当前位置:文档之家› 基于小波变换和混合遗传算法的医学图像配准

基于小波变换和混合遗传算法的医学图像配准

基于小波变换和混合遗传算法的医学图像配准
基于小波变换和混合遗传算法的医学图像配准

谈医学影像的融合(一)

谈医学影像的融合(一) 科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更建立了图像信息存储及传输的新的模式。而医学影像的融合,作为图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用计算机技术,将各种影像学检查所得到的图像信息进行数字化综合处理,将多源数据协同应用,进行空间配准后,产生一种全新的信息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的〔1,2〕。本文将从医学影像融合的必要性、可行性、关键技术、临床价值及应用前景5个方面进行探讨。 1医学影像融合的必要性 1.1影像的融合是技术更新的需要随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。 1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。 1.3影像的融合是临床的需要影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。 2医学影像融合的可行性 2.1影像学各项检查存在着共性和互补性为影像的融合奠定了基础尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT 检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT 检查则可以弥补功能测定的不足。 2.2医学影像的数字化技术的应用为影像的融合提供了方法和手段现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。 3医学影像融合的关键技术 信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织

医学图像配准

《数字医学图像》报告 内容:图像配准专题 专业: 2012级信息管理与信息系统班级:信管一班 小组成员: 20120701020 韩望欣 20120701008 毕卓帅 20120701005 胡庆 指导老师:彭瑜 完成日期: 2015 年 10月 25日

图像配准专题 简介:图像配准是对取自不同时间,不同传感器或不同视角的同一场景的两幅图像或者多幅图像匹配的过程。图像配准广泛用于多模态图像分析,是医学图像处理的一个重要分支,也是遥感图像处理,目标识别,图像重建,机器人视觉等领域中的关键技术之一,也是图像融合中要预处理的问题,待融合图像之间往往存在偏移、旋转、比例等空间变换关系,图像配准就是将这些图像变换到同一坐标系下,以供融合使用。 一:图像配准方法国内外进展情况 图像配准最早在美国七十年代的飞行器辅助导航系统、武器投射系统的末端制导以及寻地等应用研究中提出,并得到军方的大力支持与赞助。经过长达二十多年的研究,最终成功地用于中程导弹及战斧式巡航导弹上,使其弹着点平均圆误差半径不超过十几米,从而大大提高了导弹的命中率。八十年代后,在很多领域都有大量配准技术的应用,如遥感领域,模式识别,自动导航,医学诊断,计算机视觉等。各个领域的配准技术都是对各自具体的应用背景结合实际情况量身订制的技术。但是不同领域的配准技术之间在理论方法上又具有很大的相似性,从而使得在某领域的配准技术很容易移植到其它相关领域。目前国内外研究图像配准技术比较多的应用领域有红外图像处理、遥感图像处理、数字地图定位和医学图像处理等领域。 二、图像配准在医学领域的应用 20世纪以来随着计算机技术的不断发展,医学成像技术得到了快速的发展。尖端的新型医疗影像设备层出不穷,如计算机线摄影、数字减影等等,这些已经成为现代医学诊断必不可少的医学数字成像手段。由于这些医学数字成像设备有不同的灵敏度和分辨率,它们有各自的使用范围和局限性。多种模式图像的结合能充分利用图像自身的特点并做到信息互补。近几十年以来,图像配准在医学上的应用日益受到医学界和工程界的重视,己在世界范围广泛展开,在相关文献中己经提出了很多种医学图像配准的方法,这些研究成果广泛地运用到医学领域中。图像配准在医学中的应用领域主要有以下几方面: ?组织切片图像的处理与显微结构三维重建 ?疾病诊断及其发展和消退的过程检测 ?神经外科手术可视化、神经外科手术一计划及术前评估 ?感觉运动和认知过程的神经功能解剖学研究 ?神经解剖变异性的形态测量分析学 ?放射治疗和立体定向放射外科治疗计划 三、图像配准的定义 对于二维图像配准可定义为两幅图像在空间和灰度上的映射,如果给定尺寸的二维矩阵F 1和F2代表两幅图像F1(X,Y)和F2(X,Y)分别表示相应位置(X,Y)上的灰度值。则图像间的映射可表示为:F (X,Y)=G(F (H(X,Y))),式中H表示一个二维空间坐标变换,即(X’,Y’)=H(X,Y),且G是一维灰度变换。 四、图像配准方法的分类 1、维数 主要是根据待配准图像的空间维数及时间维数来划分的。图像仅含空间维数或者是图像的时间序列中带有空间数,其配准可根据图像的空间维数分2D/2D,2D/3D,3D/3D,4D/4D

