当前位置:文档之家› 人脸识别综述(模式识别论文)

人脸识别综述(模式识别论文)

人脸识别综述(模式识别论文)
人脸识别综述(模式识别论文)

人脸识别技术综述

控制工程陈龙斌12013002342

摘要:简要介绍了人脸识别技术的研究背景及其发展历程;对人脸识别技术的常用方法进行了分类总结;重点对近年来人脸识别方法的研究进展进行综述并对各种方法加以评价;总结了现阶段存在的研究困难并提出今后的发展方向。

关键词:人脸识别;人脸检测;人脸定位;特征提取

1 引言

随着计算机和生物医学工程技术迅速发展,利用生物特征来鉴别个人身份成为安全验证首选方式,具有普遍性、安全性、唯一性、稳定性等。可选的生物特征包括生理特征(如人脸、指纹、虹膜掌纹等)或行为特征(如笔迹、语音、步态等)。人脸识别技术是一种最友好的生物识别技术(非接触、非侵犯),它结合了图像处理、计算机图形学、模式识别、可视化技术、人体生理学、认知科学和心理学等多个研究领域。人脸识别应用领域:身份鉴定、身份确认、视频监控、面部数据压缩。从二十世纪六十年代末至今,人脸识别算法技术的发展共经历了如下四个阶段:

1.基于简单背景的人脸识别

人脸识别研究的初级阶段。利用人脸器官的局部特征来描述人脸。但由于人脸器官没有显著的边缘且易受到表情的影响,因此它仅限于正面人脸(变形较小)的识别。

2.基于多姿态/表情的人脸识别

人脸识别研究的发展阶段。探索能够在一定程度上适应人脸的姿态和表情变化的识别方法,以满足人脸识别技术在实际应用中的客观需求。

3.动态跟踪人脸识别

人脸识别研究的实用化阶段。通过采集视频序列来获得比静态图像更丰富的信息,达到较好的识别效果,同时适应更广阔的应用需求。

4.三维人脸识别

为了获得更多的特征信息,直接利用二维人脸图像合成三维人脸模型进行识别,即将成为该领域的一个主要研究方向。

人脸识别系统,是指不需要人为干预,能够自动获取人脸图像并且辨别出其身份的系统。包括:数据采集、人脸检测与跟踪、人脸识别这三个子系统。目前国内比较成熟的人脸识系统有:1.中科奥森人脸识别系统 2.南京理工的人脸识别系统3.深圳康贝尔人脸识别系统

人脸识别技术的研究范围主要包括以下几个方面:

1. 人脸检测:在输入的图像中寻找人脸区域。

2. 人脸的规范化:校正人脸在尺度、光照和旋转等方面的变化。

3. 特征提取:从人脸图像中映射提取一组能反映人脸特征的数值表示样本。

4. 特征匹配:将待识别人脸与数据库中的已知人脸比较,得出相关信息。

5. 表情/姿态分析:让计算机感知表情变化,分析理解人的情绪。

6. 生理分类:对人脸生理特征分析,得出性别、年龄、种族等信息。

人脸识别流程

人脸识别的技术难点在于:1. 复杂条件下人脸检测和关键点定位 2. 光照变化 3. 姿态 4. 表情 5. 遮挡 6. 年龄 7. 低质量照片 8.大规模人脸识别 9. 样本缺乏 10.海量数据学习.11 信息采集设备带来的问题

2 图像预处理

人脸图像获取设备有照相机、摄像机、扫描仪等。包括静态图像和动态图像。常见格式有BMP 、GIF 、JPEG 、TIFF 、PSD 、PNG 、SWF 、SVG 等。

常用的图像预处理方法有灰度化、二值化、几何校正、直方图修正、滤波、锐化、像素平均法等。

2.1 图像去噪

一般来说,自然界中的噪声可以看成是一种随机信号。根据图像获取的途径不同,噪声的融入也有多种方式:

1. 图像是直接以数字形式获取的,那么图像数据的获取机制会不可避免地人脸图像获取 人脸检测 定位人脸区域

预处理

特征抽取

人脸特征 对比识别 结果 人脸特征库

引入噪声信号;

2.在图像采集过程中,物体和采集装置的相对运动。或采集装置的抖动,

也会引入噪声,使图像变的模糊不清;

3.在图像数据的电子传输过程中,也不同程度的引入噪声信号。

这些噪声信号的存在,严重的情况会直接导致整幅图像的不清晰,图象中的景物和背景的混乱。对于用于人脸识别的图像。由于噪声的引入,将不可避免地造成识别率的下降。对图像噪声的消除可以通过两个途径:空间域滤波或频率域滤波。消除噪声的方法很多,对于不同的噪声应该采用不同的除噪方法。主要的方法是:线性滤波、中值滤波、维纳滤波以及小波去噪等。

2.2 增强对比度

为了使人脸在图像中更为突出以便于下一步的特征提取,增强图像对比度是很有必要的。增强对比度有很多种方法,常见的有直方图均衡化和“S”形变换等方法。

“S”形变换方法将灰度值处于某一范围(人脸特征范围)内的像素灰度分布差距拉开,从而保证了对比度的提高,但此方法降低了其他灰度值的对比度。而直方图均衡化则是将像素的灰度分布尽量展开在所有可能的灰度取值上,这样的方法同样能使得图像的对比度提高。

将彩色图像转化成灰度图像是人脸识别方法中常见的处理过程,虽然转化过程丢失了一部分色彩信息,但是灰度图像拥有更小的存储空间和更快的计算速度。文献[1]给出了一种能够将RGB色彩转换成灰度级且适于突出人脸区域对比

度的转换模型:()5.0

=b

?

g

+

f;其中f代表灰度值,

?

x

y

r

144

+

587

.0

299

.0

?

,+

.0

r,g,b分别表示Red,Green,Blue分量的值。

文献[2]通过将人脸彩色图像从RGB色彩空间转换到RIQ色彩空间,得到了更适于频谱分析的特征分量。

2.3 二值化

图像经过灰度变换后仍然是比较复杂的,因此需要将多层次的灰度图像进行简化。二值化就是一个很好的选择。对于分析理解图像特征和识别图像大有裨益。原理就是通过一些算法,设定黑白二色的阈值,将图像中的像素颜色均转换为黑白二值,“1”表示黑色,“0”表示白色,这种图像称之为二值图像,便于特征提取。

2.4 锐化

使用梯度微分锐化图像时,会使噪声、条纹等得到增强。但是Soble算子引入了平均因素,对图像中的随机噪声有一定的平滑作用;不过由于它算法的特殊性会产生边缘粗而亮的不良后果。Sobel边缘检测算子使用一个水平的有向算子和一个垂直的有向算子,每一个逼近一个特定的偏导数矩阵。按照特定算法求这两个偏导矩阵的几何平均值,然后将该平均值赋给待求点的灰度值。

3 人脸检测与定位

人脸自动识别系统包括两个主要技术环节:人脸检测与定位和特征提取与人脸识别。从人脸自动识别技术所依据的理论来讲,人脸检测与人脸识别都是模式识别问题。人脸检测是把所有的人脸作为一个模式,而非人脸作为另一个模式,人脸检测的过程就是将人脸模式与非人脸模式区别开来。人脸识别是把每一个人的人脸作为一个模式来对待,不同人的脸属于不同的模式类,人脸识别的过程是将属于不同人的脸归于各自的模式。换句话说,人脸检测强调的是人脸之间的共性,而人脸识别则要区分不同人脸之间的差异,二者同属于模式分类问题。

人脸检测与定位是指检测图像中是否有人脸,若有,将其从背景中分割出来,并确定其在图像中的位置。主要方法有:

3.1基于模板的方法

第一步建立一个标准的人脸模板,需要包含人脸的各个局部特征。第二步对全面检查输入图像,计算与标准人脸模板中各局部特征的相似系数,与之前设定的阀值比较,判定是否存在人脸。

(1)固定模板匹配法:根据先验知识确定一个人脸检测模版。该模版包含人脸轮廓以及五官模型,计算样本图像区域与模板中人脸轮廓的相似性来徐略确定人脸大致区域,接着通过检测该区域中是否含有五官模型中要求的要素,如果有就可以判定该区域就是人脸区域。由于很难用一个通用的人脸模版来模拟出所有脸型,而且人的面部特征变化很大,致使这种方法很有局限性,目前该方法只作为粗检的手段。

(2)变形范本法:考虑到人脸是可变形体,该方法通过非线性最优化方法求得一个参数模板,该模版如果能使能量函数最小,那么它就能描述所求参数特征。该方法稳定可靠,而且与姿态和光照无关,但是能量函数的系数适应的范围不广而且计算量过大。该方法比较成熟,实现起来比较简单,但是效率并不高。

