当前位置:文档之家› 实验三 苦参生物碱的提取与鉴识

实验三 苦参生物碱的提取与鉴识

实验三 苦参生物碱的提取与鉴识
实验三 苦参生物碱的提取与鉴识

实验三苦参生物碱的提取与鉴识

背景

1.1苦参的化学成分

苦参,又名苦骨(见《本草纲目》川)、川参(见《贵州民间方药集》、凤凰爪(见翌广西中兽医药植))、牛参(见《湖南药物志》),陶宏景谓:“叶极似槐叶,花黄色,子作荚,根味至苦恶。”李时珍谓:“苦以味名,参以功名。”lz]始载于((神农本草经》,列为中品。为豆科(Leg姗z'n 口sae)植物苦参(£叩加rafla。escensAz't.)的干燥根。分布于我国南北各地Is],春秋两季采挖,除去根头及小支根,洗净,干燥、或趁鲜切片,干燥。苦参性味苦寒,归心、肝、胃、大肠、膀肤经。功能清热燥湿、祛风杀虫、利尿通淋。用于热痢、便血、黄疽尿闭、赤白带下、阴肿阴痒、湿疹、湿疮、皮肤癌痒、疥癣麻风等诸多病症。

苦参中含有多种有效成分,目前已知的主要有生物碱类、黄酮类、挥发油类化合物,还含有少量醒类、皂试类及氨基酸等其它化合物。下面分别介绍各类化合物的主要成分。

1.LI生物碱

国内外学者从苦参根、苦参茎和叶及其花【4一l0]中共分离出26种生物碱。苦参生物碱大多数是哇诺里西咤类(quinolizidine一type),极少数为双呱陡类(dipiperidine--tyPe)。喳诺里西陡生物碱多数为苦参碱型生物碱,另有两种金雀花碱型(eytisine一type)生物碱,两种无叶豆碱型(Sparteine一type)生物碱,一种羽扇豆碱型(lupinine一type)生物碱。包括苦参碱(matrine),氧化苦参碱(oxymatrine),槐果碱(sophoearpine)、氧化槐果碱(N一oxysophoearpine)、异槐果碱(isosoph。Carpine)、异苦参碱(isomatrine)、7,11一去氢苦参碱(7,11一dehydromatrine)、槐胺碱(Sophoramine)、异槐胺碱(isosophoramine)、新槐胺碱(neosophoramine)、■'3一去氢槐胺碱(■`3一dehydrosophoramine)、■`一去氢槐胺碱(■7-dehydrosophoramine)、槐醇(sophoranol),9。一经基槐胺碱(9。一hydroxysophoramine)、5。,9。一二轻基苦参碱(5。,ga一dehydroxymatrine)、氧化槐醇(sophoranolN一oxide)、雀花碱(lupanine)、臭豆碱(anagyrine)、膺靛叶碱(baptifoline)、Mamanine,Kuraramine、1sokuraramine等。

1.1.2黄酮类化合物

从苦参根和狭叶苦参根分离的黄酮类化合物己有29种[ll,'2],多数为二氢黄酮和二氢黄酮醇类,少数为黄酮类、异黄酮类、查耳酮类和紫檀素类,其中仅有两种化合物为试,取代基除了常见的轻基、甲氧基外,多数化合物还具有异戊烯基(取代基A

1.1.3挥发油成分

王秀坤等!`4】对苦参中的挥发油成分进行了分析,采用苦参粗粉与水共蒸馏,乙醚处理,无水硫酸钠脱水干燥,回收乙醚得油状物,再经气相色谱、质谱分析,共鉴定出47个成分。鉴定出的化合物以二十烷烃为主成分,占58.12%。就结构类型看,以烯烃为主,其次为烷烃和醇类,尚含酸醛酮酚等。

1.1.4其它类型的化合物

从苦参根中还分离得到一系列2一烷基色酮的衍生物I`5]、一种醒类化合物和两种三砧皂试l`6】。王秀坤等llvl对苦参中的游离氨基酸成分进行了分析与鉴定,鉴定出巧种氨基酸,并计算了各成分的含量。发现苦参中总游离氨基酸含量为162.51mg/l00ml,其中含量最高的为脯氨酸,107.51mg/l00ml,其次为天冬氨酸29.64mg/100ml。张俊华等I`s]用色谱等方法分离,波谱等方法鉴定苦参中化学成分结构,分离得到5个化合物,分别为蔗糖、二十四碳酸、日一谷肖醇、芥子酸十六酷,伞形花内酷,均为首次从苦参中获得,其中芥子酸十六酷为新化合物。

一.实验目的

1.本实验通过从苦参中提取苦参生物碱,考察盐酸的浓度和渗漉速度对提取

产率的影响

2.了解化学反应萃取分离在天然药物提取过程中的应用

掌握渗漉法和离子交换提取生物碱的原理、方法与工艺过程,并熟悉用柱层析法分离生物碱。

二.实验原理

利用苦参生物碱具有弱碱性,可与强酸结合成易溶于水的盐的性质,将总碱从药材中提取出来。结合动态连接提取工艺过程,实现生物碱充分溶出。然后,加碱碱化,即可得到苦参生物总碱。

渗滚法(percolation)的提取过程类似多次浸取过程,浸出液可以达到较高浓度,浸出效较好。此法常温操作不需加热,溶剂用量少,过滤要求较低,使分离操作过程简化,尤其适用于热敏性、易挥发且有效成分含量较低或贵重药材提取。采用0.5%的硫酸溶液对中药材黄连用渗辘法提取,收集7倍量渗媲液即可保证生物碱的提取率,与回流法比较,渗辘法提取物含杂质少、提取率高、使用溶剂量少即l。渗渡法的操作技术要求较高,否则会影响提取效率,当提取物为薪性、不易流动的成分时,不宜使用该法。

三.实验流程

鉴识:定性反应.薄层色谱等

四.实验过程

1.离子交换树脂的预处理

将70g 聚苯乙烯磺酸型树脂(交联度3%),放入烧杯中,加200ml 80℃的蒸馏水溶胀

30 分钟,倾出蒸馏水后加入2mol/L 盐酸300ml,充分搅拌,放置半小时(静态转型),后

装入树脂柱(2cm×100cm),并使全部酸水溶液通过树脂柱(动态转型),流出液的速度以液

滴不成串为宜。后用蒸馏水洗至中性,待用。注意从装柱到洗涤过程中始终保持液面高

于树脂床。

2.总生物碱的提取和分离

(1)动态连续提取

①取苦参粗粉200g加一定浓度的盐酸,拌匀,放置30min,使生药膨胀。

②然后装入渗漉桶中,边加边压,层层加紧,全部装完后,药面压平,盖一层滤纸,滤

纸上压一些洗净的玻璃塞。

③加入一定浓度的HCl溶液经过药面,以4~5mL/min的速度渗漉,收集渗漉液至无明显

的生物碱反应为止,收集渗漉液约2500mL。

(2)交换

①将收集的渗漉液置于阳离子交换树脂进行交换,如交换液有为交换的生物碱时,仍可以继续交换,直至流出液无生物碱反应为止。

②将树脂倾入烧杯中,用蒸馏水洗涤数次,除去杂质,于布氏漏斗中抽干,倒入唐磁盘中晾干。

(3)总生物碱的洗脱

①将晾干的树脂,加浓氨水适量,搅匀,使湿润度适宜,树脂充分膨胀,盖好放置20min。

②装入索氏提取器中,加三氯甲烷300mL在水浴上回流洗脱,提至尽生物碱为止。

③回收三氯甲烷,得棕色粘稠物。

④加无水丙酮适量,加热溶解,过滤,减压蒸干。

必要时重复此操作,以脱除粗生物碱中的水,再在无水丙酮中重结晶。

3.氧化苦参碱的分离

(1)柱色谱法取100目色谱用氧化铝50g,用漏斗缓慢加入色谱柱内(1cm×24cm,干法装柱),取苦参0.2g,加入适量氧化铝,搅匀,研细,装入色谱柱顶端,先用50ml三氯甲烷通过色谱柱,再用三氯甲烷-甲醇(9:1)洗脱,流速为1mL/min。每10mL为一份(约收集15份),经薄层层色谱鉴定,相同流出成分合并,在水浴上挥发去溶剂,剩余物加无水丙酮溶解,放置,析出结晶为氧化苦参碱。

(2)溶解度差异法将苦参总碱溶于少量三氯甲烷中,加入10倍量乙醚,放置后有沉淀析出,过滤吸出的沉淀,滤液浓缩后再溶于少量三氯甲烷中,加入乙醚放置,再过滤析出沉淀,合并两次的沉淀物,用丙酮重结晶,即为氧化苦参碱。

4.苦参生物碱的沉淀反应

取自制苦参总生物碱约0.1g 加1% 盐10ml 使溶解,过滤,取滤液分置于三支试管中,进行以下试验:

(1)碘化铋钾试验:于上述一支试管中加入碘化铋钾试剂1~2 滴,立即有桔红色沉淀产生.

(2)碘化汞钾试验:于上述另一支试管中加入碘化汞钾试剂2~3 滴,有白色沉淀产生.

(3)碘-碘化钾试验: 于上述第三支试管中加入碘一碘化钾试剂2~3滴,有褐色或棕褐色沉淀产生.