基于ICP算法的医学图像几何配准技术

机器人技术、计算机技术、图像处理技术与临床外科手 术相结合,产生了一个崭新的研究领域——计算机集成外科手术系统(Computer Integrated Surgical systems and ,。它旨在利用等图像信息并结合立technology CIS)CT/MRI 体定位系统对人体解剖结构进行术前显示、术前计划和术中定位,在外科手术中利用医用机器人和计算机进行干预。外科手术也逐渐从医院外科医生的单独工作,转移到包括工程技术人员和康复人员在内的一个工程系统,由他们组成的医疗小组共同制定手术计划、实施临床手术以及安排手术后的康复。其中医学图像几何配准是这个系统的关键技术,它 完成两个不同空间中对应于同一医学解剖特征的两点间的映射。医生能够利用配准的有用信息进行手术计划,引导手术进行。几何配准主要由个部分组成:术前模型的建立,术3中数据的获取和配准计算。如图所示。 1 图几何配准模块 1 基于的配准算法 1 ICP 配准算法最初由 ICP (Iterative Closest Point Algorithm)和Besl Mckey [1] 提出,这是一种基于轮廓特征的点配准方法。对同一解剖结构,提取医学图像的轮廓,得到术前模型},..,2,1,0,{k i x X i ==的一组点集和术中的一组点 集},..,2,1,0,{n i u U i ==U X 。其中和不必具有相同 n k ≥U i u X 数量的元素令。对集合中的一个点,集合, i u 中与的距离最短的点被称为最近点。图像几何配准就 是通过两个坐标系之间的旋转和平移,使得来自医学图像上 的同源点间距离最小。假设每对点 ),..,,(21im i i i u u u u =和 ),..,,(21im i i i x x x x =都是三m 维点=,为了使它们配准起来,就要找到最优的旋转( 3)矩阵和平移向量,满足目标表达式 R T [2] ()2 ,min ∑ +?T Ru x i i T R 其中,是×的旋转矩阵;是×的平移矩阵。R 33 T 31为了解决这个问题,采用叠代最近点的方法:Y X Y ?X U 获得点集,,由中对距离最近的点(1) 组成; 应用四元数法(2)[3] ,得到旋转矩阵和配准(quaternions)R 向量; T 将和作用于集合; (3)R T U 决定均方差值是否小于预先估计的临界值,如不是(4)则返回到继续进行。 (1)术前建模及数据获取 2 术前模型的建立 2.1 在计算机集成外科手术系统中,全膝置换手术占很大比例,本文以股骨为例建立三维几何模型。首先采用扫描CT 得到股骨内、外结构的截面二维几何信息。然后在Pro/软件中读取这些信息,进行二维断层图像的三维 Engineer CT 重建[4] ,得到的股骨硬组织三维模型如图所示。 2基于算法的医学图像几何配准技术 ICP 李 斌1,吴 松2,王成焘1 (上海交通大学机械与动力工程学院,上海;上海交通大学研究生院,上海) 1. 200030 2. 200030摘 要:几何配准是医学图像领域研究的重要内容,医学图像几何配准的目标就是建立术前和术中两组点的变换关系。该文利用股骨为模型,讨论了基于轮廓特征的医学图像几何配准算法,从技术上实现了术前建模和术中取点,并编制相应的算法程序。ICP ICP 关键词:几何配准;医学图像;算法 ICP Technique for Medical Image Geometrical Registration Based on ICP Algorithm LI Bin 1,WU Song 2,WANG Chengtao 1 ; (1.College of Mechanical Engineering, Shanghai Jiaotong Univ.,Shanghai 200030 2. Graduate School,Shanghai Jiaotong Univ., Shanghai 200030)【】Abstract Geometrical registration is an important research field in medical image. The goal of medical image registration is to establish a common reference frame between pre-surgical and intra-surgical 3-D data sets. This paper presents an ICP(iterative closest point ) algorithm based on contour ,:,feature. According to the example of femur model it realizes three parts of geometrical registration establishing pre-operative model selecting intra ,-operative data sets and programming ICP algorithm. 【】Key words ;;Geometrical registration Medical image ICP algorithm 第卷 第期2914№ Vol.29 14计 算 机 工 程Computer Engineering 年月 20038 August 2003 ?多媒体技术及应用? 中图分类号: TP391 文章编号:———10003428(2003)14 015103 文献标识码:A

