当前位置:文档之家› 电子变压器设计

电子变压器设计

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 https://www.doczj.com/doc/b115179026.html,提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率 f=38kHz; 变换器输入直流电压 Ui=310V; 变换器输出直流电压 Ub=14.7V; 输出电流 Io=25A; 工作脉冲占空度 D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应

电力电子变压器理论研究综述

作者简介:晏阳(1988- ),男,硕士研究生,研究方向为电力电子技术在电力系统中的应用。 电力电子变压器理论研究综述 摘 要:介绍了目前国内外电力电子变压器的研究概况,对电力电子变压器发展过程中出现的斩 控式电力电子变压器、交-交-交型电力电子变压器、反激型电力电子变压器、双PWM 变换型电力电子变压器几种典型的设计构想进行了梳理,并且给出了相应的主电路拓扑。通过分析电力电子技术在电力电子变压器研究领域的相关理论及其应用,阐述各种拓扑的优缺点,并给出了主要的研究方向和发展趋势。 关键词:电力电子变压器;电力电子技术;电能质量中图分类号:TM401+.1 文献标识码:A 文章编号:1007-3175(2012)03-0005-04 晏阳 (东南大学 电气工程学院,江苏 南京 210096) Abstract: Introduction was made to the present research survey of power electronic transformers at home and abroad. This paper hackled several typical design schemes such as chop-controlled power electronic transformer, AC-AC power electronic transformer, flyback power electronic transformer and double PWM power electronic transformer and gave the corresponding main circuit topolo-gy. Via analysis to the relevant theory and its application of power electronic technology in power electronic transformer field, this paper expatiated on advantages and disadvantages of various topologies and summarized the main research direction and developing trend of power electronic transformers. Key words: power electronic transformer; power electronic technology; quality of power supply YAN Yang (School of Electrical Engineering, Southeast University, Nanjing 210096, China ) Research Summary of Power Electronic Transformer Theory 0 引言 电力电子变压器(power electronic trans-former,PET),又称固态变压器(solid trans-former),是一种通过电力电子技术实现电力系统电压变换和能量传递的新型变压器。相对于传统变压器而言,电力电子变压器具有如下优点[1]:(1)体积小,重量轻,环境污染小;(2)运行时二次侧输出电压幅值恒定,不随负载变化,且平滑可调;(3)一次、二次侧电压为正弦波形,功率因数可调;(4)一次、二次侧电压、电流和功率均高度可控[2];(5)本身具有断路器的功能,无需传统的变压器继电保护装置。电力电子变压器是集电力电子、电力系统、计算机、数字信号处理以及自动控制理论等领域为一体的电力系统前沿研 究课题,也是解决电能质量问题,建设“绿色电网”、“数字电网”的可行途径之一。目前在国内外,都有很多相关的研究和开发。 在电力电子变压器的设计和研发中,大规模的电力电子器件以及相应的电力电子变流技术得到了广泛的应用。本文总结电力电子变压器研究的发展历史及主要的电路拓扑,并分析各个拓扑的电路原理和应用情况。 1 国内外研究现状 电力电子变压器起源于美国。通用电气公司的W.McMurray于1970年在一份专利中首先提出了基于AC/AC变换电路的电力电子变压器[3]。在随后的发展过程中,科研人员提出了传统AC/AC变换、buck 变换、AC/DC/AC变换等多个研究课题,并取得了一

电力电子变压器简介

电力电子变压器简介 编者按:电力电子变压器是一种有发展前途的电力电子设备。它与目前使用的铁芯铜线变压器,有明显的优点,特别是耐高压(15kV)的碳化硅器件的成熟会给电力电子变压器的发展带来新的机遇。它是未来智能电网的得利电力电子设备。作为一种新型的电力变压器,得到了国内外研究人员越来越多的关注。 此外,电力电子变压器能否将电压变换与电能质量调控结合一起解决?如一条轧钢生产线使用的变压器,采用电力电子变压器,可以即变压,又能实现电能质量调控,能否有可能?我公司已开发成功的‘’27.5k V转10k V‘’装置也是一种电力电子变压器。轻型直流输电系统也可兼有电力电子变压器功能。可见,公司已具备生产电力电子变压器的能力。 根据现有资料选编成“电力电子变压器简介”一文。文中内容不一定十分准确,供公司开发新产品参考。 王春岩2010.10.22 1、定义 电力电子变压器,又称为固态变压器——P E T ( P o w e r E l e c t r o n i c T r a n s f o r m e r ),也有称为EPT。 电力电子变压器是一种含有电力电子变换器,且通过高频变压器实现磁耦合的变电装置,它通过电力电子变换技术和高频变压器实现电力系统中的电压变换和能量传递。 2、电子电力变压器的基本组成和工作原理 2、1 基本组成(以单相为例)

基本组成见图2.1 2、2 直接、AC/AC变换的电力电子变压器(以单为例) 2、3 含直流环节的PET

2、4 单相含直流PET的电路结构 2、5 用于风电、光电和小水电单相并网PET 图2.5用于风电、光电和小水电单相并网PET 3、电力电子变压器优点和缺点: 3、1 优点 1).体积小,重量轻,无环境污染; 2).运行时可保持副方输出电压幅值恒定,不随负载变化; 3).始终保证原、副方电压电流为正弦波形,并且原、副方功率因数任意可调;4).具有高度可控性,变压器原副方电压、电流的幅值和相位均可控:

配电系统电力电子变压器的研究

配电系统电力电子变压器的研究 作者:佚名转贴自:电力安全论坛点击数: 35 更新时间:2008-7-28 配电系统电力电子变压器的研究 方华亮,黄贻煜,X澍,陆继明,毛承雄 (华中科技大学电气与电子工程学院,XX430074) 摘要: 供电可靠性及电能质量一直是用户和供电部门密切关注的问题。在电网中,变压器是电能转换的最基本的元件,但常规变压器难以对供电可靠性的提高和电能质量的改善作出贡献。本文介绍了一种全新的产品-电力电子变压器,它具有提高供电可靠性、改善电能质量并且体积小、重量轻、环保效果好等一系列优点,可以较好地解决这些问题。在对电力电子变压器现有方案进行分析的基础上,本文提出了一种新的实现方案,计算机仿真结果表明:变压器原方可以实现输入电流波形为正弦和功率因数接近于1,变压器副方可以获得良好的输出电压、电流。 关键词: 电力电子变压器; 高频变压器; 供电可靠性; 电能质量; 脉宽调制 1引言 当今社会经济的快速发展,使得人们对供电可靠性以及改善电能质量提出了越来越高的要求。如果一个供电系统的可靠性不能保证,停电不只是给供电企业带来损失,给用户将造成更大的经济损失。就电能质量而言,一种频率、电压、波形的电能已远远不能满足用户要求,经过变换处理后再供用户使用的电能占全国总发电量的百分比比值的高低,已成为衡量一个国家技术进步的主要标志之一。如在美国,2000年末,发电厂生产的40%以上的电能都是经变换和处理后再供负载使用,预计到21世纪二、三十年代,美国发电站生产的全部电能都将经变换和处理后再供负载使用。 如何更进一步提高供电可靠性和改善电能质量已成为供电部门十分重视和不断努力解决的问题,在供电系统中,变压器是实现电能转换的最基本、最重要的元件之一,对供电可靠性和电能质量有着重大的影响。目前广泛使用的配电系统变压器通常是采用铁芯油浸式,其运行可靠和效率较高;但同时,也存在以下一些不足之处[1]: ·不能维持副方电压恒定; ·铁芯饱和时,会造成电压电流的波形畸变,产生谐波; ·原副方电压、电流紧密耦合,负荷侧的波动会影响到电网侧; ·需装备继电保护装置; ·体积大,笨重; ·矿物油会带来环境问题,且不易维护; 基于以上常规变压器的一些不足之处,如何进一步提高变压器的功能、改善其运行特性以更好的发挥其在供电系统中的作用,从而实现进一步提高供电可靠性、改善电能质量的愿望,是一个十分值得我们深入研究的课题。目前随着电力电子变流技术和大功率电力电子器件的迅速发展,以及在电力系统中的应用日益广泛,所有的这些为我们研制新型变压器奠定了很好的基础。我们要研制的新型变压器主要是采用电力电子技术实现的,我们称之为电力电子变压器。 对电力电子变压器的研究,国内在这方面还基本上未开展,国外在十多年前就已提出了这个概念。首先是美国海军的一个研究计划,提出了一种“交流-交流”的降压变换器构成的电力电子变压器;在这之后,由美国电力科学研究院(EPRI)赞助的一个研究项目

电力电子课程设计

电力电子应用课程设计 课题:50W三绕组复位正激变换器设计 班级电气学号 姓名 专业电气工程及其自动化 系别电气工程系 指导教师 淮阴工学院 电气工程系 2015年5月

一、设计目的 通过本课题的分析设计,可以加深学生对间接的直流变流电路基本环节的认识和理解,并且对隔离的DC/DC电路的优缺点有一定的认识。要求学生掌握单端正激变换器的脉冲变压器工作特性,了解其复位方式,掌握三绕组复位的基本原理,并学会分析该电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,掌握脉冲变压器的设计和基本的绕制方法,熟悉变换器中直流滤波电感的计算和绕制,建立硬件电路并进行开关调试。 需要熟悉基于集成PWM芯片的DCDC变换器的控制方法,并学会计算PWM控制电路的关键参数。输入:36~75Vdc,输出:10Vdc/5A 二、设计任务 1、分析三绕组复位正激变换器工作原理,深入分析功率电路中各点的电压 波形和各支路的电流波形; 2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级, 并给出所选器件的型号,设计变换器的脉冲变压器、输出滤波电感及滤波电容。 3、给出控制电路的设计方案,能够输出频率和占空比可调的脉冲源。 4、应用protel软件作出线路图,建立硬件电路并调试。 三、总体设计 3.1 开关电源的发展 开关电源被誉为高效节能电源,代表着稳压电源的发展方向,现已成为稳压电源的主流产品。 开关电源分为DC/DC和AC/DC两大类。前者输出质量较高的直流电,后者输出质量较高的交流电。开关电源的核心是电力电子变换器。按转换电能的种类,可分为直流-直流变换器(DC/DC变换器),是将一种直流电能转换成另一种或多种直流电能的变换器;逆变器,是将直流电能转换成另一种或多种直流电能的变换器;整流器是将交流电转换成直流电的电能变换器和交交变频器四种。 开关电源的高频化是电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前的小型化,并使开关电源进入更广泛的领域,特别是在高新技术领