5.苦参生物碱的薄层层析鉴定

(1)氧化铝薄层层析法

吸附剂:中性氧化铝(Ⅱ级,过 160 目筛),干法铺板(软板). 样品:

a. 自制苦参碱乙醇溶液;

b. 苦参碱标准品乙醇溶液;

c. 自制氧化苦参碱乙醇溶液;

d. 氧化苦参碱标准品乙醇溶液;

e. 自制苦参总生物碱乙醇溶液

展开剂:

①氯仿-甲醇 (19:1) 展开三次;

②氯仿-甲醇-浓氨水(5:0.6:0.2)

显色剂:喷雾改良碘化铋钾试剂,观察斑点颜色,并与标准品对照

(2) 硅胶薄层层析法

吸附剂:2%氢氧化钠溶液制备的硅胶 G 硬板,于 110℃烘干半小时.

样品:同 (1) 项下

展开剂:

a. 先以甲苯-乙酸乙酯-甲醇-水(2:4:2:1) 展开,展距约 8cm, 取出,晾干,再以甲苯-丙酮-乙醇-浓氨试液(20:20:3:1)展开,展距第一次相同;

b. 氯仿-甲醇-乙醚(44:0.6:3)

显色剂:喷雾改良碘化铋钾试剂和亚硝酸钠乙醇液,观察斑点颜色,并与标准品对照

五.思考题

1. 叙述酸水法及离子交换法提取纯化生物碱的原理。

2. 应如何检查

(1) 渗漉液中是否含有生物碱?

(2) 渗漉液中生物碱是否被交换在树脂上?

(3) 离子交换树脂是否已饱和?

3. 简述索氏提取器提取原理及特点。

4.在收集渗漉液的过程中,溶液的颜色有何变化?在回流提取中,有何现象发生?

5.制备性薄层色谱的特点是什么?

六.主要参考文献

1.胡晶红,苦参生物碱的提取和氧化苦参碱的纯化,山东大学硕士学位论文,2007

2. A.Ueno et al.Chem.Pharm.Bull.1978,26,1832

3.陈德昌.中药化学对照品工作手册.北京:中国医药科技出版社,2000:142

4.杨云等.天然药物化学成分提取分离手册.北京:中国中医药出版社,2003:454

另外的方案

1.4.1.2浸渍

浸渍法(maceration)可在常温或加热的条件下浸泡药材获取有效成分,操作简单易行,但所需时间长,溶剂用量大,有效成分浸出率低。常温浸渍是较为常用的生物碱提取方法,如秦学功等圈]考察了苦豆子种子中生物的冷浸工艺条件,室温下用稀盐酸提取苦豆籽中的苦参总生物碱,研究不同条件下的总碱浸出率,最高可达3.7%以上。陈月圆等Ivol以小聚碱为指标,对黄柏中的总生物碱提取方法进行了优化,分别用水、乙醇和酸作为溶剂,使用乙醇为溶剂的提取率为84.4%,远高于其它两种溶剂。

1.4.1.3回流

回流法(circumfluence)是以乙醇等易挥发的有机溶剂为溶媒,对浸出液加热蒸馏,其中挥发性溶剂馏出后再次冷凝,重新回到浸出器中继续参与浸取过程,多采用索氏提取器完成。此法操作简便,提取率较高。龙德清等Ivll用酸性醇回流法提取魔芋中总生物碱,得到最佳的工艺条件为在pH值2一3的酸性醇中回流3h,总生物碱含量为0,39%。回流法操作时间较长,且整个过程处于加热状态,不适用于热敏性生物碱的提取。

1.4.1.4渗流

渗滚法(percolation)的提取过程类似多次浸取过程,浸出液可以达到较高浓度,浸出效果较好。此法常温操作不需加热,溶剂用量少,过滤要求较低,使分离操作过程简化,尤其适用于热敏性、易挥发且有效成分含量较低或贵重药材提取。采用0.5%的硫酸溶液对中药材黄连用渗辘法提取,收集7倍量渗媲液即可保证生物碱的提取率,与回流法比较,渗辘法提取物含杂质少、提取率高、使用溶剂量少即l。渗渡法的操作技术要求较高,否则会影响提取效率,当提取物为薪性、不易流动的成分时,不宜使用该法。

1.4.2生物碱提取新技术

随着科学的发展,针对传统提取过程中存在的能耗大、有效成分损耗大杂质较多、效率较低等问题,一些新技术应用于生物碱提取工艺中,在传统方法的基础上利用新技术的强化作用或流体在超临界状态下进行萃取大大提高了提取效率,降低了过程能耗,因其显著优势而成为研究热点。

1.4.

2.1超声辅助提取

超声辅助提取(ultrasound一assistedextraetion,UAE)的3个理论依据是超声波热学机理、超声波机械机制和空化作用`侧。利用超声技术可以缩短提取时间、提高提取率,并且无需加热,提高了热敏性生物碱的提取率且对其生理活性基本没有影响,溶剂使用量相对较少,可以降低成本。郭孝武曰】对比研究了超声、回流和浸泡3种方式提取益母草中总生物碱的产率,超声可以使益母草茎组织形态结构发生变化,造成茎内组织细胞损伤,促使益母草总生物碱快速提取,缩短了提取时间。超声提取4Omin比回流提取Zh产率高42.86%,而所得总生物碱无化学结构改变。国外对于超声提取生物碱也有研究,A.pjilani等175】利用超声技术在不同溶剂

系统中提取阿托品(atropine),得到最有效的提取溶剂系统为CH30H/CH3CN(80:20),提取

率为1.01%。

1.4.

2.2微波萃取

微波萃取又称微波辅助提取(mierowave一assistedextraCti。n,MAE),利用介电损耗和离子传导的原理,根据不同结构物质吸收微波能力的差异,对某些组分选择性加热,可使被萃取物质从体系中分离进入萃取剂附l。郭锦棠等脚l对微波与索氏回流方法提取生物碱进行了研究,发现联合微波与索氏提取法对黄连中盐酸小聚碱的提取效果优于单独索氏提取。高姗[vs]利用微波萃取,采用正交试验优化了十大功劳叶中小璧碱的提取条件。Feizhang等f79]对比不同方法提取博落回(Macleayaeordata(wsnd)R.Br.)中的血根碱和白屈菜赤碱,得出微波萃取比浸渍、超声辅助提取等更为有效。相对于

传统方法,微波萃取质量稳定、产量大,选择性高、节省时间且溶剂用量少、

能耗较低。但微波萃取受萃取溶剂、萃取时问、萃取温度和压力的影响,选

择不同的参数条件,往往得到不同的提取效果。

1.4.

2.3超临界流体萃取

超临界流体萃取(Supercriticalfluidsextraetion,SCFE)是20世纪

90年代发展起来的一项新型提取技术,利用超临界流体(SupercritiCal

fluids,SCF)为萃取剂,从液体或固体中萃取目标组分。SCF特有的理化性

质[s0l[“`]使其具有比液体溶解能力大、比气体易于扩散和运动且传质速率远

高于液相过程的特点,目前普遍采用的SCF为C02。超临界流体萃取具有以下

优势:(1)萃取率高;(2)选择性高,分离彻底;(3)工艺简单,操作费用低;(4)

操作温度低,适于热敏性物质提取;(5)COZ无毒、不易燃,安全性高且价

格低廉。目前利用超临界流体萃取技术提取天然成分已成为研究热点。张立

伟等[sz]利用超临界coZ流体萃取苦参中的总生物碱,提取率为常规方法的

2.4倍,耗时为常规方法的1/3。LiuB等1831从防己科植物青藤中用超临界coZ

流体提取汉防己碱,在萃取过程中是否加入甲醇改性剂的提取率差别巨大,

分别为7.47mg/g和0.17mg/g。

1.5生物碱的纯化方法概述

经过溶剂提取后的生物碱溶液除生物碱及盐类之外还存在大量其它脂

溶性或水溶性杂质,需要进一步纯化处理,将生物碱成分从中分离出来。通

常使用的是有机溶剂萃取、色谱和树脂吸附,随着新技术如分子印迹、膜分

离技术的发展和应用,大大简化了过程、提高了纯化效率。

1.5.1有机溶剂萃取

有机溶剂萃取(organieSolventextraetion)是利用提取物中各成分在

两种互不相溶的溶剂中分配系数不同达到分离的方法,萃取时组分在两相溶

剂中的分配系数越大分离效率越高,分离效果越好。对于亲脂性生物碱,利

用非极性和低极性有机溶剂如苯、乙醚、氯仿等与水进行液液萃取;对于水

溶性生物碱,利用极性较大的有机溶剂如乙酸乙酷、丁醇等与水溶液萃取。

有时可用多种溶剂配制成两相互不相溶的溶剂进行萃取[s']。有机溶剂萃取

是生物碱纯化的经典技术,应用广泛,具有操作简单、容易放大的优点,但

分离效率和纯度较低,使用大量有机溶剂,操作安全性不佳。

1.5.2色谱分离

色谱法(chrolnatography)也称层析法,是一种物理分离方法,可以用于

分离纯化和鉴定中药有效成分。色谱法包括纸色谱、薄层色谱和柱色谱,其

中常用吸附柱色谱纯化生物碱成分,一般使用吸附剂为硅胶和氧化铝。

1.5.

