当前位置:文档之家› 测井技术在沉积学中的应用

测井技术在沉积学中的应用

测井技术在沉积学中的应用
测井技术在沉积学中的应用

中国地质大学(北京)

课程期末论文测井技术在沉积学中的应用

课程名称:测井地质学

姓名:

学号:

学院:

任课教师:

学时:32

开课院系:地信学院

日期:2014年10月21日

测井技术在沉积学中的应用

摘要:测井沉积学研究采用正演和反演的方法, 建立沉积学特征与测井地质信息之间的解释模型, 尽量使沉积学特征定量化以便于处理和预测。在测井沉积学研究中, 与其它地质资料相比, 测井资料具有信息量大、纵向连续、横向对比性好以及资料获取时间短和成本低等特点。测井技术在沉积相和沉积微相解释方面提供了新的方法和思路,推动了沉积学发展。同时,随着数学和计算机技术的进步,测井沉积学将得到更好的发展。

关键词:测井沉积学沉积微相测井相

0 引言

自从60 年代以来随着沉积学的迅速发展以及测井技术的进步,地下沉积学研究也取得突破性进展, 就油气田勘探和开发而言, 测井资料已是地下沉积学研究、特别是解释古环境不可缺少的一种地质信息。

最早系统整理测井资料地质应用的是Pirson的“测井资料地质分析”, 其核心是把测井资料用于油区沉积学研究, 进而描述油气储集层。用测井曲线的模式来解释沉积环境奠定了用测井曲线进行沉积学分析的基础。沉积学研究中沉积相分析方法为测井沉积学提供了十分丰富的理论和方法基础。测井沉积学是测井评价技术发展的重要趋向,测井技术是双重心的(图1),一个技术重心是测井传感器,另一个技术重心则是测井资料的地质和工程应用。在测井沉积学研究中, 与其它地质资料相比, 测井资料具有信息量大、纵向连续、横向对比性好以及资料获取时间短和成本低等特点, 测井沉积学研究的关键是测井资料中所包含的沉积学信息的提取。

图1 地球物理测井的双重心结构

1 测井沉积学研究方法及内容

就测井资料而言, 它是研究地质情况的间接资料, 而沉积学是把这些资料转变为各种地质模型、模式, 然后利用这些模式、模型去解释地下地质情况,即包括正演和反演两个方面。早期的测井沉积学研究侧重于常规测井资料,自80 年代以来倾角测井及成像测井(主要是裸井眼微电阻率成像测井FMI和井下电视CBIL ) 资

地层倾角是研究沉积特征的重要方法, 它能反映岩性的均质、非均质、岩石粒度及分选性等岩石结构信息; 用短对比法处理倾角资料得到的矢量图用于识别各种层理构造; 用矢量方位频率图可估计古水流方向。

测井资料沉积学分析并不能包括沉积学研究的所有内容(如颜色、古生物等) , 其研究内容主要包括沉积环境、岩相解释、沉积构造和古水流分析等。测井沉积学研究中相和沉积环境的分析是主要的研究内容, 尤其是相分析更为重要。

2 沉积相

沉积相是沉积物形成条件的物质表现。从物质表现这点来看, 这种相的概念可包括测井相和地震相。相标志最能反映沉积相的一些地质特征, 是沉积相分析的基础和关键。相标志包括: 相体的几何形态、岩性、沉积构造、古水流、古生物和地球化学特征等, 描述和分析这些相标志是相分析及解释过程的基础, 测井沉积学研究的主要途径就是分析和研究能描述各相标志的测井响应特征。

2.1 相体的几何形态

沉积岩体的几何形态是指总体形状和大小, 不涉及内部层理构造, 是沉积前地形、沉积环境和沉积后地质史的函数, 只有在沉积过程中形成并被保存下来的岩体其几何形状才有作为相标志的价值。几何形状研究有两种途径, 一是由整体到局部的研究过程, 即从地震相确定区域或油田范围内各相体的大致形态和分布, 然后由岩相和测井相分析结果对各相体进行详细研究, 使地震相获得更加精确和综合的描述; 另一种是在钻井覆盖程度和密度较高的地区进行多井剖面对比分析, 由此得到相体几何形状和沉积过程的解释。在相体几何形态研究中测井资料起到了单井标定以及从点到面之间的桥梁作用, 测井对地震的标定可以分析相体的空间展布。2.2 岩性及岩相分析

岩性分析主要是成分和结构分析。岩性是进行沉积相分析的基础, 从测井资料看几乎所有的测井方法都对岩性或沉积岩矿物成分有反映。用测井资料研究沉积结构主要是颗粒大小、形状、排列、分选程度、含泥质情况及它们的纵向分布,其依据是测井物性和岩性之间有密切的响应关系。由于测井深度是时间刻度, 因此, 孔隙度、渗透率和含泥量曲线能反映沉积能量和作用时间变化的规律, 从而可描述沉积结构。由于碎屑岩岩性比较复杂, 进行结构分析时要选用不同的测井方法和分析方法才能获得岩石结构的某些资料。

传统的岩性及岩相分析方法是利用孔隙度测井进行矿物成分的研究, 用交会图的形式来实现。随后, 又陆续使用光电吸收指数、多元回归分析及非线性理论等方法研究矿物成分。岩相的分析历经了手工分析、模式识别、多元分析(主成分和聚类分析等) 以及智能分析等阶段

2.3 沉积构造

沉积构造是测井沉积学研究的重要内容, 对于测井资料而言, 沉积过程中形成的宏观结构(层理)只有在纵向分辨率高和采样率高的成像测井和地层倾角测井上有响应。沉积构造所造成的层理包括层理产状、形状、界面特性和界面内物质结构等内容。

2.4 古水流

根据水流层理的特征(类型、角度、形式、分布)和方向(定向程度、发散程度、与古斜坡和砂体几何形状的走向关系) 与对应的测井信息来确定古水流的方向及发育情况。图像资料和高精度地层倾角资料在岩心观测结果和区域地质背景的刻度下, 成为古水流分析的主要依据。

自然伽玛能谱、岩性密度测井、激发伽玛能谱测井等测井技术可使岩石中的10余种元素成分直接测量到, 使识别岩石成分和分析沉积环境的能力得到提高, 通过实验室分析和理论研究使测井岩性组成成分解释更趋合理。

3 测井相

测井相是由法国地质学家O.Serra于1979年提出来的,目的在于利用测井资料(即数据集)来评价或解释沉积相。他认为测井相是“表征地层特征,并且可以使该地层与其它地层区别开来的一组测井响应特征集”。事实上,这是一个n维数据向量空间,每一个向量代表一个深度采样点上的几种测井方法的测量值,如自然伽马(GR)、自然电位(SP)、井径(CAL)、声波时差(AC)、密度(DEN)、补偿中子(CNL)、微球型聚焦电阻率(RXO)、中感应电阻率(RIM)、深感应电阻率(RID)这样一个9维向量就是一个常用的测井测量向量。

测井相分析就是利用上述测井响应的定性方面的曲线特征以及定量方面的测井参数值来描述地层的沉积相,实际确定沉积相中还有赖于地层倾角测井、自然伽马能谱等多方面的资料。测井系统愈完善,测井质量愈好,测井相图反映实际地层沉积相的程度也就愈好。测井相分析就是从一组能反映地层特征的测井响应中,提取测井曲线的变化特征,包括幅度特征、形态特征等以及其它测井解释结论(如沉积构造、古水流方向等),将地层剖面划分为有限个测井相,用岩心分析等地质资料对这些测井相进行刻度,用数学方法及知识推理确定各个测井相到地质相的映射转换关系,最终达到利用测井资料来描述、研究地层的沉积相。

3.1 测井相标志与地质相标志的关系

测井相中数据向量每一维都可称作一个测井相标志, 沉积相标志是确定沉积相中一个观察描述特征标志。两种相标志之间不存在一一对应关系,尤其是类似古生物等描述在测井资料中不可能确定,但在已知特定油气田地质背景时,可以经过统计、知识推理找到判断亚、相微相的组合对应关系,这种关系就是所谓解释模型。这种关系一般表现为逻辑的,而不是数量的。在若干地质沉积亚、微相模型特征研究基础上,总结出在确定某种沉积亚相、微相中最主要的依据是颜色、岩性、结构、沉积构造、粒度分析、古生物、地球化学以及垂向相序列等相标志。而在区域沉积背景,即相组、相确定的基础上,最基本的相标志是岩石组合(成分、结构)、沉积构造、粒度分析及垂向序列的特征,它们在各种亚相、微相中差别明显。而测井资料中以常规组合曲线及处理成果、地层倾角测井曲线及其处理成果、成像测井图像,可以解释出其中主要的基本的相标志:(1) 岩石组合(类型及结构);(2) 沉积构造,如冲刷面、层理类型、纹层组系产状及其垂向变化;(3) 垂向序列变化关系(正粒序、反粒序、复合粒序、无粒序);(4)古水流。用测井资料解决以上几类相标志,就是为测井沉积学研究提供可靠的保证,那么怎么作好“地质—测井”刻度、反演的工作,精密地将已建立的各种地质相标志模型和测井相标志模型的互相对应,使相互有机结合,实现测井资料在地质相标志刻度下的沉积亚相、微相判别。

