当前位置:文档之家› 热塑性塑料注射成形的次废品原因分析

热塑性塑料注射成形的次废品原因分析

热塑性塑料注射成形的次废品原因分析
热塑性塑料注射成形的次废品原因分析

本文由1337407326贡献

热塑性塑料注射成形的次废品原因分析 

一. 塑件不足:主要由于供料不足、融料填充流动不良,充气过多及排气不良等原因导致填充型融料填充流动不良,

充气过多及排气不良等原因导致填充型腔不满,塑件外形残缺不完整或多型腔时个别型腔填充不满

原因分析:

1.注射量不当、加料量不足,塑化能力不足及余料不足 

2.塑料拉度不同或不匀 

3.塑料在料斗中“架桥” 

4.料中润滑剂过多,螺杆或柱塞与料筒间隙大,融料回流过多 

5.多型腔时进料口平衡不良 

6.喷嘴温度低,堵塞或孔径过小,料筒温度低 

7.注射压力小,注射时间短,保压时间短,螺杆或柱塞退回过早 

8.注射速度太快或太慢 

9.塑料流动性太差 

10.飞边溢料过多 

11.模温低,塑料冷却快 

12.模具浇注系统流动阻力大,进料口位置不当,截面小,形式不良,流程长而曲折 

13.排气不良,无冷料穴或冷料穴不当 

14.脱模剂过多,型腔有水分等 

15.塑件壁太薄、形状复杂且面积大 

16.塑料内含水分及挥发物多 

17.融料中充气多 

二. 尺寸不稳定:主要由于模具强度不良,精度不良,注射机工作不稳定及成形条件不稳定等原因,

使塑件尺寸变化不稳定

原因分析: 

1.机器电气或液压系统不稳定 

2.成形条件不稳定(温度、压力、时间变更),成形周期不一致

3.模具强度不足,定位杆弯曲、磨损 

4.模具精度不良、活动零件动作不稳定,定位不准确 

5.模具合模不稳定时松时紧,易出飞边 

6.浇口太小或不匀,多型腔进料口平衡不良 

7.塑料颗粒不匀或加料量不匀 

8.更换注射机性能不当或塑化不匀 

9.塑件冷却时间太短,脱模后冷却不匀 

10.回用料与新料配比不当 

11.塑料收缩不稳定,结晶性料的结晶度不稳定 

12.塑件刚性不良、壁厚不匀 

13.塑件后处理条件不稳定 

三.气泡:由于融料内充气过多或排气不良而导致塑件内残留气体,并呈体积较小或成串的空穴(注意应与真空泡区别)

原因分析:

1.原料含水分、溶剂或易挥发物 

2.料温高,加热时间长,塑料降聚分解 

3.注射压力小 

4.柱塞或螺杆退回过早 

5.模具排气不良 

6.模温低 

7.注射速度太快 

8.模具型腔内有水分、油脂,或脱模剂不当 

9.塑件不良,流道不良有贮气死角 

四.塌坑(凹痕)或真空泡:由于保压补料不良,塑件冷却不匀,厚不匀及塑料收缩大时

原因分析:

1.流道、进料口太小,或数量不够 

2.塑件壁太厚或厚薄不均(在厚壁处背部易出现塌坑) 

3.进料口位置不当,不利于供料、补缩 

4.料温高,模温高,冷却时间短,易出凹痕 

5.模温低,易出真空泡 

6.注射压力小,注射速度慢 

7.注射及保压时间短 

8.加料量不够,供料不足,余料不够 

9.融料流动不良或溢料过多 

五. 飞边过大:由于合模不良,间隙过大,塑料流动性太好,加料过多使塑件沿边缘挤出多余薄片

原因分析:

1.分型面密合不良,型腔和型芯部分滑动零件间隙过大 

2.模具强度或刚性不良 

3.模具平行度不良 

4.模具单向受力或安装时没有压紧 

5.注射压力太大,锁模力不足或锁模机构不良,注射机模板不平行 

6.塑件投影面积超过注射机所允许的塑制面积 

7.塑料流动性太大,料温高,模温高,注射速度过快 

8.加料量过大 

六. 熔接不良:由于融料分流汇合时料温低,树脂与附合物不相溶等原因,使融料在汇合时,熔接不良,

沿塑件表面或内部产生明显的细接缝线

原因分析:

1.料温低,模温低 

2.注射速度慢,注射压力小 

3.进料口太多,位置不当,浇注系统形式不当,流程长,流料阻力大,料温下降快 

4.模具冷却系统不当 

5.塑件形状不良、壁太薄、嵌件过多及壁厚不匀,使料在薄壁处汇合 

6.嵌件温度低 

7.塑料流动性差,冷却速度快 

8.模具内有水分、润滑剂、融料充气过多,脱模剂过多 

9.模具排气不良 

10.料内渗有不相溶的料,脱模剂不当,有不相溶的油质 

11.用铝箔等薄片状着色剂 

12.纤维填料分布融合不良 

13.有冷料 

七. 塑件表面波纹:由于融料沿模具表面不是整齐流动填充型腔而是成半固化波动状在型腔面流动或融料有滞流现象

原因分析: 

1.料温低,模温低,喷嘴温度低 

2.注射压力小,注射速度慢 

3.冷料穴不当,有冷料 

4.塑料流动性差 

5.模具冷却系统不当 

6.浇注系统流程长,截面小,进料口尺寸小及其形式和位置不当,使融料流动阻

力, 冷却快 

7.塑件壁薄,面积大,形状复杂 

8.供料不足 

9.流道曲折、狭窄,光洁度不良 

八. 脱模不良:由于填充作用过强,模具脱模性能不良等原因,使塑件脱模困难或脱模后塑件变形、破裂,

或塑件残留方向不符合设计要求。

原因分析:

1.模具光洁度不良 

2.模具脱模斜度不够 

3.模具镶块处缝隙太大出飞边 

4.成形时间太短或太长 

5.模芯无进气孔 

6.模具温度或定动模温度不合适 

7.模具表面有伤痕 

8.顶出机构不良 

9.注射压力高,保压时间长,料温及模温高,供料太多,注射时间长,进料口尺寸大 

10.脱模剂不当 

11.拉料杆失灵 

12.喷嘴与浇口套间有夹料,浇口套粘模 

13.型腔变形大、回跳大,使塑件落在型腔内 

14.冷却系统不良,冷却时间过长或过短 

15.活动型芯脱模不及时 

16.供料不足 

17.塑料性脆,易粘模,收缩大 

18.塑件形状不利脱模,塑件壁过厚、过薄或强度不足,易应力集中 

九. 云母片状分层脱皮:由于混入异料或模温低,融料沿模具表面流动时剪切作用过大,使料成薄层状剥落,物理性能下降

原因分析:

1.不同塑料混杂 

2.同一塑料不同级别相混 

3.塑化不匀 

4.混入异物 

5.料温低,模温低,冷料井小,料流动性差,料冷却太快 

6.新旧料配比不当 

7.银丝现象严重

十. 浇口粘模:由于浇口套内有机械阻力,冷却不够或拉料杆失灵,使浇口粘在浇口套内 

原因分析:

1.浇道斜度不够,没有脱模剂 

2.冷却时间短,喷嘴及定模温度高,浇道直径大 

3.拉料杆失灵,无冷料穴 

4.主浇道内壁不光滑,有凹痕划伤 

5.浇道和主浇道连接部分强度不良 

6.喷嘴温度低,喷嘴与浇口套吻合不良,浇口套孔径比喷嘴孔径小或有夹料]

十一. 冷块、僵块:由于有冷料或塑化不良,有未充分塑化的料,使塑件内夹有硬块塑料 

原因分析:

1.料温、模温及喷嘴温度低,注射速度小 

2.塑化不匀 

3.注射机塑化能力不足,注射机容量接近塑件重量,成形时间短 

4.混入杂质或不同品级的料 

5.料粒不匀或过大 

6.无主浇道及冷料穴,或冷料穴位置不当 

十二. 透明度不良:由于融料与模具表面接触不良,塑件表面有细小凹穴造成光线乱放射或塑料分解,有异物杂质,

或模具表面不光亮,使透明塑料透明度不良或不匀 

原因分析: 

1.模温低,料温低及融料与模具表面接触不良 

2.模具表面不光亮,有油污及水分 

3.脱模剂过多或不当 

4.料温高或浇注系统剪切作用大,塑料分解 

5.塑料中含水分高,有杂质、黑条及银丝 

6.塑化不良 

7.结晶性料冷却不良,不匀或塑件壁厚不匀 

十三. 银丝斑纹:由于料内有水分或充气,及挥发物过多,融料受剪切作用过大,融料与模具表面密合不良,

或急速冷却或混入异料或分解变质,而使塑件表面沿料流方向出现银白色光泽的针状条纹或云母片状斑纹(水迹痕)

原因分析:

1.塑料温度太高,模温高 

2.原料中含水分高,有低挥发物 

3.注射压力小 

4.料中充气,排气不良 

5.流道、进料口小,剪切作用大(尤其当模温低,料温低,注射压力高,注射速度快 时更大) 

6.模具表面有水分,润滑油(此时塑件表面呈白色痕迹)或脱模剂过多,选用不当 

7.模温低,注射压力小,注射速度小时融料填充慢,冷却快,易形成白色或银白色反 射光的薄层(常有冷迹痕) 

8.融料从薄壁流入厚壁时膨胀,挥发物气化与模具表面接触液化成银丝 

9.配料不当,混入异料或不相溶料(此时易发生分层脱离)

十四. 翘曲,变形:由于成形时残余应力、剪切应力、冷却应力及收缩不均,造成的内应力;脱模不良,冷却不足,

塑件强度不足、模具变形等原因,使塑件发生形状畸变,翘曲不平或型孔偏,壁厚不匀等现象 

原因分析:

1.冷却时间不够 

2.模温高 

3.塑件形状不当,壁厚不匀,强度不足,嵌件分布不当及预热不良 

4.料温低,喷嘴孔径及进料口小,注射压力高,模温低,注射速度高时剪应力大 

5.料温高,模温高,进料口部分填充作用过分,保压补缩过大,注射压力高时残余应 力大(柱塞式注射机内应力更大) 

6.进料口位置不当,尺寸小,料温低,模温低,注射压力小,注射速度快,保压补缩 不足,塑件形状不良,

冷却不匀纤疑缝填料分布不匀等,使收缩方向性明显,收缩不匀 

7.模温不匀(定动模模温不匀),冷却不匀如壁厚部分冷却慢,壁薄部分冷却快或塑 件易翘凸部分冷却快,易凹弯部分冷却慢。 

8.塑料塑化不匀,供料填充不足或过量 

9.冷却时间短,脱模时塑件受力不匀,脱模后冷却不当,塑件后处理不良,保存不良 

10.模具强度不良易变形,模具精度不良,定位不可靠,磨损 

11.进料口位置不当,料直接冲击型芯或型芯两侧受力不匀

十五. 裂纹:由于塑件内应力过大,脱模不良、冷却不匀,塑料性能不良或塑件设计不良及其它弊病(如变形)等原因,

使塑件表面及进料口附近产生细裂纹,或开裂或在负荷和溶剂作用不发生开裂等现象 

原因分析: 

1.脱模时顶出不良 

2.模温太低或不匀 

3.冷却时间过长或冷却过快 

4.嵌件未预热或预热不够,或清洗不净 

5.塑件壁薄,脱模斜度小,有尖角及缺口,易应力集中 

6.成形条件不当,应力过大(详见翘曲变形) 