电力电子变压器及其发展综述_潘诗锋

#科普园地# 电力电子变压器及其发展综述 Summary of Development of Power Electronic Transformer 潘诗锋,赵剑锋 (东南大学电气系,江苏南京210096) 摘要:介绍了电力电子变压器的优点、工作原理、目前研究状况。指出了用电力电子变压器解决电能质量问题是今后 的发展趋势,拓宽了电力电子变压器的应用场合,使得其不但可以使用在对能量转换装置的体积、重量有特殊要求的场 合,如航海、航空、航天等领域,还可以为电能质量敏感负荷供电。它是建设/绿色电网0/数字电网0的关键设备之一,对 其进行研制和使用可取得巨大的经济和社会效益。 关键词:电力电子变压器;电能质量;绿色电网;数字电网 中图分类号:TM41文献标识码:E文章编号:1009-0665(2003)06-0052-03 收稿日期: 2003-06-28 传统的电力变压器具有制作工艺简单、可靠性高 等优点,在电网中得到广泛应用。但是,它的缺点也十 分明显,如体积、重量、空载损耗大;过载时易导致输出 电压下降、产生谐波;负载侧发生故障时,不能隔离故 障,从而导致故障扩大;带非线性负荷时,畸变电流通 过变压器耦合进入电网,造成对电网的污染;电源侧电 压受到干扰时,又会传递到负载侧,导致对敏感负荷的 影响;使用绝缘油造成环境污染;需要配套的保护设备 对其进行保护[1]。 作为一种新型的能量转换设备,与传统的变压器 相比,电力电子变压器具有体积小、重量轻、空载损耗 小、不需要绝缘油等优点。它是集电力电子、电力系 统、计算机、数字信号处理以及自动控制理论等领域为 一体的电力系统前沿研究课题,通过电力电子器件和 电力电子变流技术,对能量进行转换与控制,以替代传 统的电力变压器。 研究电力电子变压器的初衷是为了降低传统变压 器的体积和重量。因为,变压器的体积和重量与它的运 行频率成反比,借助于电力电子技术提高其变换频率, 就可减小体积和重量。美国海军于20世纪70年代末 至80年代初,首先对其进行了研究[2],美国电科院于 1995年也进行了相关研究[3]。以上2个项目研究,试验 样机都不实用,因为它们采用的是降压型变换器 (Buck),不能很好地抑制输入的谐波电流,而且变压器 输入和输出是不隔离的[1]。20世纪90年代末,美国密 苏里大学在ABB和爱默生公司资助下对电力电子变压 器进行了研究,完成了10 kV A,7 200 V/240 V的实验 样机,但仅实现了基本的电压变换功能和对输入的功率 因数控制。另外,设计时为减小对开关器件的应力,输

电力电子变压器原理、现状、应用场合介绍复习过程

电力电子变压器原理、现状、应用场合 介绍

电力电子变压器介绍 0、前言 电力电子变压器(Power Electronic Transformer 简称PET)作为一种新型的能量转换设备,与传统的变压器相比,具有体积小、重量轻、空载损耗小、不需要绝缘油等优点。它是集电力电子、电力系统、计算机、数字信号处理以及自动控制理论等领域为一体的电力系统前沿研究课题,通过电力电子器件和电力电子变流技术,对能量进行转换与控制,以替代传统的电力变压器。 1、基本原理 PET 的设计思路源于具有高频连接的AC/AC变换电路, 其基本原理见图1, 即通过电力电子变换技术将变压器原边的工频交流输入信号变换为高频信号, 经高频变压器耦合到副边后, 再经电力电子变换还原成工频交流输出。因高频变压器起隔离和变压作用, 因铁心式变压器的体积与频率成反比, 所以高频变的体积远小于工频变压器, 其整体效率高。 图1 电力电子变压器基本原理框图 PET 的具体实现方案分两种形式: 一是在变换中不含直流环节, 即直接AC/AC变换, 其原理是: 在高频变压器原边进行高频调制, 在副边同步解调; 二是在变换中存在直流环节, 通常在变压器原边进行AC/AC变换,

再将直流调制为高频信号经高频变压器耦合到副边后, 在副边进行DC/AC 变换。比较两种方案, 后种控制特性良好, 通过PWM 调制技术可实现变压 器原副边电压、电流和功率的灵活控制, 有望成为今后的发展方向。 2、研究现状 自1970 年美国GE 公司首先发明了具有高频连接的AC/AC 变换电路后, 很多科研工作者对各种不同结构的具有高频连接的AC/AC 变换器进行了深 入的探讨和研究, 并提出了PET 的概念。美国海军和美国电力科学研究院(EPRI)的研究小组先后提出了一种固态变压器结构, Koo suke Harada等人也提出了一种智能变压器, 他们通过对高频技术的使用, 使变压器体积减小, 实现恒压、恒流、功率因数校正等功能。 早期的PET的理论和实现研究由于受当时电力电子器件和功率变换技 术发展水平的限制, 所提出的各种设计方案均未能实用化, 特别是在可用 于实际输配电系统(10kV以上)的PET的研究方面进展不大。进入20 世纪 90 年代,国外在这一研究领域中取得了一些新进展, 提出了新的技术方案, 并制作了与配电系统电压等级相当的实验室样机。如美国密苏里大学在ABB 和爱默生公司资助下对电力电子变压器进行了研究,完成了10kVA,7200 V /240 V的实验样机,但仅实现了基本的电压变换功能和对输入的功率因数控制。另外,设计时为减小对开关器件的应力,输入采用多个变流器串联 工作,使系统的可靠性大大降低,当其中任意一个器件出现故障都会导致 工作异常。美国威斯康星一麦迪逊大学与ABB公司合作,德克萨斯农机大 学也于20世纪90年代末对电力电子变压器进行了研究,但以上工作只对 其电压变换的功能进行了分析和研究。

