当前位置:文档之家› 水质工程学电子教案

水质工程学电子教案

水质工程学电子教案
水质工程学电子教案

第一篇总论

v. 第一章水体循环与水的利用PPT文件v.1.1 水的自然循环

v.1.2 水的社会循环与利用

v.1.3 水资源的可持续利用

v. 思考题

v. 第二章水质与水质标准PPT文件v.2.1 天然水中杂质的种类与性质

v.2.2 水体的污染与自净

v.2.3 饮用水水质与健康

v.2.4 用水水质标准

v.2.5 污水的排放标准

v. 思考题

v. 第三章水处理反应器理论PPT文件v.3.1 几种常见的反应

v.3.2 物料衡算与质量传递

v.3.3 理想反应器

v.3.4 非理想反应器

v.3.5 反应器在水处理中的应用

v. 思考题

v. 第四章水处理方法概论PPT文件v.4.1 水处理工艺流程概论

v.4.2 给水处理工艺流程

v.4.3 污水处理工艺流程

v. 思考题

v. 第五章预处理PPT文件v.5.1 格栅与筛网

v.5.2 水的调节

v. 思考题

第二篇水的物理化学处理

v. 第六章混凝PPT文件v.6.1 混凝机理

v.6.2 混凝剂和助凝剂

v.6.3 凝聚动力学

v.6.4 影响水混凝的主要因素

v.6.5 混凝剂的配制与投加

v.6.6 混凝设备

v. 思考题

v. 第七章沉淀与澄清PPT文件v.7.1 悬浮颗粒在静水中的沉淀

v.7.2 理想沉淀池的特性分析

v.7.3 平流沉淀池的基本结构与设计参数

v.7.4 平流沉淀池的工艺设计

v.7.5 斜板(管)沉淀池的特点与工艺设计

v.7.6 竖流式沉淀池

v.7.7 幅流式沉淀池

v.7.8 澄清池

v.7.9 沉砂池

v. 思考题

v. 第八章气浮PPT文件v.8.1 气浮的基本原理

v.8.2 气浮的分类与特点

v.8.3 气浮法在废水处理中的应用

v. 思考题

v. 第九章过滤PPT文件v.9.1 过滤概述

v.9.2 过滤理论

v.9.3 滤料与承托层

v.9.4 滤池冲洗

v.9.5 普通快滤池

v.9.6 无阀滤池

v.9.7 虹吸滤池

v.9.8 移动冲洗罩滤池

v.9.9 V型滤池

v.9.10 压力滤池

v. 思考题

v. 第十章吸附PPT文件v.10.1 吸附类型

v.10.2 吸附等温线与吸附速度

v.10.3 吸附操作方式

v.10.4 吸附塔的设计

v. 思考题

v. 第十一章消毒PPT文件v.11.1 氯消毒原理与方法

v.11.2 氯铵消毒

v.11.3 臭氧消毒

v.11.4 其它消毒方法

v. 思考题

v. 第十二章离子交换PPT文件v.12.1 离子交换基本原理

v.12.2 离子交换软化方法与系统

v.12.3 离子交换软化设备及其计算

v.12.4 离子交换除盐方法与系统

v. 思考题

v. 第十三章氧化还原PPT文件v.13.1 氧化剂

v.13.2 高级氧化

v.13.3 高锰酸钾及其复合盐的氧化

v.13.4 其它氧化方法

v. 思考题

v. 第十四章膜法PPT文件v.14.1 微滤与超滤

v.14.2 电渗析

v.14.3 反渗透

v.14.4 其他膜技术

v. 思考题

v. 第十五章水的冷却与水质稳定PPT文件v.15.1 湿空气的性质

v.15.2 水冷却的基本原理

v.15.3 冷却塔的工艺与设计

v.15.4 循环冷却水水质稳定

v. 思考题

v. 第十六章水的其他物理化学处理方法PPT文件v.16.1 离心分离

v.16.2 电解

v.16.3 中和

v.16.4 化学沉淀

v. 思考题

第三篇水的生物处理理论与应用

v. 第十七章活性污泥法PPT文件v.17.1 基本概念

v.17.2 活性污泥法处理系统

v.17.3 活性污泥法主要设计参数

v.17.4 活性污泥反应动力学基础

v.17.5 活性污泥处理系统的运行方式

v.17.6 曝气的基本理论

v.17.7 活性污泥处理系统的工艺设计

v.17.8 活性污泥处理系统的运行管理

v. 思考题

v. 第十八章生物膜法PPT文件v.18.1 生物膜法的基本原理

v.18.2 生物滤池

v.18.3 生物转盘

v.18.4 生物接触氧化

v.18.5 生物流化床

v. 思考题

v. 第十九章厌氧生物处理PPT文件v.19.1 厌氧生物处理基本原理

v.19.2 厌氧消化的影响因素与控制要求

v.19.3 两级厌氧与两相厌氧处理

v.19.4 厌氧生物处理工艺与反应器

v.19.5 厌氧生物处理的运行管理

v. 思考题

v. 第二十章自然生物处理PPT文件v.20.1 概述

v.20.2 水体中碳氮磷与能量循环

v.20.3 稳定塘

v.20.4 污水的土地处理

v.20.5 自然生物处理新进展

v.20.6 工程实例

v. 思考题

v. 第二十一章生物处理新技术PPT文件v.21.1 生物脱氮除磷新工艺

v.21.1.1 生物脱氮原理与工艺

v.21.1.2 生物除磷原理与工艺

v.21.1.3 同步脱氮除磷工艺

v.21.1.4 A2/O同步脱氮除磷的改进工艺

v.21.1.5 DAT-IAT工艺

v.21.1.6 MSBR工艺

v.21.1.7 UNITANK工艺

v.21.2 活性污泥法新工艺

v.21.2.1 氧化沟

v.21.2.2 A--B活性污泥法工艺

v.21.2.3 间歇式活性污泥法(SBR工艺)

