当前位置:文档之家› CMOS 运算放大器设计优化方法研究

CMOS 运算放大器设计优化方法研究

CMOS 运算放大器设计优化方法研究
CMOS 运算放大器设计优化方法研究

社会研究方法课程设计

社会研究方法课程设计

社会研究方法 课程设计调查报告 调查题目:关于地铁站路边摊问题的调查调查地点:北京市通州区梨园城铁站 调查对象:梨园站出站的乘客 调查时间:2012年8月27日 晚高峰期间19:00—21:00

班级:行政1002 姓名:吕铮 学号:2010012341 【内容提要】 近些年来,随着地铁的发展,路边摊成为地铁站周边一道别致的风景线:麻辣烫,铁板烧,臭豆腐,鸡蛋灌饼等,为众多上班族所钟情。我们在享受到路边摊带来便利的同时,也应该注意到路边摊的危害。卫生问题是首先需要的问题。除此之外,路边摊的存在对市政市容造成了一定的影响,也影响到了道路的正常通行。然而这种路边摊的取缔却是很难的。且不说他们流动性强,走到哪儿都可以买,就路边摊的制作也并不复杂,因此取缔路边摊难以有效执行。就政府管理而言,面对路边摊的存在不应该一味的取缔、没收,而是应该统一规范的对路边摊进行管理,同时提高路边摊的卫生规格。这样不仅使路边摊有了一席之地,使它的存在合法化,又能使市民享受到路边摊带来的便利,同时也使路边摊主有了一定的收入,既美化了市容又使摊主与顾客都能获利。 街头食品业在向城市人口、尤其是许多发展中国家城市人口提供方便、低廉食品方面发挥着重要作用;受到化学和微生物病原体污染的街头食品被视为食物源疾病的重大诱因;环境卫生不佳、设施不足和食品处理不当是街头食品的主要风险因素;增强摊贩对保障食品安

全所需遵循的基本原则和措施的认识是降低街头食品卫生风险的一项最具成本效益的办法。(本段文字援引世界卫生组织《关于增强街头摊贩食品安全的基本措施》一文) 【关键词】 路边摊危害管理合法化 【调查过程与方法】 近年来,路边摊成为地铁站、车站附近的特色,路边摊的种类也越来越丰富。路边摊的存在为上班族提供了便利,可以免去他们工作一天之后还要回家做饭的麻烦。丰富的种类、低廉的价格,使得路边摊的市场不断扩大,随之而来就是路边摊所带来的问题。众所周知,路边摊最大的问题就是食品安全问题,且不说地沟油、亚硝酸盐会给人身带来什么样的危害,灰尘、反复使用的竹签、一次性筷子等都难以保证安全。为了了解路边摊的存在情况以及往来乘客对路边摊的看法,我于2012年8月27日晚高峰期间(19:00—21:00)来到八通线梨园站,对出站乘客做关于路边摊的随机调查。调查内容主要包括:乘客对路边摊的态度,路边摊的危害以及路边摊主的态度。本次调查共有28人接受访问,现将其中7人的访问内容整理出来: 【被访问者1:上班族】 路边摊的存在已经很长时间了,但是一直没有城管来取缔,路边摊的存在确实给我们带来了便利,它价格低廉,种类繁多,可以省去我们下班之后做饭的麻烦。关于卫生问题吧,我觉得这些东西都不算很干净,但是不是经常吃就没什么问题吧。再说那么多人都吃呢,怎