2.1硅胶柱色谱

利用5102·xH20作为吸附剂,约90%以上的分离纯化工作均可使用此法。

硅胶是中性无色颗粒,性能稳定,分离效率与其粒度、孔径及表面积等因素

1.4.1.1煎煮

煎煮法(dec0Ction)是中药最早、最常用的制剂方法之一,适用于有效

成分能溶于水,且对加热不敏感的药材,能够提取出相对较多的有效成分。

黄际薇等脚]采用酸水煎煮,以苦参碱和氧化苦参碱的提取率为指标,用正交

试验法优选了山豆根的提取工艺。M.G.ortega等!0sl考察了使用煎煮法从石

松属药材植物HuperziaSaururus中提取生物碱,取809干燥粉碎后的药材,

用600ml沸水煎煮2次,每次时间为lh,合并提取液后碱化,然后用氯仿萃

山东大学硕士学位论文

有关1851。硅胶柱色谱使用范围广,可作为极性和非极性生物碱的纯化,成本低、操作方便。张兰兰等186}研究了钩吻总生物碱中钩吻素子的提取与分离, 经过溶剂回流提取后,用碱性硅胶柱层析分离钩吻素子取得了很好的效果。1.5.2.3氧化铝柱色谱

以A12仇作为吸附剂的层析分离法,根据氧化铝制备和处理方法差异,分

为碱性、中性和酸性3种,其中碱性和中性的氧化铝适用于分离酸性较大、

活化温度较高的生物碱类成分。有文献报道粉防己生物碱经粗提后用A12仇层析方法正向分离非酚性粉防己碱与粉防己诺林碱有较好的效果187]。需要注意的是A1203的粒度对分离效率有显著影响,一般粒度范围在100~160目,低

于100目则分离效果差,高于160目则溶液流速太慢。

1.5.3树脂吸附

树脂吸附包括离子交换树脂(ion一exchangeresin)和大孔树脂(macro

一porousresin)。树脂吸附摆脱了传统纯化法得到的制剂大、黑、粗,使

用不方便且溶剂用量大的缺点,因其具有的诸多优势而成为应用日益广泛的

纯化技术。

1.5.3.1离子交换树脂

离子交换树脂主要通过静电引力和范德华力选择吸附,根据本身特性分

为多种类型。针对生物碱的性质选用强酸型阳离子交换树脂,将酸化的生物

碱提取液通过树脂,使生物碱盐的阳离子交换到树脂上而与其它成分和杂质

分离。经过离子交换后的树脂用氨水碱化得到游离态生物碱,等树脂晾干后

根据生物碱的亲脂或亲水性质用相应的溶剂进行提取得到总生物碱。王洪新

等lss]分别用动态法和静态法筛选离子交换树脂用于纯化苦豆子中的生物碱, 考察了pH值、助溶剂等因素对纯化效果的影响,对苦参生物碱生产具有指导

意义。

1.5.3.2大孔树脂

大孔树脂是在离子交换树脂基础上,自20世纪60年代初开发出的一类新

型高聚物吸附剂,其纯化机理是利用特殊吸附剂一一大孔树脂的吸附性和分

子筛结合的原理,选择性吸附中药提取液中有效成分,去除杂质。树脂经过

洗脱、浸泡、冲洗等过程处理后再生可重复使用。目前多数生物碱成分的纯

化都可采用此技术,相对于盐析、沉淀等传统技术,大孔树脂吸附具有以下

山东大学硕士学位论文

3个优点:(l)溶剂用量少;(2)产品质量高,稳定性好;(3)生产周期短、设

备简单。这些优良的性能使大孔树脂吸附在近年来受到越来越多的关注1501。聂其霞等100]比较了醇沉、大孔树脂吸附和吸附澄清3种方法对黄连解毒汤中小巢碱含量的影响,发现大孔树脂法为最佳的纯化方法。

1.5.4分子印迹

分子印迹技术(moleeularimprintingteehnology,MIT)是20世纪末出

现的一种高选择性分离技术,通过印迹、聚合、去除印迹分子3步制备分子

印迹聚合物(MIPs),以其特定的分离机理而具有极高的选择性,可以作为高

度专一的固相萃取材料[0ll。黄晓冬等脾】制备了辛可宁(cinchonine)分子印

迹聚合物手性整体柱,可在Zmin内实现非对映异构体辛可宁和辛可尼丁(cinchonidine)分离。目前MIT分离生物碱的技术尚属研究阶段,需要在热

力学及动力学性质、MIPS制备、降低成本等方面作进一步探索。

1.5.5膜分离

膜分离技术(membraneseparationtechnology,MST)是一项新兴的高效

分离技术,分离过程以选择透过性膜作为分离介质,通过在膜两侧施加某种

推动力(如压力差、化学位差、电位差等),使原料液中组分选择性通过膜。

以压力差为推动力的膜分离过程包括微滤、超滤、纳滤、反渗透,根据筛分

原理使某些组分选择性透过,实现提纯和浓缩193】。以电位差为推动力的膜分离过程主要是电渗析,利用带电离子在电场下的移动和离子交换膜的选择透

过性实现分离、提纯,所用离子交换膜的分离原理与离子交换树脂相同。与

常规的离心、沉降、过滤、萃取等传统技术相比,膜分离技术的优势表现为: (1)分离过程无相变,高效节能环保;(2)分离设备简便易操作;(3)周期短、

安全性高四】。膜分离技术作为一项新型分离、提纯手段,对于我国中药产业的技术改造和现代化发展具有重大意义。

1.5.5.1超滤

超滤(ultrafiltration,UF)的孔径范围为1~100nm,截留相对分子质

量为103~106。一般来说生物碱的相对分子质量多在1000以下,而提取液中的一些蛋白质、多肤、多糖等无效成分相对分子质量大于104,因此超滤技

术可以作为纯化生物碱的有效手段。马朝阳等娜J用中空纤维膜对苦豆子盐酸提取物中的生物碱进行了超滤纯化的研究,结果表明超滤可以有效去除苦

山东大学硕士学位论文

豆子盐酸提取物中的蛋白质和其它杂质,透过液中总生物碱回收率达93.5 %。李淑丽等哪}比较了超滤与醇沉法对黄连解毒汤中有效成分小聚碱的纯

化效果,试验结果表明超滤能够更多去除料液中的杂质,生物碱有效回收率

为95%,明显高于醇沉法73%的有效回收率。不同的膜会对生物碱提取产生影响,黄罗生等四l探讨了不同截留相对分子质量的超滤膜对四逆汤中乌头总碱的影响,结果表明乌头总碱的损失与超滤膜截留相对分子质量成反比。

1.5.5.2微滤

微滤(miCr。filtration,MF)的孔径在102一lo4nm,一般作为纯化的前

处理过程,可以起到很好的过滤杂质的效果,高红宁等[0s,99珠日用无机陶瓷微滤膜对苦参水提取液进行处理,微滤后可以得到澄清透明液体,固形物去除

率为39.5%,与醇沉法相当,生物碱保留率在79.72%,结合大孔树脂法精

制苦参中氧化苦参碱,保留率为78.88%,高于醇沉法,保留更多有效成分

和更彻底去除杂质。膜分离技术相对其它分离技术具有显著的优势,但也存

在一些鱼待解决的问题,如膜在使用过程中的抗污染能力不强,通量衰减造

成性能下降,使用寿命短等,尚需在膜材料的选择、优化预处理和清洗方

法上作进一步的研究。

中草药中生物碱的提取与分离

工艺与设备 中草药中生物碱的提取与分离 蔡艳华赵红卫钟本和 (四川大学化工学院,成都,610051) 摘要 生物碱是许多中草药的有效成分。因其具有广泛的生理功能,引起了人们的关注。本文综述了近年来不同的提取和分离方法在生物碱中的应用原理。指出了各方法的优缺点及其今后发展的方向。 关键词:中草药生物碱提取纯化 1前言 生物碱是动植物中一类具有碱性的含氮物质。它们大多是极有价值的药物。中草药含有很多种生物碱,中草药的疗效大多是由所含的生物碱而来。 近年来生物碱作为中草药中的有效成分之一成为研究的热点。提取工艺是生物碱工业化生产的首要环节,特别是其提取和分离操作[1]。传统的生物碱提取分离方法能耗、物耗大,杂质多,效率低。针对这种情况,众多学者从不同角度对中药材中生物碱的提取分离进行了优化和改进[3)22]。本文就生物碱的提取分离技术,特别是几种新兴技术进行了综述。 2生物碱的提取方法 211传统提取方法 绝大多数生物碱是利用溶剂提取法进行提取。生物碱在溶剂中的溶解符合/相似相溶0的规律。极性强的生物碱亲水性较强,易溶于极性溶剂;弱极性生物碱亲脂性较强,易溶于弱极性溶剂。游离的生物碱大多亲脂性较强,而生物碱盐一般亲水性较强。按极性强弱可将生物碱提取溶剂分为极性溶剂、半极性溶剂和非极性溶剂[2]。 21111极性溶剂 极性溶剂有水、甘油、二甲亚砜等。水是最常用的强极性溶剂。具有碱性的生物碱在植物体中多以盐的形式存在,可直接以水作为提取溶剂。而弱碱性或中性生物碱则以不稳定的盐或游离的形式存在,这部分生物碱的亲水性比较弱,为增加其溶解度,可以采用酸水为提取液,使生物碱与酸生成盐而溶出。水提取物不易稳定,易染菌,此外含果胶,黏液质类成分的水提物难于过滤,影响分离操作。 21112半极性溶剂 半极性溶剂有乙醇、丙酮、丙二醇等。乙醇是最常用溶剂,游离的生物碱及盐类一般都能溶于乙醇。它可与水、甘油、丙二醇以任意比例混溶提取生物碱。有时也可采用醇酸溶液作提取剂。 21113非极性溶剂 非极性溶剂有乙醚、石油醚,氯仿、脂肪油、乙酸乙酯、液体石蜡等。以盐的形式存在于植物细胞中的生物碱采用非极性溶剂提取时,必须先使生物碱转变成游离碱后再用溶剂提取。非极性溶剂提出的总生物碱一般只含有亲脂性生物碱,不含水溶性生物碱。这种方法得到的生物碱杂质较少,易于进一步纯化。但溶剂渗入能力较弱,需反复提取。 溶剂提取法按具体操作可分为浸渍法、渗漉法、煎煮法、热回流法和连续回流法(索氏提取法)。21114浸渍法 浸渍法是将处理过的药材用适当的溶剂在常温