v.21.2.4 膜生物反应器

v. 思考题

v. 第二十二章污泥的处理与资源化PPT文件v.22.1 污泥的分类、性质与产生量

v.22.2 污泥处理处置基本方法

v.22.3 污泥浓缩

v.22.4 污泥的稳定

v.22.5 污泥的调理

v.22.6 污泥脱水

v.22.7 污泥的干燥与焚烧

v.22.8 污泥处置与资源化

v.22.9 工程实例

v. 思考题

第四篇水处理工艺系统

v. 第二十三章典型给水处理系统PPT文件v.23.1 水厂的厂址选择

v.23.2 给水处理厂工艺流程与主要构筑物的选择

v.23.3 水厂的平面及高程布置

v.23.4 水厂的生产过程监控与自动控制

v.23.5 给水处理工艺系统设计计算实例

v. 思考题

v. 第二十四章典型污水处理系统PPT文件v.24.1 城市污水处理厂设计水质

v.24.2 城市污水处理厂的设计水量

v.24.3 设计原则与厂址选择

v.24.4 污水处理工艺流程选择

v.24.5 污水处理厂的平面布置与高程和布置

v.24.6 污水处理厂的配水与计量

v.24.7 污水处理厂的运行管理、水质监控与自动控制

v.24.8 污水处理厂工艺设计实例

v.24.9 污水深度处理与回用

v.24.10 污泥处理与处置的设计

v. 思考题

水质工程学复习题整理

BOD —容积负荷率:为单位曝气池容积m3,在单位时间d 内接受的有机物量. 单位:[质量][体积] [时间] = = = 2 污泥沉降比 SV :混合液在量筒内静置 30 分钟后所形成沉淀污泥的容积占原混合液容积的百分率。 混合液悬浮固体浓度 MLSS :在曝气池单位容积混合液内所含有的活性污泥固体物的总质量。 混合液挥发性悬浮固体浓度 MLVSS :混合液中活性污泥有机性固体物质部分的浓度。 BOD 污泥负荷率:曝气池内单位重量(kg )的活性污泥,在单位时间(d )内接受的有机物量(kgBOD )。有时也以 COD 表示有机物的量,以MLVSS 表示活性污泥的量。 单位:kgBOD/(kgMLSS·d ) 公式Ns=F/M=QS 0/VX 污泥容积指数:从曝气池出口处取出的混合液,经过 30min 静沉后,每克干污泥形成的沉淀污泥所占有的容积。 单位 mL 公式 SVI=SV/MLSS 氧转移效率 (EA):通过鼓风曝气转移到混合液中的氧量占总供氧量的百分比。 活性污泥的比耗氧速率:单位重量的活性污泥在单位时间内所能消耗的溶解氧量, 单位为mgO 2/(gMLVSS·h)或mgO 2/(gMLSS·h) 污泥龄:在反应系统内,微生物从其生成到排出系统的平均停留时间,也就是反应系统内的微生物全部更新一次所需要 的时间。从工程上来说,在稳定条件下,就是曝气池内活性污泥总量与每日排放的剩余污泥量之比。 污泥回流比:污泥回流比(R )是指从二沉池返回到曝气池的回流污泥量 QR 与污水流量 Q 之比。 -1 d -1 污泥解体:当活性污泥处理系统的处理水质浑浊,污泥絮凝体微细化,处理效果变坏等为污泥解体现象。 污泥膨胀:污泥的沉降性能发生恶化,不能在二沉池内进行正常的泥水分离的现象。 污泥上浮:污泥(脱氮)上浮是由于曝气池内污泥泥龄过长,硝化进程较高,但却没有很好的反硝化,因而污泥在二沉池 底部产生反硝化,硝酸盐成为电子受体被还原,产生的氮气附于污泥上,从而使污泥比重降低,整块上浮。另,曝气池 内曝气过度,使污泥搅拌过于激烈,生成大量小气泡附聚于絮凝体上,或流入大量脂肪和油类时,也可能引起污泥上浮。 氧垂曲线:水体受到污染后,水体中的溶解氧逐渐被消耗,到临界点后又逐步回升的变化过程。 同步驯化法:为缩短培养和驯化时间,把培养和驯化这两个阶段合并进行,即在培养开始就加入少量工业废水,并在培 养过程中逐渐增加比重,使活性污泥在增长过程中,逐渐适应工业废水并具有处理它的能力。 生物膜法:生物膜法处理废水就是使废水与生物膜接触,进行固、液相的物质交换,利用膜内微生物将有机物氧化,使 废水获得净化,同时,生物膜内的微生物不断生长与繁殖。 生物转盘:一种好氧处理污水的生物反应器,由许多平行排列浸没在氧化槽中的塑料圆盘(盘片)所组成,圆盘表面生 长有生物群落,转动的转盘周而复始地吸附和生物氧化有机污染物,使污水得到净化。 生物转盘容积面积比(G):又称液量面积比,是接触氧化槽的实际容积 V(m3)与转盘盘片全部表面积 A(m2)之比, G=(V/A)*1000 (L/m2)。当 G 值低于 5 时,BOD 去除率即将有较大幅度的下降。所以对城市污水,G 值以介于 5 至 9 之间 为宜。 稳定塘:是人工适当修正或人工修建的设有围堤和防渗层的污水池塘,主要依靠自然生物净化功能。污水在池塘内流动 缓慢,贮存时间较长,以太阳能为初始能源,通过污水中存活的微生物的代谢活动和包括水生植物在内的多种生物的综 合作用,使有机污染物的易降解。 污水土地处理:污水有节制的投配到土地上,通过土壤-植物系统的物理的、化学的、生物的吸附、过滤与净化作用和自 我调控功能,使污水可生物降解的污染物得以降解净化,氮磷等营养物质和水分得以再利用,促进绿色植物增长并获得 增产。 慢速渗滤处理系统:将污水投配到种有作物的土地表面,污水缓慢的在土地表面流动并向土壤中渗滤,一部分污水直接 为作物所吸收,一部分则渗入土壤中,从而使污水达到净化目的的一种土地处理工艺。 消化池的投配率:投加量和总量的比数,每天需要投加的投加量和消化池的有效容积的比就是投配率。 熟污泥:消化污泥。在好氧或厌氧条件下进行消化,使污泥中挥发物含量降低到固体相对不易腐烂和不发恶臭时的污泥。 污泥含水率(计算公式):污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 P1,V1,W1,C1—污泥含水率为 p2 时的污泥体积、重量与固体物浓度; P2,V2,W2,C2—污泥含水率变为 p2 时的污泥体积、重量与团体物浓度; 有机物负荷率( S ):有机物负荷率是指每日进入的干泥量与池子容积之比。 V 1 V 2 W 1 W 2 100 p 2 100 p 1 C C 1 挥发性固体和灰分:挥发性固体, 即 VSS ,通常用于表示污泥中的有机物的量;灰分表示无机物含量。 湿污泥比重:湿污泥比重等于湿污泥量与同体积的水重量之比值。 填空 活性污泥法有多种处理系统,如 传统活性污泥法、 吸附再生活性污泥法、 完全混合性污泥法、 分段进水活性污泥法、 渐减曝气活性污泥法。 活性污泥法对营养物质的需求如下,BOD 5:N:P =100:5:1。 活性污泥微生物增殖分为 适应期、对数增殖期、稳定期、内源呼吸期。

