保管。脲醛树脂制成后,冷却到规定的温度后可以放料,放料时应过磅计量,记录每一锅胶液的产量。成品脲醛树脂最好贮存在塑料桶内,避免与铁接触,存放在阴凉处。 生产脲醛树脂的工艺流程

纤维增强环氧树脂复合材料成型工艺

纤维增强环氧树脂复合材料成型工艺 一、前言 相比传统材料,复合材料具有一系列不可替代的特性,自二次大占以来发展很快。尽管产量小(据法国Vetrotex公司统计,2003年全球复合材料达700万吨),但复合材料的水平已是衡量一个国家或地区科技、经济水平的标志之一。美、日、西欧水平较高。北美、欧洲的产量分别占全球产量的33%与32%,以中国(含台湾省)、日本为主的亚洲占30%。中国大陆2003年玻班纤维增强塑料(玻璃纤维与树脂复合的复合材料、俗称“玻璃钢”)逾90万吨,已居世界第二位(美国2003年为169万吨,日本不足70万吨)。 复合材料主要由增强材料与基体材料两大部分组成: 增强材料:在复合材料中不构成连续相赋于复合材料的主要力学性能,如玻璃钢中的玻璃纤维,CFRP(碳纤维增强塑料)中的碳纤维素就是增强材料。 基体:构成复合材料连续相的单一材料如玻璃钢(GRP)中的树脂(本文谈到的环氧树脂)就是基体。y 按基体材料不同,复合材料可分为三大类: 树脂复合材料 金属基复合材料 无机非金属基复合材料,如陶瓷基复合材料。 本文讨论环氧树脂基复合材料。 1、为什么采用环氧树脂做基体? 固化收缩率代低,仅1%-3%,而不饱和聚酯树脂却高达7%-8%; 粘结力强; 有B阶段,有利于生产工艺; 可低压固化,挥发份甚低; 固化后力学性能、耐化学性佳,电绝缘性能良好。 值得指出的是环氧树脂耐有机溶剂、耐碱性能较常用的酚醛与不饱和聚酯权势脂为佳,然耐酸性差;固化后一般较脆,韧性较差。 2、环氧玻璃钢性能(按ASTM) 以FW(纤维缠绕)法制造的玻纤增强环氧树脂的产品为例,将其与钢比较。 表1 GF/EPR与钢的性能比较 玻璃含量GF/EPR(玻纤含量80wt%) AISI1008 冷轧钢 相对密度 2.08 7.86 V 拉伸强度551.6Mpa 331.0MPa 拉伸模量27.58GPa 206.7GPa 伸长率 1.6% 37.0% 弯曲强度689.5MPa 弯曲模量34.48GPa 压缩强度310.3MPa 331.0MPa 悬臂冲击强度2385J/m 燃烧性(UL-94)V-O 比热容535J/kg?k 233J/kg?k 膨胀系数 4.0×10-6k-1 6.7×10-6k-1 热变形温度204oC(1.82MPa) 热导率 1.85W/m?k 33.7W/m?k 介电强度11.8×106V/m 吸水率0.5%(24h)

树脂瓦报价

出现褪色、老化等情况,合成树脂瓦等一些大的商家、厂家则基本可以杜绝这种现象。所以大家在购买树脂瓦时不要贪图便宜,购买一些价格低的劣质产品,一定要选择有保障的大厂家。那么这种树脂瓦大厂家的报价一般都是多少呢? 树脂瓦的价格主要与生产厂家有着直接关系,每个厂家的报价或多或少都会有些差别,如您想要获取详细价格,建议还是咨询具体的厂家! 河南华航瓦业有限公司位于中原腹地,朝歌之城---河南省鹤壁市,公司地理环境优越,交通方便,东距京港澳高速和高铁站3公里,西距107国道仅2公里;工厂占地20000平方米,高级技师2名,技师4名,技工40余名,是一家从事新型建筑材料研发和生产的专业化公司,以生产销售研发各种规格菱镁瓦,加长彩釉瓦,铝箔复合瓦,覆抗老化膜瓦等产品为主,本公司生产的瓦制品具有款式多样化,产品强度高,色泽艳丽,长度任选,防腐保温,隔热隔音,防