用“岩心刻度测井”进行反复刻度和反演,总结出针对不同沉积亚相和微相的测井相标志,用于确定测井沉积相。选择两类若干种测井解释模型,即反映岩性特征(主要用常规组合测井曲线特征及计算机处理来完成)、层序特征的测井解释模型和反映沉积构造、结构及古水流的测井解释模型(用地层倾角的微电导率曲线精细处理成果和成象测井图像来建立)。

3.2 测井相分析成果的主要用途

由于测井相分析能够获得深度准确、质量较高的单井岩相柱状图,故它在石油

(1)确定井剖面地层的岩性,研究岩相特征。

(2)为单井解释、多井评价确定地层模型提供依据。

(3)研究地层层序关系,进行地层对比。

(4)研究油田储集层的纵、横向变化及油气层分布,予测有利含油气区。

(5)提供各类岩相统计结果,对研究区域性的生、储、盖条件极为有利。

(6)进行沉积相与构造地质研究。

4 沉积微相

常规的沉积微相研究是在相模式及相序递变规律指导下,通过观察岩心的成分、结构和沉积韵律等信息来确定沉积相,此研究适合取心井段,对非取心井段则无法展开工作。为充分利用测井资料,准确、快速、客观地确定地层沉积微相,研发新的沉积微相解释方法,为测井资料的综合解释提供新的手段。

4.1 方法原理

4.1.1 测井曲线指向敏感性分析

不同地区沉积环境不同,每口井所测的多条测井曲线反映沉积微相信息的灵敏度也不同,因此,为减少计算工作量,对系统取心、微相类型齐全的关键井分析测井曲线特征与已知微相类型之间的对应关系,选取灵敏曲线。

4.1.2 特征参数提取

提取特征参数是将测井曲线中包含的沉积环境信息量化的过程,是实现计算机自动识别沉积微相的前提。这些特征参数的单一或组合可以作为沉积微相类型的特征变量,可以用于识别不同环境下的沉积微相。标识沉积环境的特征参数见表1。经过分析选取后,敏感曲线的特征参数的集合就构成一个特征向量,每一个特征向量对应着一个沉积微相,即一个相模式。已知沉积微相类型的模式样本即为神经网络训练学习的输入数据,而待判别的特征向量则是神经网络处理的输出数据。

表1

特征参数沉积环境

测井响应平均值沉积颗粒大小及能量

峰值位置沉积韵律性

峰值个数沉积环境能量波动情况

顶底界面对称性上下邻层荚系及沉积韵律类型

曲线凹凸性沉积速率

曲线面积沉积环境能量

曲线分形维数沉积环境复杂性

4.1.3 几何形态特征参数和曲线形态的识别

对于给定的沉积单元,描述测井曲线的几何特征参数为测井曲线最小值处底部宽度(W min)、平均值处的曲线宽度(W a)、中间值处的曲线宽度(W m)、最大值处的曲线宽度(W max)、最小值处的尖峰个数(总尖峰个数)、平均值处的尖峰个数、中间值处的尖峰个数、最大值处的尖峰个数(图2)。

利用几何特征参数识别测井曲线形态步骤:(1)适当变换测井曲线的比例,选择适当的深度比例和测井响应的绘图比例,提取测井曲线的几何特征量;(2)在小层和单元划分的基础上,提取描述沉积单元曲线形态的几何特征参数;(3)建立测井曲线几何形态与测井曲线形态之间的关系;(4)利用测井曲线几何形态与描述测井曲线几何特征参数之间的关系,确定曲线类型。

图2 描述测井曲线几何特征参数

图3几种典型测井曲线形态的数学描述

常见的测井曲线形态通常分为钟形、箱形、漏斗形、指形,齿化及复合形(图3)。可以通过一些参数描述各层段内曲线(主要是岩性曲线和电阻率曲线)的形态特征,再根据其沉积相和沉积亚相类型判断微相,主要参数有:

(1)岩性岩性是划分沉积微相的主要依据,因此首先要初步估算岩性类型。通常根据GR或SP曲线,按照常规的计算泥质含量的方法确定岩性。当然,这样确定的岩性并不是很准确,只是起到指示沉积微相的作用。

(2)曲线的比幅度(λL和λR) 比幅度是指曲线的幅度与其厚度的比,不同的曲线形态具有不同的比幅度值,通常指形曲线的比幅度应该较大,其它形态相对较小。此外比幅度也在一定程度上反映岩性的变化。实际计算时,分别寻找层内最大和最小值,以GR曲线为例,最小值与厚度的比定义为左比幅度(λL),最大值与厚度的比定义为右比

幅度(λR)。显然左比幅度越大,粒度越粗;相反,粒度变细。

性变化不大,测井曲线则近似为直线,测Array井数据的均值主要集中在曲线的中部,只有顶底数据与均值偏差大一些,因此方差较小。这种情形对应了箱形曲线。如果粒度分选性差,说明物性变化较大,反映到测井曲线上,则有一定的起伏,曲线可能为漏斗形、钟形或者指形,其测井数据相对分散,有相当一部分数据点远离均值,必然导致方差较大。

(4)曲线的斜率(k1和k2) 曲线的斜率是识别曲线形态另一重要的参数,图3给出了钟形、漏斗形、箱形和指形的斜率特征。斜率分为上斜率和下斜率,分别记为k1和k2。依层段内厚度的中点为界,上斜率规定为该段内起始点到中点,这段曲线内,连续递减或递增变化最大的一段曲线的斜率。这一变化反映了曲线整体的变化趋势,因此,斜率不是局限于2个点之间的变化,而是反映指示曲线的总体变化规律。同理,下斜率则从中点到最后1个点开始计算。仍以GR曲线为例,对于几种常见的曲线形态,上下斜率的关系列于图3中。对于钟形,上段曲线变化平缓,下部变化剧烈。漏斗形则恰恰相反,箱形和指形曲线2个斜率近似相等。表1中曲线的共同特征是上斜率都是负值,下斜率都是正值。对于GR曲线的情况,斜率负值表示岩性变粗,正韵律,如果曲线为电阻率曲线则相反。

4.2 测井相到地质相转换

(1)采用层内差异法、聚类分析法、标准差归一化法及泥质指示参数进行微相段划分、测井数据归一化及测井特征参数提取。

(2)采用数理统计分析中的主成分分析、雅可比法从具有复杂相关关系的m个测井参数X=(x1,x2,?,x m)T中提取P个最能反映沉积微相特征的非相关主成分变量:

Y j= a jl x l+ a j2x2+ ? + a jm x m= a j T X J= 1,2,?,P (P≤m )

其中:Y j为X 的第J个主成分,a j

为第J个主成分的系数向量(可由标准样本

(3)根据前P个互不相关的主成分,采用聚类分析法对标准样本层进行测井相类型的划分,将划分出的各种测井相与已知沉积微相作详细对比分析,并考虑地层和测井特征,建立测井相与沉积微相的对应关系。

(4)采用Bayes判别分析建立各沉积微相的识别模型

Z g (X)=|lnP g|+C0g+C1g x1+? +C lg x l g= 1,2,?,G

式中:G 为测井分类数;l为测井特征参数个数;C0g、C1g、C lg为判别系数,可由标准样本层数据求出;P g为第g类测井相先验概率;X=x l,x2,?,x l为主成分向量;Z g(x)为第g类测井相判别函数值。

(5)对未知地层,应用所开发的软件及建立的模型,即可进行沉积微相的自动识别解释。

依据上述原理对某油田西区的十几口井的测井资料进行处理,建立了研究区的测井—沉积微相判别模型(图4)。

5 以三角洲沉积体系为例的微相分析

5.1 三角洲平原亚相

分流河道分流河道在自然电位曲线上呈中幅的厚层箱状或钟形及箱形的复合体,齿中线内收敛。厚层箱状反映了急流条件下心滩的快速堆积:钟形反映非急流条件下类似曲流河的边滩沉积。视电阻率曲线基本上与自然电位曲线一致,但因岩层内流体影响可出现振幅的异常变化(用于判断油气水层)。

河道间自然电位曲线幅度总体较低或呈锯齿状,在粉砂岩发育地区稍有高幅度异常。这种特征反映沉积粒度较细。锯齿状则在此微相中反映了粉砂岩与泥岩互层。视电阻率曲线一般为幅度较低的齿化曲线。无论是自然电位还是视电阻率曲线的幅值都比分流河道低。

5.2 三角洲前缘亚相

水下分流河道岩性以含砾砂岩、中粗砂岩为主,其层序表现为底部为冲刷面,其上由各类岩相单元组合在一起,构成不同类型的岩石相组合类型:(a)泥砾一含砾粗砂一中细一粉砂~粉细砂岩一泥质粉砂;(b)细砾一含砾粗砂一中细到粉砂一粉细砂岩一泥质粉砂一细砂到粉砂,具平行层理;(c)含砾粗砂一粗砂到中砂一中细到粉砂一粉细砂一细砂到粉砂一波状层理泥质粉砂岩,不同类型岩相结合有序叠加构成三种分流河道相序。