7.进料口尺寸大及形式不当,进料口处内应力大 

8.脱模后或后处理后冷却不匀 

9.塑料性脆,混入异料杂质 

10.脱模剂不当 

11.ABS塑料或耐冲击聚苯乙烯塑料在顶杆顶出部位易发生白色细纹(一般经热烘即 可消失) 

12.塑料收缩方向性过大或填料分布不匀 

13.塑件翘曲变形,熔接不良 

14.塑件保管不良与溶剂接触 

十六. 黑点、黑条:由于塑料分解或料中可燃性挥发物,空气等在高温高压下分解燃烧,燃烧物随融料注入塑腔,

在塑件表面呈现黑点,黑条纹,或沿塑件表面呈炭状烧伤现象 

原因分析:

1.塑料分解(尤其对热敏性塑料) 

2.塑料碎屑卡入柱塞及料筒之间间隙 

3.料筒、喷嘴及模具有死角贮料分解 

4.料筒清洗不净 

5.模具排气不良或锁模力过大 

6.进料口尺寸过小,位置不当 

7.塑料中或型腔表面有可燃性挥发物 

8.水敏性塑料干燥不良,水解变黑 

9.料粒不匀,加料量少,料筒近料斗侧温度高,转速高,背压小,塑化时料中充气 过多 

10.染色不匀有深色物料,颜料变质

十七. 色泽不匀或变色:由于颜料或填料分布不良,塑料或颜料变色在塑件表面的色泽不匀。色泽不匀随呈现的现象不同其原因也不同,

进料口附近主要是颜料分布不匀,如整个零件色泽不匀时则为塑料热稳定不良所致,熔接部位色泽不匀时则与颜料性质有关 

原因分析: 

1.铝箔或薄片状颜料,沿料流方向有光泽,进料口、熔接部位及多进料口时颜料无 方向性分布,色泽不匀 

2.用干颜料,滚筒搅拌时颜料只附在料粒表面 

3.颜料质量不好 

4.柱塞式注射机易发生色泽不匀 

5.塑化不匀 

6.纤缝填料分布不匀,聚积外露或塑件与溶剂接触树脂溶失,纤缝裸露 

7.塑料或颜料分解 

8.模具表面有水分、油污或脱模剂不当,过多 

9.塑料及颜料中混入异料 

10.结晶度低或塑件壁厚不匀,影响透明度造成色泽不匀

十八. 塑件脆裂:由于塑料不良,方向性明显,内应力大及塑件结构不良,使塑件强皮下降,发脆易裂(尤其沿料流方向更易开裂) 

原因分析:

1.塑料性能不良或分解降聚或水解或颜料不良和变质 

2.成形温度太低 

3.熔接不良,翘曲变形 

4.塑料潮湿或含水率太低(如尼龙6) 