结构优化设计的综述与发展

结构优化设计的综述与 发展 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

结构优化设计的综述与发展 摘要:结构优化设计,就是在计算机技术等高科技手段的支持下,为了提升机械产品的性能、工作效率,延长机械产品的工作寿命,对机械产品的尺寸、形状、拓扑结构和动态性能进行优化的过程。这是机械行业发展的必然要求,也是信息时代的必然要求。结构优化设计,必须在保证机械产品满足工作需要的前提下,通过科学的计算来实行。文章将简单对结构优化设计的发展状况进行介绍,列举几种优化设计方法,以及讨论未来优化的发展情况。 关键词:结构优化设计发展优化设计方法 1 结构优化设计 结构优化简单来说就是在满足一定的约束条件下,通过改变结构的设计参数,以达到节约原材料或提高结构性能的目的。结构优化设计通常是指在给定结构外形,给定结构各元件的材料和相关载荷及整个结构的强度、刚度、工艺等要求的条件下,对结构进行整体和元件优化设计。结构优化设计一般由设计变量、约束条件和目标函数三要素组成。评价设计优、劣的标准,在优化设计中称为目标函数;结构设计中以变量形式参与的称为设计变量;设计时应遵守的几何、刚度、强度、稳定性等条件称为约束条件,而设计变量、约束函数与目标函数一起构成了优化设计的数学模型。结构优化的目的是让设计的结构利用材料更经济、受力分布更合理。 结构优化设计根据设计变量选取的不同可以分为截面(尺寸)优化、形状优化、拓扑优化三个层次。尺寸优化是选取结构元件的几何尺寸作为设计变量,例如,杆元截面积、板元的厚度等等[1]。而形状优化是选取结构的内部形状或者是节点位置作为设计变量。拓扑优化就是选取结构元件的有无作为设计变量,为0-1型逻辑型设计变量。 2 结构优化设计研究概况与现状 结构优化设计最早可以追溯到17世纪,伽利略和伯努利对弯曲梁的研究从而引发了变截面粱形状优化的问题。后来Maxwell和Michell提出了单载荷仅有应力约束条件下最小重量桁架结构布局的基本理论,为系统地分析结构优化理论作出了重大的贡献。然而长期以来,由于缺乏高速可靠的计算手段和理论,结构优化设计一直无法获取较大发展。 到上世纪六十年代,有限元技术借助于计算机技术,得到了极大的发展。1960年Schmit在求解多种载荷情况下弹性结构的最小重量问题时,首次在结构优化中引入入数学规划理论,并与有限元方法结合应用,形成了全新的结构优化思想,标志着现代结构优化技术的开始[2]。 1973年Zienkiewicz和Campbell[3]在解决水坝的形状优化问题时,首次以节点坐标作为设计变量,在结构分析方面使用了等参元,在优化方法上使用了序列线性规划的方法。其后,众多的学者在此基础上,逐渐发展形成了使用边界形状参数化方法描述连续体边界的方法,即采用直线、圆弧、样条曲线、二次参数曲线、二次曲面、柱面等方式来描述边界。 1982年,Iman提出了设计元法。该方法把结构分成若干子域,每个子域对应一个设计元。设计元由一组控制设计元几何形状的主节点来描述,接着选择一组设计变量来控制主节点的移动。该方法可以有效地减少设计变量,但也存在网格畸形的缺点。 1986年Belegundu提出了基于自然设计变量和形状函数的形状优化方法[4]。他选择了作用在结构上的假想载荷等一系列自然变量,把由假想载荷产生的位移加到初始

机械结构优化设计

机械结构优化设计 ——周江琛 2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

结构优化设计大作业(北航)

《结构优化设计》 大作业报告 实验名称: 拓扑优化计算与分析 1、引言 大型的复杂结构诸如飞机、汽车中的复杂部件及桥梁等大型工程的设计问题,依靠传统的经验和模拟实验的优化设计方法已难以胜任,拓扑优化方法成为解决该问题的关键手段。近年来拓扑优化的研究的热点集中在其工程应用上,如: 用拓扑优化方法进行微型柔性机构的设计,车门设计,飞机加强框设计,机翼前缘肋设计,卫星结构设计等。在其具体的操作实现上有两种方法,一是采用计算机语言编程计算,该方法的优点是能最大限度的控制优化过程,改善优化过程中出现的诸如棋盘格现象等数值不稳定现象,得到较理想的优化结果,其缺点是计算规模过于庞大,计算效率太低;二是借助于商用有限元软件平台。本文基于matlab软件编程研究了不同边界条件平面薄板结构的在各种受力情况下拓扑优化,给出了几种典型结构的算例,并探讨了在实际优化中优化效果随各参数的变化,有助于初学者初涉拓扑优化的读者对拓扑优化有个基础的认识。

2、拓扑优化研究现状 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P 提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。结构拓扑优化设计研究,已被广泛应用于建筑、航天航空、机械、海洋工程、生物医学及船舶制造等领域。 3、拓扑优化建模(SIMP) 结构拓扑优化目前的主要研究对象是连续体结构。优化的基本方法是将设计区域划分为有限单元,依据一定的算法删除部分区域,形成带孔的连续体,实现连续体的拓扑优化。连续体结构拓扑优化方法目前比较成熟的是均匀化方法、变密度方法和渐进结构优化方法。 变密度法以连续变量的密度函数形式显式地表达单元相对密度与材料弹性模量之间的对应关系,这种方法基于各向同性材料,不需要引入微结构和附加的均匀化过程,它以每个单元的相对密度作为设计变量,人为假定相对密度和材料弹性模量之间的某种对应关系,程序实现简单,计算效率高。变密度法中常用的插值模型主要有:固体各向同性惩罚微结构模型(solidisotropic microstructures with penalization,简称SIMP)和材料属性的合理近似模型(rational approximation ofmaterial properties,简称RAMP)。而本文所用即为SIMP插值模型。