苦参生物碱的提取分离与鉴定最终版

实验五苦参生物碱的提取分离与鉴定 苦参是豆科槐属植物苦参的干燥根,含有多种生物碱,总碱含量高达约1%,其中以苦参碱、氧化苦参碱含量最高。苦参碱可溶于水、乙醚、三氯甲烷、苯,难溶于石油醚。氧化苦参碱为白色柱状结晶,可溶于水、三氯甲烷、乙醇‘难溶于乙醚、石油醚。现代药理学研究表明,苦参中的生物碱具有消肿利尿、抗肿瘤和抗心律失常的作用。 一、实验目的 本实验通过从苦参中提取苦参生物碱,考察盐酸的浓度和渗漉速度对提取产率的影响 了解化学反应萃取分离在天然药物提取过程中的应用 掌握渗漉法和离子交换提取生物碱的原理、方法与工艺过程,并熟悉用柱层析法分离生物碱。 二、实验内容 (1)苦参总碱的提取。 ①将苦参粗粉用不同浓度的HCl溶液润湿后渗漉,收集渗漉液; ②将收集的渗漉液通过阳离子交换树脂柱,进行离子交换; ③洗脱并回流提取苦参总碱。 (2)分别用柱层析法和溶解度差异法分离氧化苦参碱。 三、实验时间 步骤所需时间/h 渗漉 2 离子交换 2 回流 5 柱层析(或溶解度差异法) 2.5

鉴定0.5 四、实验原理 1.提取与分离方法 利用苦参生物碱具有弱碱性,可与强酸结合成易溶于水的盐的性质,将总碱从药材中提取出来。结合动态连接提取工艺过程,实现生物碱充分溶出。然后,加碱碱化,即可得到苦参生物总碱。以苦参碱为例: 2. 工艺流程

五、实验材料与设备 1. 实验设备与仪器 层析柱,渗漉桶,烧杯,布氏漏斗,医用搪瓷盘,恒温水浴箱,层析槽,索氏提取器,研钵。 2.实验材料与试剂 苦参,强酸性阳离子树脂,层析用氧化铝,三氯甲烷,甲醇,浓氨水,乙醚,碘化铋钾,盐酸,氢氧化钠。 碘-碘化钾试剂,碘化汞钾试剂,碘化铋钾试剂,硅钨酸试剂。 六、实验步骤 1.反应提取步骤 (1)动态连续提取 ①取苦参粗粉200g加一定浓度的盐酸,拌匀,放置30min,使生药膨胀。 ②然后装入渗漉桶中,边加边压,层层加紧,全部装完后,药面压平,盖一层滤纸,滤纸上压一些洗净的玻璃塞。 ③加入一定浓度的HCl溶液经过药面,以4~5mL/min的速度渗漉,收集渗漉液至无明显的生物碱反应为止,收集渗漉液约2500mL。 (2)交换 ①将收集的渗漉液置于阳离子交换树脂进行交换,如交换液有为交换的生物碱时,仍可以继续交换,直至流出液无生物碱反应为止。 ②将树脂倾入烧杯中,用蒸馏水洗涤数次,除去杂质,于布氏漏斗中抽干,倒入唐磁盘中晾干。 (3)总生物碱的洗脱 ①将晾干的树脂,加浓氨水适量,搅匀,使湿润度适宜,树脂充分膨胀,盖好放置20min。 ②装入索氏提取器中,加三氯甲烷300mL在水浴上回流洗脱,提至尽生物碱为止。 ③回收三氯甲烷,得棕色粘稠物。 ④加无水丙酮适量,加热溶解,过滤,减压蒸干。 必要时重复此操作,以脱除粗生物碱中的水,再在无水丙酮中重结晶。2.氧化苦参的分离 (1)柱色谱法取100目色谱用氧化铝50g,用漏斗缓慢加入色谱柱内(1cm ×24cm,干法装柱),取苦参0.2g,加入适量氧化铝,搅匀,研细,装入色谱柱顶端,先用50ml三氯甲烷通过色谱柱,再用三氯甲烷-甲醇(9:1)洗脱,流速

苦参现代研究进展

苦参现代研究进展(综述) 苦参为豆科植物苦参( Sophora flavescens Ait . ) 的干燥根。苦参味苦、性寒。归心、肝、胃、大肠、膀胱经。随着分离技术的发展,苦参中的成分在被慢慢的发现中,很多已经明确的有效成分在被不断的研究,已经确定的药理作用也有很多。随着人们的对身体健康的关注度提高、养生保健意识增强,毒副作用小,药效明显的中药越来越受人们的青睐,苦参就是其中一种现在就以现代苦参研究中的化学成分、药理作用、有效成分的提取及质量控制做一综述。 1 化学成分 苦参中化学成分主要有生物碱类、黄酮类、三萜皂苷类以及醌类化合物。除外苦参中还含有多种氨基酸、脂肪酸等成分,但是这些都无明显的药理作用故而研究较少。 1.1生物碱类苦参碱、氧化苦参碱、槐果碱、槐胺碱、槐定碱、N-氧化槐根碱、槐醇碱、N-甲基野定碱等,其中以前五种为目前认为的具有主要药理活性的生物碱[1]。苦参中的生物碱类为最主要的成分,是苦参的重要有效成分,有多种药理作用。《中国药典》(2010版)规定,苦参干燥品中苦参碱、氧化苦参碱的总含量不得低于1%,可见这两种成分在苦参中的重要性。 1.2黄酮类化合物包括:二氢黄酮、黄酮醇、二氢黄酮醇、苦参新醇、苦参查耳酮、苦参醇等。 1.3三萜皂苷类化合物包括:苦参皂苷(Ⅰ、Ⅱ、Ⅲ、Ⅳ)、大豆皂苷等。 1.4醌类化合物包括:苦参醌A等。 2 药理作用 苦参作为一种传统的中药具有清热解毒、燥湿利尿、祛风杀虫等作用。现代研究表明苦参具有杀菌消毒、抗寄生虫、抗心律失常、抗心肌缺氧、抗肿瘤等作用。苦参碱、氧化苦参碱为诸多药理作用的活性成分。 2.1杀菌消毒张顺合等[2]研究发现苦参对细菌繁殖体、病毒、真菌(霉菌)具有消毒作用。

苦参碱Matrine

苦参碱Matrine [编辑本段] 植物来源 :豆科植物苦参Sophora flavescens Ait的干燥根。 英文名称:Matrine [编辑本段] 别名 :母菊碱 [编辑本段] 苦参的生物学基本特性. 中文科名(Family Name):豆科(leguminous plants) 来源品名(Botanical Origin):苦参Sophora japonica (kushen,Sophora flavesc ens Ait.);Lighiyellow Sophora Root;豆科植物苦参Sophora flavescens Ait.的根。 其他来源:山豆根Sophora subprostrata (shandougen),以及Sophora alope curoides地上部分 一般中文名:苦参(Sophora japonica (kushen));sophoraal opecuraidesl;So phora flavescens Ait. 学名:Sophora japonica 英文名:(英)Sophora japonica(kushen),Sophora alopecuroides L.;Radix S ophorae Flavescentis 中文别名:别名苦甘草、苦参草、苦豆根,西豆根,苦平子,野槐根、山槐根、干人参、苦骨。 中文品名:苦参提取物Lighiyellow Sophora Root P.E.:苦参碱(Matrine,C15H2 4N2O)98%HPLC 中文品名:苦参提取物Lighiyellow Sophora Root P.E.:氧化苦参碱(苦参素)(ox ymatrine,C15H24N2O2)98%HPLC [编辑本段] 化学成分: 国外早在30年代初苏联开始研究,国内开始于1972年,国内外研究的重点均放在生物碱上,目前国内自苦参植物中提取、分离、鉴定的生物碱主要有氧化苦参碱(oxymatrine,C15H24N2O2),苦参碱(Matrine,C15H24N2O),异苦参碱(Iosmatrine,C1

苦参中的化学成分以及药理作用的研究进展

苦参中的化学成分以及药理作用的研究进展 摘要:本文通过对近年来研究关于苦参的化学成分,及其药理作用的文献进行查阅和整理,并对其进行了综述。 关键词:苦参;化学成分;药理作用 Research Process on the Chemical Compounds and Pharmacology of Sophora Flavescens Abstract:This article review and consolidation the literature of research on the chemical composition of sophora, and its pharmacological effects in recent years, then summarise them into a paper. Key words: Sophora; chemical composition; pharmacological effects 前言 苦参是常用中药之一,始载于《神农本草经》,列为中品。别名苦骨、川参、草槐、地槐等。为豆科植物槐属苦参(Sophora flavescens A it.)的干燥根。苦参为落叶半灌木,高 1.5-3m。根圆柱状,外皮黄白色。茎直立,多分枝,具纵沟;幼枝被疏毛,后变无毛。奇数羽状复叶,长20-25cm,互生;小叶15-29片,叶片呈披针形至线状披针形,长3-4cm,宽1.2-2cm,先端渐尖,基部圆,有短柄,全缘,背面密生平贴柔毛;托叶线形。总状花序顶生,长15-20cm,被短毛,苞片线形;萼钟状,扁平,长6-7mm,5浅裂;花冠蝶形,淡黄白色;旗瓣匙形,翼瓣无耳,与龙骨瓣等长;雄蕊10,花丝分离;子房柄被细毛,柱头圆形。荚果线形,先端具长喙,成熟时不开裂,长5-8cm。种子间微缢缩,呈不明显的串珠状,疏生短柔毛,种子3-7颗,为黑色近球形。花期6