电力电子变压器研究综述

电力电子变压器研究综述 李璟 摘要:电力电子变压器(PET ) 是一种采用电力电子变换器和高频开关变压器的电能传输装置。首先,介绍了电PET 的基本工作原理及其研究现状。其次,介绍了发展过程中出现的几种典型拓扑结构。再次,对PET 的控制方法进行了总结。最后,对将来PET 的应用及发展做出了展望。 关键词:电力电子变压器 电力系统 控制 拓扑 0 引言 PET 除了具有传统电力变压器电能变换与传输功能外,其突出优点在于体积小、重量轻,通过变压器原、副方电压源变换器对其交流侧电压幅值和相位的实时控制,可以实现变压器原、副方电压、电流和功率的灵活调节,在暂态过程中控制性能良好,本身具有断路器的功能,无需传统的变压器继电保护装置等[1~3]。因此PET 具备解决电力系统相关问题的潜力,应用前景广阔。随着电力系统朝着智能电网不断发展,PET 也受到越来越多的专家学者的关注。 1 PET 基本工作原理 电力电子变压器是一种将电力电子变换技术和基于电磁感应原理的电能变换技术相结合,实现将一种电力特征的的电能转变为另一种电力特征的电能的静止电气设备。[4]上述电力特征包括电压或者电流的幅值、相位、相序、波形、频率和相数等。它的主要功能包括变压、变流、电气隔离、能量传递和电能控制。 在结构上,电力电子变压器主要包括两个部分:高频变压器和电力电子变换器。电源接到一次侧时,电力电子变换器1将输入的工频交流电变换成高频交流电,高频交流电经高频变压器耦合后与这电力电子变换器2相连接,通过电力电子变换器2输出到负载上。 图1 电力电子变压器中电力电子变换器的主要功能是实现电压或者电流的频率控制、相位控制和谐波控制;电力电子变压器中的高频变压器主要功能是电压等级的变换和电气隔离。变压器容量S 可以表示为下式: m e c B A A J f K S ******=22.2 (1) 式中K 为铜导线饱和因数;f 为励磁频率(Hz );c A 、e A 分别表示为铁芯和绕组导线面积(m 2);J 为导体中的电流密度(2 /m A );m B 为最大磁通密度(T)。可见在其他条件相同的情况下,f 与e c A A *成反比,因此高频变压器体积远小于同容量的工频变压器。[5]

工频变压器设计计算

工频变压器的设计计算 赵一强2010-9-15 ,这个 U2), 从上可知,变压器是通过铁芯的磁场来传递电功率的。借助于磁场实现了初级电路和次级电路的电隔离;又通过改变绕组匝比,来改变次级的输出电压。 二、变压器特性参数和设计要求 1、磁通密度B和电流密度J 磁通密度(又叫磁感应强度)B和电流密度J是变压器设计的关键参数,直接关系着变压器的体积和重量,B 、J值越高,变压器越轻,但是B 、J的取值受到一定条件的限制,因此,变压器的体积和重量也受到这些条件的限制。 4Gs 。 H的关系曲线,在

图3中,Bs —饱和磁感应强度; Bs —过压保护磁感应强度 Bm —最大磁感应强度(计算值) 导磁率: H B ΔΔ= μ 饱和磁通密度为Bs 和导磁率μ是曲线的两个重要参数。 对于磁性材料,要求Bs 、μ 越高越好。Bs 高,变压器体积可减小;μ高,变压器空载电流小。 另外,还要求电阻率ρ高,这样损耗小、发热小。 ⑵ 电流密度J 电流密度J : 电路单位截面积的电流量,单位 :安/厘米2(A/cm 2)。 变压器绕组导线的电阻:q l R cu ρ= 电流导线中所产生的损耗(铜损): l IJ R I P cu cu cu ρ2 == 可以看出,铜损与电流和电流密度的乘积成正比,就是说,随着电流增加,要保持同样的绕组损耗和温升,必须相应地降低电流密度。 2、铁心、导线和绝缘材料 ⑴ 铁心形状和材料 铁心形状:卷绕的有O 型、CD/XCD 型、ED/XED 型、R 型、HSD 型(三相), 冲片的有EI 、CI 型;这是我们常用两种冲片。 铁心材料牌号:硅钢(含硅量在2.3~3.6%) 冷轧无取向硅钢带:含硅量低(在0.5~2.5%);厚0.35、0.5、0.65mm,我们常用0.5mm ; B 高、μ高,铁损大,价格较低,多用于小功率工频变压器。 冷轧取向硅钢带:含硅量较高(在2.5~3%),厚0.27、0.3、0.35mm, 我们常用0.35mm ;B 高、μ高,铁损小,价格较高,多用于中大功率工频变压器。 ⑵ 线圈导线材料 油性漆包线Q 0.05~2.5 耐温等级 A 105℃ 塑醛漆包线QQ 0.06~2.5 耐温等级 E 120℃ 聚酯漆包线QZ 0.06~2.5 耐温等级 B 130℃ 耐压均在600V 以上。最常用的是QZ 漆包线。 线圈允许的平均温升⊿τm =线圈绝缘所允许的最高工作温度-最高环境温度-(5—10K ), 通常不超过60℃。5—10K 是考虑线圈最高温度与平均温度之差,功率大取大值。 ⑶ 层间绝缘材料 500V 以下不需要层间绝缘。各绕组间应垫绝缘0.03 聚酯薄膜2~3层。 3、 电源变压器的主要技术参数 ⑴ 输出功率(视在功率、容量、V A 数) ⑵ 输出电压及电压调整率和要求 ⑶ 电源电压、频率及变化范围 ⑷ 效率 ⑸ 空载电流及空载损耗 ⑹ 绕组平均温升 ⑺ 输入功率因数