3.2基于特征的方法

人脸模式的变化满足一定的规律,所以可以归纳描述人脸特征的规则,如灰度分布、比例关系、纹理信息等。

该方法首先检测出人脸面部特征的位置,然后根据各特征之间的几何关系来定位人脸。主要有以下两种方法:

基于器官特征的方法:该方法首先提取五官的图像特征。该特征可以用几何、灰度、空间等来描述。然后通过五官位置和相互之间几何关系来检测人脸。虽然每个人脸都不同,但是可以用轮廓规则、五官分布规则。对称性规则、运动规则来制定人脸判定规则。

基于肤色的方法:人脸肤色在颜色空间上的分布相对集中,而且与图片中其他部分是基本不重合的。当表情变化或者面部转动时,肤色并不会变,在人脸检测时有很强的稳定性。用肤色信息检测人脸时,要选择合理的色度坐标。通常的做法是将彩色的R、G、B分量归一化以便突出色度信息。相比于亮度而言,人对色度更加敏感。所以Y Cb Cr这样一个色差模型更符合人类视觉特点。其中,Y是亮度信号,Cr Cb是色度信号。虽然基于肤色的方法不够准确,但是能够简单快速地定位人脸

3.3基于外观学习的方法---目前的主流方法

这是一种学习型的方法。将人脸检测视为区分“非人脸样本”与“人脸样本”的模式识别问题,通过对大量人脸样本集和非人脸样本集的学习、训练产生建立起一个能正确识别人脸样本的分类器。然后扫描整个待检测图像,用分类器判别是否包含人脸。有很多种不同策略的分类器,如下所示:

(1)隐马尔科夫模型:描述信号统计特性。其过程是一个双重随机过程。特征序列与状态序列之间的并没有严格的一一对应关系。这种模型对于状态序列来说是隐的。因为外界只能看到各个时刻的输出值,看不到其中复杂过程。

(2)支持向量机:兼顾模型的复杂性和学习能力,寻找一个平衡点。对有限样本的情况下非常适用。通过构造风险最小的分类面来解决一个受限二次规划问题。

(3)人工神经网络:是一种模仿大脑神经突触联接的结构进行信息处理的数学模型。边训练边测试,并把在错误结果作为“反面教材”,进一步修正分类器。预先将足够量“正、反”图像样本和其识别结果输入网络,通过训练它就能识别类似的图像是否包含人脸。但是想要获得期望的性能,调整网络结构参数的工作量很大。

3.4 Ada boost 方法

该方法中文意思是自适应性提升算法,是一种应用了迭代思想的机器学习方法。Viola于2001年开创性地将其应用到人脸检测方面,并且融合了积分图和级联分类器于其中。其核心思想是使大量弱分类器联合成为一个强分类器。虽然该方法源于PAC学习模型,但是并不过多地关注弱学习算法的先验知识,而是经过若干次迭代自适应地降低弱学习的错误率。每次用样本集训练后,重新确定每个样本的权重。将新的数据集交给下层分类器继续训练。作为最终决策分类器的

是历次训练得到的分类器的级联。既保证了效率又兼顾了检测正确率。

Haar 特征和积分图像密切相关,计算量较小应用于Ada boost 算法中用来描述人脸面部灰度特征可以提升特征提取速度。将样本图像中的Haar 特征提取出来后,需要通过训练,选出最优的Haar 特征转换成弱分类器,最后将弱分类器级联后用于人脸检测。

3.4.1 Haar 特征

该特征其实就是矩形特征。它虽然仅能描述水平、垂直、中心环绕型的特征比较粗略但是对于边缘、线段等简单图形结构很敏感。在给定数据有限时,也能将特定区域的状态编码出来,并且检测速度上比基于像素的系统优异得多。

对于检测器来说一副图像内的矩形特征数量是很大的,比如24乘24的检测器特征数量已经达到了160000个。此时只有选出合适的矩形特征组成的强分类器才能较好的检测出人脸。

由多个全等的黑色或白色相邻矩形组合成的模版,其特征值用所有白色和黑色矩形的像素总差值来定义。该特征模版包含有:边缘特征、线性特征、和特定方向特征,如下图3-1所示。要对弱分类器进行训练,就要找出在子窗口中特征模板的所有形态。

图3-1 特征模版分类

眼睛和鼻子的颜色和周围的灰度有区别,鼻梁两侧和鼻尖的灰度也是有差异的。所以可以得到如下图3-2和下图3-3所示的矩形特征和人脸特征的匹配。

图3-2 特征匹配

图3-3 特征匹配

3.4.2积分图

特征数量很多导致特征计算的工作量很大,采用积分图可以有效地简化计算。对原始图像中的每个像素进行少量类比于微积分的简单计算就能得到积分图像。其主要思想是:预先将图像各特定矩形区域像素之和保存到内存中的某个数组中,当需要该值时,直接从数组中取出即可,不用再重新计算。积分图在多种尺度下计算不同特征时,所耗的时间是一样的,有效地降低了计算量。

图3-4 矩形区域

3.4.3积分图

单个弱分类器并不能直接拿来供分类使用,所以要将其优化组合成强分类器,这样就能大大提高对人脸的检测能力。如果再将多个强分类器级联起来,对人脸的检测能力将会再次飞跃。Ada boost 算法引入了一种类瀑布型的级联分类器,如图3-5所示。在该分类器中,一级比一级复杂严格。随着系统级数的增加非人脸图像通过率大为降低,但是同时也可能会造成人脸图像被错误地排除掉。所以该系统的设计原则如下:在保证人脸图像通过的前提下,尽可能地抑制非人脸图像的通过。

所有子窗口

图像强分类器1强分类器2强分类器N

检测为人脸

的图像被拒绝的子窗口图像

T

F F F

图3-5瀑布型级联分类器

3.4.4 训练检测过程及其优化

训练:

虽然每一个Haar特征都有一个弱分类器与之对应,但是并不是每一个都能很好的表征人脸的灰度分布。因此训练过程中要解决的中心问题就是如何选取最优Haar特征制成分类器。

在选取训练样本的时候,考虑到人脸是具有多种形态的,所以必须选取具有

一定代表性的多个样本。选取的样本,人脸姿态要尽量一致,样本大小也应该统一。待检测图像的分辨率应该在19乘19以上。人脸数据库可参考MIT---CBCL 库,该库有10个人的3200张训练图片以及大量测试图片。训练过程如下:(1)从图像中提取出Haar特征,常用的5种特征如图3-1所示

(2)用获得特征生成弱分类器

(3)用多次迭代的方法找出最优的弱分类器并提高其权重

检测:

分类器在训练过程中所使用的样本大小在很大程度上决定了其所能处理的对象的大小。实际中图片中的人脸大小是各不相同的,因此要引入多尺度检测机制。目前有两种办法:

(1)在变换分类器尺度同时改变其阀值

(2)对图像用不同尺度抽样。

虽然第一种方法实现起来比较复杂,但是计算量小检测速度较快。

检测步骤如下:

(1)将待测图像变换为灰度图像

(2)得出积分图像

(3)将不同尺度下的检测结果合并

(4)将合并后的结果再输出

优化:

虽然Ada boost 系统检测速度比较高,但是其本身训练比较耗时。而且对有一定倾斜角度的人脸存在检测盲区。可以从以下两个方面进行优化:(1)在训练过程中将新的矩形特征模版引入弱分类器的模版当中,如图3-6所示

(2)在检测过程中引入肤色检测和光照补偿

图3-6 新的矩形模版

4 特征提取与人脸识别

特征提取之前一般需要做几何归一化和灰度归一化的工作。前者是指根据人脸定位的结果将图像中的人脸区域调整到同一位置和大小;后者是指对图像进行光照补偿等处理,以克服光照变化的影响。

提取出待识别的人脸特征之后,即可进行特征匹配。这个过程是一对多或一对一的匹配过程,前者是确定输入图像为图像库中的哪一个人,后者是验证输入图像的人的身份是否属实。

以上两个环节的独立性很强。在许多特定场合下人脸的检测与定位相对比较容易,因此,特征提取与人脸识别环节得到了更广泛和深入的研究。

4.1 人脸特征提取

人脸特征提取是人脸识别中的核心步骤,直接影响识别精度。由于人脸是多维弹性体,易受表情、光照等因素影响,提取特征的困难较大。特征提取的任务就是针对这些干扰因素,提取出具有稳定性、有效性的信息用于识别。