华中科技大学(水质工程学一)课程设计

一.总论 1.1 设计任务及要求 净水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 课程设计的内容是根据所给资料,设计一座城市净水厂,要求对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图和某个单项处理构筑物(絮凝沉淀池、澄清池或滤池)的工艺设计图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2 基本资料 1.2.1 水厂规模 该水厂总设计规模为***万m3/d,分两期建设,近期工程供水能力***万m3/d,,远期工程供水能力为***万m3/d。近期工程设计征地时考虑远期工程用地,预留出远期工程用地。 1.2.2 原水水质资料 水源为河流地面水,原水水质分析资料如下:

1.2.3 厂区地形 地形比例1:500,按平坦地形和平整后的设计地面高程32.00m设计,水源取水口位于水厂东北方向150m,水厂位于城市北面1km。 1.2.4 工程地质资料 (1) 表土砂质粘土细砂中砂粗砂粗砂砾石粘土砂岩石层 1m 1.5m 1 m 2 m 0.8m 1 m 2 m 土壤承载力:20 t/m2. (2)地震计算强度为186.2kPa。 (3)地震烈度为9度以下。 (4)地下水质对各类水泥均无侵蚀作用。 序号项目单位数量备注 1 历年最高水位m 34.38 黄海高程系统,下同 2 历年最低水位m 21.47 频率1% 3 历年平均水位m 24.64 4 历年最大流量m3/s 14600 5 历年最小流量m3/s 180 6 历年平均流量m3/s 1340 7 历年最大含砂量kg/m3 4.82 8 历年最大流速m/s 4.00 9 历年每日最大水位涨落m/d 5.69 10 历年三小时最大水位涨落m/3h 1.04 地下水位:在地面以下1.8m 1.2.6 气象资料 该市位于亚热带,气候温和,年平均气温15.90C,七月极端最高温度达390C,一月极端最低温度-15.30C,年平均降雨量954.1mm,年平均降雨日数117.6天,历年最大日量降雨量328.4mm。常年主导风向为东北偏北(NNE),静风频率为12%,年平均风速为3.4m/s。土壤冰冻深度:0.4m。

水质工程学下册试题

作业一 BOD:由于微生物的生活活动,将有机物氧化成无机物所消耗的溶解氧量,称为生化需氧量。 COD:在酸性条件下,将有机物氧化成CO2与水所消耗氧化剂中的氧量,称为化学需氧量。 TOC:在900℃高温下,以铂作催化剂,使水样氧化燃烧,测定气体中CO2的增量,从而确定水样中总的含碳量,表示水样中有机物总量的综合指标。 TOD:有机物主要组成元素被氧化后,分别产生二氧化碳,水,二氧化氮和二氧化硫所消耗的氧量称总需氧量TOD。 水体富营养化:水体富营养化是指由于大量的氮、磷、钾等元素排入到地表水体,使藻类等水生生物大量地生长繁殖,破坏水生生态平衡的过程。 水体自净:污水排入水体后,一方面对水体产生污染,另一方面水体本身有一定的净化污水的能力,即经过水体的物理、化学与生物的作用,使污水中污染物的浓度得以降低,经过一段时间后,水体往往能恢复到受污染前的状态,并在微生物的作用下进行分解,从而使水体由不洁恢复为清洁,这一过程称为水体的自净过程 污泥沉降比:污泥沉降比(SV)是指混合液在量筒内静置沉淀30分钟沉淀污泥与所取混合液之体积比为污泥沉降比(%)。 MLSS:混合液悬浮固体浓度表示的是在曝气池单位容积混合液内所含有的活性污泥固体物的总质量。

MLVSS:混合液挥发性悬浮固体浓度表示的是混合液中活性污泥有机性固体物资部分浓度。 氧转移效率 (EA):是指通过鼓风曝气系统转移到混合液中的氧量占总供氧量的百分比(%) BOD 污泥负荷率(标明公式,单位):表示曝气池内单位重量(kg)的活性污泥,在单位时间(d)内接受的有机物量(kgBOD)。P14 污泥容积指数(SVI):指从曝气池出口处取出的混合液经过30分钟静沉后,每克干污泥形成的沉淀污泥所占有的容积。SVI=SV(ml/L)/MLSS(g/L) 活性污泥的比耗氧速率:是指单位质量的活性污泥在单位时间内的耗氧量。 泥龄:是指在曝气池内,微生物从其生长到排出的平均停留时间。 污泥回流比:是指从二沉池返回到曝气池的回流污泥量Q R与污水流量Q的比值。 BOD—容积负荷率(标明单位):表示为单位曝气池容积(m3)在单位时间(d)内接受的有机物的量。P14 1、什么是活性污泥法?活性污泥法正常运行必须具备哪些条件?答:往生活污水中通入空气进行曝气,持续一段时间以后,污水中即生成一种褐色絮凝体,该絮凝体主要由繁殖的大量微生物所构成,可氧化分解污水中的有机物,并易于沉淀分离,从而得到澄清的处理出水,这种絮凝体就是活性污泥。具备的条件:P2