逆变器用变压器设计

计算方法 A 已知条件: 输出功率:2P =25W ; 次级电流:2I =0.115A ;(220V ?) 初级电流:1I =1.0A ; 电源频率:f =50Hz ; 效率:η>0.9; 功率因数:cos ?>0.9; 温升:m τ?<55℃。 B 电压计算输入功率:212527.80.9P P η= ==W 初级电压:11127.827.81P U I = ==V 次级电压:22225217.390.115 P U I ===V 次级负载电阻:()222222518900.115P R I = ==?C 选择铁芯 按2P 选择铁芯。当使用R 型铁芯R-30,材料使用DQ151-35时。铁芯 相关性能为: 当0B =1.70T 时,S P ≤2.2W/kg ,磁化伏安≤8V A/kg ,~H ≤3.5A/cm 2 223.1410 3.142C d S cm π??==×=????;()()2 5.45 2.021.95 2.022.8C L =×+++=cm ;

C G =0.425(kg );c F =64cm 2 D 匝数计算 44 1010108.43864.44 4.4450 1.7 3.14 c TV fB S ===×××匝/V 当%U ?=15%(8%?),()()128.43869.92781%10.15TV TV U ===???匝/V (()()128.43869.1721%10.08TV TV U ===???)11127.88.4386235N U TV =×=×=匝 2222179.92782155N U TV =×=×=匝(2222179.1721990N U TV ==×= )E 导线直径确定(数据提供23.5~4.0/j A A mm = )1 1.130.604d === mm 2 1.130.205d ===mm 若取QZ-2(二级聚酯漆包线)标准导线,则10.630d mm =,1max 0.704d mm =,铜导体电阻54.84/km ?;20.224d mm =,2max 0.266d mm =,铜导体电阻433.8/km ?。

电力电子变压器原理、现状、应用场合介绍

电力电子变压器介绍 0、前言 电力电子变压器(Power Electronic Transformer 简称PET)作为一种新型的能量转换设备,与传统的变压器相比,具有体积小、重量轻、空载损耗小、不需要绝缘油等优点。它是集电力电子、电力系统、计算机、数字信号处理以及自动控制理论等领域为一体的电力系统前沿研究课题,通过电力电子器件和电力电子变流技术,对能量进行转换与控制,以替代传统的电力变压器。 1、基本原理 PET 的设计思路源于具有高频连接的AC/AC变换电路, 其基本原理见图1, 即通过电力电子变换技术将变压器原边的工频交流输入信号变换为高频信号, 经高频变压器耦合到副边后, 再经电力电子变换还原成工频交流输出。因高频变压器起隔离和变压作用, 因铁心式变压器的体积与频率成反比, 所以高频变的体积远小于工频变压器, 其整体效率高。 图1 电力电子变压器基本原理框图 PET 的具体实现方案分两种形式: 一是在变换中不含直流环节, 即直接AC/AC变换, 其原理是: 在高频变压器原边进行高频调制, 在副边同步解调; 二是在变换中存在直流环节, 通常在变压器原边进行AC/AC变换, 再将

直流调制为高频信号经高频变压器耦合到副边后, 在副边进行DC/AC变换。比较两种方案, 后种控制特性良好, 通过PWM 调制技术可实现变压器原副边电压、电流和功率的灵活控制, 有望成为今后的发展方向。 2、研究现状 自1970 年美国GE 公司首先发明了具有高频连接的AC/AC 变换电路后, 很多科研工作者对各种不同结构的具有高频连接的AC/AC 变换器进行了深入的探讨和研究, 并提出了PET 的概念。美国海军和美国电力科学研究院(EPRI)的研究小组先后提出了一种固态变压器结构, Koo suke Harada等人也提出了一种智能变压器, 他们通过对高频技术的使用, 使变压器体积减小, 实现恒压、恒流、功率因数校正等功能。 早期的PET的理论和实现研究由于受当时电力电子器件和功率变换技术发展水平的限制, 所提出的各种设计方案均未能实用化, 特别是在可用于实际输配电系统(10kV以上)的PET的研究方面进展不大。进入20 世纪90 年代,国外在这一研究领域中取得了一些新进展, 提出了新的技术方案,并制作了与配电系统电压等级相当的实验室样机。如美国密苏里大学在ABB和爱默生公司资助下对电力电子变压器进行了研究,完成了10kVA,7200 V/240 V的实验样机,但仅实现了基本的电压变换功能和对输入的功率因数控制。另外,设计时为减小对开关器件的应力,输入采用多个变流器串联工作,使系统的可靠性大大降低,当其中任意一个器件出现故障都会导致工作异常。美国威斯康星一麦迪逊大学与ABB公司合作,德克萨斯农机大学也于20世纪90年代末对电力电子变压器进行了研究,但以上工作只对其电压变换的功能进行了分析和研究。