人脸特征是识别的重要依据之一。检测定位过程中也会用到人脸特征。其中统计特征和灰度特征是在人脸定位和特征提取过程中常用到的两类特征:

a) 统计特征

统计特征即用统计的方法对目标对象的肤色、光照变化等因素建模。基于肤色特征的识别方法简单且能够快速定位人脸[1]。人脸肤色不依赖于细节特征且和大多背景色相区别。但肤色的确定对光照和图像采集设备特性较敏感。不同的光照下脸部色彩复杂。这给统一建模造成了一定难度。该方法通常作为其他统计模型的辅助方法使用,适于粗定位或对运行时间有较高要求的应用。

文献[1]使用人脸灰度图像的水平和垂直方向的像素灰度均值来描述人脸特征。通过分别对灰度图像各行和各列中的像素灰度值进行求和,获得水平方向与垂直方向的灰度均值轮廓,以此来描述人脸特征。

b) 灰度特征

灰度特征包括轮廓特征、灰度分布特征(直方图特征、镶嵌图特征等)、结构特征、模板特征等。由于人脸五官位置相对固定,灰度分布呈一定规律性,因此,可利用灰度特征来进行人脸识别。通常采用统计的方法或特征空间变换的方法进行灰度特征的提取,如利用K-L变换得到的特征脸,利用小波变换得到的小波特征等[2][3][4]。

文献[2]使用傅立叶变换得到人脸图片的频域信息,通过选取适当的遮盖模板,提取其中的频谱信息来描述人脸的特征。实验证明该方法对光照和表情/姿态的变化有一定的容忍力。

文献[4]使用小波变换的方法在小波域通过多分辨率分析克服光照和面部表情对人脸识别的影响,获得了较好的识别效果。

4.2 人脸特征提取常用方法

近年来对人脸特征提取的研究主要集中在三个方面:

1.几何特征点的提取;

2.变换域中的特征提取;

3.利用变形模板进行特征提取。

特征提取方法归纳起来分为两类:基于局部特征的提取方法和基于整体特征的提取方法。

基于局部特征的人脸面部表情识别是利用每个人的面部特征(眉毛、眼睛、鼻子、嘴巴和面部轮廓等)的位置、大小及其相互位置的不同进行特征提取,达到

人脸面部表情识别的目的。基于人脸整体特征的提取是从整个人脸图像出发,通过加强反映整体特征来实现人脸面部表情识别。

对比两种方法,基于局部特征的方法很大程度上减少了输入的数据,但是用有限的特征点来代表人脸图像,一些重要的表情识别和分类信息就会丢失。基于人脸整体特征提取在计算量和计算时间上都多于局部特征提取,而且系统设计也相对复杂。

此外,还可以通过多种方法综合利用来进行特征提取。

4.2.1 模板匹配方法

模板匹配方法是模式识别的传统方法,其思想是:库中存储着已知人脸的若干模板。识别的时候,将经过预处理的输入图像与库中的所有模板采用归一化相关度量进行匹配识别,来达到分类的目的,完成人脸的识别。由于这种方法要求两幅图像上的目标要有相同的尺度、取向和光照条件,所以预处理要做尺度归一化和灰度归一化的工作。上述为静态模板匹配,但是它存在着对不同表情的人脸鲁棒性差的缺点,针对这一情况,人们提出了弹性模板匹配。

弹性模板匹配是根据待检测人脸特征的形状信息(通常利用小波特征)。定义一个参数描述的形状模型,该模型的参数反映了对应特征形状的可变部分,如位置、大小、角度等,它们最终通过模型与图像的边缘、峰、谷和灰度分布特性的动态地交互适应来得以修正。由于模板变形利用了特征区域的全局信息,因此可以较好地检测出相应的特征形状。弹性模板匹配的方法在一定程度上容忍光线等的干扰,对细微的表情不敏感。而且弹性匹配中的人脸模型还考虑了局部人脸细节,它的可变形匹配方式,一定程度上能容忍人脸从三维到二维投影引起的变形。

4.2.2 几何特征方法

基于几何特征的人脸识别方法将人脸用一个几何特征矢量表示,用模式识别中的层次聚类思想设计分类器来对人脸进行识别。流程大体如下:首先检测出面部特征点,通过测量这些关键点之间的相对距离,得到描述每个脸的特征矢量,比如眼睛、鼻子和嘴的位置和宽度,眉毛的厚度和弯曲程度等,以及这些特征之间的关系。比较未知脸和库中已知脸中的这些特征矢量,来决定最佳匹配。

基于几何特征的识别方法具有如下优点:①符合人类识别人脸的机理,易于理解;②对每幅图像只需存储一个特征矢量,存储量小;③对光照变化不太敏感。

该方法同样也有其缺点:①从图像中抽取稳定的特征比较困难,特别是在特征受到遮挡时;②对强烈的表情变化和姿态变化的鲁棒性较差;③一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息丢失,更适合于粗分类。

文献[3]使用人脸部下巴的轮廓曲线来辅助检测人脸特征,然后使用Gabor 小波变换(GWT)进行人脸识别,获得了较理想的实验结果。

4.2.3 特征脸方法

该方法是从主成分分析(PCA)导出的一种人脸识别和描述技术。其主要思想是,一副由N个象素组成的图像,可以看作N维矢量,或是N维空间中的一点。假设人脸图像只占据这个高维图像空间的一个很小的子区域,因此可以利用PCA 来得到一个人脸图像的优化坐标系统。即是对这个人脸子区域的坐标进行降维,使得每个人脸图像可以用很少几个参数来表示,这就降低了计算复杂度。特征脸方法在应用中是比较成功的。

4.2.4 神经网络方法

神经网络是利用大量简单处理单元(神经元)互联构成的复杂系统来解决识别问题。它在正面人脸识别中取得了较好的效果。常用的神经网络有BP(反向传播)网络、自组织网络、卷积网络、径向基函数网络和模糊神经网络。BP网络运算量相对较小,耗时较短。其自适应功能有助于增强系统的鲁棒性。

神经网络在人脸识别上有独到的优势。通过学习获得其他方法难以获得的关于人脸识别规律和规则的隐性表达。但其运算量大、训练时间长、收敛速度慢、容易陷入局部最小。人工神经网络由于其固有的并行运算机制以及对模式的分布式全局存储,故可用于模式识别,而且不受模式形变影响。用于人脸识别的神经网络方法可训练有较强噪声和部分缺损的图像,这种非线性方法有时比线性方法更有效。

4.2.5 隐马尔可夫模型方法

利用隐马尔可夫模型(Hidden Markov Model,HMM),将人脸图像按某种顺

序划分为若干块,对各块进行K-L变换,选取前若干变换系数作为观测向量训练HMM。HMM有3个主要问题:评估、估计及解码。我们关心的是前两个问题。评估用于解决识别问题,估计用来产生用于识别的各个单元的HMM。

Samaria等人首先将一维隐马尔可夫模型(1D-HMM)用于人脸识别,并对不同状态数模型的识别性能进行了详细比较和分析。根据人脸由上至下各特征区具有自然不变的顺序。可用1D-HMM表示人脸。脸上的特征区被指定为状态,即从上到下为人脸图像进行一维连续HMM建模。

伪二维隐马尔可夫模型(P2D-HMM)是1D-HMM的一种扩展。P2D-HMM利用了图像的二维特征,不但能表现人脸垂直方向的空间结构,还能表现水平方向从左至右的空间结构。更适合于人脸图像识别。但是P2D-HMM结构较复杂,运算量很大。

4.2.6 弹性图匹配方法

弹性图匹配法(Elastic Graph Matching)是一种基于动态链接结构(Dynamic Link Architecture,DLA)的方法。该方法在二维空间中为人脸建立属性拓图,把拓扑图放置在人脸上,每一节点包含一特征向量,它记录了人脸在该顶点附近的分布信息,节点间的拓扑连接关系用几何距离来标记,从而构成基于二维拓扑图的人脸描述[11]。

利用该方法进行人脸识别时,可同时考虑节点特征向量匹配和相对几何位置匹配。在待识别人脸图像上扫描拓扑图结构并提取相应节点特征向量,把不同位置的拓扑图和库中人脸模式的拓扑图之间的距离作为相似性度量。此外,可用一个能量函数来评价待识别人脸图像向量场和库中己知人脸向量场间的匹配度,即最小能量函数时的匹配。该方法对光照、姿态变化等具有较好的适应性。该方法的主要缺点是计算量较大。必须对每个存储的人脸计算其模型图,占用很大存储空间。