探讨建筑结构优化设计分析

探讨建筑结构优化设计分析 发表时间:2018-11-15T14:24:03.870Z 来源:《建筑学研究前沿》2018年第20期作者:徐皓宇[导读] 本文将介绍几种具体方法来优化建筑结构的设计,以供参考。 华东建筑设计研究院有限公司上海市 200041 摘要:在建筑结构设计过程中,安全性,施工便利性,经济性,实用性和美观性是必须考虑的五个基本问题。同时也要求设计人员优化建筑结构设计,使建筑更合理,更安全,更实用。为此,本文将介绍几种具体方法来优化建筑结构的设计,以供参考。 关键词:建筑结构;结构设计;优化途径 1 引言 在我国经济快速发展的背景下,人们的生活水平不断提高,对居住条件也提出了更高的要求。近年来,随着环保、节约等理念的不断发展,在建筑行业中,节能环保型社会建设理念逐渐深入人心,这种情况下,为了更好地满足建筑使用者的需求,必须对建筑结构进行优化设计,力求在满足投资成本控制目标的前提下,使建筑的各项功能达到使用者的预期,进而使建筑的经济和社会效益最大化。鉴于此,本文对建筑结构优化设计进行研究,具有重要的现实价值。 2 建筑结构设计优化的主要内容 建筑结构设计包括基础部分结构设计、主体部分结构设计、建筑上部结构设计、围护结构设计、细部结构设计等。此外,建筑结构设计的优化可以从成本控制、结构构件受力情况、结构布置方式、材料选型等方面入手[1]。由此可知,在对建筑结构进行优化时,必须在满足建筑基本使用要求和相关设计规范的前提下,结合建筑结构设计的实际情况,以经济效益最大化为最终目标,进行建筑结构的优化设计。需要注意的是,在建筑设计方案完成后,会不可避免地出现一些不完善地方,导致资金的大量浪费。因此,建筑结构的优化设计必须贯穿建筑建设的全过程,以提高经济效益,实现对资金的合理利用。 3 建筑结构优化设计的重要性与基本要求 3.1 建筑结构优化设计的重要性 在建筑设计中,结构设计优化的重要性主要体现在2方面:降低建筑总造价;提高建筑的经济性。具体来说,通过建筑结构优化设计,可以在资源上降低建筑的建设成本。同时,还可以在资源条件有限的情况下,使建筑的质量与功能水平达到最优,提高空间利用率,使资源功效最大化。建筑质量包括建筑环境与使用功能,而建筑结构设计优化是基于一定经济发展原理而进行的[2]。因此,建筑结构优化可以实现对投资资金、建筑质量、功能水平、土地资源空间利用的合理优化。由此可知,建筑结构优化具有节约建筑成本的重要作用,既是实现建筑成本节约与建造高质量工程的重要途径,也是确保建筑行业未来实现可持续发展的重要保障。 3.2 建筑结构优化设计的基本要求 在对建筑结构设计进行优化时,需要遵循以下几要求:(1)功能性。建筑结构设计优化的最终目的是为了更好地满足人类对居住条件的多方面需求,随着社会发展水平的提高,人们对建筑的功能性需求,除了传统的实用性功能,还增添了美观性、舒适性、智能性等多种新的需求。因此,建筑结构的优化设计必须符合功能性需求[3]。(2)安全性。安全是人类对居住环境最主要的要求,过于追求优化而忽视安全性是绝对不可以的。(3)经济性。随着市场经济的不断发展,对资源配置提出了新的要求,而建筑结构优化设计必须遵循这一要求,提高各种材料资源的利用效率,进而缩减建设成本。此外,可以通过结构优化设计减少许多稀缺或价格昂贵的材料的使用量,进而降低材料使用成本。(4)环保性。这是继经济性之后,对建筑结构优化设计的又一更高的要求。在优化建筑结构设计时,应在满足建筑功能性与安全性需求的前提下,尽量选择节能环保型材料。同时,在优化设计的整体布局上,一方面要重点关注建筑主体内部结构的环保和统一;另一方面,也要对废旧材料进行环保性处理或应用。 4 建筑结构设计优化的具体路径 4.1 优化建筑结构的整体布局 首先,建筑结构的设计人员和决策人员必须站在全局的角度,通过点、线、面,对建筑结构优化设计的整体布局进行确定,之后再利用点、线、面三者之间的架构关系,通过材料的选择与应用、构件的布置等,实现单个构件与整体结构的优秀奥协调,进而使每一个构件均可以实现最佳受力情况,以此实现单个构件的最佳化利用,同时提高建筑整体结构的刚性、承重力以及延展性。 4.2 优化建筑材料的选择 在建筑结构中,各个点、线、面均具备一定的力学承载力特征,而材料是力学承载力的载体。因此,材料在建筑结构设计的优化中,具有至关重要的作用。钢筋混凝土是一种混合性材料,通过将各种材料按比例配置,可以显著增强构件的刚性以及强度,这也是结构设计优化的一部分。并且近年来,地震、泥石流等自然灾害不断增多,在建筑材料的使用上,必须重视材料的抗震性、抗土性等性能,这就要求在建筑结构设计优化时,必须综合考虑材料的质量、特性、与周围环境的适合程度以及价格等,力求在牺牲最小经济性的前提下,使建筑结构在安全性、功能性以及环保性上达到最优。 4.3 优化构件布置 在建筑结构的优化设计中,构件布置主要包括柱、梁与剪力墙的布置。现阶段,在高层建筑中,主要应用框架-剪力墙结构体系,框架-剪力墙结构比较灵活,很容易满足建筑物的使用要求,且该体系具有较好的承载力、整体性以及抗震性,在发生地震等自然灾害时,可以有效减小结构自身的侧移[4]。因此,在该体系的实践应用中,除了剪力墙的刚度必须满足建筑强度要求,还需要赋予结构一定的侧向刚度。而在梁的选择与布置上,一般情况下,常规梁最具经济性,但建筑层数不宜过高,在当今土地资源极为有限的前提下,难以实现建筑经济效益的最优化。而宽扁梁虽然可以缩小梁的截面高度,增加建筑层数,进而获得更大的建筑面积。但是,其经济性比较有限。预应力梁可以很好地满足建筑的特殊需求,但价格较高。总之,在对建筑结构设计进行优化时,必须对多方面因素进行综合考量,以满足建筑功能性需求与质量需求为基本前提,尽可能地通过构件布的优化,降低建筑成本,提高建筑的经济效益与社会效益。 4.4 合理应用概念设计