实验六:生物碱的提取

实验六:咖 啡 因 的 提 取 【实验目的】 1、学习生物碱提取及其衍生物的制备方法; 2、学会升华操作; 【实验原理】 咖啡碱具有刺激心脏,兴奋大脑神经和利尿等作用。主要用作中枢神经兴奋药。它也是复方阿斯匹林(A. P. C )等药物的组分之一。现代制药工业多用合成方法来制得咖啡碱。 茶叶中含有多种生物碱,其中咖啡碱(或称咖啡因,caffeine )含量约1%-5%,丹宁酸(或称鞣酸)约占11%-12%,色素、纤维素、蛋白质等约占0.6%。咖啡因是弱碱性化合物,易溶于氯仿、水、热苯等。 咖啡碱为嘌呤的衍生物,化学名称是1,3,7-三甲基-2,6-二氧嘌呤,其结构式与茶碱,可可碱类似。 嘌呤(Purine ) 咖啡因(Caffeine) 茶碱(Guanine) 可可碱(Adenine) 含结晶水的咖啡碱为白色针状结晶粉末,味苦。能溶于水、乙醇、丙酮、氯仿等。微溶于石油醚,在100℃时失去结晶水,开始升华。120℃时升华显著,178℃以上升华加快。无水咖啡因的熔点为238℃ 从茶叶中提取咖啡因,是用适当的溶剂(氯仿、乙醇、苯等)在脂肪提取器中连续抽提,浓缩得粗咖啡因。粗咖啡因中还含有一些其它的生物碱和杂质,可利用升华进一步提纯。咖啡因是弱碱性化合物,能与酸成盐。其水杨酸盐衍生物的熔点为138℃,可借此进一步验证其结构。 【操作过程和实验装置图】 N N NH N 12 3 67 9 CH 3 3 CH 3 N N O O N N N O O CH 3 NH N CH 3N N N CH 3 HN N O O 3

1、生物碱及其衍生物的提取与制备方法。 2、升华操作 流程 图2.8.2 常压升华装置 【实验关键和注意事项】 (1)滤纸套筒大小要合适,以既能紧贴器壁,又能方便取放为宜,其高度不得 超过虹吸管;要注意茶叶末不能掉出滤纸套筒,以免堵塞虹吸管;纸套上面折成凹形,以保证回流液均匀浸润被萃取物,也可以用塞棉花的方法代替滤纸套筒。用少量棉花轻轻阻住虹吸管口。 (2)瓶中乙醇不可蒸得太干,否则残液很粘,转移时损失较大。 (3)生石灰起吸水和中和作用,以除去部分酸性杂质。 (4)在萃取回流充分的情况下,升华操作是实验成败的关键。升华过程中,始 终都需用小火间接加热。如温度太高,会使产物发黄。注意温度计应放在合适的位置,使正确反映出升华的温度。 【主要试剂及产品物理常数】

苦参化学成分图解

生物碱 (+)-氧化苦参碱(+)-别苦参碱(-)-9α-羟基苦参碱 (+)-oxymatrine (+)-allomatrine (-)-9α-hydroxymatrine (-)-槐果碱(+)-氧化槐果碱(+)-莱蔓碱 (-)-sophocarpine (+)-oxysophocarpine (+)-lehmannine (-)-13,14-去氢槐定碱(-)-9α-羟基槐果碱(+)-12α-羟基槐果碱(-)-13,14-dehydrosophoridine (-)-9α-hydroxysophocarpine (+)-12α-hydroxysophocarpine (-)-臭豆碱苦参色满二氢黄酮A (-)-anagyrine sophoraflavenochromane A 苦参色满二氢黄酮B 苦参色满二氢黄酮C sophoraflavenochromane B sophoraflavenochromane C 苦参色满二氢黄酮D 苦参色满黄酮A sophoraflavenochromane D sophoraflavechromane A

苦参色满黄酮B 苦参色满黄酮C sophoraflavechromane B sophoraflavechromane C 5-去羟山柰素7,4′-二羟基-3′-甲氧基异黄酮Resokaempferol 7,4′-dihydroxyl-3′-methoxylisoflavone 毛蕊异黄酮鹰嘴豆素甲 calycosin biochanin A 大豆素芒柄花素 Daidzein formononetin 大豆皂醇B三萜番石榴酸二乙酯酚性化合物soyasapogenol B piscidic acid diethyl ester

苦参

苦参 【性味与功效】 味苦,性寒。功效:清热燥湿,祛风解毒。 【传统应用】 主治湿热之痢疾、黄疸、赤白带下、阴疮湿瘁、皮肤癣疹瘙痒、恶疮、瘰疬等病症。 苦参、丹参、蛇床子,治疗一切疥及风瘙痒成疮; 【药理作用】 (一)抗病原体 本品煎剂对结核杆菌和皮肤真菌有抑制作用。体外试验有抗滴虫功效。对多种病毒、细菌有显著的抑制作用。 (二)细胞毒 苦参生物碱具有丝裂霉素样的细胞毒作用,能抑制细胞合成周期S期,对癌细胞、正常细胞均有抑制作用,是一抗癌药和免疫抑制药。 (三)苦参有利尿作用 【临床应用】 1.治疗细菌性痢疾、急性肠炎,也能用于溃疡性结肠炎之大便脓血。 2.治疗慢性炎、滴虫性炎和真菌性炎。 3.治疗各种肝炎,包括急性黄疸型肝炎、慢性乙型肝炎、免疫性肝炎。 4.治疗多种免疫病,如红斑狼疮、慢性肾炎、白塞病、皮肌炎等及其出现的蛋白尿、红斑、皮疹、溃疡、肌酶升高等。 5.治疗皮肤过敏的红斑、皮疹、瘙痒。 6.治疗各种恶性肿瘤。

【临床体会】 (一)治疗自身免疫病 苦参一药,我们临床较多用于治疗自身免疫病、过敏性疾病引起的皮疹、红斑,皮肤、口腔、阴部溃疡,眼炎,血管炎,蛋白尿、转氨酶、肌酶、球蛋白升高,淋巴结肿大等,是一味重要的免疫抑制药。其药力和副作用比环磷酰胺、氨甲蝶呤等免疫抑制药要弱。 治疗皮疹、红斑、瘙痒与生地、地肤子、白鲜皮等同用。治疗血管炎、蛋白尿与生地、丹皮、接骨木、落得打等同用。治疗白塞病,眼炎,口腔、阴部溃疡与徐长卿、土茯苓、焦决明等同用。 (二)治疗各种肿瘤 苦参有细胞毒作用,能抑制细胞增殖,可用于各种肿瘤,如肠癌、肺癌、肾癌、前列腺癌、皮肤癌、宫颈癌、恶性淋巴瘤、白血病等,是一味重要的抗癌中草药,可与七叶一枝花、南星、半夏等同用。其抗癌的作用机制类似丝裂霉素,但药力和副作用远远不如丝裂霉素。 (三)治疗大便脓血 大便脓血症状可由感染性、免疫性、恶性三种不同性质的疾病所引起,其治疗方法有相同之处,也有不同之处。 1.感染性疾病苦参是治疗痢疾的传统用药,对细菌性痢疾和阿米巴痢疾都有疗效。中医辨证为湿热积滞,清除肠道湿热的中药很多,以黄连、黄柏、大黄、白头翁、秦皮为最佳,并且以清化湿热、通因通用的方法治疗为主。对白头翁汤效果产生耐药的,才用苦参治疗,以加强其药力。 苦参也用于治疗真菌,与蛇床子等同用,以外洗为好。 2.免疫性疾病慢性溃疡性结肠炎和克隆病常有大便脓血之症,是自身免疫病。中医