文献[11]使用了广义弹性图匹配的人脸识别方法,在适应人脸的姿态及表情变化方面获得了较好的实验效果。

4.2.7 支持向量机(SVM)方法

近年来,支持向量机是统计模式识别领域的一个新的热点,它试图使得学习机在经验风险和泛化能力上达到一种妥协,从而提高学习机的性能。支持向量机主要解决的是一个2分类问题,它的基本思想是试图把一个低维的线性不可分的问题转化为一个高维的线性可分的问题。实验结果表明支持向量机有较好的识别率。

4.3 基于视频序列的方法

相对于单个静止图像,视频序列能提供更多的信息,如:同一人的大量图像可供使用;可以根据运动变化估计3D人脸结构;可以用于补偿光照、姿态、表情等变化;视频序列的时间连续性和识别对象身份的一致性为人脸识别提供信息;可以从低分辨率图像恢复出高分辨率图像;可以根据眼球的运动、姿态的变化等进行身份识别以防止基于静态图像的欺骗等。这类方法一般是基于视频序列的空间轨迹或概率模型进行匹配识别,因而具有更好的鲁棒性。

视频序列中人脸识别有两部分工作:

第一,人脸检测和跟踪,即从视频图像序列中确定是否存在人脸并对其准确定位和保持跟踪状态;

第二,人脸识别,识别视频中脸像身份。

视频系列中人脸的识别一般有两种方案:

1.从视频序列中选择几帧质量较好的图像,然后用静止图像的人脸识别方

法进行匹配;

2.对所有跟踪帧应用识别方法识别,不断调整识别概率。

视频序列中人脸识别面临如下挑战:视频图像质量较差、视频图像分辨率较低以及外界各种不确定因素的影响等。

超分辨率图像技术被广泛应用于基于视频序列的人脸识别方法之中[5][6]。通过在视频序列中提取连续的多帧图像,经过图像重建,可以得到解析度高于输入视频序列图像的单幅高解析度复原图像。这种方法有助于克服视频人脸识别在实际应用中视频图像质量较差的问题。

4.4 基于三维的方法

把人脸当作平面图像来看待就是二维识别问题,将人脸用立体图像来表示,就是三维识别问题[9][10]。三维人脸的研究始于计算机动画和生物医学成像。采用三维识别与传统的方法最大的区别就在于,人脸的信息可以更好的表现和存储,同时由于三维人脸模型具备光照无关性和姿态无关性的特点,能够正确反映脸的基本特性。而且人脸主要的三维拓扑结构不受表情的影响,从而形成相对稳定的人脸特征表述。因此基于三维人脸模型的识别方法可以很好地解决目前在这一领域存在的研究瓶颈。

三维人脸识别主要有基于图像特征的方法和基于模型可变参数的方法。基于图像特征的方法实现的过程类似人脸重建的方法:首先匹配人脸整体的尺寸轮廓和三维空间方向;然后,在保持姿态固定的情况下,去作脸部不同特征点的局部匹配。也可以用一个精确的透视模型估计姿态参数,同时利用一个稀疏特征集合去插值和提炼其余的脸部结构。基于模型可变参数的方法使用将通用人脸模型的3D变形和基于距离映射的矩阵迭代最小相结合,去恢复头部姿态和3D人脸。随着模型形变的关联关系的改变不断更新姿态参数,重复此过程直到最小化尺度达到要求。

基于模型可变参数的方法与基于图像特征的方法的最大区别在于:后者在人脸姿态每变化一次后,需要重新搜索特征点的坐标,而前者只需调整3D变形模型的参数。

文献[9]通过融合2D和3D人脸数据,获得了比使用单一数据信息进行人脸识别更好的识别效果。该方法对光照和表情、姿态的变化均有较好的鲁棒性。

目前三维人脸识别算法还很不成熟,主要面临如下困难:

1.信息来源方面的困难:用于3D识别的完整信息难于获取,或者用于3D识

别的信息往往是不完整的,这造成了识别算法本身不可纠正的错误。

2.海量存储和计算量庞大:由于3D识别的数据容量和计算量十分巨大,给存

储和运算带来困难,也对计算机的硬件提出了更高要求。

3.对人的生理认识的不足:对于生物生理学和生物心理学等相关学科的认知水

平制约了计算机的算法实现,比如:对于肌肉的运动理论和表情的形成等问题,不能提供给计算机足够的专家支持。

4.受到环境和条件的约束:影响二维识别的不利因素在三维识别上同样存在。

比如:光线、方向、遮盖、阴影背景等。

5 结论

人脸图像受到很多因素的影响,比如:光照条件、姿态、背景、面部表情以及附属物等。这些因素的变化,都会导致人脸图像的明显不同,目前还没有有效的识别算法能够完全解决这些因素的影响。很多识别算法都是对光照条件、姿态等因素进行约束化简。在上述因素中,主要的影响来自于光照条件和姿态的变化。

为了消除它们对识别效果的影响,通常的做法是扩大样本空间,收集各种光照和姿态下的样本,识别判断时考虑测试图像与各种条件下样本的差异,然后进行综合分类。一种克服光照影响的做法是通过使用不同的采集源,如热红外(IR)图像,以实现在暗光环境下的人脸识别,或用来消弱不同角度光照对人脸图像的影响[7][8]。对于姿态的影响,可以利用弹性图匹配的方法,跟踪面部关键特征点的变化,估计姿态参数;或使用3D变形模型来匹配面部表情的变化。

总体来说,光照和姿态变化仍是人脸识别所面临的重大挑战,特别是当两种因素混在一起时。目前看来,弹性图匹配方法、特征脸方法和3D人脸建模是解决当下实际问题的较为行之有效的方法,将会得到更加深入的研究。

从模式识别到人脸识别

一般到特殊,归纳与演绎,理论与实践

应用模式识别的基本原则到人脸识别中去:从人脸模式的先验知识、具体情

选择、应用、尝试、比较PR领域的基本方法,最终解决人脸识别这个具体问题。

在实践中验证PR,在理论上回报PR:验证PR中的基本原理和技术方法,发现其可能的问题并修改之。总结归纳人脸识别中出现的共性PR问题及其可能的解决方案,以充实、弥补作为一门分支学科的模式识别。

人脸识别是模式识别的一个典型案例,它为模式识别问题研究提供了一个良好的实验平台,所以,众多模式识别的知名专家、学者都在从事人脸识别的研究!

关于传感器与预处理

传感器:客观世界模式的测量问题

人脸:数字化为2D图像?3D形状?红外温谱?

分辨率、精度、灵敏度、失真度等等

真实性?稳定性?

预处理:保证数据的纯洁度

模式识别理论基本不关心这两项内容,而在应用上,是必须作为重要内容来考虑的,否则可能根本就是不可解的问题!

关于特征表示问题

关于特征提取与分类器:理想的特征提取过程可使得后续的分类器设计成为小菜一碟,万能的分类器似乎也应该使得设计者不必刻意设计特征提取过程!

没有万能的分类器!甚至没有所谓最好的分类器,不同的分类器有不同的适

用范围!但对具体问题,可能会有最适合的特征表示方法,而不同的特征表示也需要采用不同的分类器。

关于数据问题

Math is king, data is queen!

在基于统计学习的模式识别问题中,采用什么样的数据、多少数据往往决定了问题的成败,而不是采用了什么样的学习算法。

目标不同:模式识别研究的是有了特定属性数据之后如何设计“对所有可能的情况”最优的分类器,而应用上却要考虑“为了解决某个特定识别问题”如何去选择数据?

只为了识别中国人,需要把外国人的数据拿来训练吗?

为了识别正楷文字,需要把行书也拿来训练吗?

但是,在理论上却有另一个问题…

关于泛化能力

对于没有训练学习过的模式样本的识别能力。

只用中国人训练的模型能否识别老外?异族人脸识别困难现象。

婴儿:“独眼龙”不是人?

在实践中,也许想办法加入更多的有代表性的训练样本更能解决问题,而不是去设计更复杂的分类器或者学习机。

充分利用手头样本:AdaBoost,Bagging等等。

小结

对一般方法的掌握程度

对特定问题的理解程度

应用中需要更多的关注:

传感器的选择,比如什么样的摄像机?

预处理:如何去除各种干扰因素?

特征表示问题:什么是本质的类别特征?

为了解决某一应用问题,选择什么样的数据训练分类器?