基于有限元分析的结构优化设计方法的研究_李曼丽

基于有限元分析的结构优化设计方法的研究 The research of a structure optimization design method based on FEA 李曼丽,杨志兵 LI Man-li ,YANG Zhi-bing (北京理工大学 机械与车辆学院工业工程研究所,北京 100081) 摘 要:提出一种新的结合有限元分析和参数化建模的结构优化设计方法,并利用单参数分析和多参数 分析进行阐述。在该方法中,首先建立产品的参数化FE模型,实现修改参数后自动更新产品模型并进行计算;其次利用二次开发设计用户界面,通过单参数分析评价各参数对产品结构性能的影响程度,通过多参数分析在修改两个参数的条件下,基于权衡研究找出产品结构最佳优化方案;最后提出一种根据权重评价多参数修改条件下的设计方案的思路。 关键词:结构优化设计;有限元分析;参数化FE模型 中图分类号:TH122;TP391.7 文献标识码:A 文章编号:1009-0134(2013)09(下)-0123-04Doi:10.3969/j.issn.1009-0134.2013.09(下).37 收稿日期:2013-05-21 作者简介:李曼丽(1990 -),女,河南周口人,硕士,研究方向为CAD/CAE 。 0 引言 如今,竞争日趋激烈的环境迫切需要企业快速开发出高质量的产品,为了在降低成本同时改善产品的性能,对产品进行结构优化设计是具有实际意义的。结构优化是在满足最优结构性能时能自动生成机械零件设计的一种方法,它能够在成本较低的情况下满足设计要求。最优结构性能可能是产品的质量较轻或者便于操作者使用[1] 。 在过去的一段时间内,很多学者对机械产品如液压挖掘机、飞机零件等的结构优化设计做了一些研究[2],验证了有限元分析(FEA )在分析产品结构性能时所体现的重要意义的意义。FEA 是对已知工作载荷和边界条件下的结构强度计算的最强大的一门技术。随着并行工程以及DFX 技术的发展,FEA 已成为设计过程中的关键步骤。最初FEA 只是用来在设计最后验证设计的合理性,现在已经应用到设计整个过程,尤其是在上游设计阶段[3]。 然而,传统用于结构优化的FEA 技术需要花费大量的时间,不能满足快速响应的需求,因此关于FEA 的进一步的研究目前引起了学术界的注意。Qiao L.H.等提出了一种基于工程仿真的混合优化设计方法,并以钳臂为例进行验证该方法[4]。通过总结前人的研究成果,其中一些研究也提出了参数建模方法,可以有效减少设计时间,并提高设计质量。Liu Z.C.等同归对VC+ +和ANSYS 的APDL 语言进行结合开发,完成了YJ32液压机下梁 的有限元优化设计[5]。基于有限元分析和参数化建模这两个基本理论,本文提出了一种结构优化设计方法,可以帮助设计者短时间内找出产品的最优设计,最后以电焊钳钳臂为例验证该方法的有效性。 1 基于FEA 的强度分析 强度是产品设计过程中最基本的设计要求,为了测试产品是否能够承受工作载荷,需要进行有限元分析得到最大应力和最大位移,并与产品所用的材料性能进行比较。另外,设计者可以考虑采用加强筋或加强套,或者改变关键尺寸来提高产品的强度。通常情况下,有加强筋的钳臂可以承受更大的负载,直径尺寸大一些的使用寿命较长,但同时重量也增大,因此设计者要对强度和重量进行权衡,找到最优设计。强度分析被广泛用于获得特定负载条件下的结构的最佳强度/重量比。 Zhang B.等利用FEA 技术,通过参数研究方法分析内燃机的气缸盖直径这一关键参数,验证了气缸盖的结构设计中存在一个理想的参数匹配点[6]。参数和最大应力之间的匹配关系有助于产品设计。本文从两个方面阐述了一种新的结构优化设计方法:单参数分析和多参数分析。 1)单参数分析 产品结构的很多参数都会影响结构性能,并且影响的程度不同。因此,可以通过单参数分析方法找出相对重要的影响参数。在固定其他参数