多模图像配准融合

多模图像配准融合

浅析多模态医学图像的配准与融合技术 来源:本站原创作者:朱俊林发布时间:2009-06-07 1 医学图像的配准技术简介 医学图像的配准技术是90年代才发展起来的医学图像处理一个重要分支,并且日益受到了医学界和工程界的重视。医学图像的配准是指对于一幅医学图像寻求一种或者是一系列的空间变换,使两幅图像的对应点达到空间位置和解剖结构的一致,这种一致是指人体上的同一解剖点在两张匹配的图像上有相同的空间位置。简单地说医学图像配准就是解决两幅图像的严格对齐问题。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的解剖点及手术感兴趣的点都达到匹配。 医学图像的配准按图像来源分为:单模态(mono-modality)与多模态配准(multi-modality)。单模态配准是指对来自同一成像设备的不同时刻或不同角度的图像进行配准。但在实际临床应用中,单一模态的图像往往不能提供医生所需要的足够信息,通常需要将不同模态的图像融合在一起得到更丰富的信息量,从而作出准确的诊断,制订出合适的治疗方案。所谓多模态配准,是将来自不同形式的医学图像进行空间上的对准,将对应的相同解剖位置标记出来以实现图像融合和进一步后期处理。多模态图像之间的配准使用最频繁,主要应用在诊断方面,可分为解剖—解剖的配准和解剖—功能的配准两大类,前者将显示组织形态学不同方面的两幅图像混合,后者将组织的新陈代谢与它相对于解剖结构的空间位置联系起来。目前,主要的研究工作重点是进行CT、MRI以及PET、fMRI等图像的配准。 2 医学图像融合技术简介 医学图像的融合是指将两幅(或两幅以上)来自不同成像设备或不同时刻获取的已配准图像,采用某种算法,把各个图像的优点或互补性有机结合起来,获得信息量更为丰富的新图像的技术。医学诊断往往要综合许多不同信息进行,传统的方法是,临床医生利用灯箱分别观看这些胶片,综合对比,得到结果。如果能够把这些互补信息以某种方式综合在一起作为一个整体作为医学诊断的依据,使得临床医生只要在一张综合图像上就能看到不同原始图像的信息,那么就能提供全方位的信息细节。 3 医学图像配准及融合的关系及意义 医学图像的配准和融合有着非常密切的关系,特别是对于多模态图像而言,配准和融合是密不可分的。配准是融合的前提,也是决定图像融合技术发展的关键技术,若事先不对待融合图像进行空间上的对准,那么融合后的图像也是毫无意义的。融合是配准的目的,通过来自不同影像设备的图像融合,可以得到更多的信息,提高影像数据的利用率。在多模态医学图像信息融合中,是要把相对应的组织结构融合在一起,而待融合的图像往往来自不同的成像设备,它们的成像方位、角度和分辨率等因素都是不同的,所以这些图像中相应组织的位置、大小等都是有差异的,必须先进行配准处理,才能实现准确地融合。

图像配准技术方法研究

图像配准技术方法研究 摘要随着信息技术的迅猛发展,图像配准技术已经在军事、遥感、医学、计算机视觉等多个领域得到了广泛的应用。图像配准技术是图像处理的一个基本问题,它是将不同时间、传感器或视角下获取的相同场景的多幅图像进行匹配的图像处理的过程。三类图像配准的方法大致如下:基于灰度的图像配准方法。基于变换域的图像配准方法。基于特征的图像配准方法。本文将应用这三种方法对图像配准进行研究。并重点研究基于特征的图像配准方法。 关键词图像配准,特征点匹配,灰度插值,控制点的提取 Abstract The technology of image registration is being widely used in the military, remote sensing , medical, computer, visual and any other fields with the rapid development of information technology. The technology of image registration is a kind of process to match different pictures getting from different periods and different cameras but a same scene, it is a basic point to handle the pictures. There are three kinds of ways to do the image registration:According to the level of the color of gray getting from the pictures.According to transforming domains.According to the features The three kinds of ways will be used to discuss the image registration in the thesis, and the way according to the features will be discussed more in the thesis.

医学图像配准技术 综述

医学图像配准技术 A Survey of Medical Image Registration 张剑戈综述,潘家普审校 (上海第二医科大学生物医学工程教研室,上海 200025) 利用CT、MRI、SPECT及PET等成像设备能获取人体内部形态和功能的图像信息,为临床诊断和治疗提供了可靠的依据。不同成像模式具有高度的特异性,例如CT通过从多角度的方向上检测X线经过人体后的衰减量,用数学的方法重建出身体的断层图像,清楚地显示出体内脏器、骨骼的解剖结构,但不能显示功能信息。PET是一种无创性的探测生理性放射核素在机体内分布的断层显象技术,是对活机体的生物化学显象,反映了机体的功能信息,但是图像模糊,不能清楚地反映形态结构。将不同模式的图像,通过空间变换映射到同一坐标系中,使相应器官的影像在空间中的位置一致,可以同时反映形态和功能信息。而求解空间变换参数的过程就是图像配准,也是一个多参数优化过程。图像配准在病灶定位、PACS系统、放射治疗计划、指导神经手术以及检查治疗效果上有着重要的应用价值。 图像配准算法 可以从不同的角度对图像配准算法进行分类[1]:同/异模式图像配准,2D/3D图像配准,刚体/非刚体配准。本文根据算法的出发点,将配准算法分为基于图像特征(feature-based)和基于像素密度(intensity-based)两类。 基于特征的配准算法 这类算法利用从待配准图像中提取的特征,计算出空间变换参数。根据特征由人体自身结构中提取或是由外部引入,分为内部特征(internal feature)和外部特征(external feature)。