图6 B井河道砂电测特征

图7 C井河口坝电测特征图

图8 D井河口坝电测特征图

图9 E井前缘席状砂电测特征图

每一种相序均表现为向上变细正旋回特征。在测井曲线特征方面主要表现为:自然伽马、自然电位、视电阻率和声波时差为箱形,上圆锥形(图5)和钟形(图6),越往上游其幅度值越大。

河口坝沉积水下分流河道末端,沉积物的扩散作用在分流河口地区形成一系列分散、孤立的,并与水流方向垂直的河口砂坝,河口砂坝往往在每次洪峰刚过后易保留、最显著者易形成进积型层序而向上变粗。还有水的能量剩余较大的退积型层序,如中细砂一粉细砂一细粉砂交错层理,细砂岩一粉砂岩水平层理一泥质粉砂(图7,图8)。测井曲线特征表现为:分流河口坝的自然电位曲线形态为中到高幅齿化漏斗形,有时呈箱形或-者的组合。在下部的前积式幅度组合部分,齿中线具外收敛特征。上部为加积式幅度组合,曲线形态为微齿形,齿中线水平。漏斗形反映出前秘式反粒序沉积特征,箱形为分流河道末端快速堆积的结果。齿中线水平代表周期的反复,多期替加使曲线呈现箱形与漏斗形的组合。

前缘席状砂分布于河口砂坝前部或侧翼,通常由粉细砂岩到泥质粉细砂岩、细粉砂岩、粉细砂岩与泥互层,韵律不明显,测井曲线为螺丝钉形中幅指状、中幅手套形(图9)。

图10 F井分流间湾电测特征图

远砂坝线特征为低至中幅的刺刀形、指形或多个低幅漏斗形曲线叠加,幅度自下而上逐次加大,形成前积式幅度组合,代表了多期叠加反粒序的沉积特征,齿中线外收敛,这与砂体的前积相吻合。曲线形态与分流河口坝相类似,但整体幅度值比河口坝略低。

分流间湾(河道间湾) 介于分流河道沉积间的细碎屑沉积,主要由氧化一弱还原性颜色泥岩构成,如灰紫色、浅灰色、灰绿色泥岩,局部夹粉砂岩和粉砂质泥岩,厚度一般较小。电测曲线表现基值或近似直线(图10)。

5.3 前三角洲亚相

位于三角洲沉积外缘,颗粒较细,主要由暗色泥岩或碳酸盐构成,局部夹薄层粉砂岩,测井基值近似直线。用测井资料划相时,参考声波时差曲线区分河道和砂坝。河道砂沉积的时差比砂坝的时差小,砂坝比砂坪(席状砂)时差小。席状砂小于间湾,前三角洲相与河间湾接近,但有的前三角洲有含石灰质或白云质的东西时,时差小。其规律是:从间湾一席状砂一河口砂坝一河道砂,声波时差逐次降低。

6 发展动向

地构造等) 紧密结合的综合性学科。现代沉积学以研究沉积过程为特征, 提供了人们认识地质体的大量知识, 按照本体论的思想, 沉积学研究的目的是缩小现代沉积过程和古代沉积岩特性认识和解释之间的距离, 重建古代岩石的形成环境及变化规律。对油气田勘探和开发而言, 在钻井数较少以及取心不连续等条件下, 测井资料显示了较强的优势。

测井资料在沉积学中的应用是建立在测井技术和对测井资料的解释处理方法基础之上的,因此,其发展动向表现在两个方面:其一是测井新技术的发展;其二是测井资料解释处理方法的发展。用测井资料进行沉积学研究是测井资料地质应用的一个新领域,它综合利用了丰富的测井信息,在沉积学领域又开创了一个新的方向,丰富了沉积学的研究手段。测井资料的解释处理新方法将会在现有测井资料的基础上增添对沉积学信息的提取,为沉积学研究拓展新视野。综合利用测井信息,挖掘隐藏在测井资料中的地质信息是测井沉积学未来的一个发展方向。测井数据的综合解释与数字处理就是某种意义上对测井数据的挖掘。

在对测井资料的解释技术上,数学和计算机技术将发挥越来越重要的作用,尤其是数学,会在测井资料的处理解释上发挥越来越重要的作用。

参考文献:

曹广华, 胡亚华, 张奇文, 等. 利用测井资料识别沉积微相方法研究[J]. 科学技术与工程, 2007, 7(15): 3674-3680.

陈钢花. 陕甘宁盆地三叠系延长组测井—沉积微相研究[J]. 中国海上油气(地质), 2002, 16(1): 54-57.

金燕, 夏开琼. 测井沉积微相分析方法研究[J]. 天然气勘探与开发, 2002, 25(2): 21-24.

刘红歧, 陈平, 夏宏泉. 测井沉积微相自动识别与应用[J]. 测井技术, 2006, 30(3): 233-236.

李国永, 徐怀民, 刘太勋. 地层倾角测井沉积构造与层序界面识别[J]. 西南石油大学学报(自然科学版), 2008, 30(6): 62-66.

陈凤根. 测井沉积学基础[J]. 测井技术, 1988, 2: 001.

陆凤根. 测井沉积学方法和应用概述[J]. 测井技术, 1988, 3: 002.

凌代模, 谈德辉. 测井地质学[J]. 测井技术, 1983, 7(2): 51-55.

王金荣, 刘洪涛. 测井沉积微相识别方法及应用[J]. 大庆石油学院学报, 2004, 28(4): 18-20.

王仁铎. 利用测井曲线形态特征定量判别沉积相[J]. 地球科学-中国地质大学学报, 1991, 3: 012.

文政, 雍世和, 王中文. 应用测井资料定量识别沉积微相[J]. 沉积学报, 1996, 14(1): 40-46.

尹寿鹏, 王贵文. 测井沉积学研究综述[J]. 地球科学进展, 1999, 14(5).

游章隆, 汪徐焱. 碳酸盐岩测井──沉积相的模糊判识系统[J]. 石油与天然气地质, 1998, 19(1): 42-48.

余继峰, 付文钊, 袁学旭, 等. 测井沉积学研究进展[J]. 山东科技大学学报(自然科学版), 2010, 29(6): 1-8.

于民凤, 程日辉, 那晓红. 陆相盆地主要沉积微相的测井特征[J]. 世界地质, 2005, 24(2): 182-187.

雍世和, 文政. 用Bayes 判别法定量识别沉积微相[J]. 测井技术, 1995, 19(1): 22-27.

张福明, 李洪奇, 邵才瑞, 等. 应用神经网络模式识别技术进行测井沉积学研究[J]. 石

测井地质学复习

测井地质学复习 1.所有的测井方法、标准代码、单位、测量要求环境、设计/开发的物理基础、 分辨率、主要地质应用、影响因素。以表格或系统陈述的方式。 举例:体积密度、井壁电成像FMI 2.裂缝的主要测井响应特征。 答: 第一类,常规测井响应: 1)井温测井 在裂缝处,泥浆侵入裂缝地层,导致地温下降,监测到的地温曲线出现低温严重偏低。 2)微侧向测井 | 微侧向测井采用贴井壁测量,探测深度较小,对裂缝敏感。在裂缝发育段,电阻率出现低阻异常,往往表现为以深侧向为背景的针刺状低阻突跳。 3)双侧向测井与微球形聚焦 由于深浅侧向探测深度有较大差别,在裂缝段表现为电阻率差异。分为正差异(LLD>LLS)和负差异(LLS

单井沉积相划分、单井相

沉积相研究的目的是分析油藏范围内储集体所属的沉积环境、沉积相和微相类型及其时空演化,进而揭露储集砂体的几何形态、大小、展布及其纵、横向连通性的非均质特征,建立沉积模式,并深入探讨沉积微相对油气的控制关系。正确识别沉积相和微相类型及其相互关系,是进行油田勘探和开发研究的重要内容。 沉积相的概念 沉积相是指沉积环境及其在该环境中所形成的沉积物(岩)特征的总和。相和环境的含义是有区别的。沉积相是特定沉积环境的产物,是沉积环境的物质表现。 沉积相研究的重要性在于,它可以根据某沉积物的空间分布情况判断其上下左右存在的沉积物类型及其储渗特征。沉积物空间变化的这种规律性,称为“相序递变规律”。 沉积相的分类 沉积相按其规模大小一般分为以下四级: 一级相——相组:如海相、陆相、海陆交互相。 二级相——大相:如陆相中的河流相、湖泊相、三角洲相等。 三级相——亚相:如三角洲相中的三角洲平原亚相、三角洲前缘亚相、前三角洲亚相等。 四级相——微相:如三角洲前缘亚相中的分支河道微相、河口砂坝微相等。 沉积相分为碎屑岩沉积相和碳酸盐沉积相。由于碎屑岩储集层比较常见,因此,重点介绍碎屑岩沉积相的分类。表1是冯增昭等(1993)的分类方案。由于亚相和微相的划分方案比较复杂,在此不在一一介绍。 表1 碎屑岩沉积相的分类 相分析的方法、流程 相分析就是根据“将今论古”的现实主义原则,运用比较岩石学的方法,根据沉积岩的各种特征即相标志来分析形成时的各种环境条件,从而最终达到恢复古地理的目的。 相分析的过程一般可以分为三个阶段:单井剖面相分析、剖面对比相分析和平面相分析。由于相分析在地质研究中的重要性及复杂性,本期主要讨论单井剖面分析,剖面对比相分析和平面相分析将在后续的文章中进行讨论。 单井剖面相分析

