当前位置:文档之家› 纳米二氧化钛的制备及其光催化性能

纳米二氧化钛的制备及其光催化性能

纳米二氧化钛的制备及其光催化性能
纳米二氧化钛的制备及其光催化性能

纳米二氧化钛的制备.docx

纳米二氧化钛的制备及其光催化活性的评价 实验报告 班级: 组别:指导老师: 小组成员:

实验目的: 1. 培养小组自主设计及完成实验的能力和合作能力。 2. 了解纳米二氧化钛的粒性和物性。 3. 掌握溶胶-凝胶法合成TiO2 的方法。 4. 研究二氧化钛光催化降解甲基橙和亚甲基蓝水溶液的过程和性质。 5. 通过实验,进一步加深对基础理论的理解和掌握,做到有目的合成,提高实验思维 与实验技能。 一、溶胶凝胶法制备二氧化钛 1 实验原理:纳米粉体是指颗粒粒径介于1?100 nm之间的粒子。由于颗粒尺寸的微 细化,使得纳米粉体在保持原物质化学性质的同时,与块状材料相比,在磁性、 光吸收、热阻、化学活性、催化和熔点等方面表现出奇异的性能。 纳米Tiθ2具有许多独特的性质。比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热导性能好,分 散性好等。基于上述特点,纳米Tiθ2具有广阔的应用前景。利用纳米Tiθ2作光 催化剂,可处理有机废水,其活性比普通Tiθ2(约10 μm)高得多;利用其透明性 和散射紫外线的能力,可作食品包装材料、木器保护漆、人造纤维添加剂、化妆 品防晒霜等;利用其光电导性和光敏性,可开发一种Tiθ2感光材料。如何开 发、应用纳米Tiθ2,已成为各国材料学领域的重要研究课题。目前合成纳米二氧 化钛粉体的方法主要有液相法和气相法。由于传统的方法不能或难以制备纳米级 二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活 性大的单组分或多组分分子级纳米催化剂[1 ?3],因此,本实验采用溶胶-凝 胶法来制备纳米二氧化钛光催化剂。 制备溶胶所用的原料为钛酸四丁脂(Ti(O-C4H9)4)、水、无水乙醇 (C2H5θH)以及冰醋酸。反应物为Ti(O-C4H9)4和水,分相介质为C2H5OH,冰 醋酸可调节体系的酸度防止钛离子水解过速。使Ti(O-C4H9)4 在C2H5OH中水解生成Ti(OH)4,脱水后即可获得TiO2。在后续的热处理过程中, 只要控制适当的温度条件和反应时间,就可以获得金红石型和锐 钛型二氧化钛。 钛酸四丁脂在酸性条件下,在乙醇介质中水解反应是分步进行的,总水解

二氧化钛纳米管的制备与应用概要

2012 /2013 学年第 2 学期环保材料课程考核试卷 A■、B□ 课程代码: 17000450 任课教师_施文健考试形式:开卷■、闭卷□ 课程性质:通识□、基础□、专业■、必修■、选修□、考试□、考查■、指选□、跨选□适用年级/专业二年级/环境工程学分/学时数 2/32 考试时间1周…………………………………………………………………………………………………………学号1117030320 姓名陈柱良专业环境工程得分 撰写小论文:环境工程材料――×××研究进展 学生通过对应用于防止、治理、修复环境污染的材料,包括净化材料、环境修复材料以及环境替代材料等材料中就某一种具体的环境工程材料的研究进展进行综述。学生的工作由国内外文献检索、阅读、归纳总结、并对该研究领域进行展望、小论文写作组成。小论文内容:题目、前言(目的意义)、国内外研究现状包括:材料的制备方法、材料表征、理化性能、在环境工程中的应用,写出学生自己的学习后的认识、观点或展望在该领域研究方向及应用前景。具体要求:查阅的中文文献≥10篇、英文文献≥5篇、小论文字数5000字左右、列出参考文献。

二氧化碳纳米管的制备与应用 前言: 纳米TiO 2是一种重要的无机功能材料,多呈颗粒状,它在环境光催化领域作为催化剂已引起广泛重视[1,2]。由于其具有无毒、气敏、湿敏、介电效应、光电转换、光致变色及催化活性高、氧化能力强、稳定性好等优点[3,4]而被广泛应用于各种光催化反应技术中,如自洁材料、介电材料、催化剂极载体、传感器、光催化太阳能电池、光裂解水制氢以及光催化降解大气和水中污染物等领域。Ti02纳米管是其又一种存在形式,纳米Ti02在光催化降解水中有机污染物方面有明显的优势[5],而且还能够解决汞、铬、铅等金属离子的污染问题。由于纳米管具有大的比表面积,因而具有较高的吸附能力,可望提高其光催化性能;特别是若能在管中填充更小的无机、有机、金属或磁性纳米级颗粒形成一维复合纳米材料,将会大大改善Ti02的光电、电磁、催化及抗菌等性能。目前,对TiO 2纳米薄膜、纳米粉体及掺杂改性的纳米TiO 2复合材料的制备、结构相变及其应用已进行了大量研究。但对于TiO 2纳米管的光电性能、催化性能及其应用的研究还处于起步阶段。TiO 2纳米管是纳米TiO 2的一种新的存在形式,与其他形态的纳米TiO 2材料相比,它具有更大的比表面积和更强的吸附能力,有望进一步提高TiO 2的光电转换效率和光催化性能,特别是若能在该纳米管中掺杂部分无机、有机、金属或者磁性材料而制备出复合纳米材料,则TiO 2纳米管的光电性能和催化活性将得到大大的改善。