5.塑料回用料太多或供料不足 

6.模温太低 

7.塑件设计不良如强度不够,有锐角及缺口 

8.金属嵌件包裹层塑料太薄,嵌件预热不够,清洗不净 

9.塑料内有杂质及不相溶料 

10.塑化不良或料粒过大及不匀 

11.脱模剂不当,模具不净 

12.收缩方向性明显,填料分布不匀 

13.收缩不匀,冷却不良及残余应力等,使内应力大 

14.塑件与溶剂接触 

15.进料口尺寸及位置和形式不良,造成内应力大,方向性明显,填料分布不匀,纤 缝填料受损伤或在塑件受弯曲力部位设进料口。

第六章塑料注射成型模具

第六章塑料注射成型模具 一、填空题 1.根据模具总体结构特征,塑料注射模可分为:(1);(2) ;(3) ;(4) ;(5); (6) ;(7) ;(8) ;(9) 等类型。 2.注射成型机合模部分的基本参、、、 、和。 3.通常注射机的实际住射量最好在注射机的最大注射量的以内。 4.注射机的锁模力必须大于型腔内熔体压力与塑件及浇注系统在的乘积。 5.设计的注射模闭合厚度必须满足下列关系:。若模具闭合厚度小于注射机允许的模具最小厚度时,则可采用来调整,使模具闭合。 6.注射机顶出装置大致有、、、 等类型。 7.注射模的浇注系统有、、、 等组成。 8.主流道一般位于模具,它与注射机的重合。 9.注射模分流道设计时,从传热面积考虑,热固性塑料宜用分流道;热塑性塑料宜用分流道。从压力损失考虑,分流道最好;从加工方便考虑用分流道。 10.型腔和分流道的排列有和两种. 11.当型腔数较多,受模具尺寸限制时,通常采用非平衡布置.由于各分流道长度不同,可采用来实现均衡进料,这种方法需经才能实现。 12.注射模型腔与分流道布置时,最好使塑件和分流道在分型面上总投影面积的几何中心和的中心相重合。 13.浇口的类型可分、、、 、、六类。 14. 浇口截面形状常见的有和。一般浇口截面积与分流道截面积之比为,浇口的表面粗糙度为。设计时浇口可先选偏小尺寸,通过逐步增大。 15.浇口位置应设在熔体流动时最小部位。 16.注射模的排气方式有和。排气槽通常开设

在型腔的部位。最好开在上,并在一侧,以不产生飞边为限。 17.排气是塑件的需要,引气是塑件的需要。 18.常见的引气形式有和两种。 19.注射模侧向分型与抽芯时,抽芯距一般应大于塑件的侧孔深度或凸台高度的 。 20.塑件在冷凝收缩时对型芯产生包紧力,抽芯机构所需的抽拔力,必须克服 及,才能把活动型芯抽拔出来。计算抽芯力应以为准。 21.在实际生产中斜导柱斜角a一般取,最大不超过。 22.采用斜导柱侧抽芯时,滑块斜孔与斜导柱的配合一般有的间隙,这样,在开模的瞬间有一个很小的,使侧型芯在未抽动前强制塑件脱出型腔(或型芯),并使先脱离滑块,然后抽芯。 23.为了保证斜导柱伸出端准确可靠地进入滑块斜孔,则滑块在完成抽芯后必须停留在一定位置上,为此滑块需有装置。 24.在塑件注射成型过程中,侧型芯在抽芯方向受到较大的推力作用,为了保护斜导柱和保证塑件精度而使用楔紧块,楔紧块的斜角a'一般为。 25.在斜导柱抽芯机构中,可能会产生现象,为了避免这一现象发生,应尽量避免或。 26一斜导柱分型及抽芯机构按斜导柱和型芯设置在动、定模的位置不同有(1) 、(2) 、(3) 、(4) 四种结构形式。 27 .斜导柱在定模,滑块在动模,设计这种结构时,必须避免。 28.斜导柱在动模,滑块在定模,这种结构没有机构,以取出塑件。 29.斜导柱与滑块都设置在定模上,为完成推出和脱模工作,需采用机构。 30.斜导柱与滑块都设置在动模上,这种结构可通过或机构来实现斜导柱与滑块的相对运动。由于滑块不脱离斜导柱,所以不设置。 31.斜滑块分型抽芯机构由于结构不同可分、、 等形式。当塑件侧面的孔或凹槽较浅,抽芯距不大,但成型面积较大,需要抽芯力较大时,常采用。当抽芯力不大时,采用形式。 32.设计注射模的推杆推出机构时,推杆要尽量短,一般应将塑件推至高于