参考文献

[1] Weihua Wang, WeiFu Wang. A Gray-Scale Face Recognition Approach[J]. 2008 Second

International Symposium on Intelligent Information Technology Application, 2008, 395~398 [2] Zhiming Liu, Chengjun Liu. A Hybrid Color and Frequency Features Method For Face

Recognition[J]. IEEE Transactions on Image Processing, 2008, v17, n10, 1975~1980

[3] Jiann-Shu Lee, Kai-Yang Huang, Sho-Tsung Kao, Seng-Fong Lin. Face Recognition by

Integrating Chin Outline[J]. 2008 Fourth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2008, 567~571

[4] A.Abbas, M.I.Khalil, S.Abdel-Hay, H.M.Fahmy. Expression and illumination invariant

preprocessing technique for face recognition[J]. 2008 International Conference on Computer Engineering & Systems (ICCES '08), 2008, 59~64

[5] Zhifei Wang, Zhenjiang Miao. Feature-based super-resolution for face recognition[J]. 2008

IEEE International Conference on Multimedia and Expo (ICME), 2008, 1569~1572

[6] Frederick W.Wheeler, Xiaoming Liu, Peter H.Tu. Multi-frame super-resolution for face

recognition[J]. 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems - BTAS '07, 2007, 250~255

[7] D.A.Socolinsky, L.B.Wolff, A.J.Lundberg. Face recognition in low-light environments using

fusion of thermal infrared and intensified imagery[J]. Proceedings of the SPIE - The International Society for Optical Engineering, 2006, v6206, p620622-1-12

[8] Kong, S.G.1; Jingu Heo; Boughorbel, F.; Yue Zheng; Abidi, B.R.; Koschan, A.; Mingzhong

Yi; Abidi, M.A.. Multiscale fusion of visible and thermal IR images for illumination-invariant face recognition[J]. International Journal of Computer Vision, 2007, v71, n2, 215~233

[9] G.P.Kusuma, Chin-Seng Chua. Image level fusion method for multimodal 2D + 3D face

recognition[J]. Image Analysis and Recognition. 5th International Conference, ICIAR 2008, 2008, 984~992

[10] Al-Osaimi, F.1; Bennamoun, M.1; Mian, A.1. An expression deformation approach to

non-rigid 3D face recognition[J]. International Journal of Computer Vision, 2009, v81, n3, 302~316

[11] Hochul Shin, Seong-Dae Kim, Hae-Chul Choi. Generalized elastic graph matching for face

recognition[J]. Pattern Recognition Letters, 2007, v28, n9, 1077~1082

NMF综述报告

人脸识别的非负矩阵分解(NMF)方法文献综述 摘要:人类对整体的感知是基于对部分的感知,NMF(非负矩阵分解,Non-negative matrix factorization)的思想正是源于此。通过对矩阵分解因子加入了非负性约束,使得对高维非负原始数据矩阵的分解结果不存在负值,且具有一定的稀疏性,因而得到了相对低维、纯加性、拥有一定稀疏特性的分解结果。与PCA(主成分分析,principal components analysis)等传统人脸识别方法相比,NMF的基图像就是人脸的各个局部特征,并且通过对经典算法的一系列优化,改进的NMF算法的识别率和鲁棒性较传统方法有着显著优势。此外,NMF在机器学习、语义理解等领域也有着重要应用。 关键词:非负矩阵分解(NMF)稀疏性改进的NMF 语义理解 一、引言 在实际中的许多数据都具有非负性,而现实中对数据的处理又要求数据的低秩性经典的数据处理方法一般不能够确保非负性的要求,如何找到一个非负的低秩矩阵来近似原数据矩阵成为一个关键问题。在这样的背景下,NMF方法应运而生。 NMF方法思想最早可以追溯到由Paatero和Tapper在1994年提出的正矩阵分解(Positive Matrix Factorization,PMF)[1];此后1999年,Lee和Seung提出了一个以广义KL散度为优化目标函数的基本NMF模型算法,并将其应用于人脸图像表示[2];2001年,Lee和Seung通过对基本NMF算法进行深入研究,又提出了两个经典的NMF算法,即基于欧氏距离测度的乘性迭代算法和基于广义KL散度的乘性迭代算法,并给出了收敛性证明[3],这两种算法称为NMF方法的基准算法,广泛应用于各个领域。 但是在实际应用中,由于经典的基准NMF算法存在收敛速度较慢,未利用统计特征,对光线、遮挡等敏感,以及无法进行增量学习等问题,各种改进的NMF算法被提出。其中包括Lin提出的基于投影梯度(Projected Gradient,PG)的NMF方法[3],该方法有着很高的分解精度;Berry提出的基于投影非负最小二乘(Projected Non-negative Least Square,PNLS)的NMF方法[5],通过这种方法得到的基矩阵的稀疏性、正交性叫基准NMF方法都更好;此外还有牛顿类方法[6]和基于有效集[7]的NMF方法等。 二、NMF的基准算法 1.NMF模型 给定一个非负矩阵(即),和一个正整数,求未知非负矩阵和,使得 用表示逼近误差矩阵。可以用下图表示该过程:

DX3004模式识别与人工智能--教学大纲概要

《模式识别与人工智能》课程教学大纲 一、课程基本信息 课程代码:DX3004 课程名称:模式识别与人工智能 课程性质:选修课 课程类别:专业与专业方向课程 适用专业:电气信息类专业 总学时: 64 学时 总学分: 4 学分 先修课程:MATLAB程序设计;数据结构;数字信号处理;概率论与数理统计 后续课程:语音处理技术;数字图像处理 课程简介: 模式识别与人工智能是60年代迅速发展起来的一门学科,属于信息,控制和系统科学的范畴。模式识别就是利用计算机对某些物理现象进行分类,在错误概率最小的条件下,使识别的结果尽量与事物相符。模式识别技术主要分为两大类:基于决策理论的统计模式识别和基于形式语言理论的句法模式识别。模式识别的原理和方法在医学、军事等众多领域应用十分广泛。本课程着重讲述模式识别的基本概念,基本方法和算法原理,注重理论与实践紧密结合,通过大量实例讲述如何将所学知识运用到实际应用之中去,避免引用过多的、繁琐的数学推导。这门课的教学目的是让学生掌握统计模式识别基本原理和方法,使学生具有初步综合利用数学知识深入研究有关信息领域问题的能力。 选用教材: 《模式识别》第二版,边肇祺,张学工等编著[M],北京:清华大学出版社,1999; 参考书目: [1] 《模式识别导论》,齐敏,李大健,郝重阳编著[M]. 北京:清华大学出版社,2009; [2] 《人工智能基础》,蔡自兴,蒙祖强[M]. 北京:高等教育出版社,2005; [3] 《模式识别》,汪增福编著[M]. 安徽:中国科学技术大学出版社,2010; 二、课程总目标 本课程为计算机应用技术专业本科生的专业选修课。通过本课程的学习,要求重点掌握统计模式识别的基本理论和应用。掌握统计模式识别方法中的特征提取和分类决策。掌握特征提取和选择的准则和算法,掌握监督学习的原理以及分类器的设计方法。基本掌握非监督模式识别方法。了解应用人工神经网络和模糊理论的模式识别方法。了解模式识别的应用和系统设计。要求学生掌握本课程的基本理论和方法并能在解决实际问题时得到有效地运用,同时为开发研究新的模式识别的理论和方法打下基础。 三、课程教学内容与基本要求 1、教学内容: (1)模式识别与人工智能基本知识; (2)贝叶斯决策理论; (3)概率密度函数的估计; (4)线性判别函数; (5)非线性胖别函数;

北邮模式识别课堂作业答案(参考)

第一次课堂作业 1.人在识别事物时是否可以避免错识 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅 到的到底是真是的,还是虚假的 3.如果不是,那么你依靠的是什么呢用学术语言该如何表示。 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率 评价分类器性能。如果不采用统计学,你是否能想到还有什么合理地分类 器性能评价指标来替代错误率 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算 . 从不同事物所具有的不同属性为出发点认识事物. 一种是对事物的属性进行度量,属于定量的表示方法(向量表示法 )。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题,如”天气预报”),说明: 先验概率、后验概率和类条件概率 按照最小错误率如何决策 按照最小风险如何决策 ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率: 指根据以往经验和分析得到的该老师点名的概率,即为先验概率 P(ωi ) 后验概率: 在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x