建筑结构优化设计与结构措施研究

建筑结构优化设计与结构措施研究 发表时间:2018-11-07T10:02:41.990Z 来源:《建筑学研究前沿》2018年第17期作者:陈强斌李永清 [导读] 随着我国时代的发展和经济水平的不断提高,我们在保证建筑的安全性和实用性的同时对建筑的美观性和和经济性方面的要求也正在不断地提高。 浙江施朗龙山工程设计有限公司 310000 摘要:建筑结构设计优化措施是顺应建筑行业发展的产物,也是市场经济条件下对资源配置提出的新要求,其为建筑结构优化设计提供了重要的参考,具有不可估量的参考价值。对建筑结构进行优化是实现建筑行业长远发展的重要途径,将建筑结构设计优化的结构措施应用于结构设计,能够体现建筑结构设计的科学性和经济性。同时装配式建筑发展已作为建筑业转型升级的重要突破口。本文探讨了浙江省嘉兴市孔雀城A地块项目中B住宅的建筑结构优化设计与采取的结构措施。 关键词:建筑结构;优化设计;结构措施;经济性;预制混凝土墙、板 引言 随着我国时代的发展和经济水平的不断提高,我们在保证建筑的安全性和实用性的同时对建筑的美观性和和经济性方面的要求也正在不断地提高。既要保证建筑安全、实用,还要做到建筑经济、美观,与此同时也要加强对施工便利性和时效性的考虑。所以对建筑结构做完整的优化设计也是十分重要的。 1 工程概况 本工程高层住宅采用装配整体式剪力墙结构,地下1层,地上28层,上部层高均为2.8m。建筑总长56.1m,总宽13.05m,结构总高度78.5m。建筑抗震设防类别为丙类,建筑结构安全等级为二级,所在地区抗震设防烈度为7度,设计地震基本加速度0.10g,设计地震分组为第一组,场地类别为Ⅳ类,50年一遇的基本风压0.45kN/m2,地面粗糙度B类,风载体型系数1.4。基础采用桩筏基础。桩采用直径 600mm预应力混凝土空心管桩。局部采用预制混凝土墙和预制混凝土板(60mm+80mm),填充墙外墙采用B07 加气混凝土砌块,内墙采用B06 加气混凝土砌块。混凝土强度为C50~C30,钢筋采用HRB400级,箍筋采用HPB400级。抗震等级:剪力墙二级。 2 建筑结构优化设计 2.1 建筑结构平面布置 在进行建筑工程结构设计时必须遵循其基本原则,主要就是要遵循可靠性原则、经济性原则、安全性原则、适用性原则、美观原则以及便于施工原则等,要保证结构设计的科学性和合理性就必须有效的将这几个方面结合起来。在进行建筑工程结构设计的工作过程中可以对其加以优化改变,提高其合理性,在保证结构设计科学性的同时提高其设计效率。本工程的标准层单元结构平面布置详见标准层平面布置图(图中阴影填充部分为剪力墙和框架柱)。高层剪力墙结构在方案阶段的抗震概念设计尤为重要,其首要问题就是进行合理的剪力墙布置。剪力墙布置遵循均匀、分散、对称和周边的原则;在平面布置上尽可能均匀、对称以减小结构扭转。不能对称时应使结构的刚度中心和质量中心接近。本工程建筑平面因采用通长的外走廊来节省楼电梯的面积和个数,使的平面不规则性很差;建筑的高宽比和长宽比均不利造成结构的经济性指标很难满足。结构优化措施是在走廊的内侧增设框架柱和剪力墙使结构竖向构件外移,在开洞区域局部补充抗震板;消除平面不规则。在楼电梯和主体相接处加厚楼板提高抗震性能。同时在建筑两侧增设长墙来平衡刚度满足Y向层间位移角的计算要求;加高X向外边梁的截面来满足X向层间位移角的计算要求。其中连梁剪压比超限的问题则考虑从整体上的剪力墙布置去协调。同时考虑扩大洞口宽度或减小梁截面,增大连梁的跨高比,减小该片联肢墙刚度,转移其承担的部分地震力,从而降低连梁内力达到不超筋的目的;对调整确有困难的梁,也通过合理的降低梁的弯剪刚度而不减小梁截面的方法进行调整。 2.2 预制混凝土墙和预制混凝土板的结构优化 装配式建筑是传统建筑业与先进制造业良性互动、建筑工业化和建筑信息化深度融合的产物。装配式住宅一体化设计,各专业间互为条件,互相制约,大量施工及安装工作需在前期设计时精准确定,必须通过最大限度配合实现最优方案。建筑方面采用预制混凝土墙板的结构设计重点在于建筑体形控制。结构设计时选取预制板块尽量规整,减少预制板块规格,合理利用“少规格、多组合”的原则,控制构件标准化,尽量统一模数。装配整体式剪力墙结构中,墙体间的接缝及连接较多,主要为预制构件之间的接缝及预制构件与现浇混凝土之间的界面,施工时接缝处剪力墙墙身钢筋连接要求较高,装配或绑扎较难;为尽量降低现场操作的复杂性,使装配后的墙板整体性能等同现浇剪力墙结构,对于预制墙体的选择采用如下原则:(1)竖向受力相对较小,承重构件竖向应上下对齐无转换;(2)方便现场装配连接,利于发挥预制结构精度高、质量好的地方;(3)本工程的边缘构件均采用现浇混凝土墙。同时剪力墙结构底部加强部位的剪力墙采用了现浇混凝土;考虑对弹性计算的内力进行调整适当放大现浇墙肢在水平地震作用下的剪力和弯矩。装配整体式剪力墙结构中预制板的厚度选取多种多样。其中图集的最小厚度规定如下:预制厚度≥60mm,现浇板厚度≥60mm,叠合板总厚度≥120mm。本工程初始采用厚度为 60mm+60mm后调整为60mm+80mm的叠合板。两者对比中120mm厚的叠合板做法有叠合板现浇部分钢筋容易露筋,保护层厚度难以保证,设备管线不易预埋等缺点。同时采用140mm的叠合板有叠合板底筋可不伸入支座,现场吊装简便,施工操作性便捷,施工质量容易保证等优点。结构优化采用60mm+80mm的叠合板进行设计。 3 建筑结构优化的结构措施 3.1从整体控制结构经济性的结构措施 本工程建筑方案选型时期,结构对建筑提出的优化有以下几点:(1)建筑外部体形的长宽比例、对称性以及复杂程度直接影响建筑物