水质工程学计算实例

3 物理处理单元工艺设计计算 3.1格栅 格栅用以去除废水中较大的悬浮物、漂浮物、纤维物质和固体颗粒物质,以保证后续处理单元和水泵的正常运行,减轻后续处理单元的处理负荷,防止阻塞排泥管道。 3.1.1 设计参数及其规定 ○ 1水泵前格栅栅条间隙,应根据水泵要求确定。 ○ 2污水处理系统前格栅栅条间隙,应符合:(a)人工清除25~40mm ;(b)人工清除16~25mm ;(c)最大间隙40mm 。 污水处理厂亦可设置两粗细两道格栅,粗格栅栅条间隙50~150mm 。 ○ 3如水泵前格栅间隙不大于25mm ,污水处理系统前可不再设置格栅。 ○ 4栅渣量与地区的特点、格栅的间隙大小、污水流量以及下水道系统的类型等因素有关。在无当地运行资料时,可采用:(a)格栅间隙16~25mm ,0.10~0.06m 3/103m 3 (栅渣/污水); (b)格栅间隙30~50mm ,0.03~0.01m 3/103m 3 (栅渣/污水)。 栅渣的含水率一般为80%,容重约为960kg/m 3 。 ○5在大型污水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m 3),一般应采用机械清 渣。 ○ 6机械格栅不宜少于2台,如为1台时,应设人工清除格栅备用。 ○ 7过栅流速一般采用0.6~1.0m/s 。 ○ 8格栅前渠道内水流速度一般采用0.4~0.9m/s 。 ○ 9格栅倾角一般采用45o~75o。国内一般采用60o~70o。 ○ 10通过格栅水头损失一般采用0.08~0.15m 。 ○ 11格栅间必须设置工作台,台面应高出栅前最高设计水位0.5m 。工作台上应有安全设施和冲洗设施。 ○ 12格栅间工作台两侧过道宽度不应小于0.7m 。工作台正面过道宽度:(a)人工清除不应小于 1.2m (b) 机械清除不应小于1.5m 。 ○ 13机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。 ○ 14设置格栅装置的构筑物,必须考虑设有良好的通风设施。 ○ 15格栅间内应安设吊运设备,以进行格栅及其他设备的检修和栅渣的日常清除。 3.1.2 格栅的计算 【例题】 已知某城市污水处理厂的最大污水量Q max =0.2m 3 /s ,总变化系数K z =1.50,求格栅各部分尺寸。 【解】 (1) 栅条的间隙数(n) 设栅前水深h=0.4m ,过栅流速v=0.9m/s ,栅条间隙宽度b=0.021m ,格栅倾α=60o。 max 260.0210.40.9 Q n bhv ==≈??(个) (2) 栅槽宽度(B) 设栅条宽度S=0.01m 。 B=S(n-1)+bn=0.01×(26-1)+0.021×26=0.8(m) (3) 进水渠道渐宽部分的长度

水质工程学课程设计说明书(doc 32页)

水质工程学(一)课程设计说明书 1 设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 1.1 设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2 基本资料 1.2.1 城市用水量资料 1.2.2 原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2 水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3 水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

武汉理工大学水质工程学I课设

1.设计任务及资料 1.1设计原始资料 长垣镇最高日设计用水量为近期5万吨/天,远期10万吨/天,规划建造水厂一座。已知城区地形平坦,地面标高为21.00米;水源采用长江水;取水构筑物远离水厂,布置在厂外。管网最小服务水头为28.00米;二级泵站采用二级供水到管网系统,其中最大一级供水量占全天用水量的百分数为5.00%,时间为早上6:00~晚上10:00,此时管网系统及水厂到管网的输水管的总水头损失为11.00米;另一级供水时管网系统及水厂到管网的输水管的总水头损失为5.00米。常年主导风向:冬季为东北风、夏季为东南风。水厂大门朝向为北偏西15°。 1.2设计任务 1、设计计算说明书1本。 内容包括任务书、目录、正文、参考资料、成绩评定表等,按要求书写或打印并装订成册。 其中正文内容主要包括:工程项目和设计要求概述,方案比较情况,各构筑物及建筑物的形式、设计计算过程、尺寸和结构形式、各构筑物设计计算草图、人员编制、水厂平面高程设计计算和布置情况以及设计中尚存在的问题等。 2、手工绘制自来水厂平面高程布置图1张(1号铅笔图,图框和图签按标准绘制)。要求:比例选择恰当,图纸布局合理,制图规范、内容完整、线条分明,字体采用仿宋字书写。

2. 设计规模及工艺选择 2.1设计规模 根据所提供的已知资料:最高日用水量为近期5万吨/天,远期10万吨/天。 d Q=Q α α为自用水系数,取决于处理工艺、构筑物类型、原水水质及水厂是否设有 回收水设施等因素,一般在1.05-1.10之间,取α =1.07,则水厂生产水量 近期:Q 0=1.07Q d =1.07×50000=53500m 3/d=2229.2m 3/h 远期:Q 0=1.07Q d =1.07×100000=107000 m 3/d=4458.3m 3/h 水处理构筑物的设计,应按原水水质最不利情况时所需供水量进行校核。 2.2水厂工艺流程选择 2.2.1概述 给水处理的任务是通过必要的处理方法去除水中杂质,使之符合生活饮用或工业使用要求的水质。给水处理工艺方法和工艺的选择,应根据原水水质及设计生产生产能力等选择,由于水源不同,水质各异,生活饮用水处理系统的组成和工艺流程也多种多样。 2.2.2水处理流程选择 水处理方法应根据水源水质的要求确定。所给的设计资料中指出,水源采用 长江水,其水质应该较好,采用一般传统的水处理工艺,即:混合、絮凝、沉淀、过滤、消毒。混凝剂采用硫酸铝,设溶解池和溶液池,计量泵投加药剂,管式静态混合器混合。絮凝池采用水平轴机械絮凝池。沉淀池采用平流沉淀池。滤池采用普通快滤池。

水质工程学下复习提纲

一、名词解释4×5分 1、MLSS(混合液悬浮固体浓度):表示的是在曝气池单位容积混合液内所含有的活性污泥固体物的总质量。11页 MLSS=Ma+ Me+ Mi+ Mii ①具有代谢功能活性的微生物群体(Ma)(有活性的微生物) ②微生物内源代谢、自身氧化的残留物(Me)(微生物自身氧化残留物) ③由污水挟入的并被微生物所吸附的惰性有机物质(含难为细菌降解的惰性 有机物)(Mi)(吸附在活性污泥上未被微生物所降解的有机物) ④由污水挟入的无机物质(Mii)(无机悬浮物固体) 2、MLVSS(混合液挥发性悬浮固体浓度):、混合液中活性污泥有机性固体物质部分的浓度。MLVSS=Ma+ Me+ Mi 11页 MLVSS与MLSS 的比值用f表示,即f=MLVSS/MLSS;f 值一般取0.75左右。 3、SV(污泥沉降比又称30min沉降率):混合液在量筒内静置30min后形成沉淀污泥的容积占混合液溶剂的百分率,以“%”计。在一定条件下能够反映曝气池中的活性污泥量。12页 4、SVI污泥指数:是从曝气池出口处取出的混合液,经过30min静沉后,每克干污泥形成的沉淀污泥所占有的容积,以“mL”计。能够反映活性污泥的凝聚、沉降性能。12页 5、SRT污泥龄(生物固体平均停留时间):指在曝气池内,微生物从其生成到排出系统的平均停留时间,也就是曝气池内的微生物全部更新一次所需要的时间。从工程上来说,在稳定条件下,就是曝气池内活性污泥总量与每日排放的剩余污泥量之比。14页 6、HRT(水力停留时间):指污水进入曝气池后,在曝气池的平均停留时间,也称曝气时间。 7、Lv(BOD容积负荷率):单位曝气池容积在单位时间内接受的有机物量。 P 14 8、Ls(BOD污泥负荷率):曝气池内单位重量的活性污泥,在单位时间内接受的有机物量。 P14