基于matlab人脸识别技术 开题报告

毕业设计(论文)开题报告 毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2500字以上的文献综述,文后应列出所查阅的文献资料。 基于matlab人脸识别技术的实现 文献综述 一、MATLAB概述 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。MATLAB主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。而在本文中主要用到的功能是图像处理功能。 二、BP神经网络概述 人工神经网络(Artificial Neural Net works,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 人工神经网络发展的主要历程有:20世纪50年代末,Rosenblatt提出的感知器模型和Widrow提出的自适应线性元件,出现了简单的线性分类器;1986年,Rumelhart和Mcllelland 提出了层网络“误差反向传播算法(BP)”,使有导师学习多层感知器网络(ML PN)模式分类器走向实用化,在此基础上又派生出若干前向网络,如径向基函数网络( RBFN)和函数链网络等;1982年,美国加州工学院的物理学家Hopfield提出的一种用于联想记忆和优化计算的反馈网络模型,由于引进了“能量函数” 的概念,使网络走向具体电路有了保证;20世纪70年代,Watanabe 提出了使用模式子空间的概念来设计不同类别对应的子空间,由不同类别聚类的子空间实现模式识别; Kohonen提出的自组织特征映射网络模型等都为神经网络模式识别理论提供了进一步的根据。 构成人工神经网络的三个基本要素是:神经元、络拓扑结构和网络的训练(学习)方法。神经元(节点)的作用是把若干输入加权求和,并对这种加权和进行非线性处理后输出。神经元的选择一般有以下特点:每个神经元都具有多个输入、个输出,具有闭值,采用非线性函数。 1、神经元

模式识别研究进展-刘成林and谭铁牛

模式识别研究进展 刘成林,谭铁牛 中国科学院自动化研究所 模式识别国家重点实验室 北京中关村东路95号 摘要 自20世纪60年代以来,模式识别的理论与方法研究及在工程中的实际应用取得了很大的进展。本文先简要回顾模式识别领域的发展历史和主要方法的演变,然后围绕模式分类这个模式识别的核心问题,就概率密度估计、特征选择和变换、分类器设计几个方面介绍近年来理论和方法研究的主要进展,最后简要分析将来的发展趋势。 1. 前言 模式识别(Pattern Recognition)是对感知信号(图像、视频、声音等)进行分析,对其中的物体对象或行为进行判别和解释的过程。模式识别能力普遍存在于人和动物的认知系统,是人和动物获取外部环境知识,并与环境进行交互的重要基础。我们现在所说的模式识别一般是指用机器实现模式识别过程,是人工智能领域的一个重要分支。早期的模式识别研究是与人工智能和机器学习密不可分的,如Rosenblatt的感知机[1]和Nilsson的学习机[2]就与这三个领域密切相关。后来,由于人工智能更关心符号信息和知识的推理,而模式识别更关心感知信息的处理,二者逐渐分离形成了不同的研究领域。介于模式识别和人工智能之间的机器学习在20世纪80年代以前也偏重于符号学习,后来人工神经网络重新受到重视,统计学习逐渐成为主流,与模式识别中的学习问题渐趋重合,重新拉近了模式识别与人工智能的距离。模式识别与机器学习的方法也被广泛用于感知信号以外的数据分析问题(如文本分析、商业数据分析、基因表达数据分析等),形成了数据挖掘领域。 模式分类是模式识别的主要任务和核心研究内容。分类器设计是在训练样本集合上进行优化(如使每一类样本的表达误差最小或使不同类别样本的分类误差最小)的过程,也就是一个机器学习过程。由于模式识别的对象是存在于感知信号中的物体和现象,它研究的内容还包括信号/图像/视频的处理、分割、形状和运动分析等,以及面向应用(如文字识别、语音识别、生物认证、医学图像分析、遥感图像分析等)的方法和系统研究。 本文简要回顾模式识别领域的发展历史和主要方法的演变,介绍模式识别理论方法研究的最新进展并分析未来的发展趋势。由于Jain等人的综述[3]已经全面介绍了2000年以前模式分类方面的进展,本文侧重于2000年以后的研究进展。

人脸识别文献综述

文献综述 1 引言 在计算机视觉和模式识别领域,人脸识别技术(Face Recognition Technology,简称FRT)是极具挑战性的课题之一。近年来,随着相关技术的飞速发展和实际需求的日益增长,它已逐渐引起越来越多研究人员的关注。人脸识别在许多领域有实际的和潜在的应用,在诸如证件检验、银行系统、军队安全、安全检查等方面都有相当广阔的应用前景。人脸识别技术用于司法领域,作为辅助手段,进行身份验证,罪犯识别等;用于商业领域,如银行信用卡的身份识别、安全识别系统等等。正是由于人脸识别有着广阔的应用前景,它才越来越成为当前模式识别和人工智能领域的一个研究热点。 虽然人类能够毫不费力的识别出人脸及其表情,但是人脸的机器自动识别仍然是一个高难度的课题。它牵涉到模式识别、图像处理及生理、心理等方面的诸多知识。与指纹、视网膜、虹膜、基因、声音等其他人体生物特征识别系统相比,人脸识别系统更加友好、直接,使用者也没有心理障碍。并且通过人脸的表情/姿态分析,还能获得其他识别系统难以获得的一些信息。 自动人脸识别可以表述为:对给定场景的静态或视频序列图像,利用人脸数据库验证、比对或指认校验场景中存在的人像,同时可以利用其他的间接信息,比如人种、年龄、性别、面部表情、语音等,以减小搜索范围提高识别效率。自上世纪90年代以来,人脸识别研究得到了长足发展,国内外许多知名的理工大学及TT公司都成立了专门的人脸识别研究组,相关的研究综述见文献[1-3]。 本文对近年来自动人脸识别研究进行了综述,分别从人脸识别涉及的理论,人脸检测与定位相关算法及人脸识别核心算法等方面进行了分类整理,并对具有典型意义的方法进行了较为详尽的分析对比。此外,本文还分析介绍了当前人脸识别的优势与困难。 2 人脸识别相关理论 图像是人们出生以来体验最丰富最重要的部分,图像可以以各种各样的形式出现,我们只有意识到不同种类图像的区别,才能更好的理解图像。要建立一套完整的人脸识别系统(Face Recognetion System,简称FRS),必然要综合运用以下几大学科领域的知识: 2.1 数字图像处理技术 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机

人工智能与模式识别

人工智能与模式识别 摘要:信息技术的飞速发展使得人工智能的应用围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。模式识别是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:模式识别;数字识别;人脸识别中图分类号; Abstract: The rapid development of information technology makes the application of artificial intelligence become more and more widely. Pattern recognition, as one of the important aspects, has always been an important direction of artificial intelligence research. In the introduction of artificial intelligence and pattern recognition related knowledge at the same time, artificial intelligence in pattern recognition applications were discussed.Pattern recognition is a basic human intelligence, the emergence of the 20th century, 40 years of computer and the rise of artificial intelligence in the 1950s, pattern recognition technology has made great progress. Pattern recognition and statistics, psychology,

模式识别论文

模式识别综述与应用 院系:计算机与通信工程学院 班级:电子信息10-01班 姓名: 学号:

模式识别综述与应用 摘要 模式识别就是研究用计算机实现人类的模式识别能力的一门学科,目的是利用计算机将对象进行分类。模式识别技术近年来得到了迅速的发展。 关键词 模式识别应用发展状况 前言 模式识别(Pattern Recognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。模式识别是一个多领域的交叉学科,它涉及人工智能、统计学、计算机科学、工程学、医学等众多的研究问题。随着2 0世纪4 0年代计算机的出现以及5 0年代人工智能的兴起,模式识别在2 0世纪6 0年代初迅速发展并成为一门新学科。 一、模式与模式识别的概念 广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)。 模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。 模式识别的研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家、神经生理学家的研究内容,属于认知科学的范畴;后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。 二、模式识别方法——统计模式识别方法和结构(句法)模式识别方法 把图像或图像系列分割为线条、边缘,结点,区域等并提供相应的特征,诸如灰度值、颜色、形状、纹理,深度等[5]。目的是要利用这些信息对模式进行分类或者对模式进行分析(描述)。分类是实现一个模式与

北邮模式识别课堂作业答案(参考)

第一次课堂作业 ? 1.人在识别事物时是否可以避免错识? ? 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅到的到底 是真是的,还是虚假的? ? 3.如果不是,那么你依靠的是什么呢?用学术语言该如何表示。 ? 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率评价分类 器性能。如果不采用统计学,你是否能想到还有什么合理地分类器性能评价指标来替代错误率? 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算.从不同事物所具有的不同属性为出发点认识事物.一种是对事物的属性进行度量,属于定量的表示方法(向量表示法)。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 ?作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题, 如”天气预报”),说明: ?先验概率、后验概率和类条件概率? ?按照最小错误率如何决策? ?按照最小风险如何决策? ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率:指根据以往经验和分析得到的该老师点名的概率,即为先验概率P(ωi ) 后验概率:在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x 2)计算条件风险

模式识别文献综述报告

指导老师:马丽 学号:700 班级: 075111 姓名:刘建 成绩: 目录 ............................................................ 一、报告内容要点............................................................ 二、《应用主成分分解(PCA)法的图像融合技术》............................................................ 三、《基于类内加权平均值的模块 PCA 算法》............................................................