电力电子的课程设计--BUCK变换器的设计

目录 一、设计要求 (2) 二、设计方案 (2) 三、电路的设计 (3) 四、主电路参数计算和元器件选择 (4) 1、IGBT (4) 2、二极管 (4) 3、电感 (4) 4、电容 (5) 五、各模块所选器件说明 (5) 1、变压器EI86 (5) 2、误差放大器UC3842 (5) 3、脉宽调制器SG3525 (6) 4、驱动器MC34152 (7) 5、三端正稳压器7815 (8) 六、电气原理总图及元器件明细表 (8) 七、课程设计心得 (10) 八、参考资料 (10)

汽车电力电子技术课程设计 ——BUCK变换器的设计 一、设计要求 设计一稳压直流电源,输入为交流220V/50HZ,输出为直流15V的直流稳压电源,如下图1所示,其中DC-DC变换时主要采用BUCK变换器,变换器主器件采用IGBT,控制方式采用PWM控制。 图1 总电路原理框图 二、设计方案 小功率直流稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成,其原理框图如2所示。

图2 直流稳压电源原理框图 三、电路的设计 G a b c Vi 0WM V G d 图3 Buck 变换器电路及相关波形 Buck 变换器主要包括:开关元件M1,二极管D1,电感L1,电容C1和反馈环路。而一般的反馈环路由四部分组成:采样网络,误差放大器(Error Amplifier ,E/A ),脉宽调制器(Pulse Width Modulation ,PWM )和驱动电路。 为了便于对Buck 变换器基本工作原理的分析,我们首先作以下几点合理的假设: a 、开关元件M1和二极管D1都是理想元件。它们可以快速的导通和关断,且导通时压降为零,关断时漏电流为零; b 、电容和电感同样是理想元件。电感工作在线性区而未饱和时,寄生电阻等于零。电容的等效串联电阻(Equivalent Series Resistance ,ESR )和等效串联电感(Equivalent Series

配电网电力电子变压器技术综述

配电网电力电子变压器技术综述 发表时间:2018-09-12T16:32:30.640Z 来源:《基层建设》2018年第22期作者:刘永林刘贻青 [导读] 摘要:在我国电力系统中最主要的电气设备就是电力变压器,传统的电力变压器负荷变化对电力影响特别大。 易事特集团股份有限公司广东省东莞市 52380 摘要:在我国电力系统中最主要的电气设备就是电力变压器,传统的电力变压器负荷变化对电力影响特别大。当电力的负荷发生故障时,不能很好的隔离故障,为了隔离故障而使用绝缘油会对环境形成一定的污染,传统的电力变压器有着自己的不足,比如体积大、空载耗损也比较大和重量大等;跟传统的变压器相比较来看,电力电子变压器是新型的一种能量电力转换设备,这种电力电子变压器最大的优点就是耗损相对比较小,不需要绝缘油等,鉴于此,本文主要分析配电网电力电子变压器技术。 关键词:配电网;电力电子;变压器技术 1、电力电子变压器的基本原理 电力电子变压器(powerelectronictransformer,PET),也称为固态变压器(solid-statetransformer,SST)或智能变压器(smarttransformer,ST)等,一般是指通过电力电子技术及高频变压器(相对于工频变压器工作频率更高)实现的具有但不限于传统工频交流变压器功能的新型电力电子设备。电力电子变压器一般至少包括传统交流变压器的电压等级变换和电气隔离功能,此外,还包括交流侧无功功率补偿及谐波治理、可再生能源/储能设备直流接入、端口间的故障隔离功能以及与其他智能设备的通讯功能等。 初级功率变换器、次级功率变换器以及联系初级和次级功率变换器的高频变压器来共同构成电力电子变压器。根据电力电子变压器的输入和输出这种特点来看,也就是电力电子变压器的交交变换,电力电子变压器的基本工作原理就是输入的工频电压利用原边变换器,将工频电压转换为高频电压,利用高频变压器耦合到副边,最后再利用副边功率变换器将电压转换成所需要的高频交流电压;对电力电子变压器要减小它的体积,来增加电力电子变压器的工作频率;为了把工频交流电转换成高频交流电,这就需要使用合适的电力控制方案和现代电力电子技术,最终能够使电力电子变压器逐步的过渡成小型变压器和轻型变压器。 其工作原理如图1所示,高压侧工频交流通过电力电子变流器一系列变换(交-交变换或交-直-交变换)形成高频交流电,然后通过高频变压器耦合到低压侧,再经过变流器一系列变换形成工频交流电,向负载供电。 图1电力电子变压器的工作原理 2、电力电子变压器的几种电路类型 2.1、斩控式电力电子变压器 在1995年,电力电子变压器的实验样机被制造出来,这也是美国电科院首次成功制造斩控式的电力电子变压器。 2.2、交-交-交变换电力电子变压器 在1999年,交-交-交变换的电力电子变压器被制造出来,它是一种新型的电力电子变压器,这也是美国德州大学首次成功制造该种类型的电力电子变压器。 2.3、反激式电力电子变压器 反激式电力电子变压器是近年来研制的新型变压器,它的内部元件大大减少,结构非常的简化。 3、配电网电力电子变压器技术综述 3.1、PET的电路拓扑 PET一般可应用于智能电网、可再生能源接入或电力机车牵引变流系统等需要对电能形式进行变换并要求电气隔离的场合。根据应用场景的不同,PET的高、低压端口电能形式及隔离方式一般也不相同,通常需要采用定制化的电路拓扑,很难实现统一标准化设计。这也促成了PET电路拓扑的多元化技术路线。 作为应用于交流电网的PET,其输入侧一般为中高压交流端口,而为了能够涵盖传统工频变压器的基本功能,在很多场合也要求PET 能够输出低压交流。因此,本文以中高压交流输入、低压交流输出的PET作为基本的分类对象。而对于具有直流端口的PET来说,大多数情况下其可以作为低压交流输出型PET的一部分。 3.2、PET的控制保护技术 PET的高性能控制及保护涉及调制及软开关技术、电压/电流/功率等电气量的控制策略以及故障保护技术等,对PET的电气特性、损耗、可靠性有着极其重要的影响,也是PET的研究热点之一。 PET的调制主要是指控制PET主电路中各类功率半导体器件,使其按一定规律导通或关断的技术。通过不同的调制方法可使得变流单元输出一系列脉冲电压/电流波形,并通过调节脉冲电压/电流的脉宽、频率和相位等实现变流单元电压/电流或变流单元之间交换功率的控制。由于PET中电能变换环节类型较多,需求多种多样,因此调制方法一般也无法统一。 一般而言,PET的电气端口应具有电压/电流/功率的实时调节能力,可实现电能双向流动,从而可以接入不同类型的电源、储能和负荷等设备。 3.3、PET中的高频变压器优化设计 PET中的高频变压器是实现电气隔离和电压等级变换功能的核心元件。首先需要说明的是,本文中的“高频”是与工频变压器的“工频”而言的相对概念。一般来说,过低的工作频率会使得变压器铁心体积较大,而过高的频率会使得变压器及其连接的电力电子变换器损耗增加,给系统散热带来困难。实际上,对于可以隔离10kV或更高电压的高频变压器来说,由于爬电距离、空气间隙等绝缘因素的限制,一般