纳米二氧化钛的制备

纳米二氧化钛的制备及其光催化活性评价 实 验 报 告 组别:第七组 组员:曲红玲高晗 班级:应121-2 指导老师:翁永根老师

纳米二氧化钛的制备及其光催化活性评价 一、实验目的 1、掌握利用简单的原料制备纳米材料的基本方法和原理。 2、了解二氧化钛的应用和多种制备方法的优缺点。 3、了解纳米半导体材料的性质。 4、了解纳米半导体光催化的原理。 5、掌握光催化材料活性的评价方法。 二、实验原理 二氧化钛,化学式为2TiO ,俗称钛白粉。多用于光触媒、化妆品,能靠紫外线消毒及杀菌。以纳米级2TiO 为代表的具有光催化功能的光半导体材料,因其颗粒细小、比表面积大而具有常规材料所不具备的优点,以及较高的光催化活性、高效的光点转化性能等,在抗菌除雾、空气净化、废水处理、化学合成及燃料敏化太阳能电池等方面显出广阔的应用前景。 1、纳米二氧化钛的制备 纳米二氧化钛的制备方法有很多。主要分为两类:一类是液相法合成,包括液相沉淀法、液相凝胶法、醇盐水解法、微乳液法及水热法;另一类是气相法合成,包括四氯化钛氢氧焰水解法、四氯化钛气相氧化法、钛醇盐气相氧化法、钛醇盐气相水解法、钛醇盐气相热解法。其中,溶胶凝胶法是近年来制备二氧化钛广泛使用的方法。本试验采用溶胶凝胶法制备二氧化钛。 溶胶凝胶法中,反应物为水、钛酸四丁酯,分相介质为乙醇,冰醋酸可调节体系的酸度防止钛离子水解过度,使钛酸四丁酯在无水乙醇中水解生成()4OH Ti ,脱水后即可得到2TiO 。在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以得到二氧化钛。 在以乙醇为溶剂,钛酸四丁酯和水发生不同程度的水解反应,钛酸四丁酯在酸性条件下,在乙醇介质中水解反应是分步进行的。 一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定的凝胶。此过程中涉及的反应为: ()()OH H C OH Ti O H H OC Ti 944249444+=+ ()()OH H C TiO H OC Ti OH Ti 942494442+=+ ()O H TiO OH Ti 2242+? 2、光催化活性评价 光触媒在光照条件下(可以是不同波长的光照)所起到的催化作用的化学反应,通称为光反应。光催化一般是多种相态之间的催化反应。 本次试验是进行紫外光催化活性评价,分别通过测量在亚甲基蓝和甲基橙中,反应前

二氧化钛光催化分解甲醛原理

二氧化钛光催化分解甲 醛原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全, 2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为 eV,当纳米TiO2接受波长为 nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:

纳米二氧化钛的制备方法及形貌特征

纳米二氧化钛的制备方法及形貌特征 盛丽雯重庆交通大学应用化学08300221 摘要:纳米二氧化钛以其优异的性能成为半导体光催化剂的杰出代表,探寻优良的二氧化钛制备工艺有着重要的现实意义。本文主要介绍了近年来国内外纳米二氧化钛制备工艺的研究状况,根据反应体系的物理形态将制备工艺分成气相、液相、固相三大类进行阐述,在此基础上分析比较了不同制备工艺的优缺点,最后展望了今后的发展方向。 关键词:纳米二氧化钛、制备方法、形貌特征。 1 纳米二氧化钛的制备方法 1.1 气相法 气相水解法利用氮气、氧气或空气作载气,把TiC1 或钛醇盐蒸气和水蒸气分别导人反应器,进行瞬间混合快速水解反应。通过改变各种气体的停留时间、浓度、流速以及反应温度等来调节纳米TiO的晶型和粒径。该方法制得的产品纯度高、分散性好、表面活性大,操作温度较低,能耗小,且对材质纯度要求不是很高,可实现连续生产;但控制过程复杂,并且直接影响着产品的晶型和粒径。气相氧化法是以TiC1 为原料,氧气为氧源,氮气作为载气的氧化反应,反应经气、固分离后制得纳米TiO:。该法制得的产品纯度高、分散性好;但设备结构复杂,材料要求耐高温、耐腐蚀,自动化程度高,研究开发难度大。气相氢氧火焰法以TiC1 ,H2,O:为原料,将TiC1 气体在氢氧焰中(700~1 000℃)高温水解制得纳米TiO。产品一般是锐钛型和金红石型的混晶型,产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小,自动化程度高;但所需温度高,对设备材质要求较高,对工艺参数控制要求精确。气相热解法以TiC1 为原料,在真空或原料惰性气氛下加热至所需温度后,导入反应气体,使之发生热分解反应,最后在反应区沉积出纳米TiO。产品化学活性高、分散性好,可以通过控制反应气体的浓度和炉温来控制纳米TiO的粒径分布;但投资大、成本高。 1.2 液相法 溶胶一凝胶法以钛醇盐Ti(OR) 为原料,经水解与缩聚过程而逐渐凝胶化,再经低温干燥、烧结处理即可得到纳米TiO粒子。该法制得的产品纯度高、粒径小、尺寸均匀、干燥后颗粒自身的烧结温度低;但原料价格昂贵、生产成本高,凝胶颗粒之间烧结性差,产物干燥时收缩大。化学沉淀法将沉淀剂加入TiOSO,H TiO,或TiC1 溶液中,沉淀后进行热处理。该法工艺过程简单,易工业化,但易引入杂质,粒度不易控制,产物损失多。水解法以四氯化钛或钛醇盐为原料,经水解、中和、洗涤、烘干和焙烧制得纳米TiO。该法制得的产品纯度高、粒径均匀;但水解速度快、反应难控制、成本大、能耗高、难以工业化生产。水热法以TiOSO,TiC14或Ti(OR)4为原料,高温高压下在水溶液中合成纳米TiO。该法制得的产品纯度高、粒径分布窄、晶型好;但对设备要求高、能耗较大、操作复杂、成本偏高。在综合对比研究了纳米二氧化钛的各种制备方法后,提出了利用偏钛酸原料廉价易得的特点,简化工艺过程,采用化学沉淀法来制备纳米TiO的工艺方案,并进行了长时间的中试,现就该工艺的特点及中试过程中所遇到的问题进行阐述。 1 气相法制备二氧化钛 气相法一般是通过一些特定的手段先将反应前体气化,使其在气相条件下发生物理或化学变化,然后在冷却过程中成核、生长,最后形成纳米TiO2颗粒。 1.1 化学气相沉积法