四、《PCA-LDA 算法在性别鉴别中的应用》 ............................................................ 五、《一种面向数据学习的快速PCA算法》 ............................................................ 六、《Theory of fractional covariance matrix and its applications in PCA and 2D-PCA》 ............................................................ 七、课程心得体会 ............................................................ 八、参考文献 ............................................................ 一、报告内容要点 ①每篇论文主要使用什么算法实现什么 ②论文有没有对算法做出改进(为什么改进,原算法存在什么问题,改进方法是什么) ③论文中做了什么对比试验,实验结论是什么?可以加入自己的分析和想法,例如这篇论文还存在什么问题或者缺点,这篇论文所作出的改进策略是否好,你自己对算法有没有什么改进的想法? 二、《应用主成分分解(PCA)法的图像融合技术》 第一篇《应用主成分分解(PCA)法的图像融合技术》,作者主要是实现用PCA可以提取图像数据中主要成分这一特点,从元图像获得协方差矩阵的特征值和特征向量,据此确定图像融合算法中的加权系数和最终融合图像。 作者在图像融合的算法上进行改进,用PCA获得待融合的每幅图像的加权系数Wi。是这样实现的:计算待融合的i幅图像数据矩阵的协方差矩阵,从中获

人工智能中的模式识别

人工智能与模式识别 摘要:模式识别(Pattern Recognition)是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:人工智能模式识别模式识别的方法模式识别的应用模式识别的发展潜力 正文: 模式识别的定义是借助计算机,就人类对外部世界某一特定环境中的客体、过程和现象的识别功能(包括视觉、听觉、触觉、判断等)进行自动模拟的科学技术。随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。 模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数 值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种。二者的主要差别在于,各实验样本所属的类别是否预先已知。一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。 此外,模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。 模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。 模式识别与很多学科都有联系,它与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。 模式识别的方法主要有决策理论方法和句法方法,模式识别方法的选择取决于问题的性质。如果被识别的对象极为复杂,而且包含丰富的结构信息,一般采用句法方法;被识别对象不很复杂或不含明显的结构信息,一般采用决策理论方法。这两种方法不能截然分开,在句法方法中,基元本身就是用决策理论方法抽取的。在应用中,将这两种方法结合起来分别施加于不同的层次,常能收到较好的效果。 模式识别的应用非常广泛,比较典型的有:1 文字识别:在信息技术及计算机技术日益普及的今天,如何将文字方便、快速地输入到计算机中已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我过得到普及的应用。

模式识别作业2

作业一: 在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 答案:将10类问题可看作4类满足多类情况1的问题,可将3类单独满足多类情况1的类找出来,剩下的7类全部划到4类中剩下的一个子类中。再在此子类中,运用多类情况2的判别法则进行分类,此时需要7*(7-1)/2=21个判别函数。故共需要4+21=25个判别函数。 作业二: 一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 1.设这些函数是在多类情况1条件下确定的,绘出其判别界 面和每一个模式类别的区域。 2.设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。 3. 设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘 出其判别界面和每类的区域。 答案: 1

2

3 作业三: 两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 答案:如果它们是线性可分的,则至少需要4个系数分量;如果要建立二次的多项式判别函数,则至少需要10 25 C 个系数分量。 作业四: 用感知器算法求下列模式分类的解向量w :

ω1: {(0 0 0)T, (1 0 0)T, (1 0 1)T, (1 1 0)T} ω2: {(0 0 1)T, (0 1 1)T, (0 1 0)T, (1 1 1)T} 答案:将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x①=(0 0 0 1)T,x②=(1 0 0 1)T,x③=(1 0 1 1)T,x④=(1 1 0 1)T x⑤=(0 0 -1 -1)T,x⑥=(0 -1 -1 -1)T,x⑦=(0 -1 0 -1)T,x⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0)T 因w T(1)x①=(0 0 0 0)(0 0 0 1)T=0≯0,故w(2)=w(1)+x①=(0 0 0 1) 因w T(2)x②=(0 0 0 1)(1 0 0 1)T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T(3)x③=(0 0 0 1)(1 0 1 1)T=1>0,故w(4)=w(3)=(0 0 0 1)T 因w T(4)x④=(0 0 0 1)(1 1 0 1)T=1>0,故w(5)=w(4)=(0 0 0 1)T 因w T(5)x⑤=(0 0 0 1)(0 0 -1 -1)T=-1≯0,故w(6)=w(5)+x⑤=(0 0 -1 0)T 因w T(6)x⑥=(0 0 -1 0)(0 -1 -1 -1)T=1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T(7)x⑦=(0 0 -1 0)(0 -1 0 -1)T=0≯0,故w(8)=w(7)+x⑦=(0 -1 -1 -1)T 因w T(8)x⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T=3>0,故w(9)=w(8)=(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代:

关于模式识别应用发展的研究和分析

课程名称:中外文学术论文写作 姓名:周杉 学号:212012083500005 专业:软件工程 学院:数学与计算机学院 导师:黄襄念 成绩: 2013.5.23

关于模式识别应用发展的研究和分析 周杉 (西华大学数学与计算机学院图像处理与模式识别实验室成都610039) 摘要:自20世纪50年代以来,模式识别(Pattern Recognition)在人工智能兴起后不久就迅速发展成一门学科。它所研究的理论和方法在很多科学和技术领域得到广泛的重视,推动了人工智能系统的发展,扩大了计算机应用的可能性。本文主要讨论模式识别的一些基本概念和问题,以利于对模式识别的现状与未来的发展方向有更全面的了解。 关键词:模式识别人工智能信息科学 中图分类号:TP399 The Research and Analysis about the Development of Pattern Recognition Applications ZHOU Shan (Mathematics and Computer College of Xihua University, Image Processing and Pattern Recognition Laboratory,Chengdu,610039) Abstract:Since the1950s,pattern recognition shortly quickly developed after the rise of artificial intelligence into a discipline.It studies the theory and methods in many areas of science and technology which has received considerable attention,and it also promote the development of artificial intelligence systems,expanding the possibilities of computer applications.This article focuses on pattern recognition of some basic concepts and issues in order to getting more comprehensive understanding about facilitate pattern recognition status and future direction of development. Keywords:Pattern Recognition Artificial Intelligence Information Science 0引言 狗的嗅觉的灵敏度非常高,大约是人的50至100倍。狗通过这项特异的功能来识别各种各样的东西,帮助人类完成一些鉴别工作。不仅如此,识别也是人类的一项基本技能,人们无时无处的在进行“模式识别”,古人有一成语“察言观色”表达的正是这个意思。随着第一台计算机ENIAC的出现以及人工智能的兴起,人们自然而然的把目光投向如何将人类的识别能力成为计算机的一部分功能,从而减轻人类自身的脑力劳动。计算机模式识别在20世纪60年代初迅速发展并成为一门新学科[1]。 1模式识别与统计模式识别 1.1模式与模式识别的概念 广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)[2]。 模式识别则是在某些一定量度或观测基础上把待识模式划分到各自的模式类中去。计算机模式识别就是是指利用计算机等装置对物体、图像、图形、语音、字形等信息进行自动识

人脸检测和识别技术的文献综述

人脸识别技术综述 摘要:在阅读关于人脸检测识别技术方面文献后,本文主要讨论了人脸识别技术的基本介绍、研究历史,人脸检测和人脸识别的主要研究方法,人脸识别技术的应用前景,并且总结了人脸识别技术的优越性和当下研究存在的困难。 关键词:人脸识别;人脸检测;几何特征方法;模板匹配方法;神经网络方法;统计方法;模板匹配;基于外观方法; 随着社会的发展,信息化程度的不断提高,人们对身份鉴别的准确性和实用性提出了更高的要求,传统的身份识别方式已经不能满足这些要求。人脸识别技术(FRT)是当今模式识别和人工智能领域的一个重要研究方向.虽然人脸识别的研究已有很长的历史,各种人脸识别的技术也很多,但由于人脸属于复杂模式而且容易受表情、肤色和衣着的影响,目前还没有一种人脸识别技术是公认快速有效的[1]基于生物特征的身份认证技术是一项新兴的安全技术,也是本世纪最有发展潜力的技术之一[2]。 1. 人脸识别技术基本介绍 人脸识别技术是基于人的脸部特征,一个完整的人脸识别过程一般包括人脸检测和人脸识别两大部分,人脸检测是指计算机在包含有人脸的图像中检测出人脸,并给出人脸所在区域的位置和大小等信息的过程[3],人脸识别就是将待识别的人脸与已知人脸进行比较,得