【作者简介】张剑戈(1972-),男,山东济南人,讲师,硕士 1. 外部特征 在物体表面人为地放置一些可以显像的标记物(外标记,external marker)作为基准,根据同一标记在不同图像空间中的坐标,通过矩阵运算求解出空间变换参数。外标记分为植入性和非植入性[2]:立体框架定位、在颅骨上固定螺栓和在表皮加上可显像的标记。Andre G[3]等将该方法用于机器人辅助手术,对于股骨移植,位移误差小于1.5mm,角度误差小于3°,由于计算量小,可以实现实时配准。但是标记物必须事先被固定好,不能用于回顾性配准,而且该方法只适用刚体配准。 2. 内部特征 从医学影像中可以提取出点、线和面:血管的交点、血管、胸腹之间的横膈膜等,这些特征作为内标记点(internal marker) ,利用其空间位置同样可以求解出空间变换参数。Hill DL[4]用11个形态点对脑部配准,误差<1mm,方差为1.73mm。Meyer CR[5]除了血管树的交点,还使用了左右脑之间的间隔等特征。Maurer CR[6,7]赋予点、线、面等几何特征不同的权重(weighted geometrical features, WGF),进一步改进了算法。内标记点配准是一种交互性的方法,将3D图像配准简化为点、线和面的匹配,可以进行回顾性研究,不会造成患者的不适。但是医生对特征位置的判断影响到配准精度,为了克服人为误差,需要多次重复操作,以平均值作为最终结果。 表面匹配算法也利用了内部特征[8]:进行图像分割,提取出轮廓曲线、物体表面等内部特征,使2D/3D图像配准简化为2D曲线和3D曲面的匹配,不再考虑物体内部像素。典型的应用是刚体配准的“头帽”算法[9],从头部的3D图像中分割出表面轮廓,分别作为头模型和帽模型。配准的目标函数是头表面和帽表面之间的均方距离,该距离是空间变换参数的函数。表面匹配算法是一种自动算法,在物体表面轮廓相似并且清晰的情况下,配准效果很好。其不足之处在于:准确地进行图像分割很困难;不同模式的图像,如CT/PET图像,由于器官的轮廓差异较大,难于精确地匹配。 3. 在非刚体配准中的应用 进行非刚体配准前要确定物理模型,常见有弹性模型、粘稠液体模型、生物力学模型。通过在感兴趣区域中提取参考点、2D或是3D轮廓线,使待配准图像

医学图像融合技术及运用

医学图像融合技术及使用 1医学图像融合技术 1.1图像融合的内涵图像融合是指将多源图像传感器所采集到的关于同一目标的图像经过一定的图像处理,提取各自的有用信息,最后综合 成同一图像以供观察或进一步处理。从信息论的角度讲,融合后的图像将比组成它的各个子图像具有更优越的性能,综合整体信息大于各部分信息之和,也就是说,融合的结果应该比任何一个输入信息源包含更多 的有用信息,即1+1>2,这就是图像信息的融合2。 1.2医学图像融合的分类一个完整的医学图像融合系统应该是各种成像设备、处理设备与融合软件的总和。因为融合图像的应用目的不同,决定了医学图像融合具有各种各样的形式。根据被融合图像成像方式 不同,可分为同类方式融合和交互方式融合。同类方式融合(也称单模 融合,mono2mo2dality)是指相同成像方式的图像融合,如SPECT图像间融合,MR图像间融合等;交互方式融合(也成多模融合,multi2mo2dality)是指不同成像方式的图像融合,如SPECT与MR图像融合,PET与CT图像融合等。按融合对象不同,可分为单样本时间融合、单样本空间融合以及模板融合。单样本时间融合:跟踪某一病人在一段时间内对同一脏 器所做的同种检查图像实行融合,可用于对比以跟踪病情发展和确定该检查对该疾病的特异性;单样本空间融合:将某个病人在同一时间内(临床上将一周左右的时间视为同时)对同一脏器所做几种检查的图像 实行融合,有助于综合利用多种信息,对病情做出更确切的诊断;模板融合:是将病人的检查图像与电子图谱或模板图像实行融合,有助于研究某些疾病的诊断标准。另外,还能够将图像融合分为短期图像融合(如 跟踪肿瘤的发展情况时在1~3个月内做的检查图像实行融合)与长期图像融合(如治疗效果评估时实行的治疗后2~3年的图像与治疗后当时的图像实行融合)。综上所述,依据不同的分类原则,医学图像融合有多种方式,在实际应用中,临床医师还能够根据各种不同的诊断与治疗目的 持续设计出更多的融合方式。

地的总结图像配准算法

图像配准定义为:对从不同传感器、不同时相、不同角度所获得的两幅或多幅图像进行最佳匹配的处理过程[2]。图像配准需要分析各分量图像上的几何畸变,然后采用一种几何变换将图像归化到统一的坐标系统中。在配准过程中,通常取其中的一幅图像作为配准的标准,称之为参考图像;另一幅图像作为配准图像。 图1-1 图像配准的基本流程 图1-2 图像配准方法分类