纳米二氧化钛的制备及性质实验

南京信息工程大学综合化学实验报告 学院:环境科学与工程学院 专业:08应用化学 姓名:章翔宇 潘婷 袁成 钱勇 2010年6月25号

纳米二氧化钛的制备及性质实验 1、实验目的 熟悉溶胶凝胶法制备纳米二氧化钛的方法及相关操作; 理解二氧化钛吸附实验的原理和操作; 掌握数据处理的方法 2、溶胶凝胶法制备纳米二氧化钛 2.1 需要的仪器 恒压漏斗、茄行烧瓶、量筒、移液管、铁架台、磁力搅拌、磁子、冷凝管、温度计、烘箱、研钵 2.2 需要的试剂 钛酸丁酯异丙醇浓硝酸蒸馏水 2.3 实验步骤 1.50ml钛酸丁酯溶16ml的异丙醇中,摇匀(在恒压漏斗中进行) 得到溶液A 2.取200ml 的蒸馏水,加入0.32 ml 的浓硝酸,摇匀(在茄行烧瓶中进行),得到 溶液B 3.将烧瓶固定在铁架台上,进行磁力搅拌,将溶液A 逐滴滴加至溶液B中,使两溶液 缓慢接触,并进行水解反应,得到溶液C 溶液C室温回流,记载下当时的室温 4.回流分若干天进行,保证回流时间不少于48小时,得到溶液D 5.蒸干方式:将溶液D进行水浴加热85度并不断搅拌将水分蒸发干,得E 6.将E放入烘箱100烘干 7.研磨至粉末状; 2.4 实验结果 1、回流分4天进行,总计回流时间50小时,室温为15℃。 2、经研磨,得到白色细粉末状固体。称量得二氧化钛质量为11.233g,理论产量不小于11.785g,损失为产品转移过程中损失。 3、纳米二氧化钛性质实验 3.1 二氧化钛吸附试验 1、仪器:烧杯(500mL),容量瓶(1000mL),样品瓶(6个),电子天平,磨口瓶,超 声波清洗机,玻璃注射器,过滤器,分光光度计 2、试剂:二氧化钛粉末,染料X-3B(分子量615),蒸馏水 3、实验步骤: 1、用电子天平称取60mg染料,配成1000mL的60mg/L溶液(避光保存)。 2、将烧杯润洗后,倒入100ml染料溶液,再倒入称量好的50mg的二氧化钛粉末。 静置后置于超声波清洗机中(70℃超声40分钟,注意避光)。剩余原液取样保存编