新编电子变压器手册

新编电子变压器手册 新编电子变压器手册主要介绍小功率电源变压器、高压和高电位变压器、音频变压器和超音频输出变压器、变换器中的变压器、变换相数的变压器、变换频率的变压器、磁控变压器、充电变压器、调幅器式变压器、触发器式变压器、参量变压器、磁通可控的铁磁谐振变压器、电感电容联合体、滤波器式变压器、移相与鉴相变压器、低频压电变压器、高频压电变压器、宽频带压电变压器、具有匹配尺寸的压电变压器、多层压电变压器、盒式压电变压器、交流扼流圈、滤波扼流圈、饱和扼流圈、充电扼流圈、转换扼流圈等的工作原理、绕组线路、最佳结构及设计计算方法详细列出了设计步骤,并以图表的形式提供了设计所必须的大量参考材料。 本书可供无线电设备电源及电子变压器行业的广大工程技术人员使用,也可供雷达、高能物理、自动控制、通讯、广播电视、水声、冶金、电机、电器等部门的科技工作者及高等院校相应专业的师生参考。 目录 第一章小功率电源变压器 1.1 设计的主要依据 1.2 变压器结构与材料的选择 1.3 高压和高电位变压器的绝缘方式及冷却方式的选择 1.4 高压和高电位变压器绕组结构的选择及绝缘距离的确定

1.5 有关系数及尺寸功率的确定 1.6 电磁负荷的确定 1.7 铁心主要尺寸的确定 1.8 标准铁心的选取 1.9 线圈的结构计算及绕组主要参数的确定1.10 变压器的损耗和最热点温升 1.11 小功率电源变压器的设计程序 1.12 设计计算时应注意的其它问题 第二章音频和超音频变压器 2.1 音频变压器的电磁参数 2.2 音频变压器的特殊形式及其设计特点 2.3 音频变压器的漏感 2.4 音频变压器的分布电容 2.5 音频变压器的结构计算 2.6 超音频输出变压器的结构 2.7 超音频输出变压器各主要参数间的基本关系2.8 超音频输出变压器的计算方法 第三章变换器中的变压器 3.1 变换器中变压器的基本关系

电力电子变换器设计

摘要 电力电子变换器是应用电力电子技术将一种电能转变为另一种或多种形式电能的装置。其中,直流变换器是一个重要部分,它是将一种直流电能转换成另一种或多种直流电能的变换器。DC/DC全桥变换器由DC/AC和AC/DC两种电路形式组合而实现直直变换的,其中DC/AC全桥逆变器的主电路只有一种,但控制方式有三种,其输出不仅与开关器件状态有关,且与负载性质和大小有关。在后两种控制方式中,电路是否具有续流管会直接影响其输出,同时在变换器的实际应用中还存在直流分量问题,其对电路性能有不良影响,要想办法抑制或消除。 关键字:直流变换器、控制方式续流管、全桥逆变器、输出整流滤波电路、直流分量的抑制 目录 一全桥逆换器及其控制 1.1 双极性控制方式 1.1.1 负载为纯电阻 1.1.2 负载为电感 1.2 有限双极性控制方式 1.3 移相控制方式 二PWM DC/DC全桥变换器 2.1 具有续流管的DC/DC全桥变换器 2.2 没有续流管的DC/DC全桥变换器 三DC/DC全桥变换器中直流分量的抑制 四设计结论 五设计体会 六参考文献