结构优化方法研究综述

结构优化方法研究综述 结构优化方法研究综述 【摘要】建筑结构优化对建筑整体的稳定性、可靠性、耐久性有非常重要的作用。文章针对建筑结构优化设计的主要因素,以及结构优化的方法等方面做简要的分析,以提高建筑结构的整体的稳定性、耐久性等性能。 【关键词】结构设计;结构优化;结构类型 0引言 建筑结构优化,即在一些建筑结构的设计方案中选取最优的或最适宜的设计方案,它参照数学中的模型最优化原理应用到建筑工程结构设计方案的优化比选中。研究发现,建筑结构在使用过程中是否稳定、耐久、合理等,主要决定于在建筑结构设计时选定的结构类型是否最优、是否最符合工程结构的需要。对于同一座建筑工程项目,不同的结构设计师知识储备不同,因此可能会设计出不同的结构类型、结构体系,但经过结构方案的优化、从而选取最优化的结构类型,提高建筑结构的使用寿命、稳定性能。 1建筑结构优化的主要因素 1.1荷载设计 研究发现,任何一座建筑结构都需要受到水平力和竖向荷载的作用,同时建筑还要承受较大的风荷载、地震力的作用等。当建筑结构的整体高度比较低时,由结构本身的重力引起的竖向荷载对结构的作用比较明显,而水平荷载作用在结构上,产生的内力和位移比较小,往往在计算时不考虑水平荷载的作用;若在较高层建筑设计中,虽然所受到的竖向荷载仍对结构产生较大程度的影响,但水平荷载对建筑结构本身的影响比竖向荷载产生的影响更加强烈。研究表明,随着建筑结构整体高度的逐渐增加,水平荷载对建筑结构产生的影响越将会越来越大,因此,在建筑结构高度较高时,结构所承受的水平荷载对结构的影响则不可忽视。 1.2选取结构类型较轻的

在建筑结构优化过程中,要尽量选取结构体较轻的。在现代结构优化设计中,设计人员越来越重视选用轻质高强材料,从而做大程度上减轻整体结构的自重。由于在多层建筑结构中,水平荷载对结构产生的影响处于较次要地位,结构所承受的主要荷载是竖向荷载。由于多层建筑楼层较少,整体高度相对比较低,结构自重相对来说较轻,对材料的强度要求不是特高。 但随着建筑结构高度的增加,在较多的楼层作用下,结构产生的自重荷载则会比较大,使得建筑结构对基础产生较大的竖向荷载,同时在水平荷载的作用下,结构的竖向构件(柱)中会产生较大的水平剪力和附加轴力。为了使得结构满足刚度和强度的要求,通常采取加大结构构件的截面尺寸,但是加大构件的截面尺寸会使得结构的整体自重增加。因此在高层建筑结构首先应该考虑如何减轻结构的自重。 研究表明,当在高层或超高层建筑结构优化设计时,选用结构强度高、自重较轻的钢结构、高强混凝土结构可以很大程度上减小建筑结构的自重。 1.3 侧向位移 据相关资料表明,建筑结构的侧向位移随着建筑高度的增加而逐渐增大,因此,在建筑结构的优化设计中,对层数较少、高度较低的结构,可以不考虑其侧向位移对结构的影响。但随建筑结构高度的增加,整体结构的侧移对结构产生的影响则不可忽视。 研究表明,由于水平荷载对结构作用产生的侧移随着建筑高度的增加而逐渐增大,且侧移量与结构高度成一定的关系。 在进行高层建筑结构优化设计时,既需要充分考虑建筑结构整体是否具有足够的承载能力,能否承受风荷载的冲击作用,又要求结构具有足够的抗侧移性能,当建筑结构受到较大的水平力作用下,其可以很好地控制产生过大的侧移量,确保结构整体的稳定性能。 与低层或多层建筑相比,高层建筑结构的刚度稍微差一些,在发生地震灾害时,结构的侧向变形更大。为了确保高层建筑结构在进入塑性阶段后,结构整体仍具有较强的抗侧移性能,保持结构的稳定性,则需要在高层建筑结构的构造上采取合适的措施,确保结构具有足够的延性,从而满足结构的刚度要求。