二氧化钛的各种制备方法

取200mL浓度为1mol/L的TiOSO 4 溶液装入容量为500mL的烧杯中,将烧杯放入高 压蒸气釜内,用温度为125℃的蒸气加热2 h后取出,TiOSO 4 水热解生成的白色偏钛酸,过滤后,用蒸馏水洗涤数次,得含固量为%的偏钛酸备用。取200mL浓度为 1mol/L的TiOSO 4 溶液,在搅拌条件下,用2 mol/L氢氧化钠溶液中和,直至溶液的pH=5,溶液中生成胶状二氧化钛前驱体正钛酸,过滤后,用蒸馏水洗涤数次,得含固量为%的正钛酸备用。 1.载银二氧化钛的制备方法: 分别在46gH 2TiO 3 和195gH4TiO4中加入50mL浓度为L的AgNO3溶液,磁力搅拌并加热 直至大部分水挥发,置于80℃的干燥箱中烘干,取出碾磨得未煅烧的载银粉体;在偏钛酸和正钛酸上进行载银的样品分别记为AT1和AT2。分别将AT1和AT2放入马弗炉中,在空气环境下分别以2℃/min速度从室温加热至700℃或900℃煅烧并保温2 h,取出自然冷却后,放入研磨机内研磨4h得含银%的载银二氧化钛粉体。700℃和900℃煅烧后AT1和AT2载银粉 2.溶胶凝胶法制备纯TiO2 薄膜 以钛酸丁酯为前驱体,按n[Ti( OC 4H 9 ) 4 ]∶n[C 2 H 5 OH]∶n[NH( CH 2 CH 2 OH) 2 ]∶ n[H 2 O]=1∶23∶2.5∶10摩尔配比,先将2 /3 无水乙醇、钛酸四丁酯和二乙 醇胺混合,搅拌2 h。再将余下1 /3 无水乙醇和去离子水的混合溶液逐滴加入上述溶液中,继续搅拌 h,得到稳定澄清的溶胶溶液,静置48h。采用自制的拉膜机,以石英玻璃为薄膜载体(实验前依次经过丙酮、水、乙醇超声清洗10 min),每浸渍提拉一层膜在100℃下干燥10 min,涂膜四层后,将样品置于马弗炉中以 约2℃·min-1升温到600℃保温2 h 后,随炉温冷却,制得纯TiO 2 薄膜。 3.在空心微球表面定向生长TiO2纳米棒 配制1mol/L的钛酸四丁酯甲苯溶液, 将空心微球在其中浸没10min, 然后抽滤,用甲苯、去离子水洗涤. 如此循环10次, 使空心微球表面包覆一层TiO2 薄膜.将如此处理过的空心微球放入马弗炉中, 在550℃下煅烧2h,自然冷却后取出.在60mL盐酸(37%)/水(1∶1, 体积比)溶液中, 加入2g钛酸四丁酯, 搅拌至透明. 加入上述煅烧过的空心微球, 搅拌10 min后转入水热反应釜中, 密封并在150℃下水热反应4 h.自然冷却后, 经过离心分离、乙醇洗涤、干燥, 得到表面定向生长有二氧化钛纳米棒的空心微球. 4.硬脂酸凝胶法合成纳米TiO2 将硬脂酸放入三口瓶中,70℃下使硬脂酸熔融形成透明的溶液,机械搅拌下将一定量的钛酸四丁酯加入到已熔融的硬脂酸中,硬脂酸:钛酸四丁酯=1:2(摩尔比),75℃下磁力搅拌3 h,形成半透明的棕红色溶胶,自然冷却形成凝胶后,置于马弗炉中450℃煅烧2 h,研磨后得到纳米T iO2粉体。

偶联剂改性对纳米二氧化钛光催化活性的影响杨平霍瑞亭

卿胜兰等:高三阶光学非线性CdS–SiO2复合薄膜的电化学溶胶–凝胶制备及表征? 409 ?第41卷第3期 DOI:10.7521/j.issn.0454–5648.2013.03.23 偶联剂改性对纳米二氧化钛光催化活性的影响 杨平,霍瑞亭 (天津工业大学纺织学院,天津 300387) 摘要:为了提高纳米TiO2颗粒分散性和光催化活性,用醇解法在纳米TiO2颗粒表面接枝硅烷偶联剂和钛酸酯偶联剂。通过Fourier变换红外光谱表征样品表面的官能团,同时测定接枝改性样品表面的羟基数、亲油化度和在有机介质中的分散性能及光催化活性。结果表明:部分偶联剂分子以化学键的形式接枝在纳米TiO2颗粒表面。改性后的纳米TiO2颗粒呈亲油性,表面羟基数急剧减少,亲油化度显著提高。改性纳米TiO2颗粒在有机介质中团聚现象减小,分散稳定性提高,分散后的平均粒径最小可达50nm。改性纳米TiO2颗粒在有机介质中的光催化活性得到显著提高。 关键词:纳米二氧化钛;偶联剂;光催化活性 中图分类号:O643;X7 文献标志码:A 文章编号:0454–5648(2013)03–0409–07 Influence of Coupling Agents Modification on Photocatalysis Activity of Nano-TiO2 YANG Ping,HUO Ruiting (School of Textile, Tianjin Polyester University, Tianjin 300387, China) Abstract: In order to improve the dispersion stability and photocatalysis activity of TiO2 nano-particles, silane coupling agent and titanium coupling agent groups were grafted on the surface of TiO2 nano-particles by an alcolholysis method. The surface bonding property of the TiO2 nano-particles was characterized by Fourier transform infrared spectroscopy. The hydrophobic, content of surface hydroxyl, dispersion stability in the organic solvent and photocatalysis activity of the nano-particles were determined. The results indicate that the molecular of coupling agent are bonded on the surface of TiO2 nano-particles by chemical bonds. The TiO2 nano-particles were lipophilic, the content of surface hydroxyl decreased and the lipophilic degree improved. Also, the aggregation of the modified TiO2 nano-particles with the average size of 50nm was reduced and the dispersion stability was improved, leading to the enhancement of the photocatalysis activity. Key words: nano-titanium dioxide; coupling agent; photocatalysis activity 自Fujishima等[1]发现了锐钛矿型TiO2在光照条件下,可诱导水分子电离出氢氧自由基(?OH)以来,TiO2在光催化方面的研究与应用受到广泛的关注。纳米TiO2因其具有良好的抗紫外、抗菌除臭、催化降解等性能,并且TiO2无毒,具有较好的化学稳定性且廉价易得,因此广泛应用于建筑涂料、功能纺织品、防晒化妆品、污水处理等领域[2–5]。然而,纳米TiO2颗粒比表面积大、表面能高,在液相介质中受粒子间van der Waals力的作用而发生团聚;此外,纳米TiO2具有超亲水性,其在有机相溶液中不易分散,并且分散稳定性差,这成为纳米TiO2使用过程中亟待解决的问题。 提高纳米粉体在有机相介质中的分散性的常用方法是有机表面改性法,主要有聚合物包覆法[6–7]、表面活性剂法[8–9]和偶联剂法[10–11]等,其中,使用偶联剂对粉体进行改性的方法较为普遍。偶联剂是一种由亲水的极性基团和亲油的非极性基团两部分组成的双亲化合物,其分子中的亲水基团与纳米粉体表面的羟基反应,使纳米颗粒表面亲水性转变成亲油性,从而达到改善纳米粉体与有机相液体的相容 收稿日期:2012–10–21。修订日期:2012–11–22。第一作者:杨平(1986—),男,硕士研究生。 通信作者:霍瑞亭(1964—),男,博士,教授。Received date:2012–10–21. Revised date: 2012–11–22. First author: YANG Ping (1986–), male, Master candidate. E-mail: yahoo-xp@https://www.doczj.com/doc/b015514714.html, Correspondent author: HUO Ruiting (1964–), male, Ph.D., Professor. E-mail: huort@https://www.doczj.com/doc/b015514714.html, 第41卷第3期2013年3月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 41,No. 3 March,2013