一、树脂瓦的特点 (1)超强的耐候性、色彩持久性:选用超高耐候性工程树脂瓦的表面材料,这种耐候性树脂在自然环境中具有超乎寻常的耐候性。它即使长期暴露于紫外线、强光、潮湿、寒热等恶劣环境下,仍能保持其颜色和物流性能的稳定性。 (2)隔音效果好:通过音位测定实验表明,在遭受暴雨、冰雹、大风等外界噪音影响时,它能很好的吸收噪音和减少噪音的穿过。 (3)合成树脂瓦的带热系统为0.325W/m.K,是粘土瓦的1/3,厚水泥瓦,琉璃瓦的1/5,0.5mm厚彩钢瓦的1/2000,在不考虑加保温层的情况下,它的隔热保温性能已经达到最佳效果。 (4)环保型合成树脂瓦在低温(-400C)冻融循环下,经落球冲击实验,1公斤重钢球1米高自由落下,无碎裂现象;在常温下(23±20C)经落球冲击实验,1公斤重钢球3米高自由落下,在瓦的表面上不会产生裂纹或贯穿洞。 (5)优异的耐腐蚀性能:合成树脂瓦主体树脂和表面树脂都具有特别好的耐腐蚀性能,不会被雨雪侵蚀,并可长期抵御酸、碱、盐等各种化学物质的侵蚀;实验证明,在40%N2OH、40%H2SO4溶液中,浸渍24小时,产品不会变形或变色。各种微生物也无法在瓦的表面生存。 (6)卓越的防水性能:合成树脂瓦所寻用的高耐侯树脂本身致密且不吸水,不存在微孔渗水的问题。树脂瓦单张面积大,屋面接缝小,且搭接处结合严密,与传统小块瓦相比防水性能更加突出。 (7)体积稳定性高:它的膨胀系数为4.93×10.5/0C加之瓦型在几何形状

材料成形加工工艺与设备复习题(含答案)

材料成形加工工艺与设备 复习题 一.选择题 1.为了防止铸件过程中浇不足以及冷隔等缺陷产生,可以采用的工程措施有( A. 减弱铸型的冷却能力; B .增加铸型的直浇口高度; C. 提高合金的浇注温度; D . A B和C; E . A和Co 2?顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适合于(),而同时凝固适合于()。 A.吸气倾向大的铸造合金; B .产生变形和裂纹倾向大的铸造合金; C.流动性差的铸造合金; D .产生缩孔倾向大的铸造合金。 3. 铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是( 消除铸件中机械应力的方法是()o A.采用同时凝固原则; B .提高型、芯砂的退让性; C. 及时落砂; D .时效处理。 4. 合金的铸造性能主要是指合金的()和()o A.充型能力;B .流动性; C .收缩; D. 缩孔倾向;E .应力大小;F .裂纹倾向。 图2-2 6 .如图2-2所示应力框铸件。浇注并冷却到室温后,各杆的应力状态为( 用钢锯沿A-A线将0 30杆锯断,此时断口间隙将()断口间隙变化的原因是各杆的应 力(),导致0 30杆(),0 10杆() A.增大;B .减小;C .消失;D .伸长;E .缩短;F.不变; G. 0 30杆受压,0 10杆受拉;H. 0 30杆受拉,0 10杆受压。 )。 A. 不存在铸造应力; B. 只存在拉应力; C. 存在残余热应力; D. 只存在压应力; E. 存在机械应力; F. C和E。); )o若 7.常温下落砂之前,在右图所示的套筒铸件中()o常温下落砂以后,在该铸件中 2G G

树脂基复合材料

树脂基复合材料的研究进展 摘要: 树脂基复合材料具有良好的成型工艺性、高的比强度、高的比模量、低的密度、抗疲劳性、减震性、耐腐蚀性、良好的介电性能、较低的热导率等特点,广泛应用于各种武器装备,在军事工业中,对促进武器装备的轻量化、小型化和高性能化起到了至关重要的作用。由于与许多材料相比具有独特的性能,树脂基复合材料在航空航天、汽车、电子、电器、医药、建材等行业得到广泛的应用。目前,随着复合材料工业的迅速发展,树脂基复合材料正凭借它本身固有的轻质高强、成型方便、不易腐蚀、质感美观等优点,越来越受到人们的青睐。 关键字:树脂基复合材料,材料性能,应用领域 一、前言 复合材料在国民经济发展中占有极其重要的地位,以至于人们把一个国家和地区的复合材料工业水平看成衡量其科技与经济实力的标志之一[1]。树脂基复合材料是以纤维为增强剂、以树脂为基体的复合材料,所用的纤维有碳纤维、芳纶纤维、超高模量聚乙烯纤维等,所采用的基体主要有环氧树脂、酚醛树脂、乙烯基酯树脂等有机材料。其中热固性树脂是以不饱