根据配准使用的特征,图像配准的方法大致可分为三类: (1)基于图像灰度的配准算法。首先从参考图像中提取目标区作为配准的模板,然后用该模板在待配准图像中滑动,通过相似性度量(如相关系数法、差的平方和法、差的绝对值法、协方差法)来寻找最佳匹配点。 (2)基于图像特征的配准算法。该算法是以图像中某些显著特征(点、线、区域)为配准基元,算法过程分为两步:特征提取和特征匹配。首先从两幅图像中提取灰度变化明显的点、线、区域等特征形成特征集。然后在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。对于非特征像素点利用插值等方法作处理推算出对应匹配关系,从而实现两幅图像之间逐像素的配准。 (3)基于对图像的理解和解释的配准算法。这种配准算法不仅能自动识别相应像点,而且还可以由计算机自动识别各种目标的性质和相互关系,具有极高的可靠性和精度。这种基于理解和解释的图像配准涉及到诸如计算机视觉、模式识别、人工智能等许多领域。不仅依赖于这些领域中理论上的突破,而且有待于高速度并行处理计算机的研制。 从自动化角度来看,可以将配准过程分为自动、半自动和手动配准。 存在问题:如何提高图像的配准速度将是大范围遥感图像自动配准问题的要点;选取何种自动配准方案以保证图像的配准精度将是大范围遥感图像自动配准问题的另一要点。 2(,)[1((, f x y g f h x y 其中,h表示二维空间坐标变换。g表示灰度或辐射变换,描述因传感器类型的不同以及成像时气候等环境的影响所带来的图像灰度的变换。配准问题的实质就是要找到最优的空域变换h和灰度变换g,使得上述的等式成立,从而找到配准变换的参数 特征空间的选择通常要考虑以下几个因素:相似性;空间分布;唯一性。 在自动图像配准中对特征的理解可以分为两类。(1)基于灰度的方法:基于灰度的方法将重点放在特征匹配上,在其过程中并没有真正提取特征。一般所说的模板匹配法就是这种方法的代表。这种方法实际上将图像的灰度分布直接作为特征而构成匹配的基础。(2)基于特征的方法:基于特征的方法需要在图像中提取显著的特征:区域(森林、湖泊、农田等)、线(区域的边界、道路等)和点(区域的角

医学图像融合技术及运用

医学图像融合技术及运用 1医学图像融合技术 图像融合的内涵图像融合是指将多源图像传感器所采集到的关于同一目标的图像经过一定的图像处理,提取各自的有用信息,最后综合成同一图像以供观察或进一步处理。从信息论的角度讲,融合后的图像将比组成它的各个子图像具有更优越的性能,综合整体信息大于各部分信息之和,也就是说,融合的结果应该比任何一个输入信息源包含更多的有用信息,即1+1>2,这就是图像信息的融合[2]。 医学图像融合的分类一个完整的医学图像融合系统应该是各种成像设备、处理设备与融合软件的总和。由于融合图像的应用目的不同,决定了医学图像融合具有各种各样的形式。根据被融合图像成像方式不同,可分为同类方式融合和交互方式融合。同类方式融合是指相同成像方式的图像融合,如SPECT图像间融合,MR图像间融合等;交互方

式融合是指不同成像方式的图像融合,如SPECT与MR图像融合,PET与CT图像融合等。按融合对象不同,可分为单样本时间融合、单样本空间融合以及模板融合。单样本时间融合:跟踪某一病人在一段时间内对同一脏器所做的同种检查图像进行融合,可用于对比以跟踪病情发展和确定该检查对该疾病 的特异性;单样本空间融合:将某个病人在 同一时间内对同一脏器所做几种检查的图 像进行融合,有助于综合利用多种信息,对 病情做出更确切的诊断;模板融合:是将病 人的检查图像与电子图谱或模板图像进行 融合,有助于研究某些疾病的诊断标准。另外,还可以将图像融合分为短期图像融合与长期图像融合。综上所述,依据不同的分类原则,医学图像融合有多种方式,在实际应 用中,临床医师还可以根据各种不同的诊断与治疗目的不断设计出更多的融合方式。 医学图像融合的主要技术方法与步骤 医学图像融合的过程是一个渐进的过程,不同的融合方法有各自具体的操作和处理,但是,不管应用何种技术方法,图像融合一般

基于视频序列的图像配准算法研究与应用

工学硕士学位论文 基于视频序列的图像配准算法研究与应用 王帅 哈尔滨工业大学 2007年7月

国内图书分类号:TP391.4 国际图书分类号:681.39 工学硕士学位论文 基于视频序列的图像配准算法研究与应用 硕士研究生:王帅 导师:承恒达 教授 申请学位:工学硕士 学科、专业:计算机科学与技术 所在单位:计算机科学与技术学院 答辩日期:2007年7月 授予学位单位:哈尔滨工业大学