苦参提取工艺

1.1溶剂提取法苦参碱的溶剂提取法,常用水、酸水及乙醇等 作为提取溶媒,提取方法多为浸渍、渗滚、煎煮、回流等经典方法。孔令明等川从酸水回流提取、乙醇回流提取两大苦参总碱方法 的对比中发现,乙醇回流法在保证较高的苦参碱得率的情况下, 出膏率相对较低,综合比较发现,乙醇回流法对苦参总碱的提取 效果较好,是一种目前较为合适的苦参总碱溶剂提取方法。其最 佳工艺参数为:采用筛分目数20一60目的苦参粉,以60%的乙 醇溶液,料液比为1:2,回流提取2次。谭桂莲[a]分别对水煎法、 乙醇回流法和渗滤法提取氧化苦参碱工艺进行优选研究,结果表明,渗滤法所得浸提物中,氧化苦参碱含量明显高于水煎法和乙 醇回流法,故认为渗滤法为氧化苦参碱的最佳提取方法。选择浸 泡时间、乙醇浓度、溶剂用量、流速4个因素,每因素3水平,用 肠(34)正交表进行实验设计,以氧化苦参碱的含量为考核指标。 结果分析:根据各因素的影响来看,其影响大小顺序是乙醇浓度 >溶剂用量>浸泡时间>流速。因此,可推断最佳工艺为加ro 倍量65%乙醇,浸泡24h渗滤,流速为5ml/mino 表面活性剂有降低表面张力及增溶作用。在提取剂中加人 表面活性剂,一方面相互聚集形成胶束,从而增加了提取剂对药 材的浸提能力;另一方面可降低提取剂与药材间的界面张力,促 进润湿,在胶束作用下有效成分易被解吸、提取。应用表面活性 剂于苦参碱的提取,一般选用毒性相对较小,对皮肤刺激性较低 的非离子型表面活性剂吐温类。鲁传华等[3l以多种浓度的乙 醇、稀盐酸溶液、胶束分散系及水为提取溶剂,常温浸渍法提取苦参中苦参碱,考察表面活性剂吐温80的水及醇溶液正向胶束体 系提取苦参碱的效率。结果表明,含有表面活性剂的提取剂能更 快地达到最大提取量,提高生产率。李晓梅[’J在提取溶剂(水或 乙醇)中分别加人0.2%吐温20或吐温80提取苦参碱,以苦参 碱含量为考核指标,考察非离子型表面活性剂在苦参碱提取中的 实际应用价值。结果表明,在苦参碱提取中应用吐温20和吐温80,可以降低药材与溶剂之间的表面张力,增加药材中细胞渗透 性,使溶剂最大限度地溶解或增溶药材中有效成分,显著增加苦 参碱提取率,降低成本,提高经济效益。 1.2离子交换法利用生物碱盐通过强酸型阳离子交换树脂柱, 使生物碱盐阳离子交换在树脂上,而非生物碱化合物则流出柱 外,将交换后的树脂晾干,用氨水碱化,氯仿提取的原理。高拴平 等图研究了离子交换法提取分离苦参碱的工艺过程,技术路线 是:苦参粉、甲醇回流提取。回收溶剂*粗提物、稀硫酸溶解* 脱脂一水层*除揉一上201型阳离子交换树脂一碱化树脂一抓 仿提取*回收溶剂叶脱水一丙酮一苦参碱结晶。采用上述提取 分离方法,苦参碱的产率高,结晶质量好。张存莉等[.]采用不同 浓度的乙醇和阳离子交换树脂对苦参碱进行提取和纯化,并对不 同的苦参碱纯化工艺进行比较和研究。结果表明,用60%的乙 醇进行提取和用阳离子交换树脂进行纯化的工艺过程,生物碱收 率较高,生产成本较低,工序较为简单,适宜工业化生产。

生物碱类化合物药理作用研究进展

收稿日期:2003-03-17; 修订日期:2003-09-18 作者简介:蒙其淼(1979-),男(汉族),广西横县人,在读研究生,主要从事药物分析工作. 生物碱类化合物药理作用研究进展 蒙其淼,梁 洁,吴桂凡,陆 晖 (广西中医学院,广西南宁 530001) 摘要:对生物碱类化合物的药理作用研究进展进行了概述和分析。生物碱类化合物具有心血管系统、中枢神经系统、抗炎、抗菌、抗病毒、保肝、抗癌等多方面的药理活性。 关键词:生物碱类化合物; 药理作用 中图分类号:R 285.5 文献标识码:B 文章编号:1008-0805(2003)11-0700-03 生物碱类化合物广泛存在于自然界植物中,有多种生物学活性。本文就其药理作用研究情况作一概述。1 心血管系统作用 苦参碱类生物碱是以苦参碱为代表的化学结构相似的一类生物碱,存在于豆科植物苦参、苦豆子、及广豆根中,主要包括苦参碱(matr ine ,M at )、氧化苦参碱(oxymatrine )、槐果碱(sopho-car pine )等。大量实验研究表明苦参碱类生物碱在强心和抗心率失常功能方面具有显著而肯定的作用,它们均能对抗乌头碱、哇巴因、氯仿-肾上腺素、氯化钡及冠脉结扎等诱发的动物实验性心率失常,且多为室性心率失常[1]。临床应用苦参治疗各种原因引起的心率失常,发现苦参对房性、室性心率失常均有作用[2]。苦参碱提高DET ,延长ERP 是其抗心率失常作用机制。槐果碱(sophocarpine )能对抗室性心率失常,可能是通过对心脏的直接作用及通过神经系统对心脏的间接作用。苦参碱、氧化苦参碱对心肌表现为正性肌力作用,能使离体家兔心房和豚鼠乳头肌标本、离体蛙心和蟾蜍心脏收缩力加强,振幅增加,并呈剂量依赖关系。用电激动左心房实验证明,苦参碱的正性肌力作用可被Ca 6通道阻滞剂维拉帕米显著抑制,推测其可能与激活钙通道有关。苦参总碱还能扩张冠状动脉,增加冠状动脉血流量,扩张离体兔的肾及耳血管,能延长小鼠在常压下的耐缺氧时间。用苦参碱50mg/kg 能显著降低大鼠实验性高脂血症的血清甘油三酯,升高HDL 水平,降低血黏度,使血液流变学各项指标有所改善,从而达到抑制动脉粥样硬化的形成[3]。 以具有心血管活性的异喹啉类生物碱为先导物,结合某些钾通道阻滞剂的结构特征,设计合成了28个3,4—二氢和1,2,3,4—四氢苄基/萘甲基异喹啉化合物及其有关季铵衍生物。药理实验表明,大多数化合物具有不同程度的降压和减慢心率活性。异喹啉母核氮原子电荷可能为影响作用于血管或心脏组织的重要因素之一[4]。从茜草科钩藤植物滇钩藤中分得的四氢鸭木碱具有舒张血管平滑肌的作用,其对兔胸主动脉平滑肌收缩的抑制百分率达53%以上[5]。枳实生物碱成分能迅速显著升高大鼠血压,给药前后比较,差异非常显著(P <0.01)[6]。 小檗碱主要来源于毛茛科植物黄连,其静脉注射或口服对麻醉(犬、猫、兔)或不麻醉大鼠均可引起血压下降。在一般剂量或小剂量时,它能兴奋心脏,增加冠状动脉血流量;大剂量则抑制心脏,即使再增加剂量,在离体蟾蜍或猫的心脏上亦无起搏现象。降 压机制可能是直接兴奋毒蕈碱样受体[7] 。从吴茱萸中分离得到的2-烃基取代的4(1H )-喹诺酮生物碱有一定的阻断钙离子通道并抑制高钾离子引起的钙离子富集作用,从而能扩张血管[8]。从中药川芎中得到的川芎嗪与阿魏酸反应合成阿魏酸川芎嗪盐,药理实验发现两者都具有较强的抗凝血功能和较强的抗血栓作用,能使APTT 、TT 和PT 延长,而阿魏酸川芎嗪盐作用强于川芎嗪[9]。 普洛托品(P rotopine,P ro)又名原阿片碱,是从夏天无、紫金龙等我国广泛分布的植物中提取的一种异喹啉类生物碱,具有对抗血小板聚集,影响血小板生物活性物质的释放,保护血小板内部超微结构的作用。P ro 对乌头碱、毒K 、中枢性心肌缺血再灌注、氯仿、苯-肾上腺等引起的心率失常有保护作用,负性频率作用和延长有效不应期是其抗心率失常作用的基础[10]。甲基连心碱(neferine ,Nef )是从睡莲科植物莲成熟种子的绿色胚芽中提取的一种双苄基异喹啉类生物碱,对心血管具有多种作用。Nef 能对抗乌头碱、氯仿-肾上腺素、电刺激丘脑下区诱发的心率失常作用。Nef 在较大剂量(6mg /kg )iv 后,对正常血压、醋酸去氧皮质酮盐型高压和肾性高压大鼠都有降压效应,其机制可能是通过直接扩张血管平滑肌而起作用。Nef 对离体大鼠心脏缺血—再灌注损伤有保护作用,能依剂量减少整体大鼠缺血再灌注后VF 发生率,缩VF 持续时间。Nef 对电解性氧自由基损伤离体大鼠心脏、冠脉流量减少、血管内皮细胞损伤也都具有保护作用。Nef 还具有抗血小板聚集和抗血栓的作用。对心肌收缩力,Nef 具有抑制作用,在一定剂量范围内可增加冠脉流量,为该药治疗心血管疾病提供了实验依据[11]。 附子中的双酯型二萜生物碱既是毒性成分,又是有效成分,如乌头碱具有扩张冠状血管和四肢血管的作用,在小剂量(未致心室纤颤)时,就已产生抗急性心肌缺血的作用,并有明显的常压耐缺氧作用[12]。贝母素丙4.2mg /kg 的剂量可导致猫的血压缓慢降低,并最终维持在较低水平。湖北贝母总碱对猫血压也有短时中等程度的降压作用,与阿托品作用相似。贝母生物碱FH 1与F H 2具有正性肌力、负性频率和舒张血管作用。在离体血管上,F H 1—F H 4均可明显对抗甲氧胺引起的血管收缩作用[13]。 汉防己甲素(tetr andine ,T ET )又称粉防已碱,是从防己科植物粉防己根中提取的双苄基异喹啉类生物碱。TET 有明显的降压作用,并能极显著降低高血压患者血内脂质过氧化物、血栓素水平,极显著升高SOD 、前列环素水平,降低T XB 2/6-Keto-PGF 1A 比值。在缺氧性肺动脉高压犬,TET 能明显降低升高的肺动脉压和肺血管阻力,并提高CO 和氧搬运能力而对系统循环和血气水平无明显影响。TET 有抗心绞痛作用,能显著降低心肌耗氧指数,是一个治疗心绞痛、预防心肌梗死和减轻心肌缺血—再 灌注损伤的有效药物[14] 。来自石蒜科植物的生物碱同样具有心血管系统作用。石蒜伦碱能抑制蟾蜍心脏。石蒜碱则先兴奋后抑制,对麻醉大鼠、猫、犬及兔均有降压作用,机制为直接扩张外周血管及抑制心脏。二氢石蒜碱可减弱肾上腺素的升压作用,因其能阻止儿茶酚胺的释放[15]。2 中枢神经系统作用 石蒜科植物生物碱加兰他敏及力克拉敏为可逆性胆碱酯酶抑制剂,小剂量对大脑皮层及延脑内胆碱酯酶活性有较强抑制作用,大剂量则抑制脑内胆碱酯酶活性。应用加兰他敏、二氢加兰他敏治疗小儿麻痹后遗、重症肌无力和外伤性截瘫等病症有效,且毒性较小。石蒜碱对小鼠及家兔有明显镇静作用,能延长巴比妥类药物的睡眠时间,还能加强延胡索乙素及吗啡的镇静作用。石蒜碱静脉注射或皮下注射,对人工致热家兔均有明显解热作用, · 700·时珍国医国药2003年第14卷第11期LISHIZHEN MEDICINE AND MATERIA MEDICA RESEARCH 2003VOL.14NO.11