中国测井技术的发展方向分析

中国测井技术的发展方向分析 我国经济的稳定发展,离不开对石油资源的有效应用,为了保证石油资源的综合利用效率的提升,要针对石油勘探过程中的问题展开分析,实现其测井技术方案的有效更新,无论是哪种感应模式都要保障其实际应用性,实现对成像测井仪的有效应用,比如其新型的过套管井测井仪器的应用,实现其电阻率环节、相关监测环节的优化,以满足油藏动态的变化需要。 标签:新技术应用;成像管理;地层测试环节;过套管 1 关于测井应用环节分析 1.1 为了促进我国石油资源的有效应用,要保证其石油勘探环节、应用开发环节的有效协调,实现其相关油、气层的有效控制,保证其油田应用体系的健全,以有效解决实际过程中的地质应用问题。随着科学技术的发展,测井技术模式不断得到更新,该测井模式起源于国外,其实现了对高分辨率阵列感应测井模式的有效应用。该模式的正常运行,需要保障其各个子阵列的有效应用,实现其接收器环节的正常使用。保障其线圈间距的有效控制。实现工作过程中的频率环节、探测深度环节等的协调。感应测量模式是该系统应用过程中的一个重要环节。为了促进现实问题的解决,也要进行相关因素的采集,比如探头温度的采集、泥浆电阻率的有效采集等。通过对电阻率成像测井模式的有效应用,实现其相关环节的优化。把由岩性、物性变化以及裂缝、孔洞、层理等引起的电阻率的变化转化为伪色度,直观看到地层的岩性及几何界面的变化,识别岩性、孔洞、裂缝等。 通过对三分量感应测井模式的有效应用,保障其各个地层测井模式的应用。这需要应用一系列的技术,比如声波测井技术环节的应用,实现声波测量模式的优化,针对其储层应用及其井眼模式的应用,促进其应力裂缝位置、孔隙压力环节及其岩性的有效分析。声成像测井模式需要应用到一系列的换能器,也要积极实现与计算机的有效配合,保证其相关信号的有效接收,促进其信号的数字化模式的发展,促进其相关图像处理环节的优化。核磁测井模式也是一种重要的应用模式,通过对核磁共振模式的应用,促进对电子波的有效应用,以满足现实工作的需要。处于热平衡的自旋系统,在外磁场的作用下磁化矢量偏离静磁场方向,外磁场作用完后,磁化矢量试图从非平衡状态恢复到平衡状态,恢复到平衡态的过程叫做驰豫。核磁共振NMR信号的驰豫时间与氢核所处的周围环境密切相关,水的纵向恢复时间比烃快得多。根据核磁共振特性间的差异指示含氢密度的高低来识别油层。共振测井仪主要有哈里伯顿和阿特拉斯采用NUMAR专利技术推出的MRIL、斯伦贝谢的CMR及俄罗斯的大地磁场型MK923。 1.2 通过对随钻测井技术方案的有效应用,可以满足井眼周围环境应力状态的有效分析,实现其地质导向环节的优化,保障其地层评价体系的健全。在随钻测井应用过程中,要促进相关数据传输环节的优化,比如电磁传输速度、光纤遥测环节等的协调,促进其数据传输体系的健全,在此过程中,由于泥浆脉冲传输模式的自身性质,泥浆循环是不必要的环节,需要引起相关应用人员的重视。过

测井地质学思考题

测井地质学思考题 1、地层倾角测井判断古水流方向 倾角测井能够反映沉积构造信息、准确计算层理倾向、倾角。因此,对于地下地质研究,利用倾角资料分析古水流是最重要的方法。有两种方式确定古水流: (1)利用倾角测井微细处理成果图,统计目的段内所有纹层倾向,取其主要方向代表古水流。这种方法使用大范围内古水流砂体内部前积结构,取其主要方向代表古水流(2)统计目的层段内所有蓝模式矢量的方向,取其主要方向代表古水流。这种方法适用于大范围内古水流系统研究。 将区内由地层倾角测井资料(经过沉积学特殊处理)判断的古水流方向(主次)标注在平面位置上。选井应全区均匀分布,可以控制各个相带的古水流系统方向。每口井在选取方向时,一定要是目的层段砂体的精细处理矢量图的蓝模式方向,或者用沉积施密特图的主峰方向控制每口井的局部古水流方向。 3、测井构造分析:地层产状获取方法。 现代地层倾角测井和井壁成像测井技术能准确确定地层产状和构造要素(包括褶皱、断层和不整合面等)。 岩层最初形成时,大都是水平的或近于水平的。如果发生构造运动,如褶皱运动,水平成层的岩层形成褶曲形态,各岩层的褶曲是按同一轴面套叠的,以后再沉积,新的沉积岩层在新的褶曲运动下又形成了新的褶曲,又按新的轴面套叠。 (1)通过倾角测井获取地层产状。 倾角测井每个矢量代表该深度点的地层在井眼面积范围内测到的产状。井内不同深度点的矢量,从套叠关系分析,相当于构造不同部位的矢量。将各部位的矢量通过套叠关系都集中到一个岩层构造面上,就能将岩层的构造形态恢复出来。 地层倾角测井研究构造与沉积时,在矢量图上可以把地层倾角的矢量与深度的关系大致分为四类:红色、蓝色、绿色和白色模式。 在组合矢量模式中,对于每一种构造的不同形态都唯一地对应了一种组合矢量模式,但是反过来则不成立,即同一个矢量模式具有多解性,但是我们可以结合其它资料排除那些不正确的解。在井中经常钻遇多个构造,它们的组合模式将是各单个构造组合矢量模式的再组合。 (2)通过井壁成像技术获取地层产状。 井壁成像测井资料主要是井壁的数字成像图,用色彩及辉度来表现构造现象。由于裂缝和层面处岩性的突变,造成了岩石的电导性或岩石的密度有突然的变化,在成像测井的图像上就会表现为一条明显的暗色条带,追踪这个条带的变化趋势,可以计算出断层的产状及褶皱的要素。 4、裂缝的测井响应分析及其主要特征。 P179-186 5、裂缝型储层中裂缝的定量产状及储层参数识别方法。 P186-192 6、如何通过测井资料分析现今地应力场的方向。 P198 7、烃源岩的测井响应及其识别方法。

中国测井技术发展方向

中国测井技术的发展方向 测井新技术 国外裸眼井测井、随钻测井、油藏评价、在水平井、斜井、高产液井产出剖面测井技术方面发展迅速,仪器的耐温、耐压指标较高,可靠性高,技术的系列化、组合化、标准化和配套化水平较高。流体成像测井和传感器阵列设计是产出剖面测井新技术发展的主要趋势,永久监测技术是油田动态监测技术的非常重要的发展方向。在“十一五”863计划“先进测井技术与设备”重点项目实施方案论证会上,专家组一致认为“先进测井技术与设备”重点项目应瞄准世界测井技术发展方向研发的先进测井技术与装备,为解决我国复杂岩性、复杂储集空间的油气藏地质评价难题和油田中后期剩余油分析与油藏动态监测、油井技术状况监测提供先进有效的测量手段,满足我国石油天然气生产的需要和参与国际竞争的需求。 1 测井技术的发展趋势 井下集成化、系列化、组合测井仪器的研发成为测井技术发展的一大趋势。日本的Tohoku大学开发利用井眼雷达的直接耦合进行电磁波测井,新仪器可以获得雷达图像、电导率和相对介电常数。仪器的分辨率为1m,理想情况下探测深度为10m。Proneta开发了可以透过原油对目标进行高分辨率光成像的成像技术,已经申请并获得了专利。目前电缆测井占主要地位,随钻测井发展比较迅速,由于数据传输等技术不足,在相当一段时间内还是以电缆测井为主,套管钻井测井是未来测井发展的方向。套管钻井测井是在套管钻井技术诞生后出现的新的测井模式,用套管作为钻杆,井眼钻成功时,一口井的钻井和下套管同时完成。套管钻井测井有钻后测井模式或随钻测井模式。钻后测井模式是在完成套管钻井作业后,用电缆将测井仪器在套管内下到要测量的目的层段,进行测井;随钻测井模式是测井仪器安装在与最下面一根套管连接的底部钻具组合内,在套管钻井进行的过程中,在需要测井的层

11-070900地质学

中国石油大学(北京) 博士研究生培养方案 一级学科代码0709 一级学科名称地质学 二级学科代码 二级学科名称 中国石油大学(北京)研究生院 2007年 12月 12 日