Classified Index: TP391.4 U.D.C: 681.39 Dissertation for the Master Degree in Engineering RESEARCH AND APPLICATION OF IMAGE REGISTRATION BASED ON VIDEO SEQUENCE Candidate:Wang Shuai Supervisor:Prof. Cheng Hengda Academic Degree Applied for:Master of Engineering Specialty:Computer Science and Technology Affiliation:School of Computer Science and Technology Date of Defence:July, 2007 Degree-Conferring-Institution:Harbin Institute of Technology

哈尔滨工业大学工学硕士学位论文 摘要 随着数字技术的不断发展,视频图像的分析与处理越来越受到人们的关注。数字化图像序列可以通过摄像机等光学设备获得,是真实世界在不同时间向成像平面的一系列投影。图像帧之间具有较大的相关性和信息冗余,找到并描述图像序列间的内在联系成为研究的关键所在。图像配准技术可以有效地解决这类问题。 图像配准问题是图像处理里的一个基本问题,是将不同时间、不同传感器、不同视角及不同拍摄条件下获取的图像对齐或匹配,消除存在的几何畸变。图像配准在计算机视觉、模式识别、医学图像处理和遥感信息处理方面有着广泛的应用。 本文提出了基于自适应聚类的特征匹配方法,满足大量图像配准的需求,提高匹配的速度,该方法基于正确匹配点对间形成矢量的一致性,对匹配点对进行自适应聚类,实验证明该方法在保证正确匹配不丢失的同时,可有效剔除绝大多数错误匹配,为进一步进行RANSAC匹配提供方便,且有效地提高了整个匹配过程的速度。 本文提出一种简单有效的图像合成方法。该方法针对摄像机固定位置,水平旋转拍摄的视频序列的特点,选取图像序列中部分帧,通过H矩阵确定重叠区域,再利用线性插值进行图像融合。实验证明在转角小于180 时,合成效果较好。 本文成功运用图像配准技术完成运动员滑行数据的测量,利用图像配准技术估计图像间摄像机运动,进而消除摄像机运动的影响,得到运动员的真实运动数据。根据这一原理,首先对冰场进行合理化建模,并确定相应的视频拍摄方案,设计了运动员冰场定位算法,利用帧间的H矩阵估计摄像机旋转角度,进而估计运动员的旋转角度完成滑行数据的测量。 关键词图像配准;特征点匹配;自适应聚类 - -I

像素级多尺度医学图像融合方法研究

像素级多尺度医学图像融合方法研究 医学图像融合是利用某种方法将多张不同模态的医学图像合成为一张图像 并最大限度地保留输入图像重要信息的过程,其目的是为医生提供更加准确的病灶信息,本文重点研究像素级多尺度医学图像融合方法。像素级多尺度医学图像融合方法主要包含三部分:图像分解与重构、图像融合规则和图像评价指标。 针对已有医学图像融合方法在图像分解与重构和图像融合规则两个方面的 问题,本文提出四种新的像素级多尺度医学图像融合方法。针对医学图像融合方法时间复杂度高和噪声问题,提出一种两尺度本征图像分解的MRI-PET融合方法。 该方法的主要特点在于快速的空域图像分解与重构。该方法首先利用视网膜皮层理论对MRI进行两尺度本征图像分解,并利用灰度世界理论对PET进行两尺度本征图像分解。 这种两尺度分解方法能够降低输入图像的噪声。在融合阶段,采用三种不同的方法:主元分析法、图像系数重要程度法和颜色空间变换法来得到融合图像。 实验结果表明,两尺度本征图像分解的融合方法能够恢复图像本身的信息, 从而减少图像的噪声。针对传统结构张量融合方法中图像亮度信息丢失和色彩失真的问题,提出一种三尺度结构张量的MRI-PET和MRI-SPECT融合方法。 该方法利用结构张量对图像进行空域上的分解与重构,首先利用结构张量对灰度图像MRI进行三尺度分解,然后利用彩色结构张量对伪彩色图像PET/SPECT 进行三尺度分解避免色彩失真。在融合阶段,利用绝对值最大方法来处理含有平滑信息的图像,利用空间频率法来处理含有细节、亮度信息的图像。 实验结果表明,三尺度结构张量的融合方法能够同时保留解剖医学图像MRI 和功能医学图像PET/SPECT的亮度信息。针对拉普拉斯金字塔融合方法中图像边