一 全桥逆换器及其控制 DC/DC 全桥变换器由全桥逆变器和输出整流滤波电路构成,首先就全桥逆变器的构成和工作原理做一下简单概述。 1.1 双极性控制方式 全桥逆变器的主电路如图1-1所示,有四只功率管1Q ~4Q ,反并联二极管1D ~4D 和输出变压器r T 等构成。输入直流电源电压为in V ,输出交流电压为o v ,变压器r T 的原边绕组接与AB 两端。变压器原边绕组匝数为1N ,副边匝数为2N ,变比21/N N K =。 1.1.1 负载为纯电阻 晶体管为脉宽调制(PWM )工作方式,在一个开关周期S T 的前半周,1Q 和4Q 导通2/S T D ?,D 为占空比,2 /s on T T D =,后半周期为2Q 和3Q 导通,导通时间也为2/S T D ?。1Q 和4Q 导通时in AB V v -=,1Q 和4Q 与2Q 和3Q 均截止时,0=AB v 。故变压器副边开路时,变压器原边电压AB v 的波形如图1-1(b)所示。为一个方波电压。调节晶体管的导通时间,即改变占空比D ,就可以调节AB v 的宽度,从而调节AB v 的有效值的大小。副边电压o v 波形与AB v 相同,幅值为K V in /。 (a) 全桥逆变器主电路

电子变压器项目规划设计方案 (1)

电子变压器项目规划设计方案 规划设计/投资方案/产业运营

摘要 中国电子变压器为满足国际市场的需要,通过实施“以质取胜”的战略,电子变压器出口已逐步形成规模,工艺装备也日臻完善。特别是近年来电子变压器产业的发展前沿,如功率铁氧体材料、软磁合金材料、非晶结晶磁性材料、纳米合金磁性材料、压电陶瓷、纳米绝缘材料等均取得卓有成效的发展,这为电子变压器行业技术进步创造了良好条件,电子变压器将伴随着整机微型化的需求,向高频化、低损耗、片式的方向发展。 该电子变压器项目计划总投资11693.96万元,其中:固定资产投资8863.02万元,占项目总投资的75.79%;流动资金2830.94万元,占项目总投资的24.21%。 本期项目达产年营业收入24920.00万元,总成本费用19643.28 万元,税金及附加226.10万元,利润总额5276.72万元,利税总额6230.64万元,税后净利润3957.54万元,达产年纳税总额2273.10万元;达产年投资利润率45.12%,投资利税率53.28%,投资回报率33.84%,全部投资回收期4.45年,提供就业职位429个。

电子变压器项目规划设计方案目录 第一章总论 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章项目建设背景 一、项目承办单位背景分析 二、产业政策及发展规划 三、鼓励中小企业发展 四、宏观经济形势分析 五、区域经济发展概况 六、项目必要性分析 第三章建设内容 一、产品规划 二、建设规模 第四章项目建设地方案 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价

电力电子课程设计

课程设计报告

目录一.基本现状及意义 1.1国内外的研究现状和发展趋势: 1.2三相逆变器研究设计的意义:二.任务书要求 、设计目的: 、设计任务: 三.基本原理 .三相电压型逆变电路工作原理 .控制电路的设计 四.系统硬件设计 系统总体介绍 系统参数计算 五.仿真电路 六.仿真波形分析 七.实验总结

一.基本现状及意义 国内外的研究现状和发展趋势? 逆变技术的发展可以分为如下两个阶段:? 1956-1980年为传统发展阶段,这个阶段的特点是,开关器件以低速器件为主,逆变器的开关频率较低,波形改善以多重叠加法为主,体积重量较大,逆变效率低。 1980年到现在为高频化新技术阶段,开关器件以高速器件为主,逆变器开关频率高,波形改善以脉宽调制为主,体积重量小,逆变效率高。 在PWM逆变器中,为了减小其体积重量,提高其功率密度,高频化是主要发展方向之一,但高频化也存在一些问题,如增加开关损耗和电磁干扰。为此提出两个解决办法,一是提高开关器件的速度,二是使逆变开关工作在软开关状态。20世纪80年代初,美国弗吉尼亚电力电子技术中心提出了准谐振变换技术,使软开关与PWM技术的结合成为可能。它的研究对于逆变器性能的提高和进一步推广应用,以及电力电子学技术的发展,都有十分重要的意义,是当前逆变器的发展方向之一。 高频软开关逆变技术产生的背景是为了克服传统逆变器的输出波形差,开关应力和EMI较大的缺点。在相同背景下,于1981年提出了多电平逆变技术,成为当前高压大功率逆变器的发展方向。它通过主电路改进,使所有逆变开关都工作在基频或低频,以达到减小开关应力,改善输出电压或电流波形的目的。 总之,逆变技术的发展是在提高波形质量的背景下,随着电力电子技术、微电子技术和现代控制理论的发展而发展,进入二十一世纪,逆变技术正朝着高功率密度、高变换效率、高可靠性、无污染、智能化和集成化的方向发展。 三相逆变器研究设计的意义 (1)促进新能源的开发和利用? 随着电力电子技术的迅猛发展,逆变技术广泛应用于航空、航天、航海等国防领域和电力系统,交通运输、邮电通信、工业控制等民用领域。特别是随着石油、煤和天然气等主要能源日益紧张,新能源的开发和利用越来越受到人们的重视。利用新能源的关键技术----逆变技术,能将蓄电池、太阳能电池和燃料电池

相关主题
文本预览
相关文档 最新文档