一、学科简介 地质学是关于地球的物质组成、内部构造、外部特征、各层圈之间的相互作用和演变历史的知识体系。地质学一级学科涵盖矿物学-岩石学-矿床学、地球化学、构造地质学、古生物学与地层学、第四纪地质学5个二级学科。我校地质学科以研究盆地结构和性质、沉积充填作用、资源地球化学等沉积盆地内部发生的一系列物理作用、化学作用甚至生物作用以及这些地质作用对化石燃料矿床形成聚集的控制为特色。本学科1950年代在前苏联专家帮助下开始招收研究生,1980年代初获得国家首批硕士学位授权,1993年设立矿物学、岩石学、矿床学博士点;2003年设立地球化学博士点;2005年设立构造地质学博士点,并获得博士学位一级学科授权。2003年被国家人事部批准设立地质学博士后流动站。 矿物学、岩石学、矿床学博士点主要研究领域涉及沉积盆地地质学、储层地质学、层序地层学、测井地质学、矿物岩石学等学科。本学科点已形成了特色鲜明的四个主要研究方向,即沉积(岩石)学及岩相古地理学、储层地质学和沉积盆地流体矿产、层序地层学及测井地质学、应用矿物岩石学及测试技术等。在沉积学和层序地层学、储层地质学、岩相古地理和岩性油气藏预测等方面具有鲜明特色并密切中国石油工业勘探开发研究,在塔里木油田、鄂尔多斯大气田、济阳坳陷地层岩性油气藏的勘探开发过程中发挥了重要作用,取得了整体处于国内领先水平、部分处于国际先进水平的科研成果。 地球化学博士点的科学研究以多种实验方法手段研究地壳中有机质的行为为特色,涉及远至地球生命的化学起源、地球各圈层系统中的碳循环,近至化石燃料成因理论及资源评价、化石燃料形成和聚集的分子化合物标识等一系列地球化学问题。主要研究领域有:石油天然气形成与分布、油气成藏过程定量描述、油藏流体的历史分析、油藏地球化学、地质事件的地球化学记录、气体及同位素地球化学、环境地球化学等。主要培养方向有油气成因机理与分布预测、有机地球化学、环境地球化学。学科所属实验室是经国家计量认证的实验机构,现已形成以岩石、土壤、水、大气样品的分子化合物分析为主,以沉积有机物的岩石学、稳定同位素分析和固体样品的微量元素检测为辅的较完整的分析测试技术体系,拥有大型分析仪器设备20余台(套),是“油气资源与探

沉积学原理

沉积学原理 主要内容: 绪论、洪积扇沉积、河流沉积、冰川与沙漠沉积、湖泊沉积、海洋碎屑岩沉积、海洋碳酸盐岩沉积、三角洲沉积、事件沉积作用、板块构造与沉积作用、沉积相研究方法与步骤 第一章绪论 一、沉积学的涵义及发展概况 沉积学是研究沉积物、沉积过程、沉积岩和沉积环境的一门科学。 沉积学发展的三个阶段: (1)奠基阶段(1777-1940) 1777年:德国地质学家魏纳(A. G. Werner,1749- 1817年)首次提出水成论。1777年,将德国厄兹山区的地层划分为四种类型: 4)冲积层:砾石、沙子、粘土,含大量化石。机械沉积。 3)成层岩层:石灰岩、砂岩、石膏、岩盐、煤,含大量化石。主要是机械沉积,也有化学沉积。 2)过渡层:结晶片岩、板岩,含最早的生物化石。化学沉积为主。 1)原始层:花岗岩、片麻岩、玄武岩等,无化石,原始海洋化学沉积。 1795年:苏格兰地质学家赫顿(James Hutton,1726-1797)出版《地球学说》(Theory of the Earth),提出了均变论的思想。 1830年:莱伊尔(Charles Lyell,1797-1875)出版《地质学原理》(Principles of Geology),正式提出并系统论述了“均变论”(Uniformitarianism)。均变论--研究古代沉积作用和沉积环境的钥匙 1850年:索比(Sorby)首次利用偏光显微镜研究岩石,拉开了对岩石进行微观研究的序目。 1914年:吉尔伯特(Gilbert)首次用各种粒径的砂和不同的水流强度进行了水槽实验,开创了用实验方法进行沉积学研究的先例。 1939年:Twenhofel出版了《沉积学原理》,标志着沉积学作为一门独立的学科形成了。 (2)成熟完善阶段(1940-1970) 提出了科学的沉积岩分类方案,建立了各种沉积相的相模式。 (3)多学科交叉发展阶段(1970-现在) 沉积学与其他学科交叉,形成了交叉学科沉积学,如构造沉积学、沉积地球化学、层序地层学等。 二、陆源碎屑沉积学研究现状 (一)陆源碎屑沉积学理论日益丰富和完善 1、关于事件沉积作用1)风暴沉积和风暴岩2)浊流沉积和浊积岩3)震积作用和震积岩 2、等深流沉积和等深岩 3、关于热水沉积 4、成岩作用研究有新进展 (二)多种技术和手段的应用 1、解释沉积环境 2、确定古水流方向 3、研究成岩作用 (三)多学科的交叉渗透 1、大地构造沉积学 2、测井沉积学 3、地震沉积学 4、沉积地球化学 5、层序地层学 三、陆源碎屑沉积学研究展望 1、从微观到宏观 2、从定性到定量 3、学科的交叉渗透 4、重视新技术、新方法 5、重视对现代沉积环境的研究 6、与社会发展结合越来越紧密

测井曲线与沉积相的关系

①钟型:自然伽马曲线形态呈钟状。曲线从下往上幅度突然变高,然后逐渐下降,慢慢恢复到泥岩基线,它反映出沉积环境从低能突然变为高能,之后又从高能缓慢恢复到低能的情况。岩性具正粒序结构,底部与泥岩呈突变接触关系,一般对应于底冲刷,顶部与泥岩渐变接触,反映了逐渐减弱的水动力特征,是由中—粗粒砂岩至中—细砂岩组成的、由粗变细的曲流河边滩或辫状河心滩砂体上部的沉积特征。如由多个冲刷面、叠置的边滩或心滩与薄泥岩夹层组合在一起,因每个叠置砂体的粒级及含泥量的韵律性变化,可使钟形曲线多次叠加而呈宏观的圣诞树形; ②光滑箱型:自然伽马曲线形态呈箱状,它反映沉积过程中物源丰富和水动力条件较强。砂岩层顶、底均为突变接触。根据箱型曲线是否齿化,可进一步分为光滑箱型和锯齿状箱型两种曲线形态。光滑箱型自然伽马曲线光滑或微齿化,内部结构较均匀,岩性较单一,无粉砂或泥岩夹层,曲线底部呈突变关系,顶部突变或略显正韵律变化特征,反映物源充足、强而稳定的水动力特征,在本区多是由含砾粗砂岩和中—粗粒砂岩组成的具有多韵律叠置的辫状河心滩沉积特征; ③锯齿状箱型:与上面的光滑箱型非常相似,自然伽马曲线齿化,岩性组合通常是有多个向上变细的正旋回组成,内部结构不均匀,可能发育有多个泥岩夹层,反映了水动力条件强但不稳定、强弱平凡交替的特征,在本区指示了由中—粗粒砂岩或中—细粒砂岩组成的多韵律叠置辫状河心滩和河道充填沉积特征; ④漏斗型:自然伽马曲线形态呈漏斗状,反映沉积环境的能量从弱到强,然后突然变弱的变化特征。岩性主要为反韵律的薄层砂岩、粉砂岩、泥岩互层,对应砂体厚度小(2m左右),砂体顶部与泥岩突变接触,底部与泥岩渐变接触,砂岩主要发育于上部,反映突发性的洪水流溢岸沉积,如决口扇和决口河道,多个决口扇的连续发育可形成叠置漏斗型曲线。 ⑤指型曲线:自然伽马曲线形态呈指状,曲线幅度高,表明物源少而沉积环境能量强。岩性一般为细—中砂岩,厚度一般小于2m,与上下泥岩突变接触,是决口扇和决口河道的典型曲线特征。 ⑥锯齿型曲线:为锯齿状起伏的高伽玛值曲线,反映大套泥岩和粉砂质泥岩,其齿形为碳质、砂质以及钙质成分的反映,一般为河漫亚相泛滥平原沉积;