二氧化钛的各种制备方法2

1.硫酸氧钛溶液热水解和中和水解法制备偏钛酸和正钛酸 取200mL浓度为1mol/L的TiOSO4溶液装入容量为500mL的烧杯中,将烧杯放入高压蒸气釜内,用温度为125℃的蒸气加热2 h后取出,TiOSO4水热解生成的白色偏钛酸,过滤后,用蒸馏水洗涤数次,得含固量为21.6%的偏钛酸备用。取200mL 浓度为1mol/L的TiOSO4溶液,在搅拌条件下,用2 mol/L氢氧化钠溶液中和,直至溶液的pH=5,溶液中生成胶状二氧化钛前驱体正钛酸,过滤后,用蒸馏水洗涤数次,得含固量为5.1%的正钛酸备用。 2.载银二氧化钛的制备方法: 分别在46gH2TiO3和195gH4TiO4中加入50mL浓度为9.3mmol/L的AgNO3溶液,磁力搅拌并加热直至大部分水挥发,置于80℃的干燥箱中烘干,取出碾磨得未煅烧的载银粉体;在偏钛酸和正钛酸上进行载银的样品分别记为AT1和AT2。分别将AT1和A T2放入马弗炉中,在空气环境下分别以2℃/min速度从室温加热至700℃或900℃煅烧并保温2 h,取出自然冷却后,放入研磨机内研磨4h得含银0.5%的载银二氧化钛粉体。700℃和900℃煅烧后AT1和AT2载银粉 3.溶胶凝胶法制备纯TiO2 薄膜 以钛酸丁酯为前驱体,按n[Ti( OC4H9 ) 4]∶n[C2H5OH]∶n[NH( CH2CH2OH)2]∶n[H2O]=1∶23∶2.5∶10摩尔配比,先将2 /3 无水乙醇、钛酸四丁酯和二乙醇胺混合,搅拌2 h。再将余下1 /3 无水乙醇和去离子水的混合溶液逐滴加入上述溶液中,继续搅拌0.5 h,得到稳定澄清的溶胶溶液,静置48h。采用自制的拉膜机,以石英玻璃为薄膜载体(实验前依次经过丙酮、水、乙醇超声清洗10 min),每浸渍提拉一层膜在100℃下干燥10 min,涂膜四层后,将样品置于马弗炉中以约2℃·min-1升温到600℃保温2 h 后,随炉温冷却,制得纯TiO2薄膜。 4.在空心微球表面定向生长TiO2纳米棒 配制1mol/L的钛酸四丁酯甲苯溶液, 将空心微球在其中浸没10min, 然后抽滤,用甲苯、去离子水洗涤. 如此循环10次, 使空心微球表面包覆一层TiO2 薄膜.将如此处理过的空心微球放入马弗炉中, 在550℃下煅烧2h,自然冷却后取出.在60mL 盐酸(37%)/水(1∶1, 体积比)溶液中, 加入2g钛酸四丁酯, 搅拌至透明. 加入上述煅烧过的空心微球, 搅拌10 min后转入水热反应釜中, 密封并在150℃下水热反应4 h.自然冷却后, 经过离心分离、乙醇洗涤、干燥, 得到表面定向生长有二氧化钛纳米棒的空心微球. 5.硬脂酸凝胶法合成纳米TiO2 将硬脂酸放入三口瓶中,70℃下使硬脂酸熔融形成透明的溶液,机械搅拌下将一定量的钛酸四丁酯加入到已熔融的硬脂酸中,硬脂酸:钛酸四丁酯=1:2(摩尔比),75℃下磁力搅拌3 h,形成半透明的棕红色溶胶,自然冷却形成凝胶后,置于马弗炉中450℃煅烧2 h,研磨后得到纳米T iO2粉体。