概述:生物碱的提取

Dictamnine 白鲜碱;Skimmianine 茵芋碱; Fagarine 青椒碱;Robustine ; <分子式> C12H9NO2 <相对分子质量> 199 <性状>棱柱粉末。又称白鲜胺,白藓碱。棱柱结晶(由乙醇中结晶),熔点133℃。溶于热乙醇和氯仿,微溶于乙醚,难溶于水。其盐酸盐为针状结晶(由乙醇中结晶),熔点170℃(分解)。其苦味酸盐为黄色棱晶(由乙醇中结晶),熔点1.63℃。存在于芸香科植物白鲜(Dictamnus dasycarpus Turcz.)的根。 芸香科植物白鲜的根;芸香科植物欧白鲜;芸香科植物花椒属竹叶椒的根;芸香科植物阿诺梯花椒的茎;芸香科植物得卡瑞花椒的茎皮;芸香科植物刺异叶花椒的根;芸香科植物蚬壳花椒的茎;芸香科植物乔木状花椒的叶;芸香科植物崖椒的茎皮;芸香科植物两面针;芸香科植物松风草的地上部分;芸香科花椒属植物梅宇崖椒的树皮;芸香科植物的树皮;芸香科植物似番樱桃叶芸香草地上的部分;芸香科植物火山生芸香草的全草;芸香科植物的茎;芸香科植物的根和茎;芸香科的叶;芸香料的树皮 <生物活性>强心和对平滑肌的作用;松弛血管的作用;抗真菌和DNA光毒性作用;皮肤光损害作用;抗血小板聚集作用;昆虫拒食作用。 防己提取物 【英文或拉丁名】:Stephania Tetrandra extract 【产品规格】:Tetrandrine12% Fangchinoline6% 【包装规格】:25kg/paper drum 【产品介绍】:药材为防己科植物石蟾蜍Stephania tetrandra S. Moore的根。棕色粉末。

【化学成分】:含多种异喹啉生物碱,主要有粉防己碱(tetrandrine )、防己诺林碱(fangchinoline)、轮环藤酚碱(cyclanoline)、二甲基粉防己碱(dimethyltetrandrine) 以及小檗胺(berbamine)等。 【功能主治】:利水消肿,祛风止痛。用于水肿脚气、小便不利、风湿痹痛、湿疹疮毒、高血压症。 【备注】: 植物形态多年生落叶缠绕藤本。茎纤细,有纵条纹。叶互生,宽三角状卵形,先端钝,具小突尖,基部截形或略心形,两面均被短柔毛,全缘,掌状脉5条;叶柄盾状着生。花小,单性,雌雄异株;雄花序为头状聚伞花序,排成总状,萼片4,花瓣4,雄蕊4,花丝连成柱状体,上部盘状,花药着生其上;雌花萼片、花瓣与雄花同,心皮1。核果球形,熟时红色。花期5-6月,果期7-9月。 生于山坡、丘陵地带的草丛及灌木林缘。主产浙江、安徽、湖北、湖南。 采制秋季采挖,除去粗皮,晒至半干,切段或纵剖,干燥。 性状根不规则圆柱形,或剖切成半圆柱形或块状,常弯曲,弯曲处有深陷横沟而呈结节状,长5-15cm,直径1-5cm。表面灰黄色,有细皱纹及横向突起的皮孔。质坚重,断面平坦,灰白色,粉性。气微,味苦。

苦参碱的提取与含量测定

苦参碱的提取与含量测定 摘要:本论文通过单因子试验,研究了乙醇浓度、浸泡时间、浸泡温度、提取次数和液料比对苦参中苦参碱提取率的影响;采用紫外可见分光光度法测定该成分含量,作为评价指标。目的是为了优选苦参中苦参碱的提取条件,测定苦参中苦参碱的含量。最佳条件是:乙醇浓度为60%、浸泡时间为2.5小时、浸泡温度为60℃、提取次数为2次、液料比为12:1,在此最佳工艺条件下苦参碱含量与提取率均较高,苦参中苦参碱的得率为8.89%。优选得到的提取工艺条件,简便易行且稳定性好。 关键词:苦参;苦参碱;提取条件;含量测定

Matrine Extraction and Determination Abstract: In this paper, single-factor experiment was conducted to study the ethanol concentration, soaking time, soaking temperature, frequency and fluid extraction than expected rate of extraction of matrine in matrine impact; using UV-visible spectrophotometric determination of the ingredients, as the evaluation indicators. The purpose of optimization of the extraction of matrine in matrine conditions, the determination of matrine in matrine content. The best conditions are: 60% ethanol concentration, soaking time of 2.5 hours, soaking temperature of 60 ℃, for 2 times the number of extraction and liquid feed ratio of 12:1, the optimum conditions in the concentration and extraction of matrine rates are higher in Matrine Kushen a rate of 8.89 percent. The optimized extraction conditions, simple and good stability. Key Words: Kushen; Matrine; extraction conditions; Determination

苦参生物碱的提取实验报告

竭诚为您提供优质文档/双击可除苦参生物碱的提取实验报告 篇一:苦参生物碱的提取分离与鉴定最终版 实验五苦参生物碱的提取分离与鉴定 苦参是豆科槐属植物苦参的干燥根,含有多种生物碱,总碱含量高达约1%,其中以苦参碱、氧化苦参碱含量最高。苦参碱可溶于水、乙醚、三氯甲烷、苯,难溶于石油醚。氧化苦参碱为白色柱状结晶,可溶于水、三氯甲烷、乙醇‘难溶于乙醚、石油醚。现代药理学研究表明,苦参中的生物碱具有消肿利尿、抗肿瘤和抗心律失常的作用。 一、实验目的 本实验通过从苦参中提取苦参生物碱,考察盐酸的浓度和渗漉速度对提取产率的影响 了解化学反应萃取分离在天然药物提取过程中的应用 掌握渗漉法和离子交换提取生物碱的原理、方法与工艺过程,并熟悉用柱层析法分离生物碱。 二、实验内容 (1)苦参总碱的提取。

①将苦参粗粉用不同浓度的hcl溶液润湿后渗漉,收集渗漉液;②将收集的渗漉液通过阳离子交换树脂柱,进行离子交换; ③洗脱并回流提取苦参总碱。 (2)分别用柱层析法和溶解度差异法分离氧化苦参碱。 三、实验时间 步骤所需时间/h 渗漉2 离子交换2 回流5 柱层析(或溶解度差异法) 2.5 鉴定0.5 四、实验原理 1.提取与分离方法 利用苦参生物碱具有弱碱性,可与强酸结合成易溶于水的盐的性质,将总碱从药材中提取出来。结合动态连接提取工艺过程,实现生物碱充分溶出。然后,加碱碱化,即可得到苦参生物总碱。以苦参碱为例: 2.工艺流程 五、实验材料与设备 1.实验设备与仪器

层析柱,渗漉桶,烧杯,布氏漏斗,医用搪瓷盘,恒温水浴箱,层析槽,索氏提取器,研钵。 2.实验材料与试剂 苦参,强酸性阳离子树脂,层析用氧化铝,三氯甲烷,甲醇,浓氨水,乙醚,碘化铋钾,盐酸,氢氧化钠。 碘-碘化钾试剂,碘化汞钾试剂,碘化铋钾试剂,硅钨酸试剂。 六、实验步骤 1.反应提取步骤 (1)动态连续提取 ①取苦参粗粉200g加一定浓度的盐酸,拌匀,放置30min,使生药膨胀。②然后装入渗漉桶中,边加边压,层层加紧,全部装完后,药面压平,盖一层滤纸,滤纸上压一些洗净的玻璃塞。 ③加入一定浓度的hcl溶液经过药面,以4~5mL/min的速度渗漉,收集渗漉液至无明显的生物碱反应为止,收集渗漉液约2500mL。 (2)交换 ①将收集的渗漉液置于阳离子交换树脂进行交换,如交换液有为交换的生物碱时,仍可以继续交换,直至流出液无生物碱反应为止。 ②将树脂倾入烧杯中,用蒸馏水洗涤数次,除去杂质,