水质工程学考试复习题

水质工程学考试复习题 一、选择题: 1 给水工程的规划应在服从城市总体规划的前提下,近远期结合,以近期为主进行设计。近期设计年限宜采用( )年,远期规划年限宜采用( )年。 ( A ) A.5~10;10~20 B.5~10;15~20 C.5~10;10~15 D.10~20;20~30 2 设计供水量应根据下列各种用水确定( C )。 (1)综合生活用水 (2)工业企业生产用水和工作人员生活用水 (3)消防用水 (4)浇洒道路和绿地用水 (5)未预见用水量及管网漏失水量。 (6)公共建筑用水 A.全部 B.(1)、(2)、(4) C.(1)、(2)、(3)、(4)、(5) D.(1)、(2)、(3)、(4)、(5)、(6) 3 药剂仓库的固定储备量,应按当地供应、运输等条件确定,一般可按最大投药量的( B )天用量计算。其周转储备量应根据当地具体条件确定。 A.5~10 B.7~15 C.15~30 D.10~20 4 设计沉淀池和澄清池时应考虑( A )的配水和集水。 A.均匀 B.对称 C.慢速 D.平均 5 设计隔板絮凝池时,絮凝池廊道的流速,应按由大到小的渐变流速进行设计,起端流速一般宜为( B )m/s,末端流速一般宜为0.2~0.3m/s。 6 异向流斜管沉淀池,斜管沉淀池的清水区保护高度一般不宜小于( A )m;底部配水区高度不宜小于1.5m。 A.1.0 B.1.2 C.1.5 D.0.8 7 快滤池宜采用大阻力或中阻力配水系统。大阻力配水系统孔眼总面积与滤池面积之比为( C )。 8 地下水除铁一般采用接触氧化法或曝气氧化法。当受到硅酸盐影响时,应采用( A )氧化法。 A.接触 B.曝气 C.自然 D.药剂 9 当采用氯胺消毒时,氯和氨的投加比例应通过( C )确定,一般可采用重量比为3:1~6:

水质工程学课程设计说明书

水质工程学(一)课程设计说明书 1设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规X等基本技能上得到初步训练和提高。 1.1设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2基本资料 1.2.1城市用水量资料 1.2.2原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

水质工程计算题

水质工程学(上) 考试试卷一 1、平流沉淀池设计流量为720m 3/h 。要求沉速等于和大于0.4mm/s 的颗粒全部去除。试按理想沉淀条件,求: (1)所需沉淀池平面积为多少m 2? (2)沉速为0.1mm/s 的颗粒,可去除百分之几?(10’) 解:已知 Q=720m 3/h=0.2m 3/s u 0=0.4mm/s u i =0.1mm/s 1) 所需沉淀池平面积为2 3 05010 4.02.0m u Q A =?== - 2) 沉速为0.1mm/s 的颗粒的去除率为25.04 .01.00=== u u E i 2、原水泥砂沉降试验数据见下表。取样口在水面180cm 处。平流沉淀池设计流量为900m 3/h ,表面积为500m 2,试按理想沉淀池条件,求该池可去除泥砂颗粒约百分之几?(0C 表示泥砂初始浓度,C 表示取样浓度)。(20’) 取样时间(min ) 0 15 20 30 60 120 180 C /0C 1 0.98 0.88 0.70 0.30 0.12 0.08 解:已知 h=180cm Q=900m 3/h A=500m 2 沉速计算 取样时间(min ) 0 15 20 30 60 120 180 u=h/t(cm/min) _ 12 9 6 3 1.5 1 沉速分布见下图。

2 46810 12 00.10.20.30.40.50.60.70.8 0.91沉降速度(cm/min ) 小于该沉速的颗粒组成分数 截留沉速u 0= A Q =60 500100900??=3cm/min 从图上查得u 0=3cm/min 时,小于该沉速的颗粒组成部分等于p 0=0.30。从图上,相当于积分式 ? p u dp 的面积为 0.506。因此得到总去除百分数为: P=(1-0.30)+ 3 1 (0.506)=86.9% 水质工程学(上)考试试卷二 1、河水总碱度0.1mmol/L (按CaO 计)。硫酸铝(含Al 2O 3为16℅)投加量为25mg/L ,问是否需要投加石灰以保证硫酸铝顺利水解?设水厂日生产水量50000m 3,试问水厂每天约需要多少千克石灰(石灰纯度按50℅计)。(处理水剩余碱度要求不得低于0.47 mmol/L (按CaO 计)) 解:投入药剂量折合Al 2O 3 为25mg/l ×16%=4mg , Al 2O 3 的分子量为102 。 故投入药剂量相当于4/102=0.039mmol/l , 剩余碱度取0.37mmol/l ,则得[CaO]=3×0.039+1×0.37=0.487(mmol/l), CaO 的分子量为56, 则石灰投量为0.487×56×50000/0.5=2.3×106(g)=2.3×103(kg) 2、(2)设初沉池为平流式,澄清部分高为H ,长为L ,进水量为Q ,试按理想沉淀理论对比: ①出水渠设在池末端 ②如图所示,设三条出水渠时,两种情况下可完全分离掉的最小颗粒沉速u o 。

水质工程学课程设计实例

目录 设计任务书 (2) 设计计算说明书 (4) 第一章污水处理厂设计 第一节污水厂选址 (4) 第二节工艺流程 (4) 第二章处理构筑物工艺设计 第一节设计参数 (6) 第二节泵前中格栅设计 (6) 第三节污水提升泵房设计计 (8) 第四节泵后细格栅设计计算 (9) 第五节沉砂池设计计算 (10) 第六节辐流式初沉池设计计算 (12) 反应池设计计算 (14) 第七节O A/ 1 第八节向心辐流式二沉池设计计算 (16) 第九节剩余污泥泵房 (17) 第十节浓缩池 (18) 第十一节贮泥池 (20) 第十二节脱水机房 (21) 第三章处理厂设计 第一节污水处理厂的平面布置 (23) 第二节污水处理厂高程布置 (23) 参考文献 (26)