出相似程度的相关信息。 计算机人脸识别技术也就是利用计算机分析人脸图象, 进而从中出有效的识别信息, 用来“辨认”身份的一门技术.人脸自动识别系统包括三个主要技术环节[4]。首先是图像预处理,由于实际成像系统多少存在不完善的地方以及外界光照条件等因素的影响,在一定程度上增加了图像的噪声,使图像变得模糊、对比度低、区域灰度不平衡等。为了提高图像的质量,保证提取特征的有有效性,进而提高识别系统的识别率,在提取特征之前,有必要对图像进行预处理操作;人脸的检测和定位,即从输入图像中找出人脸及人脸所在的位置,并将人脸从背景中分割出来,对库中所有的人脸图像大小和各器官的位置归一化;最后是对归一化的人脸图像应用人脸识别技术进行特征提取与识别。 2. 人脸识别技术的研究历史 国内关于人脸自动识别的研究始于二十世纪80年代,由于人脸识别系统和视频解码的大量运用,人脸检测的研究才得到了新的发展利用运动、颜色和综合信息等更具有鲁棒性的方法被提出来变形模板,弹性曲线等在特征提取方面的许多进展使得人脸特征的定位变得更为准确。 人脸识别的研究大致可分为四个阶段。第一个阶段以Bertillon,Allen和Parke为代表,主要研究人脸识别所需要的面部特征;第二个阶段是人机交互识别阶段;第三个阶段是真正的机器自动识别阶段;第四个阶段是鲁棒的人脸识别技术的研究阶段。目前,国外多所

人工智能的模式识别与机器视觉

人工智能的模式识别与机器视觉 模式识别 “模式”(Panern)一词的本意是括完整天缺的供模仿的标本或标识。模式识别就是识别出给定物体所模仿的标本或标识。计算机模式识别系统使一个计算机系统具有模拟人类通过感官接受外界信息、识别和理解周围环境的感知能力。 模式识别是一个不断发展的学科分支,它的理论基础和研究范围也在不断发展。在二维的文字、图形和图像的识别方而,已取得许多成果。三维景物和活动目标的识别和分析是目前研究的热点。语音的识别和合成技术也有很大的发展。基于人工神经网络的模式识别技术在手写字符的识别、汽车牌照的识别、指纹识别、语音识别等方面已经有许多成功的应用。模式识别技术是智能计算机和智能机器人研究的十分重要的基础 机器视觉 实验表明,人类接受外界信息的80%以上来自视觉,10%左右来自听觉,其余来自嗅觉、味觉及触觉。在机器视觉方面,只要给计算机系统装上电视摄像输入装置就可以“看见”周围的东西。但是,视觉是一种感知,机器视觉的感知过程包含一系列的处理过程,例如,一个可见的景物由传感器编码输入,表示成一个灰度数值矩阵;图像的灰度数值由图像检测器进行处理,检测器检测出图像的主要成分,如组成景物的线段、简单曲线和角度等;这些成分又校处理,以便根据景物的表面特征和形状特征来推断有关景物的特征信息;最终目标是利用某个适当的模型来表示该景物。 视觉感知问题的要点是形成一个精练的表示来取代极其庞大的未经加工的输入情息,把庞大的视觉输人信息转化为一种易于处理和有感知意义的描述。 机器视觉可分为低层视觉和高后视觉两个层次,低层视觉主要是对视觉团像执行预处理,例如,边缘检测、运动目标检测、纹理分析等,另外还有立体造型、曲面色彩等,其目的是使对象凸现出来,这时还谈不上对它的理解。高层视觉主要是理解对象,显然,实现高层视觉需要掌捏与对象相关的知识。 机器视觉的前沿研究课题包括:实时图像的并行处理,实时图像的压缩、传输与复原,三绍景物的建模识别,动态和时变视觉等。 人娄的钉能活动过程主要是一个获得知识并运用知识的过程,知识是智能的基础。为了使计算机具有钉能,能模拟人类的智能行为,就必须使它具有知识。把人类拥有的知识采用适当的模式表示出来以便存储到计算机中,这就是知识表示要解决的问题。知识表示是对知识的一种描述,或者说是一组约定,是一种计算机可以接受的用于描述知识的数据结构,对知识进行表木就是把知识表示咸便于计算机存储和利用的菜种数据结构。知识表示方法给出的知识表示形式称为知识表示程式,知识表示模式分为外部表示模式和内部表示模式两个层次。知识外部表示模式是与软件开发的工具、运行的软件平台无关的知识表示的形式化描述。知

模式识别大作业02125128(修改版)

模式识别大作业 班级 021252 姓名 谭红光 学号 02125128 1.线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1 ,2,1=i (1) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (2) 映射后,各类样本“类内离散度”定义为: 22 ()k i i k i y Y S y m ∈= -∑,2,1=i (3) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离 散度越小越好。因此,定义Fisher 准则函数: 2 1222 12||()F m m J w s s -= + (4) 使F J 最大的解* w 就是最佳解向量,也就是Fisher 的线性判别式. 从 )(w J F 的表达式可知,它并非w 的显函数,必须进一步变换。 已知: ∑∈= i k Y y k i i y n m 1,2,1=i , 依次代入上两式,有: i T X x k i T k X x T i i M w x n w x w n m i k i k === ∑∑∈∈)1 (1 ,2,1=i (5) 所以:2 21221221||)(||||||||M M w M w M w m m T T T -=-=- w S w w M M M M w b T T T =--=))((2121 (6)

其中:T b M M M M S ))((2121--= (7) b S 是原d 维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大 小,因此,b S 越大越容易区分。 将(4.5-6) i T i M w m =和(4.5-2) ∑∈= i k X x k i i x n M 1代入(4.5-4)2i S 式中: ∑∈-= i k X x i T k T i M w x w S 22)( ∑∈?--? =i k X x T i k i k T w M x M x w ))(( w S w i T = (8) 其中:T i X x k i k i M x M x S i k ))((--= ∑=,2,1=i (9) 因此:w S w w S S w S S w T T =+=+)(212221 (10) 显然: 21S S S w += (11) w S 称为原d 维特征空间里,样本“类内离散度”矩阵。 w S 是样本“类内总离散度”矩阵。 为了便于分类,显然 i S 越小越好,也就是 w S 越小越好。

模式识别发展及现状综述

模式识别发展及现状综述 xxx (xxxxxxxxxxxxxxxxxxx) 摘要 [摘要]:通过对模式识别的发展及现状进行调查研究,了解到模式识别的理论和方法在很多科学和技术领域中得到了广泛的应用,极大的推动了人工智能系统的发展,同时扩大了计算机应用的可能性。模式识别 的研究主要集中在研究生物体(包括人)是如何感知对象的,以及在给定的任务下,如何用计算机实现模式 识别的理论和方法。本文详细的阐述了模式识别系统的组成结构以及模式识别的现状并展望了未来的模式 识别的发展趋势。 [关键词]:模式识别;模式识别的应用 Abstract [Abstract]:through the investigation and Study on the present situation and development of pattern recognition, knowing that the theory and method of pattern recognition has been widely used in many fields of science and technology and greatly promoting the development of artificial intelligence systems as well as expanding the fields of computer applied to.The research of pattern recognition mainly concentrated on the research of the theory and method of pattern recognition which how the organisms(including humans)to perceive objects as well as,in a given task,how to realize the pattern recognition with computer.This paper expounds the present situation and system structure of the pattern recognition as well as prospects the development trend in the future of pattern recognition. [keyword]:pattern recognition;pattern recognition applications 1前言 模式识别诞生于20世纪20年代,随着40年代计算机的出现,50年代人工智能的兴起,模式识别在60年代初迅速发展成一门学科。什么是模式和模式识别呢?广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)[1]。而“模式识别”则是在某些一定量度或观测基础上把待识模式划分到各自的模式类中去。 经过多年的研究和发展,模式识别技术已广泛被应用于人工智能、计算机工程、机器人学、神经生物学、医学、侦探学以及高能物理、考古学、地质勘探、宇航科学和武器技术等许多重要领域,如语音识别、语音翻译、人脸识别、指纹识别、生物认证技术等。模式识别的技术对国民经济建设和国防科技发展的重要性已得到了人们的认可和广泛重视。本文将就模式识别所涉及的基本问题、研究的领域及其当前进展现状进行详细的介绍,并对模式识别的发展趋势进行展望。 2模式识别 2.1模式识别系统 一个计算机模式识别系统基本上是由三个相互关联而又有明显区别的过程组成的,即数据生成、模式分析和模式分类。有两种基本的模式识别方法,即统计模式识别方法和结构

相关主题
相关文档 最新文档