基于ITK与VTK的医学图像配准软件的开发

[1] 工作。图像配准技术已经广泛的应用于计算机视觉、医学图像处理、遥感数据分析等领域。医学图像配准是医学图像处理和分析的前提和基本技术。精确的医学图像配准结果对医学影像分析和临床辅助诊断有着重要的意义。目前已经有大量的用于医学图像处理和分析的开发应用平台,其中ITK(Insight Segmentation and Registration Toolkit)主要提供了医学图像分割和配准等方面的功能[2],VTK (Visualization Toolkit)则提供了可视化方面的功能[3,4],用于观察结果以及进行交互显示。本文借助Qt和C++开发了基于ITK和VTK的医学图像配准软件,可用于基本的图像配准工作。 1 开发工具 ■1.1 ITK简介 ITK是六位开发者合作开发的,用于图像配准和分割的软件工具包。鉴于在开发过程中做出的杰出贡献,六位合作开发者受到美国国立卫生研究院的表彰。后来所开发的源代码被整理成为今天的ITK。ITK是开源的、面向对象的、具有大量算法的软件开发包,主要针对于医学图像领域的分割与配准问题。常用的算法包括阈值分割算法、区域生长法、基于分水岭的分割算法,以及快速匹配算法等。ITK还具有跨平台的特性,不仅支持Windows,还支持Unix和Linux 等多种平台。ITK将大量实用的图像处理算法封装起来,形成了丰富的算法库,屏蔽了程序开发的细节,简化了开发的过程,为医学图像处理领域的开发工作提供了宝贵的技术资料。但是ITK没有实现相应的图像可视化功能,因此需要与VTK结合进行应用程序的开发。本文的医学图像处理软件采用Qt开发,通过ITK进行图像配准算法上的操作,同时结合VTK实现了图像的可视化。 ■1.2 VTK简介 VTK是一个免费、开源的软件开发包,主要用于计算VTK以方便性和灵活性为主要开发原则,具有如下几个的特点:(1)具有强大的三维图形显示功能。VTK既支持基于体素的体绘制法,又保留了传统的面绘制发,从而能够在最大限度的改善可视化效果的同时,又充分利用了现有的图形库和图形加速硬件。(2)VTK的体系结构具有强大的流处理和高速缓存能力,在处理的数据非常大时,不会受内存资源限制的影响。(3)VTK能够很好的支持网络工具的应用和开发。(4)VTK具有设备无关性的特征,使得用其开发的代码具有良好的可移植性。(5)VTK中具有许多宏定义,这些宏极大的简化了编程工作,并且加强了一致的对象行为。(6)VTK具有更丰富的数据类型,具有多种数据类型的处理能力。(7)VTK具有跨平台的特性,既可以工作于Windows操作系统,又可以工作于Unix等其他操作系统,极大的方便了用户。 ■1.3 Qt简介 Qt是1991年开发的一个跨平台的、具有图形用户界面的、用于C++应用程序的开发框架。它既可以开发GUI (Graphical User Interface,图形用户界面)程序,也可以开发控制台工具、服务器等非GUI程序。Qt是面向对象的应用程序开发框架,采用组件编程,使用大量的宏定义,容易扩展。同时Qt具有跨平台、面向对象、提供大量API、支持2D/3D图形渲染,以及开发文档丰富等特性。Qt Creator是一个用于Qt开发的,轻量级跨平台集成开发环境。 2 图像配准的概念 图像配准是将不同时间、不同成像设备、不同条件下获取的两幅或者多幅图像进行匹配的一个优化过程,也就是将一幅图像上的像素点映射到另一幅图像上同源点的空间转换过程。图像配准的输入数据是两幅图像,其中一幅图像被定义为参考图像F(x,y),另一幅图像被定义为待配准图 46 | 电子制作 2019年09月

图像配准算法综述

杭州电子科技大学 毕业设计(论文)文献综述 毕业设计题目SIFT特征研究及应用 文献综述题目图像配准算法综述学院生命信息及仪器工程学院 专业电子信息技术及仪器 姓名 班级 学号 指导教师

图像配准算法综述 一.前言 图像配准是指找出场景中同一物体表面的结构点在不同图像上的投影像素点之间的对应关系,是图像信息处理领域中一项非常重要的技术,同时也是其它一些图像分析技术,如立体视觉、运动分析、数据融合等的基础。 目前图像配准广泛应用于虚拟现实、视频压缩、图像复原、图像数据库检索等技术中。图像配准的研究是计算机视觉中最困难也是最重要的任务之一。不同的图像配准方法总是对应于某种适用的图像变换模型,其核心问题是提高配准的速度、精度和算法的稳健度。 随着科学技术的发展现在约40%的机器视觉应用中都会使用图像匹配技术,所涉及的领域有:工业检测,导弹的地形匹配,光学和雷达的图像跟踪,交通管理,工业流水线的自动监控、工业仪表的自动监控,医疗诊断,资源分析,气象预报,文字识别以及图像检索等。 图像匹配研究按其处理步骤可以分为样本采集、样本预处理、样本分割、样本的特征提取等,并且与计算机视觉、多维信号处理和数值计算方法等紧密结合。它也是其它一些图像分析技术,如立休视觉、运动分析、数据融合等的基础。正因为其应用的广泛性,新的应用和新的要求逐步产生,使得匹配算法的研究逐步走向深入,出现了快速、稳定、鲁棒性好的匹配算法。因此,研究图像的匹配算法对于如何提高实际工程中的图像处理质量和识别精度具有非常重要的意义。 本文主要分析图像匹配常用方法的优点和不足之处,讨论了图像匹配中需要进一步研究和解决的问题。 二.图像配准算法的研究现状 图像配准是立体视觉、运动分析、数掘融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域有重要的应用价值。国内外学者针对不同的图像配准应用问题进行了大量的研究工作,早在1992年英国剑桥大学的Lisa Gottesfeld Brown在文献[1]习中就总结了图像配准的主要理论及图像配准在各个领域的应用。当时他讨论的图像配准技术主要还是著眼于医学图像处理、遥感图像处理等传统应用领域。图像配准是图像镶嵌技术的核心问题。 微软研究院的Richard Szeliski在1996年SIGGRAPH上提出了基于运动模型的全景图拼接算法[7]。Szeliski采用了非线性优化的方法来最小化像素两幅图像的亮度差以确定变换参数。该方法使用了全部像素进行优化处理,所以配准精度较高,但是计算速度较慢,且稳健性不佳。 国内的赵向阳。杜立民在2004年提出了一种基于特征点匹配的图像自动拼接算法[2],其中使用了Harris算法[3]提取角点并进行匹配。赵的算法采用了鲁棒变换估计技术,在一定程度上提高配准算法的稳健性,但是计算速度依然较慢,且无法配准重