纳米二氧化钛的制备及其光催化活性的测试

第 页(共 页) 课 程 ___________ 实验日期:年 月曰 专业班号 _____ 别 ______________ 交报告日期: 年 月 日 姓 名_ _学号 报告退发: (订正、重做) 同组者 _____________ 次仁塔吉 __________ 教师审批签字: 实验名称 _________________ 纳米二氧化钛粉的制备及其光催化活性的测试 、实验目的 1. 了解制备纳米材料的常用方法,测定晶体结构的方法。 2. 了解XRD 方法,了解X-射线衍射仪的使用,高温电炉的使用 3. 了解光催化剂的(一种)评价方法 、实验原理 1.纳米TiO 2的制备 ① 纳米材料的定义:纳米材料指的是组成相或者晶相在任意一维度上尺寸小于 100nm 的材 料。 纳米材料由于其组成粒子尺寸小, 有效表面积大,从而呈现出小尺寸效应, 表面与界面效应 等。 ② 纳米TiO 2的制备方法:溶胶凝胶法,水热法,火焰淬火掺杂法,阳极氧化法,电泳沉积 再阳极氧化法,高温雾化法,溅射法,光沉积法,共沉淀法。 本实验采取最基本的,利用金属醇盐水解的方法制备纳米 TiO 2,主要利用金属有机醇盐能 溶于有机溶剂,且可以水解产生氢氧化物或氧化物沉淀。 该方法的优点:①粉体的纯度高,②可制备化学计量的复合金属氧化物粉末。 西安交通大学化学实验报告

③制备原理:利用钛酸四丁酯的水解,反应方程如下 Ti OC4H9 4 4出0 =Ti OH 4 4C4H9OH Ti OH 4 Ti OC4H9 4=TiO2 4C4H9OH Ti OH 4 Ti OH 4=TiO2 4H2O 2. TiO 2的结构及表征 我们通过实验得到的TiO 2是无定形的,二氧化钛通常有如下图上所示的三种晶状结构: 无定形的TiO2在经过一定温度的热处理后,会向锐钛矿型转变,温度更高会变成金红石型。 我们可以通过X-射线衍射仪测定其晶体结构。 纳米TiO 2的景行对其催化活性影响较大,由于锐钛矿型TiO 2晶格中含有较多的缺陷和缺位,能产生较多的氧空位来捕获电子,所以具有较高的活性;而具有最稳定晶型结构的金红石型TiO2,晶化态较好,所以几乎没有光催化活性。 多晶相样品根据XRD测试获得XRD图谱。根据图谱的衍射角度对应的峰,我们可以测定 各晶相的含量。【用晶相含量百分比表示】(其中20-25为金红石型的特征衍射峰,25-27 为锐钛矿型的特征衍射峰) C A A A 100% A A A R 同时,根据XRD图谱可以估计样品的直径

纳米二氧化钛制备方法

1. 纳米TiO 2粉体制备方法 物理法 气相冷凝法: 预先处理为气相的样品在液氮的气氛下冷凝成核制得纳米TiO2 粉体,但该法不适于制备沸点较高的半导体氧化物 高能球磨法: 工艺简单,但制得的粉体形状不规则,颗粒尺寸分布宽,均匀性差 化学法 固相法: 依靠固体颗粒之间的混合来促进反应,不适合制备微粒 液相法: 就是将钛的氯化物或醇盐先水解生成氢氧化钛(或羟基氧钛) ,再经煅烧得到TiO2. 研究最广泛。 以四氯化钛为原料,其反应为 TiCl4 + 4H2O → Ti (OH) 4 + 4HCl , Ti (OH) 4 → TiO2 + 2H2O. 以醇盐为原料,其反应为 Ti (OR) 4 + 4 H2O → Ti (OH) 4 + 4 ROH , Ti (OH) 4 ???→煅烧 TiO2 + 2 H2O. 主要包括硫酸法、水解法、溶胶-凝胶(Sol2gel) 法、超声雾化、热解法等。 溶胶- 凝胶法就是将钛醇盐制备成二氧化钛溶胶. 为了得到多孔催化剂,通常采用煅烧等方法将凝胶进行干燥,去除溶剂,制得干凝胶. Dagan 等[25 ]采用超临界干燥法所制得的TiO2气凝胶孔隙率为85 % ,比表面积高达600 m2·g - 1 ,晶粒尺寸为5. 0 nm ;对水杨酸的光催化氧化表明该催化剂具有比Degussa P - 25 TiO2粉末更高的催化活性.