生物碱

生物碱类化合物-13 生物碱类化合物-13 13.苦参总生物碱具有什么活性() A.发汗平喘的作用 B.抗菌作用 C.镇痛的作用 D.镇静麻醉作用 E.消肿利尿,抗肿瘤的作用 答案:E 解析:苦参具有清热燥湿、杀虫、利尿等功效,总生物碱具有消肿利尿抗肿瘤等作用。 [1-5] A.发汗、平喘作用 B.抗菌作用 C.降血脂的作用 D.镇静麻醉的作用 E.消肿利尿、抗肿瘤的作用 1.东莨菪碱具有() 2.苦参碱具有() 3.小檗碱具有() 4.麻黄碱具有() 答案:D E B A 解析:东莨菪碱是洋金花主要有效成分之一,具有镇静、麻醉等作用。苦参碱是苦参主要有效成分之一,具有消肿利尿、抗肿瘤等作用。小檗碱是黄连主要有效成分之一,具有抗菌作用。麻黄碱是麻黄主要有效成分之一,具有发汗、平喘等作用。 [6-8] A.小檗碱 B.麻黄碱 C.伪麻黄碱 D.东莨菪碱

E.山莨菪碱 6.其共轭酸因分子内氢键稳定的是() 7.其草酸盐不溶于水的是() 8.其分子结构中具有氧环的是() 答案:C B D [9-11] A.氧化苦参碱 B.樟柳碱 C.莨菪碱 D.黄连碱 E.乌头碱 9.属季铵型生物碱的是() 10.属二萜双酯型生物碱的是() 11.属喹喏里西啶衍生物是() 答案:D E A [12-15] A.药根碱 B.次乌头碱 C.东莨菪碱 D.莨菪碱 E.甲基伪麻黄碱 12.水溶性的季铵碱是() 13.毒性极强的生物碱是() 14.6、7位具有含氧环结构的生物碱是() 15.经碱水加热可生成无酯键的醇胺型水解产物的生物碱是()答案:A B C B [16-17] A.羟基苦参碱 B.伪麻黄碱 C.巴马丁 D.表小檗碱 E.士的宁 16.可用水蒸气蒸馏法提取的生物碱是() 17.毒性极强的生物碱是()

化合物分离提取

皂苷的提取分离 皂苷部分极性较大,首先应该附集皂苷部位,通常可用正丁醇萃取或是大孔树脂得到总皂苷部位。 对于具体皂苷的分离,若使用硅胶柱层析,一般以氯仿:甲醇:水进行洗脱,氯仿:甲醇:水一般为9:1:0.1,8:2:0.3,7:3:0.5,同时应注意要加大柱层析硅胶的装柱量,减少样品的上样量;另外也可使用反相柱。 此外有些皂苷类成分极性较大容易含有一些色素,不易结晶,可使用 Sephedex LH-20去除色素,进而使皂苷结晶。 类似物的hplc分离注意的问题 HPLC时生物碱对流动相的PH值很敏感。 三萜皂苷的提取与分离 (1)提取:三萜皂苷常用醇类溶剂提取,若皂苷含有羟基、羧基极性基团较多,亲水性强,用稀醇提取效果较好。提取物先用石油醚脱脂,然后再用正丁醇萃取,萃取物再经大孔吸附树脂,得粗皂苷。 (2)分离:采用分配柱色谱法要比吸附柱色谱法好,常用硅胶为支持剂,以氯仿-甲醇-水为或乙酸乙酯-乙醇-水为洗脱剂。 氨基酸的分离 将氨基酸分离成酸性氨基酸,碱性氨基酸,中性氨基酸和芳香族氨基酸。取酸水解氨基酸液适量通过阳离子交换的层析柱,碱性氨基酸就保留在层析柱上;而中性氨基酸和酸性氨基酸的混合液则进入滤液中。再将滤液通过阴离子交换的层析柱,一切酸性氨基酸就保留在层析柱上;而中性氨基酸就进入滤液中。吸附在阳离子交换层析柱上的氨基酸,用2 N HAc洗脱;吸附在阴离子交换层析柱上的氨基酸,用0.5 NNaOH洗脱。 黄酮类化合物的分离 黄酮类化合物在硅胶上的吸附较多,可以采取减压硅胶柱或者中压硅胶柱,上样量稍大一些(这样可以减小吸附量),将样品分段,然后采用sephadex LH-20进行细分。采用sephadex LH-20时,最好选择一个比较合适的水与甲醇的比例(样品不会毫无保留),进行等度洗脱。因为水甲醇梯度洗脱很容易产生气泡。个人认为经过硅胶和sephadex LH-20后,黄酮和多糖应该能够分开。 生物碱与生物酸分离方法 https://www.doczj.com/doc/bd16435188.html,/bbs/post/view? ... sty=1&age=0#4271305 差向异构体的分离 https://www.doczj.com/doc/bd16435188.html,/bbs/post/view? ... 1&sty=1&age=0#62893 生物碱的提取: 由于各种生物碱的结构不同,性质各异,提取分离方法也不尽相同,主要是根据生物碱的溶解度而定。生物碱大都能溶于氯仿、甲醇、乙醇等有机溶剂,除季铵碱和一些分子量较低或含极性基团较多的生物碱外,一般均不溶或难溶于水,而生物碱与酸结合成盐时则易溶于水和醇。基于这种特性,可用不同的溶剂将生物碱从中药中提出,常用的提取溶剂有下列3种: (1)非极性溶剂:样品先用10%氢氧化铵溶液湿润,使中草药中与酸结合成盐的生物碱呈游离状态,然后用氯仿或乙醚等提取,一些与酸结合比较稳定的生物碱盐类和鞣酸盐或碱性较强的生物碱盐等,氢氧化铵不能将其完全分解,可用碳酸钠、碳酸氢钠、氢氧化钙或氧化镁,甚至氢氧化钠碱化,这个方法的缺点是不能提出水溶性生物碱。 (2)极性溶剂:极性较大的生物碱可用中性甲醇、乙醇、酸性甲醇、乙醇、酸水(常

生物碱的提取与分离

生物碱的提取与分离 化工081班第四小组成员 组长:梁钰泉主讲:牟星(200831204028) 材料收集:秦志浩(200831204023)卢晓波(200831204078)李汪(200831204059)Word制作: 李晓龙(200831204029)柏晓伟(200831204027) PPT 制作: 梁钰泉(200831204025)刘林(200831204031) 生物碱的概述 (一)含义:生物碱是一类来自生物体内含氮有机物,大多氮原子在环状结构内,分子结构复杂,多呈碱性,具有强烈生理活性。 (二)分布概况:1、存在科属:主要分布在植物界, 低等植物...较少高等植物... 多①双子叶植物---- 多如防已科、茄科、罂粟科、夹桃科、毛莨科、豆科、茜草科等。②单子叶植物----- 较少如百合科、石蒜科、兰科2、存在部位:不同植物均可存在于各个部位,在同一植物往往只集中于某一器官。黄连------根长春花------花麻黄------茎罂粟------果3、存在形式:①游离状态-----弱碱性生物碱②与酸结合成盐----- 强碱性生物碱③成酯或苷的形式 (三)生理活性:1、镇痛作用---- 吗啡、延胡索乙素2、抗消炎菌作用----- 黄连素3、抗肿瘤作用---- 喜树碱、美登木碱4、止咳作用---- 可待因 生物碱的分类分类方法(如下5种) 1、按植物来源分类法如长春花,黄连等 2、按生物碱的生源途径分类法 3、按生物碱的溶解性进行分类如游离亲脂性.游离亲性 4、按分子结构中氮原子处的 状态进行分类如双稠吡咯烷(两个吡咯烷共用一个N原子)5、按生物碱氮杂环基本母核分类如异喹啉.吡啶类 生物碱的理化性质 物理性质:1、性状:多为晶形,味苦,有焦灼感.颜色--多为无色,因分子中饱和度大。 少数具有黄色。2、旋光性:多数具有旋光性,且多为左旋而具疗效。3、溶解性: (1)游离亲脂性生物碱:可溶于苯、乙醚、氯仿尤其在氯仿中溶解度大,不溶于水。(2)游离亲水性生物碱:I、结构特点:a、季铵型生物碱---为离子型生物碱,b、具有半极性NO 配位键。c、小分子生物碱,如麻黄碱、菸碱。II、溶解性:-- 可溶于水、甲醇、乙醇,在正丁醇有一定溶解度。难溶于亲脂性强有机溶剂。(3)生物碱盐类:易溶于水,可溶于甲.乙醇难溶于亲脂性有机溶剂。因成盐的酸不同而具有不同的溶解度,其规律是:无机酸生物碱盐水溶性> 有机酸生物碱盐小分子有机酸生物碱盐> 大分子有机酸生物碱盐含氧酸生物碱盐> 卤代酸生物碱盐HCl 〉HBr 〉HI 化学性质:(一)碱性;(二)沉淀反应:生物碱在酸性水溶液中,与某些试剂生成难溶于水的复盐或分子复合物的反应。 用途:鉴别:检查生物碱有无(定性反应);显色剂:薄层色谱,纸色谱提取分离:检查是否提取完全分离纯化:雷氏铵盐用于季铵碱的分离 常用生物碱沉淀剂碘化物复盐类碘化铋钾试剂:桔红色沉淀碘—碘化钾:红棕色沉淀碘化汞钾:类白色沉淀(若加过量试剂,沉淀溶解)重金属盐类磷钼酸试剂:白色或黄褐色沉淀硅钨酸试剂:淡黄或灰白色沉淀大分子酸类苦味酸试剂:黄色结晶其它:硫氰酸铬钾(雷氏铵盐):红色沉淀或结晶(季铵碱)沉淀反应结果判断 a.鉴别生物碱的存在,需要采用三种以上生物碱试剂。 b.排除假阳性反应,除去水提液 中含有的蛋多肽、鞣质等杂质。 c.仲胺类不易与生物碱沉淀试剂反应,如麻黄碱.

相关主题
文本预览
相关文档 最新文档