和聚脂、环氧树脂、酚醛树脂等为主;热塑性树脂是指具有线型或分枝型结构的有机高分子化合物。 树脂基复合材料的特点:各向异性(短切纤维复合材料等显各向同性);不均质或结构组织质地的不连续性;呈粘弹性;纤维体积含量不同,材料的物理性能差异;影响质量因素多,材料性能多呈分散性。树脂基复合材料的优点如下:(1)密度小,约为钢的1/5,铝合金的1/2,且比强度和比模量高。这类材料既可制作结构件,又可用于功能件及结构功能件。 (2)抗疲劳性好:一般情况下,金属材料的疲劳极限是其拉伸强度的20~50%,CF增强树脂基复合材料的疲劳极限是其拉伸强度的70~80%;(3)减震性好;(4)过载安全性好;(5)具有多种功能,如:耐烧蚀性好、有良好的耐摩擦性能、高度的电绝缘性能、优良的耐腐蚀性能、有特殊的光学、电学、磁学性能等;(6)成型工艺简单;(7)材料结构、性能具有可设计性。 以树脂基复合材料为代表的现代复合材料随着国民经济的发展,已广泛应用于各个领域。众所周知,树脂基复合材料首先应用于航空航天等国防工业领域[2-3],而后向民用飞机发展。随着社会的发展,树脂基复合材料在人类物质生活中的需求量越来越大,并

哈工程--材料成型习题

习题《材料成形》部分 第1章铸造 填空题: 1、铸造方法从总体上可分为普通铸造和特种铸造两大类,普通铸造是指砂型铸造方法,不同于砂型铸造的其他铸造方法统称为特种铸造,常用的特种铸造方法有:()、()、()、()、()等。 2、凝固过程中所造成的体积缩减如得不到液态金属的补充,将产生()或()。 3、对砂型铸件进行结构设计时,必须考虑合金的()和铸造()对铸件结构提出的要求。 4、()是铸造合金本身的物理性质,是铸件许多缺陷()产生的基本原因。 5、浇注位置是指造型时()在铸型中所处的位置,它影响铸件的质量。 6、铸造应力按产生的原因不同,主要可分为()和()两种。 7、铸件上各部分壁厚相差较大,冷却到室温,厚壁部分的残余应力为()应力,而薄壁部分的残余应力为()应力。 8、任何一种液态金属注入铸型以后,从浇注温度冷却至室温都要经过三个联系的收缩阶段,即()、()和()。 9、在低压铸造、压力铸造和离心铸造时,因人为加大了充型压力,故()较强。提高浇铸温度是改善合金()的重要措施。 10、铸件浇铸位置的选择必须正确,如重要加工面、大平面和薄壁部分在浇铸时应尽量(),而厚大部位应尽量(),以便安放冒口进行()。 单项选择题: 1、下列合金流动性最好的是:() ①普通灰铸铁;②球墨铸铁;③可锻铸铁;④蠕墨铸铁。 2、摩托车活塞应具有良好的耐热性、热膨胀系数小,导热性好、耐磨、耐蚀、重量轻等性能。在下列材料中,一般选用:() ①铸造黄铜;②合金结构钢;③铸造铝硅合金;④铸造碳钢。 3、在下列铸造合金中,自由收缩率最小的是:() ①铸钢;②灰铸铁;③铸造铝合金;④白口铸铁 4、图示圆锥齿轮铸件,齿面质量要求较高。材料HT350,小批生产。最佳浇注位置及分型面的方案是:( ) ①方案Ⅰ; 5)

相关主题
文本预览
相关文档 最新文档