《水质工程学》课程设计任务书 一、设计题目 某计城市日处理污水量15万m 3污水处理工程设计 二、基本资料 1、污水水量、水质 (1)设计规模 设计日平均污水流量Q=150000m 3/d ; 设计最大小时流量Q max =8125m 3/h (2)进水水质 COD Cr =400mg/L ,BOD 5 =180mg/L ,SS = 300mg/L ,NH 3-N = 35mg/L 2、污水处理要求 污水经过二级处理后应符合《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准的B 标准 ,即: COD Cr ≤ 60mg/L ,BOD 5≤20mg/L ,SS≤20mg/L ,NH 3-N≤8mg/L 。 3、处理工艺流程 污水拟采用活性污泥法工艺处理,具体流程如下: 4、资料 市区全年主导风向为东北风,频率为18%,年平均风速2.55米/秒。污水处理厂场地标 高384.5~383.5米之间, 5、污水排水接纳河流资料: 该污水厂的出水直接排入厂区外部的河流,其最高洪水位(50年一遇)为380.0m ,常水位为378.0m ,枯水位为375.0m 。 三、设计任务 1、对处理构筑物选型做说明; 2、对主要处理设施(格栅、沉砂池、初沉池、生化池、污泥浓缩池)进行工艺计算(附必要的计算草图); 3、按扩初标准,画出污水处理厂平面布置图,内容包括表示出处理厂的范围,全部处理构筑物及辅助建筑物、主要管线的布置、主干道及处理构筑物发展的可能性; 4、按扩初标准,画出污水处理厂工艺流程高程布置图,表示出原污水、各处理构筑物的高程关系、水位高度以及处理出水的出厂方式; 5、编写设计说明书、计算书。 四、设计成果 1、设计计算说明书一份; 2、设计图纸:污水处理厂平面布置图和污水处理厂工艺流程高程布置图各一张。 五、参考资料 1、《给水排水设计手册》第一、五、十、十一册 2、《环境工程设计手册》(水污染卷) 原污水 污泥浓缩池 污泥脱水机房 出水 格栅 污水泵房 沉砂池 二沉池 泥饼外运 曝气池 回流污泥

水质工程学课程设计概述

水质工程学课程设 计概述

水质工程学课程设计 学生姓名: 学号: 班级: 指导老师: 20xx年6月

目录 1 任务指导 0 1.1 课程设计教学目的及基本要求 0 1.2 设计内容 0 1.3 设计资料 (1) 1.3.1 水源和水质 (1) 1.3.2 城市规划与供水规模 (1) 1.3.3 供水水质及水压 (1) 1.3.4 气象 (1) 2总体设计 (2) 2.1 净水工艺流程的确定 (2) 2.2 处理构筑物及设备型式选择 (2) 2.2.1 药剂溶解池 (2) 2.2.2 混合设备 (3) 2.2.3 絮凝池 (4) 2.2.4 沉淀池....................... 错误!未定义书签。 2.2.5滤池 (6) 2.2.6 消毒方法 (7) 3 混凝沉淀 (8) 3.1 混凝剂投配设备的设计 (8) 3.1.1 溶液池 (9) 3.1.2 溶解池 (10)

3.1.3 投药管 (11) 3.2 混合设备的设计 (11) 3.2.1设计流量 (12) 3.2.2设计流速 (12) 3.3.3 混合单元数 (12) 3.2.4混合时间 (12) 3.2.5水头损失 (12) 3.2.6 校核GT值 (12) 3.3 折板絮凝池的设计 (13) 3.3.1 设计水量 (13) 3.3.2 设计计算 (13) 3.3.3 折板絮凝池布置 (20) 4 斜管沉淀池设计计算 (20) 4.1 设计流量 (20) 4.2 平面尺寸计算 (21) 4.2.1 沉淀池清水区面积 (21) 4.2.2 沉淀池长度及宽度 (21) 4.2.3 沉淀池总高度 (21) 4.3 进出水系统 (22) 4.3.1 沉淀池进水设计 (22) 4.3.2 沉淀池出水设计 (23) 4.3.3 沉淀池斜管选择 (24)

水质工程学下册废水处理工程_试题库

《废水处理工程》试题库 一、名词解释 1、污水 指经过使用,其物理性质和化学成分发生变化的水,也包括降水。 2、生活污水 指人们在日常生活中使用过,并为生活废料所污染的水。 3、工业废水 指在工矿企业生产过程中所产生和排放的水。 5、生物化学需氧量(BOD) 指在微生物的作用下,将有机污染物稳定化所消耗的氧量。 6、化学需氧量(COD) 指用强氧化剂-重铬酸钾,在酸性条件下将有机污染物稳定化消耗的重铬酸钾量所折算成的氧量。 7、总需氧量(TOD) 指有机污染物完全被氧化时所需要的氧量。 8、总有机碳(TOC) 指污水中有机污染物的总含碳量。 9、水体自净作用 水体在其环境容量围,经过物理、化学和生物作用,使排入的污染物质的浓度,随时间的推移在向下游流动的过程中自然降低。 13、污水的物理处理法 指利用物理作用,分离污水中主要呈悬浮状态的污染物质,在处理过程中不改变其化学性质。 14、污水的化学处理法 指利用化学反应作用来分离、回收污水中的污染物,或使其转化为无害的物质。 15、污水的生物处理法 指利用微生物新代作用,使污水中呈溶解或胶体状态的有机污染物被降解并转化为无害的物质,使污水得以净化的法。 16、沉淀 水中的可沉物质在重力作用下下沉,从而与水分离的一种过程。 17、活性污泥法 以污水中的有机污染物为基质,在溶解氧存在的条件下,通过微生物群的连续培养,经凝聚、吸附、氧化分解,沉淀等过程去除有机物的一种法。 22、污泥龄 指曝气池中活性污泥总量与每日排放的剩余污泥量之比值。 23、BOD-污泥负荷率N S 指单位重量的污泥在单位时间所能代的有机物的量。 24、污泥膨胀现象 当污泥变质时,污泥不易沉淀,SVI值增高,污泥的结构松散和体积膨胀,含水率上升,澄清液变少,颜色也有变异,即为污泥膨胀现象。 25、容积负荷率Nv 指单位容积曝气区在单位时间所能承受的BOD数量。 26、表面负荷 指单位时间通过沉淀池单位表面积的流量。