气相法: 其核心技术是反应气体如何成核的问题. 通过四氯化钛与氧气反应或在氢氧焰中气相水解获得纳米级TiO2 ,目前德国Degussa 公司P-25 粉末光催化剂是通过该法生产的 常用的化学制备方法有溶胶-凝胶法、沉淀法、水解法、喷雾热解法、水热法和氧化- 还原法等。 2. 纳米TiO2薄膜制备方法: 除了与粉体制备相同的制备方法如溶胶-凝胶法、热解法外,还有液相沉积法、化学气相沉积法、磁控溅射法等。 溶胶-凝胶法(Sol-Gel): 制备的薄膜纯度高,且制备工艺简单,易批量生产; 水热合成法: 通过水解钛的醇盐或氯化物前驱体得到无定形沉淀,然后在酸性或碱性溶液中胶溶得到溶胶物质,将溶胶在高压釜中进行水热Ostwald熟化。熟化后的溶胶涂覆在导电玻璃基片上,经高温(500℃左右)煅烧,即得到纳米晶TiO2薄膜。也可以使用TiO2的醇溶液与商业Ti02(P25,3Onm)混合以后得到的糨糊来代替上面提到的溶胶。反应中为了防止颗粒团聚,通常采用化学表面改性的方法,如加有机螫合剂、表面活性剂、乳化剂等,以降低粉末表面能,增加胶粒问静电排斥,或产生空问位阻作用而使胶体稳定。这些有机添加剂在高温煅烧阶段会受热分解除去. 是溶胶-凝胶法的改进方法,主要在于加入了一个水热熟化过程,由此控制产物的结晶和长大,继而控制半导体氧化物的颗粒尺寸和分布,以及薄膜的孔隙率.得到的Ti02颗粒是锐钛矿型还是锐钛矿型与金红石型的混合物由反应条件(如煅烧温度)决定。水热处理的温度对颗粒尺寸有决定性的影响。一般来说,将溶胶在高压釜中(150Xl05~330×105Pa)于200~250℃处理12h,可得到平均粒径15~20nm的Ti02颗粒。如果用丝网印刷术(也可用刮涂的方法)将TiO2溶胶涂覆在导电玻璃上,则得到

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用 自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH)和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

纳米TiO的制备方法综述

纳米TiO2的制备方法综述 1.引言 纳米微粒是指颗粒尺寸在1 nm -100 nm的超细微粒。由于纳米微粒具有量子尺寸效应、小尺寸效应、表面效应和量子隧道效应,因而展现出许多特有的性质,在催化、滤光、光吸收、医药、磁介质及新材料等方面具有广阔的应用前景。其中纳米二氧化钛作为一类无机功能材料备受关注。氧化钛(TiO2)俗称钛白粉,具有无味、无毒、无刺激性和热稳定性好等特点,且来源广泛,极易获得,从晶形角度而言,TiO2分为锐钛矿、板钛矿和金红石三种,其中锐钛矿型和金红石型应用较为广泛。纳米二氧化钛因其具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点,倍受关注。制备和开发纳米二氧化钛成为国内外科技界研究的热点。纳米二氧化钛在水处理、催化剂载体、紫外线吸收剂、光敏性催化剂、防晒护肤化妆品、涂料填料、光电子器件等领域具有广泛的用途。纳米二氧化钛用于涂料是涂料发展的一个重大研究方向,它的开发与应用为涂料的发展注入了新的活力,可利用其各种特殊效应来提高涂料的多方面性能。目前纳米二氧化钛的制备方法主要分为液相法和气相法,本文将对其制备方法进行分类介绍。 2.气相法 气相法通常是采用某些特定的方法使反应前体物质气化,以使其在气相状态下发生化学或者物理变化,继而通过冷却使其成核、生长最终形成颗粒二氧化钛。气相法主要分为物理气相沉积法(PVD)与化学气相沉积法(CVD),其中PVD是将前提物质通过挥发或者蒸发为气体,然后冷凝成核,从而得到粉体的方法,通常包括热蒸发法、溅射法等。PVD法是制备纳米材料采用的最早方法,多用于制备二氧化钛薄膜。在利用物理气相沉积法制备二氧化钛的过程中并不发生化学反应,所得的二氧化钛粒径小、纯度高、分散性较好,但是成本高、回收率低。[3] 2.1 扩散火焰法 以钛醇盐或四氯化钛、燃料气体和氧气等作为原料,首先将前提气体物质通入火焰反应器中,然后将燃料气体经烧嘴打入空气中,利用扩散作用使其相互混合而达到燃烧的目的,在此过程中气相会发生水解和氧化等作用,随之经过结晶成核、成长、转化晶型等过程最终制得二氧化钛。典型的P25是德国的Deguss公司通过TiCl4氢氧火焰法制的,其反应方程式为: TiCl4(g)+2H2(g)+O2(g)→4Ti02(a)+4HC1(g) (1) 工艺流程见图1: 日本Aerosil公司和美国Cabot公司等也利用此方法制的了超细的纳米二氧化钛粉体。Jang等人分别用五路管径将空气与Ar,O2,Ar/TiCl4加入到经过改进的火焰反应器中,并且利用改变气体浓度来对二氧化钛的粒径和晶型进行控制。从前期文献可见,当反应器火焰的温度在1000℃一1700℃范围内时,可制得粒径在12nm-29nm范围的二氧化钛,所含锐钛矿所占的比例在28%-75%,产量最高可达到20g/h。 Katzer等人将N2 ,CH4 ,Ar/TiCl4与氧气混合使其反应,且通过对电极电场的控制来调整火焰的温度和结构,进而控制纳米二氧化钛的粒径和晶型。 此方法制备的纳米二氧化钛具有小粒径、高纯度、良好的分散性和大的表面活性、较小的团聚现象等优点,但是此过程要求温度较高,工艺参数的控制要比较精确,且对设备材质的要求比较严格,生产成本相对较高。[3] 2.2 TiCl4气相氧化法

纳米二氧化钛的制备及光催化分析

苏州科技大学 材料科技进展 化学生物与材料工程学院 材料化学专业 题目:纳米二氧化钛的制备及光催化 姓名:吕岩 学号:1020213103 指导老师:刘成宝 起止时间:5月20日——6月8日