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立目标函

数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

房屋建筑结构优化设计研究 丁晓

房屋建筑结构优化设计研究丁晓 摘要:改革开放以来,我国经济水平呈现高速发展态势,人们对生活质量的要 求越来越高。住房作为人们日常生活中必不可少的要素之一,受到了广泛的关注。但是,现阶段我国人口呈发展趋势,土地资源有限,合理利用土地资源十分重要。随着科学技术时代的到来,各种新技术的出现简化了房屋建筑结构设计过程。由 于我国结构设计行业起步较晚,与发达国家相比还有一定差距,如何缩短与发达 国家的差距非常关键,在房屋建筑的过程中,最大程度地对结构进行设计优化至 关重要。 关键词:房屋建筑;结构优化;设计;研究 1 房屋建筑结构优化的原则 在建筑结构的优化设计中,必须对建筑的原结构有一个全面的认识。总的来说,要在保证建筑安全和功能的基础上,对建筑结构进行优化设计,制定更加经济、科学的建筑结构优化方案。同时,必须对房屋建筑整体结构进行深入研究, 选择最优设计方案,采取更加高质量的优化措施,实现房屋建筑结构设计的优化 目标。 2房屋建筑结构优化设计的重要作用 对房屋建筑结构的优化,不仅可以提高房屋建筑的质量,还可以改善人们的 生活质量。具体而言,主要具有以下几个方面的作用:(1)在合理完成房屋建 筑结构设计同时,可以全面提高建筑工程的施工效率,实现节约资源的目的,有 效地降低施工成本;(2)在房屋建筑结构的优化设计中,可以实现绿色节能设计,使建筑的建设和使用满足环境保护的要求,与国家所提出的可持续发展策略 相呼应,以此推动我国建筑行业朝向更加环保、绿色、节能以及低消耗的方向发展;(3)经过建筑结构的优化设计,可以保证居民的安全,因为建筑结构的优化 设计更加注重建筑的安全,也更加注重居民的实际需求,使设计更加完善,有效 缩短工期,节约人力、财力、物力投入,提高企业经济效益。 3房屋建筑结构技术优化存在的问题 3.1房屋建筑的基础设计问题 房屋建筑的结构设计关系着房屋建筑的稳定性,由于一些设计人员在设计中缺 乏重视程度,施工前,我们没有做好现场踏勘工作,仅仅依靠以往的工作经验和历 史资料对房屋建筑进行结构设计,使得房屋建筑设计的实际情况与方案设计有差距,结构设计不规范,缺乏科学性,忽视了建筑工程的内在质量。 3.2框架设计问题 在建筑结构中,框架设计的内容可以分为横向设计与纵向设计,这两种设计同样重要,但是,一些设计人员往往忽略其中一种设计,这使得建筑的框架结构缺乏承 载力和重力失稳,特别是在发生自然灾害时,会使建筑承受更大的为竖向荷载和 水平荷载,使整个建筑失去稳定性,从而危及人的生命财产安全。 3.3房屋建筑传统结构设计存在的问题 传统的住宅建筑结构设计存在一些问题。一般根据具体设计要求,制定设计 方案。然后,根据自己的设计经验,设计人员对房屋建筑的刚度和稳定性设计标准,使其尺寸达到标准。这些结构设计可以做出一些参数,这些参数设计根据方 案的要求进行修改和调整。但是在传统的建筑结构设计中,设计师通常依靠自己 的设计经验来完成设计,确定设计方案,包括计算出建筑结构的强度、刚度、承载 力等参数,计算结果不要求精准,只要求在合适的范围内即可,因此,有时也可能出现