水质工程学复习题

污水处理复习题 1.解释生化需氧量BOD 2.解释化学需氧量COD 3.解释污泥龄 4.绘图说明有机物耗氧曲线 5.绘图说明河流的复氧曲线 6.解释自由沉降 7.解释成层沉降 8.解释沉淀池表面负荷的意义 9.写出沉淀池表面负荷q0的计算公式 10.曝气沉砂池的优点 11.说明初次沉淀池有几种型式 12.说明沉淀有几种沉淀类型 13.说明沉砂池的作用 14.辐流沉淀池的进水和出水特点 15.解释向心辐流沉淀池的特点 16.绘图解释辐流沉淀池的工作原理 17.解释竖流沉淀池的特点 18.解释浅层沉降原理 19.说明二次沉淀池里存在几种沉淀类型、为什么 20.活性污泥的组成 21.绘图说明活性污泥增长曲线 22.说明生物絮体形成机理 23.解释混合液浓度MLSS 24.解释混合液挥发性悬浮固体浓度 MLVSS 25.解释污泥龄 26.解释污泥沉降比 SV,污泥指数 SVI 27. 解释BOD污泥负荷率,容积负荷率及计算公式 28.解释活性污泥反应的影响因素 29.解释剩余污泥量计算公式 30.解释微生物的总需氧量计算公式 31.解释传统活性污泥法的运行方式及优缺点 32.解释阶段曝气活性污泥法的运行方式及优缺点

33.解释吸附——再生活性污泥法的运行方式及优缺点 34.解释完全混合池的运行方式及优缺点 35.绘图说明传统活性污泥法、阶段曝气活性污泥法、吸附——再生活性污泥法、 完全混合池的各自BOD降解曲线 36.绘图说明间歇式活性污泥法的运行特点 37.解释活性污泥曝气池的曝气作用 38.根据氧转移公式解释如何提高氧转移速率 39.氧转移速率的影响因素 40.活性污泥的培养驯化方式 41.解释活性污泥系统运行中的污泥异常情况 42.解释污泥膨胀 43.解释生物膜的构造与净化机理 44.解释生物膜中的物质迁移 45.解释生物膜微生物相方面的特征 46.说明高浓度氮的如何吹脱去除 47.解释生物脱氮原理 48.解释A/O法生物脱氮工艺 49.解释生物除磷机理 50.绘图说明A2/O法同步脱氮除磷工艺 51.解释生污泥 52.解释消化污泥 53.解释可消化程度 54.解释污泥含水率 55.说明污泥流动的水力特征 56.污泥浓缩的目的 57.重力浓缩池垂直搅拌栅的作用 58.厌氧消化的影响因素 59.厌氧消化的投配率 60.厌氧消化为什么需要搅拌 61.说明污泥的厌氧消化机理 62.解释两段厌氧消化的机理 63.说明厌氧消化的C/N比 64.说明厌氧消化产甲烷菌的特点 65.消化污泥的培养与驯化方式

水质工程学课程设计

水质工程学课程设计

一.总论 1.1 设计任务及要求 净水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 课程设计的内容是根据所给资料,设计一座城市净水厂,要求对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图和某个单项处理构筑物(絮凝沉淀池、澄清池或滤池)的工艺设计图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2 基本资料 1.2.1 水厂规模 该水厂总设计规模为5万m3/d,分两期建设,近期工程供水能力5万m3/d,,远期工程供水能力为10万m3/d。近期工程设计征地时考虑远期工程用地,预留出远期工程用地。 1.2.2 原水水质资料 水源为河流地面水,原水水质分析资料如下:

1.2.3 厂区地形 地形比例1:500,按平坦地形和平整后的设计地面高程32.00m设计,水源取水口位于水厂东北方向150m,水厂位于城市北面1km。 1.2.4 工程地质资料 表土砂质粘土细砂中砂粗砂粗砂砾石粘土砂岩石层 1m 1.5m 1 m 2 m 0.8m 1 m 2 m 土壤承载力:20 t/m2. (2)地震计算强度为186.2kPa。 (3)地震烈度为9度以下。 (4)地下水质对各类水泥均无侵蚀作用。 序号项目单位数量备注 1 历年最高水位m 34.38 黄海高程系统,下同 2 历年最低水位m 21.47 频率1% 3 历年平均水位m 24.64 4 历年最大流量m3/s 14600 5 历年最小流量m3/s 180 6 历年平均流量m3/s 1340 7 历年最大含砂量kg/m3 4.82 8 历年最大流速m/s 4.00 9 历年每日最大水位涨落m/d 5.69 10 历年三小时最大水位涨落m/3h 1.04 地下水位:在地面以下1.8m 1.2.6 气象资料 该市位于亚热带,气候温和,年平均气温15.90C,七月极端最高温度达390C,一月极端最低温度-15.30C,年平均降雨量954.1mm,年平均降雨日数117.6天,历年最大日量降雨量328.4mm。常年主导风向为东北偏北(NNE),静风频率为12%,年平均风速为3.4m/s。土壤冰冻深度:0.4m。

水质工程学课程设计概述

水质工程学课程设计 学生姓名: 学号: 班级: 指导老师:

20xx年6月

目录 1 任务指导 (1) 1.1 课程设计教学目的及差不多要求 (1) 1.2 设计内容 (1) 1.3 设计资料 (2) 1.3.1 水源和水质 (2) 1.3.2 都市规划与供水规模 (2) 1.3.3 供水水质及水压 (2) 1.3.4 气象 (2) 2总体设计 (3) 2.1 净水工艺流程的确定 (3) 2.2 处理构筑物及设备型式选择 (3) 2.2.1 药剂溶解池 (3) 2.2.2 混合设备 (4) 2.2.3 絮凝池 (5) 2.2.4 沉淀池 (6) 2.2.5滤池 (7) 2.2.6 消毒方法 (9) 3 混凝沉淀 (10)

3.1 混凝剂投配设备的设计 (10) 3.1.1 溶液池 (11) 3.1.2 溶解池 (12) 3.1.3 投药管 (13) 3.2 混合设备的设计 (13) 3.2.1设计流量 (14) 3.2.2设计流速 (14) 3.3.3 混合单元数 (14) 3.2.4混合时刻 (14) 3.2.5水头损失 (15) 3.2.6 校核GT值 (15) 3.3 折板絮凝池的设计 (15) 3.3.1 设计水量 (15) 3.3.2 设计计算 (15) 3.3.3 折板絮凝池布置 (22) 4 斜管沉淀池设计计算 (22) 4.1 设计流量 (23) 4.2 平面尺寸计算 (23) 4.2.1 沉淀池清水区面积 (23)