关于测井技术应用与发展探讨

关于测井技术应用与发展探讨 随着石油勘探开发的需要,测井技术发展已愈来愈迅速,高分辨阵列感应、三分量感应和正交偶极声波等新型成像测井仪为研究地层各向异性提供了强有力的手段;新的测井仪器,如电阻率、新型脉冲中子类测井仪、电缆地层测试及永久监测等现代测井技术可以在井中确定地层参数,精细描述油藏动态变化;随钻测井系列也不断增加。通过介绍测井技术的测量原理和部分仪器结构,寻求我国测井技术的差距和不足,这对于我国当前的科研和生产具有指导和借鉴作用。 标签:测井技术地质测试 根据地质和地球物理条件,合理地选用综合测井方法,可以详细研究钻孔地质剖面、探测有用矿产、详细提供计算储量所必需的数据,如油层的有效厚度、孔隙度、含油气饱和度和渗透率等,以及研究钻孔技术情况等任务。此外,井中磁测、井中激发激化、井中无线电波透视和重力测井等方法还可以发现和研究钻孔附近的盲矿体。测井方法在石油、煤、金属与非金属矿产及水文地质、工程地质的钻孔中,都得到广泛的应用。特别在油气田、煤田及水文地质勘探工作中,已成为不可缺少的勘探方法之一[1]。应用测井方法可以减少钻井取心工作量,提高勘探速度,降低勘探成本。在油田有时把测井称为矿场地球物理勘探、油矿地球物理或地球物理测井。按照传统的观点,测井技术在油气勘探与开发中,仅仅对油气层做些储层储集性能和含油气性能(孔隙度、渗透率、含油气饱和度和油水的可动性)定量或半定量的评价工作,这已远远跟不上油气工业迅猛发展的需要。而当今测井工作中评价油气藏的理论、方法技术有了长足的发展,解决地质问题的领域也在逐步扩大。 1电阻率测井技术 电阻率成像测井把由岩性、物性变化以及裂缝、孔洞、层理等引起的电阻率的变化转化为伪色度,直观看到地层的岩性及几何界面的变化,识别岩性、孔洞、裂缝等。电阻率成像有FMI、AIT及ARI等。斯伦贝谢的FMI有四个臂,每个臂上有一个主极板和一个折页极板,主极板与折页极板阵列电极间的垂直距离为5.7in,8个极板上共有192个传感器,都是由直径为0.16in的金属纽扣外加0.24in的绝缘环组成,有利于信号聚焦,使得钮扣电极的分辨率达0.2in,测量时极板被推靠在井壁岩石上,小电极主要反映井壁附近地层的微电阻率。斯伦贝谢或阿特拉斯的AIT是基于DOLL几何因子的电磁感应原理,通过对单一发射线圈供三种不同频率交流使其在周围的介质中产生电磁场,用共用一个发射线圈的8对接收线圈检测感应电流,从而可以求出介质的电导率。ARI是斯伦贝谢基于侧向测井技术推出的,可以有效的进行薄层、裂缝、储层饱和度等地层评价。长庆近年来均采用四米电阻率测井系。主要用于定性划分岩石类型和判定砂岩的含油、含水性能。 2声波测井技术

测井地质学读书报告

测井地质学——读书报告测井沉积学方面的研究或应用 组长:师凯歌 201302030233 组员:钟寿康 201302030208 杨燕茹 201302010107 朱晨蔚 201302010107 陈佳作 201532020018 王雅萍 20153202014 2016.4.20

一、绪论 1、问题的提出以及必要性 随着地球物理勘探—测井的不断发展,我们对于测井资料的解释,不能局限于单井或者单一岩层的局部层面上,我们更应该做出区域性、多层岩层关联性的地质解释。这种要求的出现,使得研究人员将测井知识和地质中的沉积相知识联系起来,把两门学科从原理层面上结合起来,于是产生了测井沉积这一边缘性学科研究课题。 随着人们对这个问题研究程度的不断深入,我们对于测井资料的解释变得更加具有宏观性,使得测井资料解释而来的地质数据回归到地质体系中,这将使得测井在油气勘探中的应用提升到区域层面上来,如此看来,这一问题的研究变得十分必要。 2、学科的产生 做为这一学科的主体—沉积相,我们必须首先认识它,沉积相是指古代沉积的产物,它是根据沉积环境或沉积作用加以定义的岩石体或沉积物特征的组合。沉积相的识别必须从两个层面上来进行:第一,宏观层面:相与相之间的组合。根据沃尔索相律:“只有横向上成因相近且紧密相邻而发育着的相,才能在垂向上依次叠覆出现而没有间断”。这一规律指导了在沉积相分析过程中进行沉积相的平面组合。第二,局部层面:岩石组合(类型及结构)、沉积构造(冲刷面、层理类型、纹层

组系产状及其垂向变化)、垂向序列变化关系(正粒序、反粒序、复合粒序、无粒序)、古水流、古生物特征、地球化学特征等几个方面。 在了解沉积相的知识以后,如何解决两门学科的联系成为关键。我们必须认识到测井沉积学的本体—沉积相的识别,然后利用两门学科的关联性,将测井“嫁接”到沉积相这门学科的知识体系中。因此产生了一个新的名词—测井相。测井相是由法国地质学家O.SERRA于1979年提出的。它是一组测井响应集合,它代表一定的地质相,并能将其它相体相区分。测井相又称电相。 二、测井相 1、测井相的定义 测井相的提出,目的在于利用测井资料(即数据集)来评价或解释沉积相。测井相是“表征地层特征,并且可以使该地层与其它地层区别

测井新技术进展综述

测井技术作为认识和识别油气层的重要手段,是石油十大学科之一。现代测井是当代石油工业中技术含量最多的产业部门之一,测井学是测井学科的理论基础,发展测井的前沿技术必须要有测井学科作指导。 二十一世纪,测井技术要在石油与天然气工业的三个领域寻求发展和提供服务:开发测井技术、海洋测井技术和天然气测井技术。目前,测井技术已经取得了“三个突破、两个进展”,测井技术的三个突破是:成像测井技术、核磁测井技术、随钻测井技术。测井技术的两个进展是:组件式地层动态测试器技术、测井解释工作站技术。“三个突破、两个进展”代表了目前世界测井技术的发展方向。为了赶超世界先进水平,我国也要开展“三个突破、两个进展” 的研究。 一、对测井技术的需求 目前我国油气资源发展对测井关键技术的需求主要有如下三个方面:复杂地质条件的需求、油气开采的需求、工程上的需求。 1)复杂地质条件的需求我国石油储量近90%来自陆相沉积为主的砂岩油藏,天然气储量大部分来自非砂岩气藏,地质条件十分复杂。油田总体规模小,储层条件差,类型多,岩性复杂,储层非均质性严重,物性变化大,薄层、薄互层及低孔低渗储层普遍存在。这些迫切需要深探测、高分辩率的测井仪器和方法,开发有针对性、适应性强的配套测井技术。 2)油气开采的需求目前国内注水开发的储量已占可采储量的90%以上,受注水影响的产量已占总产量的80%,综合含水85%以上。油田经多年注水后,地下油气层岩性、物性、含油(水)性、电声特性等都发生了较大的变化,识别水淹层、确定剩余油饱和度及其分布、多相流监测、计算剩余油(气)层产量等方面的要求十分迫切。 3)工程上的需求钻井地质导向、地层压力预测、地应力分析、固井质量检测、套管损坏检测、酸化压裂等增产激励措施效果检测等都需要新的测量方法。 二、测井技术现状 我国国内测井技术发展措施及道路主要有两条:一方面走引进、改造和仿制的路子;另一方面进行自主研究和开发。下面分别总结一下我国测井技术各个部分的现状: 1)勘探井测井技术现状测井装备以MAXIS-500、ECLIPS-5700及EXCELL-2000系统为主;常规探井测井以高度集成化的组合测井平台为主;数据采集主要以国产数控测井装备为主;测井数据的应用从油气勘探发展到油气藏综合描述。 2)套管井测井技术现状目前,套管和油管内所使用的测井方法主要有:微差井温、噪声测井、放射性示踪,连续转子流量计、集流式和水平转子流量计,流体识别、流体采样,井径测量、电磁测井、声测井径和套管电位,井眼声波电视、套管接箍、脉冲回声水泥结胶、径向微差井温、脉冲中子俘获、补偿中子,氯测井,伽马射线、自然伽马能谱、次生伽马能谱、声波、地层测试器等测井方法。测井结果的准确性取决于测井工艺水平、仪器的质量和科技人员对客观影响因素的校正。测井数据的应用发展到生产动态监测和工程问题整体描述与解决。 3)生产测井资料解释现状为了获得油藏描述和油藏动态监测准确的资料,许多公司都把生产测井资料和其它科学技术资料综合起来。不仅测得流体的流动剖面.而且要搞清流体流入特征,因此,生产测井资料将成为油藏描述和油藏动态监测最重要的基础。生产测井技术中一项最新的发展是产能测井,它建立了油藏分析与生产测井资料的关系。产能测井表明,生产流动剖面是评价完井效果的重要手段。产能测井曲线是裸眼井测井资料、地层压力数据、产液参数资料、射孔方案和井下套管设计方案的综合解释结果,其根本目的就是利用油层参数预测井眼流动剖面。生产测井流量剖面成为整个油层评价和动态监测的一个重要方法。 4)随钻测量及其地层评价的进展随钻测井(LWD)是随大斜度井、水平井以及海上钻井而发展起来的,在短短的十几年时间里,已成为日趋成熟的技术了。如今随钻测井已经拥有了