纳米二氧化钛的制备及光催化 吕岩 (苏州科技学院,化学与生物工程材料学院,江苏,苏州,215009) 摘要:纳米二氧化钛是种重要的纳米材料,其在众多领域有着广泛的应用。本文主要介绍纳米二氧化钛的多种制备方法,包括化学气相法(化学气相沉积法、化学气相水解法等)、液相法( 溶胶凝胶法、沉淀法、水热合成法等)两大类,并分析了各种工艺的优劣。并介绍纳米二氧化钛光催化反应原理,基本方法,影响因素,及其广泛的应用。通过介绍纳米二氧化钛的制备及光催化的研究,更深刻理解其在生产生活中应用。 关键词:纳米TiO2,制备方法,光催化. The study on preparation of nanometer TiO and photocatalytic 2 Lv Yan (University of Science and Technology of Suzhou,School of Chemical and Biological Engineering Materials,Jiangsu,Suzhou,215009) Abstract: A s an important nanomaterial nanometer TiO2 has wide app lications in many fields, such as environmental production. Preparation methods of nanomaterial TiO2w ere briefly summarized, including chemical gas phase method( CVD and chem ical gas phase hydro lysis method etc. ) and liquid phase method( sol- gelmethod, precipitation method, hydrothermal synthesismethod etc. ). The advan tages and disadvanges o f everym ethod w ere analyzed. Introduce nano TiO2reaction principle, basic method, influence factors, and its wide application. Through the introduction of the preparation of nano TiO2 research, a deeper understanding of its application in the production and living. Key words: nanometer T iO2; preparation method, photocatalysis 引言: 纳米二氧化钛是一种新型的光催化无机功能材料,由于其粒径在1~ 100 nm 之间, 具有粒径小、比表面积大表面活性高、分散性好等特点, 表现出独特的物理化学性质。它具有良好的透明性,紫外线吸收性及熔点低、磁性强、热导性强、高效、无毒、成本低和不造成二次污染等优点等奇异特性;还具有良好的抗菌作用,使用过程中不会发生自身损耗,而且资源丰富,价格低廉,因此在光催化降解废水中的有机物、涂料、精细陶瓷、塑料、催化剂、及化妆品等方面应用广泛,成为新型功能材料研究的热点之一。本文将对纳米二氧化钛的制备及光催化在做一些简单介绍。 1.纳米TiO2的制备 纳米TiO2的制备方法有很多, 归纳起来主要有固相法、气相法和液相法等,

纳米二氧化钛制备方法

纳米二氧化钛制备方法 陈早明 郑典模 (南昌大学环境与化学工程学院 江西南昌330029) 摘 要 文章阐述了纳米二氧化钛粒子的制备方法,和各种制备方法的所具有的特点。并提出了目前制备方法所存在的一些不足之处。 关键词:二氧化钛 纳米 制备 1 引言 纳米微粒是指颗粒尺寸为纳米量级的超细微粒,它的尺寸大于原子簇,小于通常的微粉。通常,把仅包含几个到数百个原子或尺度小于lnm的称为“簇”,而把粒径在1—100nm之间微粒称为纳米粒子。当小粒子尺寸进入纳米量级时,其本身就具有了量子尺寸效应,小尺寸效应,表面效应和量子隧道效应,因而展现许多特有的性质,在催化、滤光、光吸收、医药、磁介质及新材料等方面具有广阔的应用前景。而纳米二氧化钛(T i02)由于其具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点。因此倍受关注,制备和开发纳米二氧化钛成为国内外科技界研究的热点之一。(1) 2 纳米二氧化钛的制备方法 纳米二氧化钛的制备方法可分为气相法和液相法两大类。 2.1 气相制备法 2.1.1 低压气体蒸发法(1) 此种制备方法是在低压的氩、氮气等惰性气体中加热普通的T i02,然后骤冷生成纳米二氧化钛粉体,其加热源有以下几种:(1)电阻加热法;(2)等离子喷射法;(3)高频感应法;(4)电子束法;(5)激光法,这些方法可制备lOOnm以下的二氧化钛粒子。 2.1.2 活性氢—熔融金属反应法 含有氢气的等离子体与金属钛之间产生电弧,使金属熔融,电离的N2,Ar等气体和H2溶入熔融金属,然后释放出来,在气体中形成了金属的超微粒子,用离心收集器或过滤式收集器使微粒与气体分离而获得纳米二氧化钛微粒。 2.1.3 溅射法(1) 此方法是用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar 气,两电极间施加的电压范围为0.3—1.5kV。由于两电极间的辉光放电使Ar离子形成。在电场的作用下Ar离子冲击阴极靶材表面,靶上的T i02就由其表面蒸发出来,被惰性气体冷却而凝结成纳米T iO2粉末,粒度在50nm以下,粒径分布较窄。 2.1.4 流动液面上真空蒸发法 用电子束在高真空下加热蒸发T iO2,蒸发物落到旋转的圆盘下表面油膜上,通过圆盘旋转的离心力在下表面上形成流动的油膜,含有超微粒子的油被甩进了真空室的壁面,然后在真空下进行蒸馏获得T iO2超微粒子。 2.1.5 钛醇盐气相水解法(2) 该工艺最早是由美国麻省理工大学开发成功的,可以用来开发单分散的纳米T iO2,其反应式如下: nT i(0R)4,+2nH2O(g)————>nT iO2(s)

相关主题
文本预览
相关文档 最新文档