4.2.2 沉淀池长度及宽度 (23) 4.2.3 沉淀池总高度 (24) 4.3 进出水系统 (24) 4.3.1 沉淀池进水设计 (24) 4.3.2 沉淀池出水设计 (25) 4.3.3 沉淀池斜管选择 (26) 4.3.4 沉淀池排泥系统设计 (26) 4.3.5 斜管沉淀池布置 (26) 4.4.6 核算 (27) 5 V型滤池 (28) 5.1 平面尺寸计算 (28) 5.2 进水系统 (30) 5.2.1 进水总渠 (30) 5.2.2 气动隔膜阀口的阀口面积 (30) 5.2.3进水堰堰上水头 (31) 5.2.4 V型进水槽 (31) 5.2.5 V型槽扫洗小孔 (32) 5.3 反冲洗系统 (33) 5.3.1 气水分配渠 (33)

水质工程学复习题整理

名词解释 污泥沉降比SV:混合液在量筒内静置30 分钟后所形成沉淀污泥的容积占原混合液容积的百分率。 混合液悬浮固体浓度MLSS:在曝气池单位容积混合液内所含有的活性污泥固体物的总质量。 混合液挥发性悬浮固体浓度MLVSS:混合液中活性污泥有机性固体物质部分的浓度。 BOD 污泥负荷率:曝气池内单位重量(kg)的活性污泥,在单位时间(d)内接受的有机物量(kgBOD)。有时也以COD 表示有机物的量,以MLVSS表示活性污泥的量。单位:kgBOD/(kgMLSS·d)公式Ns=F/M=QS0/VX 污泥容积指数:从曝气池出口处取出的混合液,经过30min 静沉后,每克干污泥形成的沉淀污泥所占有的容积。 单位mL 公式SVI=SV/MLSS 氧转移效率(EA):通过鼓风曝气转移到混合液中的氧量占总供氧量的百分比。 活性污泥的比耗氧速率:单位重量的活性污泥在单位时间内所能消耗的溶解氧量, 单位为mgO2/(gMLVSS·h)或mgO2/(gMLSS·h) 污泥龄:在反应系统内,微生物从其生成到排出系统的平均停留时间,也就是反应系统内的微生物全部更新一次所需要 的时间。从工程上来说,在稳定条件下,就是曝气池内活性污泥总量与每日排放的剩余污泥量之比。污泥回流比:污泥回流比(R)是指从二沉池返回到曝气池的回流污泥量QR 与污水流量Q 之比。 -1 单位:时间d -1 污泥解体:当活性污泥处理系统的处理水质浑浊,污泥絮凝体微细化,处理效果变坏等为污泥解体现象。 污泥膨胀:污泥的沉降性能发生恶化,不能在二沉池内进行正常的泥水分离的现象。 污泥上浮:污泥(脱氮)上浮是由于曝气池内污泥泥龄过长,硝化进程较高,但却没有很好的反硝化,因而污泥在二沉池 底部产生反硝化,硝酸盐成为电子受体被还原,产生的氮气附于污泥上,从而使污泥比重降低,整块上浮。另,曝气池 内曝气过度,使污泥搅拌过于激烈,生成大量小气泡附聚于絮凝体上,或流入大量脂肪和油类时,也可能引起污泥上浮。 氧垂曲线:水体受到污染后,水体中的溶解氧逐渐被消耗,到临界点后又逐步回升的变化过程。 同步驯化法:为缩短培养和驯化时间,把培养和驯化这两个阶段合并进行,即在培养开始就加入少量工业废水,并在培 养过程中逐渐增加比重,使活性污泥在增长过程中,逐渐适应工业废水并具有处理它的能力。 生物膜法:生物膜法处理废水就是使废水与生物膜接触,进行固、液相的物质交换,利用膜内微生物将有机物氧化,使 废水获得净化,同时,生物膜内的微生物不断生长与繁殖。 生物转盘:一种好氧处理污水的生物反应器,由许多平行排列浸没在氧化槽中的塑料圆盘(盘片)所组成,圆盘表面生 长有生物群落,转动的转盘周而复始地吸附和生物氧化有机污染物,使污水得到净化。 生物转盘容积面积比(G):又称液量面积比,是接触氧化槽的实际容积V(m3)与转盘盘片全部表面积A(m2)之比, G=(V/A)*1000 (L/m2)。当G 值低于5 时,BOD 去除率即将有较大幅度的下降。所以对城市污水,G 值以介于5 至9 之间为宜。 稳定塘:是人工适当修正或人工修建的设有围堤和防渗层的污水池塘,主要依靠自然生物净化功能。污水在池塘内流动 缓慢,贮存时间较长,以太阳能为初始能源,通过污水中存活的微生物的代谢活动和包括水生植物在内的多种生物的综 合作用,使有机污染物的易降解。 污水土地处理:污水有节制的投配到土地上,通过土壤-植物系统的物理的、化学的、生物的吸附、过滤与净化作用和自 我调控功能,使污水可生物降解的污染物得以降解净化,氮磷等营养物质和水分得以再利用,促进绿色植物增长并获得 增产。 慢速渗滤处理系统:将污水投配到种有作物的土地表面,污水缓慢的在土地表面流动并向土壤中渗滤,一部分污水直接 为作物所吸收,一部分则渗入土壤中,从而使污水达到净化目的的一种土地处理工艺。 消化池的投配率:投加量和总量的比数,每天需要投加的投加量和消化池的有效容积的比就是投配率。 熟污泥:消化污泥。在好氧或厌氧条件下进行消化,使污泥中挥发物含量降低到固体相对不易腐烂和不发恶臭时的污泥。 污泥含水率(计算公式):污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 P1,V1,W1,C1—污泥含水率为p2 时的污泥体积、重量与固体物浓度; P2,V2,W2,C2—污泥含水率变为p2 时的污泥体积、重量与团体物浓度; 有机物负荷率(S ):有机物负荷率是指每日进入的干泥量与池子容积之比。V1 V2 W1 W2 100 p2 100 p1 C C1 挥发性固体和灰分:挥发性固体, 即VSS,通常用于表示污泥中的有机物的量;灰分表示无机物含量。湿污泥比重:湿污泥比重等于湿污泥量与同体积的水重量之比值。

相关主题
文本预览
相关文档 最新文档