《测井地质学》第三章 井壁成像12

第三章 井壁成像测井方法及地质解释

提纲1.仪器概况2.主要处理方法3.实验研究 4.图像处理方法5.地质应用

公司斯仑贝谢阿特拉斯哈里伯顿系统MAXIS-500ECLIPS-5700EXCELL-2000 井下仪器全井眼微电阻扫描成像仪 (FMI) 阵列感应成像仪(AIT) 方位电阻率成像仪(ARI) 超声成像仪(USI) 偶极子横波成像仪(DSI) 阵列地震成像仪(ASI) 组合地震成像仪(CSI) 声电组合成像测井 (START IMAGER) 多极阵列声波(MAC) 数字井周成像(CBIL) 核磁共振成像(MRFL.C) 微电阻成像(EMI) 声波扫描成像 (CACI) 成像测井系统及仪器

1、井壁成像测井的测量原理 ?微电阻率成像测井的测量原理及性能ùFMI的测量原理 ùFMI的测量方式 ù电阻率成像测井的技术指标 ?声波成像测井原理及性能指标 ùCAST工作原理 ù声波成像测井仪的技术指标

1.1 微电阻率成像测井的测量原理及性能 目前,电阻率成像共有三种测井系列,它们分 别是斯仑贝谢的FMI、哈里伯顿的EMI、阿特拉斯的STAR-Ⅱ。其测量原理相同,只是电极个数有差 异,对井眼的覆盖率有所不同,现仅以FMI为例介 绍电阻率成像的测量原理。

FMI的测量原理图1为FMI仪 器及极板部分的示 意图,FMI有八个 极板,每个极板有 两排24 个电极, 八个极板共计192 个电极,测量过程 中八个极板推靠至 井壁,192个电极 同时测量,每个电 极可测得所在处井 壁视电阻率值。随 着仪器上提可测得 全井段的数据,经 过一系列处理,即 可获得测量井段纵 向上的微电阻率扫 描图像。

测井沉积学

测井沉积相分析 报告人:师永民 中国石油勘探开发研究院 西北分院

一、概论 二、测井划相的基本原理 三、岩电关系研究 四、测井曲线要素分析 五、测井曲线相模式 六、单井划相 七、平面相带组合

1、测井沉积相的基本概念 “测井相”或“电相”(Electrofacies)是在1970年提出来的,它是指能反映某一沉积物特征,并能使这个沉积物与其它沉积物区别开的一组测井响应(参数)。 测井沉积相研究就是应用各种测井信息来研究沉积环境和沉积物的岩石特征。 沉积相由特定的相标志表示,而测井相是由特定的测井响应代表。 测井相与沉积相相当,不同的沉积相因其成分、结构、构造等不同而造成测井响应不同,一组反映岩石的测井曲线就构成了该地质相的映象,测井系统愈完善,反映实际地质相的映象就愈好。 但是,两者并不都是一一对应的,可能有两个或更多个电相对应一个沉积相,也可能一个电相对应几个沉积相。 因此,必须用已知沉积相对电相进行标定。

2、工作方法 首先,在取心井中用一系列测井曲线或参数划分为若干种“测井相”;将这些测井相与岩心分析所得到的“岩相”进行相关对比,利用测井信息可以归纳为不同类型及相互关系的曲线组合类型,建立测井曲线相模式;然后,反过来在没有取芯井中用测井资料进行沉积相分析,从而进行正确的地质解释和恢复沉积环境,确定相标志,推断水体深度,搬运介质能量、沉积物粗细、物源供应、气候条件等标志。

3、研究特点: 1)、利用高密度井网资料进行单元划分与对比,以目的层顶标准层拉平恢复古地貌,作连井沉积剖面图,绘制单砂体平面等厚图,进行古地貌、水系展布及砂体形态分析。 2)、依靠大量的测井曲线所能反映的沉积层序、旋回特性、砂层韵律性、岩性组合、接触关系以及砂体几何形态等特征为细分沉积相的主要指标,解剖单砂体,进行沉积微相划分。 3)、现代沉积研究,搞清井间砂体分布特征,作为准确划分相带界线和砂体尖灭位置的主要依据。 4)、在岩相划分上,从岩心资料上所能获得的划相指标的应用与常规方法相同。重点加强储层微观非均质性研究。

构造地质学学科(专业)

构造地质学学科(专业) 攻读硕士学位研究生培养方案 一、培养目标 构造地质学学科是地球科学领域中的基础学科,培养的硕士研究生应在德、智、体诸方面全面发展,具有创业精神和创新能力、从事科学研究、工程技术及管理的高级专门人才,以适应社会主义现代化建设的需要。具体要求如下: 1、努力学习马列主义、毛泽东思想和邓小平理论,拥护中国共产党,拥护社会主义,具有高度的精神文明和较高的综合素质,遵纪守法,品行端正,作风正派,服从组织分配,愿为社会主义经济建设服务。 2、在本门学科内掌握坚实的地质基础理论、系统的构造地质学知识和野外室内工作方法;必要的实验技能和较熟练运用计算机的能力;了解本学科专业发展现状和动向;掌握一门外国语,能熟练地进行专业阅读并能撰写论文摘要;具有从事本学科领域内科学研究、大学教学或独立担负专门技术工作的能力,具有较强的综合能力,包括创新能力、分析问题与解决问题的能力、语言表达能力及写作能力,具有实事求是,严谨的科学作风。 3、坚持体育锻炼,具有健康的体魄。 二、学习年限 硕士研究生的学习年限为2-3年,课程学习和学位论文的时间各占一半。 硕士生应在规定学习期限内完成培养计划要求的课程学习和学位论文工作。若提前完成培养计划,经院校学位委员会审查,学校批准,可进行论文答辩毕业,通过者获得理学硕士学位。 三、研究方向 根据新的形势和要求,结合本学科专业当前发展的方向,可设置出学科、专业的研究方向。矿产普查与勘探学科共设置下列3个研究方向。 1、石油构造分析 2、板块构造与沉积盆地 3、变形分析与应用构造 四、课程设置 课程设置包括学位课、选修课和实践课,课程总学分为35或以上。学位课为必修课,含公共课、专业基础课,学分不低于21学分;选修课不低于12学分;实践课为必修课,含专业实践、社会实践和教学实践,学分为2学分。 理科硕士生选修数学课程的总学分不少于5学分,其中学位课中数学课等于或大于2学分;外语课总学分为6学分,提倡加强更多的外语课,通过考试取得相应学分,但不计入35学分内。 (一)学位课8门(共21学分) (1)公共学位课3门,10学分 包括自然辩证法、科学社会主义理论与实践和第一外国语。 (2)专业学位课5门,11学分 本学科点的专业学位课包括地质统计学、面向对象程序设计、数理统计与随机过程、含油气盆地分析、石油勘探构造分析。 (二)选修课18门(34.5学分) 选修课由指导教师和研究生根据专业培养方案的要求,根据研究方向的需要,以及研究生原有的基础和特长,爱好共同确定,给研究生留有充分的自学时间和选修的灵活性,鼓励研究生跨学科、跨专业选修课程,以拓宽研究生知识面,培养他们的适应能力,但所选课程学分不低于12学分。 在导师指导下研究生应阅读60篇以上的中、外文文献资料,且外文资料比例应占三分之一以上,并做到有检查,有考核。 选修课包括第二外国语和体育课,二者均不计学分。

测井方法及应用

测井方法及应用

什么是测井测井技术的发展 石油地球物理测井是一门应用性的边缘科学,是应用地球物 理学(包括重、磁、电、震、测井)的一个分支,它用物理 学的原理解决地质学的问题。 所谓测井,就是用一些专门的仪器设备放入井中对地层的某一 方面特性(电化学特性、导电特性、声学特性、放射性等) 进行测量,结合钻井资料、录井和地质等资料,分析、确定地层的 地质特性和各种地质参数,寻找地下的油气资源,解决油气田勘探、 开发过程中的具体问题,例如分析地层的岩性、沉积相、沉积环境、 地层的地质构造,以及油、气、水的分布规律,油气层水淹情况及 状态,储集层性能评价、油气藏描述、以及固井、试油等工程作业。 同时,测井资料也为固井、试油、开发方案编制及进一步的各种措 施提供依据。 可以说测井资料是一种重要的地质信息。

测井资料的主要应用测井技术的发展 在油气勘探开发中,测井资料的应用主要包括以下三个方面: 1、地层评价:主要内容有岩性分析、计算储层参数、储层综合评价、划分油、气、水层并评价产能。 2、油矿地质:编制钻井地质综合柱状图、岩芯归位、地层对比;研究地层、构造、断层及沉积相;研究油气藏和油气水分布规律,计算储量,制定开发方案。 3、钻井、采油工程: 在钻井工程中,测井斜方位和井径等几何形态的变化、估计地层孔隙流体压力和岩石的破裂压力梯度,确定下套管深度和水泥上返高度,计算平均井径,检查固井质量。 在采油工程中,测量生产剖面和吸水剖面,确定水淹层位、压力枯竭层位、出水层位、出砂层位、窜槽层位,检查射孔质量和酸化压裂效果。