多模图像配准融合

浅析多模态医学图像的配准与融合技术 来源:本站原创作者:朱俊林发布时间:2009-06-07 1 医学图像的配准技术简介 医学图像的配准技术是90年代才发展起来的医学图像处理一个重要分支, 并且日益受到了医学界和工程界的重视。医学图像的配准是指对于一幅医学图像寻求一种或者是一系列的空间变换,使两幅图像的对应点达到空间位置和解 剖结构的一致,这种一致是指人体上的同一解剖点在两张匹配的图像上有相同的空间位置。简单地说医学图像配准就是解决两幅图像的严格对齐问题。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的解剖点及 手术感兴趣的点都达到匹配。 医学图像的配准按图像来源分为:单模态(mono-modality)与多模态配准(multi-modality)。单模态配准是指对来自同一成像设备的不同时刻或不同角度的图像进行配准。但在实际临床应用中,单一模态的图像往往不能提供医生所需要的足够信息,通常需要将不同模态的图像融合在一起得到更丰富的信息量,从而作出准确的诊断,制订出合适的治疗方案。所谓多模态配准,是将来自不同形式的医学图像进行空间上的对准,将对应的相同解剖位置标记出来以实现图像融合和进一步后期处理。多模态图像之间的配准使用最频繁,主要应用在诊断方面,可分为解剖—解剖的配准和解剖—功能的配准两大类,前者将显示组织形态学不同方面的两幅图像混合,后者将组织的新陈代谢与它相对于解剖 结构的空间位置联系起来。目前,主要的研究工作重点是进行CT、MRI以及PET、fMRI等图像的配准。 2 医学图像融合技术简介 医学图像的融合是指将两幅(或两幅以上)来自不同成像设备或不同时刻获 取的已配准图像,采用某种算法,把各个图像的优点或互补性有机结合起来,获得信息量更为丰富的新图像的技术。医学诊断往往要综合许多不同信息进行,传统的方法是,临床医生利用灯箱分别观看这些胶片,综合对比,得到结果。如果能够把这些互补信息以某种方式综合在一起作为一个整体作为医学诊断的依据,使得临床医生只要在一张综合图像上就能看到不同原始图像的信息,那么就能提供全方位的信息细节。 3 医学图像配准及融合的关系及意义 医学图像的配准和融合有着非常密切的关系,特别是对于多模态图像而言,配准和融合是密不可分的。配准是融合的前提,也是决定图像融合技术发展的关键技术,若事先不对待融合图像进行空间上的对准,那么融合后的图像也是毫无意义的。融合是配准的目的,通过来自不同影像设备的图像融合,可以得到更多的信息,提高影像数据的利用率。在多模态医学图像信息融合中,是要把相对应的组织结构融合在一起,而待融合的图像往往来自不同的成像设备,它们的成像方位、角度和分辨率等因素都是不同的,所以这些图像中相应组织的位置、大小等都是有差异的,必须先进行配准处理,才能实现准确地融合。 医学影像学为临床诊断提供了多种模态的医学图像,如 CT、MR、SPECT、PET、

大专医学影像技术论文

大专医学影像技术论文 谈医学影像的融合 科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更 建立了图像信息存储及传输的新的模式。而医学影像的融合,作为 图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是 影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用 计算机技术,将各种影像学检查所得到的图像信息进行数字化综合 处理,将多源数据协同应用,进行空间配准后,产生一种全新的信 息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的[1,2]。本文将从医学影像融 合的必要性、可行性、关键技术、临床价值及应用前景5个方面进 行探讨。 1医学影像融合的必要性 1.1影像的融合是技术更新的需要随着计算机技术在医学影像学 中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应 用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已 经建立了新的模式。而图像后处理技术也必须同步发展,在原有的 基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。 影像的融合将会是后处理技术的全面更新。 1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手 段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰 富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着 缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度 非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅 后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显

相关主题
文本预览
相关文档 最新文档