基于计算机软件的建筑结构优化设计研究

基于计算机软件的建筑结构优化设计研究 摘要:随着时代的快速发展,人们生活水平质量和审美能力的提高,对建筑结 构优化设计的要求也越来越高。随着国家科技实力的提升与进步,很多行业在发 展过程中都会将计算机软件以及相关技术应用其中,以此来提高行业发展水平, 更好顺应时代发展需要。近年来,建筑领域在发展的过程中就逐渐提高了对计算 机软件应用的重视与研究,尤其在建筑结构优化设计中,更是随处可见计算机软 件的身影。但是一些建筑工程还不能全面的了解与掌握计算机软件的应用要点, 需要建筑工程提高对其研究的重视,提高建筑结构优化设计的效率,推动建筑领 域的整体发展。 关键词:计算机软件;建筑结构;优化设计 引言 结构优化设计在建筑工程开展中扮演着至关重要的角色,结构优化设计是指在给定约束 条件下,按某种目标,如重量最轻、成本最低、刚度最大等,求出最好的设计方案,曾称为 结构最佳设计或结构最优设计,相对于“结构分析”而言,又称“结构综合”;如以结构的重量 最小为目标,则称为最小重量设计。当前,很多建筑项目由于投资大,建设周期长,所以有 效进行结构优化设计,能够相应的减少投资金额,建筑结构优化设计,是实现建筑本体功能 与建筑投资成本的关键性手段。,对建筑整体的稳定性与后期的使用效果有着重要的意义和 影响。在近几年的发展中,越来越多的建筑工程提高了对计算机软件应用与结构优化设计中 的重视。 1 计算机软件在建筑结构优化设计中的作用 1.1 实现虚拟建筑设计 BIM的核心是通过建立虚拟的建筑工程三维模型,利用数字化技术,为这个模型提供完 整的、与实际情况一致的建筑工程信息库。基于BIM技术的可视化、协调性、模拟性、优化性,使建筑结构优化更加便捷,更加直观[1]。建筑师可设计虚拟的模拟建筑,实现参数 的数字化和可控化,再通过调整参数和组合应用实现建筑结构优化目标。在该过程中,制定 了多种建筑结构优化方案,且量化了对比分析结果,使选择更便捷、准确。对模拟效果的全 面查看,掌握建筑完工后的空间效果。关于建筑模型内的空间效果,应结合空间中人的细节 感受,在进行设计之前,全面了解空间构造和布局,设计方案的检验调整也是必要的。关 于设计材料的挑选,应最大可能地发挥预计效果,在自由创新设计时,通过屏幕展示设计效果。 1.2 协助建筑图纸绘制与修改 在传统建筑设计之中,建筑图纸与建筑结构优化设计息息相关,建筑图纸在建筑结构优 化的过程中有着重要作用,总图纸是由各模块设计图纸拼接而形成的,并且还要展示平面图、剖面图,在实际建造的时候,需要及时对图纸进行调整和修改,以便实现建筑结构优化。图 纸设计到建筑完工整个过程除了需要耗费较多的时间之外,还要消耗一定的人力、财力等,BIM 技术的引进,并借助虚拟模型设计,真正做到图纸自动设计并及时修改,各方人员可以 基于BIM进行协同工作,有效提高工作效率、节省资源、降低成本、以实现可持续发展。 1.3 自动化调整建筑模型

结构优化设计的综述与发展

结构优化设计的综述与发展 摘要:结构优化设计,就是在计算机技术等高科技手段的支持下,为了提升机械产品的性能、工作效率,延长机械产品的工作寿命,对机械产品的尺寸、形状、拓扑结构和动态性能进行优化的过程。这是机械行业发展的必然要求,也是信息时代的必然要求。结构优化设计,必须在保证机械产品满足工作需要的前提下,通过科学的计算来实行。文章将简单对结构优化设计的发展状况进行介绍,列举几种优化设计方法,以及讨论未来优化的发展情况。 关键词:结构优化设计发展优化设计方法 1 结构优化设计 结构优化简单来说就是在满足一定的约束条件下,通过改变结构的设计参数,以达到节约原材料或提高结构性能的目的。结构优化设计通常是指在给定结构外形,给定结构各元件的材料和相关载荷及整个结构的强度、刚度、工艺等要求的条件下,对结构进行整体和元件优化设计。结构优化设计一般由设计变量、约束条件和目标函数三要素组成。评价设计优、劣的标准,在优化设计中称为目标函数;结构设计中以变量形式参与的称为设计变量;设计时应遵守的几何、刚度、强度、稳定性等条件称为约束条件,而设计变量、约束函数与目标函数一起构成了优化设计的数学模型。结构优化的目的是让设计的结构利用材料更经济、受力分布更合理。 结构优化设计根据设计变量选取的不同可以分为截面(尺寸)优化、形状优化、拓扑优化三个层次。尺寸优化是选取结构元件的几何尺寸作为设计变量,例如,杆元截面积、板元的厚度等等[1]。而形状优化是选取结构的内部形状或者是节点位置作为设计变量。拓扑优化就是选取结构元件的有无作为设计变量,为0-1型逻辑型设计变量。 2 结构优化设计研究概况与现状 结构优化设计最早可以追溯到17世纪,伽利略和伯努利对弯曲梁的研究从而引发了变截面粱形状优化的问题。后来Maxwell和Michell提出了单载荷仅有应力约束条件下最小重量桁架结构布局的基本理论,为系统地分析结构优化理论作出了重大的贡献。然而长期以来,由于缺乏高速可靠的计算手段和理论,结构优化设计一直无法获取较大发展。 到上世纪六十年代,有限元技术借助于计算机技术,得到了极大的发展。1960年Schmit在求解多种载荷情况下弹性结构的最小重量问题时,首次在结构优化中引入入数学规划理论,并与有限元方法结合应用,形成了全新的结构优化思想,标志着现代结构优化技术的开始[2]。 1973年Zienkiewicz和Campbell[3]在解决水坝的形状优化问题时,首次以节点坐标作为设计变量,在结构分析方面使用了等参元,在优化方法上使用了序列线性规划的方法。其后,众多的学者在此基础上,逐渐发展形成了使用边界形状参数化方法描述连续

相关主题
文本预览
相关文档 最新文档