测井技术的发展我国测井技术的发展现状 一、测井仪器的发展 60年代以来,我国测井仪器经历了五次更新换代,即:半自动 模拟测井仪、全自动模拟测井仪(60-70年代)、数字测井仪 (80年代初期)、数控测井仪(80年代中期)和成像测井仪(90 年代末期)。 通过测量仪器不断的更新换代,提高测量仪器的稳定性和一致 性,提高测量精度;通过提高采集数据量和计算机处理能力来获取 更多的地质信息。目前,测井技术正向着多学科相互渗透的综合评 价方向发展。

测井地质学作业

测井地质学作业 2012级硕士孔强夫 测井与遥感技术研究所 2013.6.5

预备知识: 1.测井曲线幅度特征 测井曲线幅度受地层的岩性、厚度、流体性质等因素控制,可以反映出沉积物粒度、分选性及泥质含量等。一般对于颗粒细、渗透性好的砂岩,具有高自然电位(SP)负异常和低自然伽马GR特征。对于细粒沉积物,如泥岩、泥质粉砂岩等具有低SP幅度、高GR特征。在实际应用过程中应针对不同地区的地质、地下流体性质等情况,在岩心观察基础上建立适应本地区的岩性与测井信息之间的联系。 2.测井曲线形态特征 不同的沉积环境,由于物源情况不同、水动力条件不同及水深不同,必然造成沉积物组合形式和层序特征(正旋回、反旋回、块状)的不同,反映在测井曲线上就是不同的测井曲线形态。一般有: (1)柱形(箱形)。反映沉积过程中物源供应丰富、水动力条件稳定下的快速堆积,或环境稳定的沉积。 (2)钟形。测井曲线下部最大,往上越来越小,反映在其沉积过程中,水流能量逐渐减弱、物源供应越来越少。 (3)漏斗形。与钟形相反,垂向上呈水退的反粒序,反映水动力能量逐渐加强和物源供应越来越丰富的沉积环境。 (4)复合形。表示由两种或两种以上的曲线形态组合,如下部为柱形,上部为钟形或漏斗形组成,表示一种水动力环境向另一种环境的变化。 4.齿中线 齿中线分水平、上倾、和下倾三类。当测井曲线齿的形态一致时,齿中线相互平行,反映沉积时水动力能量变化呈周期性;当测井曲线齿的形态不一致时,齿中线将相交,反映不同的沉积环境。 5.层序特征测井解释 每一种沉积亚相、微相的测井曲线形状的变化都可以反映其粒序序列变化,通常用反映岩性、粒序变化的自然伽马(GR)、自然电位(SP)的形态组合来反映每一种沉积亚相、微相的层序特征,因而通常有四种粒序模型: (1)正粒序模型:一般为钟形,即自然伽马向上逐渐增大,而自然电位为自下而上由高负偏向低负偏甚至基线附近变化。 (2)反粒序模型:对应于漏斗形测井曲线,即自然伽马向上逐渐减小,而自然电位自下而上由基线或低负偏向高负偏变化。 (3)复合粒序模型:对应于复合形态的测井曲线,即由两个或两个以上钟形、漏斗形自然电位和自然伽马曲线连续变化组成。 (4)无粒序模型:对应于箱形或平直测井曲线,即自然电位及自然伽马曲线形状自下而上不变或只是微齿化。 将各种粒序模型对应于各种沉积亚相、微相中,针对沉积学研究中沉积层序成旋回分布的颗粒大小、岩性粗细变化在测井曲线上的不同反映,可以总结出各种沉积亚相、微相得层序变化曲线形态组合特征。

测井地质学 知识点

第二章测井层序地层分析 第二节层序地层单元及其测井特征 一、基本术语:体系域、低位域、海侵域、高位域、陆架边缘体系域等 二、体系域 1.类型:低位域、海侵域、高位域、陆架边缘体系域 2.低位域:陆棚坡折和深水盆地沉积背景、斜坡构造背景、生长断层背景下的低位域组成 3.海侵域:以沉积作用缓慢、低砂泥比值,一个或多个退积型准层序组为特征、主要沉积体系类型 4.高位域:沉积物供给速率常>可容空间增加的速率,形成了向盆内进积的一个或多个准层序组,底部以下超面为界,顶部以Ⅰ型或Ⅱ型层序界面为界特征;主要沉积体系类型 5.陆架边缘体系域:以一个或多个微弱前积到加积准层序组为特征,准层序组朝陆地方向上超到Ⅱ型层序边界之上,朝盆地方向下超到Ⅱ层序边界之上。 三、湖平面变化与层序结构 1.湖平面变化与体系域 2.层序结构类型及特征:一分层序、二分层序、三分层序、四分层序 第三节测井地层地层分析方法 一、基本术语:基准面、基准面旋回、分形 二、一般工作流程 1.测井—地震—生物等时地层格架建立 2.关键层序界面识别 3.研究区测井—地质岩相知识库的建立 4.关键井的岩相识别、重建岩相序列 5.建立多井关键性剖面 6.预测油气分布 三、单井测井层序分析方法 1.测井资料预处理

2.沉积旋回分析:旋回性及旋回级次是沉积岩层重要的固有属性;旋回 级次分析:常规测井旋回分析、小波分析和地层累积方法等 3.沉积间断点识别:地层倾角测井--累计倾角交会图法、地层倾角测井-- 累积水平位移交汇图法、地层倾角测井--倾角矢量图法、自然电位和 视电阻率组合法、声波时差响应法等 四、米氏周期分析及分形研究 五、沉积层序的分形特征研究 1.分形的概念 2.地质学运用分形理论需要考虑的问题 3.分数维的计算 4.分数维的应用 第三章测井沉积学研究 第一节测井沉积学概念 一、基本概念:测井相、测井相标志 二、测井相分析的基本原理 三、测井相标志与地质相标志的关系:确定岩石组分的测井相标志、判断沉积 结构的测井相标志、判断沉积构造的测井相标志 四、由测井相到沉积相的逻辑模型 第二节岩石组合及层序的测井解释模型 一、测井曲线的一般特征 1.常规组合测井曲线:测井曲线幅度特征、测井曲线形态特征、接触关 系、曲线光滑程度、齿中线、多层的幅度组合--包络线形态、层序的 形态组合特征 2.地层倾角测井的微电导率曲线特征:从曲线形态和曲线的相似性判断 岩性—颗粒粗细,进行微细旋回的划分;根据四条电导率曲线特征值 的平行度,可以衡量平行及非平行层理;利用倾角矢量模式解释沉积 构造,研究古水流方向;根据倾角矢量模式组合解释褶皱、断层、不 整合;利用倾角测井曲线识别裂缝;利用双井径差值分析现代地应力二、层序特征测井解释模型

石油测井技术的发展现状与趋势

石油测井技术的发展现状与趋势 随着我国经济的不断发展,人们的生活水平也得到了前所未有的改善,与此同时。人们在日常生活中对能源的需求也逐年增加,所以就对石油的开采提出了更高的要求,各大小石油企业的年采油量也在逐年增加,在进行试油开采前对油气藏进行测井就显得尤为重要,可见加大对测井技术的研究对石油的开采具有重要的作用,因此对石油测井技术的研究具有重要的现实意义,文章从石油测井技术的发展现状出发,对石油测井技术的发展趋势做了有关论述,旨在为做好石油测井技术提供参考。 标签:石油开采;测井技术;发展现状;发展趋势 引言 石油资源作为一种重要的能源和战略物资,对一个国家的经济发展和国家安全起着非常重要的作用。中华人民共和国成立以后,中国开始发展石油工业,经过60年的发展,石油行业取得了很大的成就,已经成为国民经济的重要支柱,在中国经济发展和社会建设做出了巨大的贡献。做为石油开采的必要环节,测井技术在整个石油开采过程中占有重要的作用,不进行石油测井就无法确定油气藏的具体含量和位置,从而不能完场石油开采的后续工作,可见要想实现石油开采的高效运行,就必须加大对石油测井技术的应用。 1 石油测井技术的发展现状 目前我国的石油测井技术已经比较先进,然而在一些特殊地形,一些测井技术仍然存在许多不足,下面就对目前几种常见的测井技术做有关的论述。 1.1 随钻测井技术 随钻测井技术是测井仪器直接安装在近距离和位置,测量钻孔形成各种各样的信息,隨钻测井可以测量随钻地层倾角和方位角,扭矩,钻井方向定向钻井方向控制。可以测量,电阻率和声波时差就钻地层,密度等各方面的参数,实时监测井筒和地层的信息,然后根据这些信息来评估形成,然后在此基础上评估地质目标和跟踪,调整和优化实现钻井和正确的指导方向。 1.2 成像测井技术 成像测井技术是使用电脑来处理测量结果,它显示的图像形式,该技术的井下设备采集有效数据速率,并有大量的信息和高分辨率。例如,方位电阻率成像测井、测井技术属于斯伦贝谢公司,19厘米薄层的含油饱和度可以定量判断,可以进行区分形成的异质性,火层岩石断裂油气藏勘探和有很大的作用。又如斯伦贝谢公司隶属于同一阵列感应成像测井,有一英尺的分辨率,可以有效识别的厚层非均质性。

相关主题
文本预览
相关文档 最新文档