热塑性塑料制品的注射成型

热塑性塑料制品的注射成型 一、实验目的 1、了解柱塞式和移动螺杆式注射机的结构特点及操作程序; 2、掌握热塑性塑料注射成型的实验技能及标准测试样条的制备方法; 3、掌握注射盛开工艺条件的确定及其与注射制品质量的关系。 二、实验原理 1、注射过程原理 注射成型是高分子材料成型加工中一种重要的方法,应用十分广泛,几乎所有的热塑性塑料及多种热固性塑料都可用此法成型。热塑性塑料的注射成型又称注塑,是将粒状或粉状塑料加入到注射机的料筒,经加热溶化后呈流动状态,然后在注射机的柱塞或移动螺杆快速而又连续的压力下,从料筒前端的喷嘴中以很高的压力和很快的速度注入到闭合的模具内。充满膜腔的熔体在受压的情况下,经冷却固化后,开模得到与模具型腔相应的制品。 注射成型机主要的有柱塞式和移动螺杆式两种,以后者为常用。不同类型的注射机的动作程序不完全相同,但塑料的注射成型原理及过程是相同的。 本实验是以聚丙烯为例,采用移动螺杆式注射机的注射成型。热塑性塑料的注射过程包括加料、塑化、注射充模、冷却固化和脱模等几个工序。 (1)合模锁紧注射成型的周期一般是以合模为起始点。动模前移,快速闭合。在与定模将要接触时,依靠合模系统自动切换成低压,提供试合模压力和低速;最后切换成高压将模具合紧。 (2)注射充模模具闭合后,注射机机身前移使喷嘴与模具贴合。油压推动与油缸活塞杆相连接的螺杆前进,将螺杆头部前面已均匀塑化的物料以一定的压力和速度注射入模腔,直到熔体充满模腔为止。 熔体充模顺利与否,取决于注射的压力和速度、熔体的温度和模具的温度等。这些参数决定了熔体的粘度和流动特性。注射压力是为了使熔体克服料筒、喷嘴、浇注系统和模腔等处的阻力,以一定的速度注射入模;一旦充满,模腔内压迅速到达最大值,充模速度则迅速下降。模腔内物料受压紧,密实,符合成型制品的

热塑性塑料注射成型中的常见缺陷及产生原因

热塑性塑料注射成型中的常见缺陷及产生原因 1.制品填充不足-- 1)料桶,喷嘴及模具的温度偏低2)加料量不足3)料桶内的剩料太多4)注射压力太小5)注射速度太慢6)流道和浇口尺寸太小,浇口数量不够,切浇口位置不恰当7)型腔排气不良8)注射时间太短9)浇注系统发生堵塞10)塑料的流动性太差 2.制品有溢边-- 1)料桶,喷嘴及模具温度太高2)注射压力太大,锁模力太小3)模具密合不严,有杂物或模板已变形4)型腔排气不良5)塑料的流动性太好6)加料量过大 3.制品有气泡-- 1)塑料干燥不够,含有水分2)塑料有分解3)注射速度太快4)注射压力太小5)麻烦温太底,充模不完全6)模具排气不良7)从加料端带入空气 4.制品凹陷-- 1)加料量不足2)料温太高3)制品壁厚与壁厚相差过大4)注射和保压的时间太短5)注射压力太小6)注射速度太快7)浇口位置不恰当 5.制品有明显的熔合纹-- 1)料温太低,塑料的流动性差2)注射压力太小3)注射速度太慢4)模温太低5)型腔排气不良6)塑料受到污染 6.制品的表面有银丝及波纹-- 1)塑料含有水分和挥发物2)料温太高或太低3)注射压力太小4)流道和浇口的尺寸太大5)嵌件未预热回温度太低6)制品内应力太大 7.制品的表面有黑点及条纹-- 1)塑料有分解2)螺杆的速度太快,背压力太大3(喷嘴与主流道吻合不好,产生积料4)模具排气不良5)塑料受污染或带进杂物6)塑料的颗粒大小不均匀 8.制品翘曲变形-- 1)模具温度太高,冷却时间不够2)制品厚薄悬殊3)浇口位置不恰当,切浇口数量不合适4)推出位置不恰当,且受力不均5)塑料分子定向作用太大 9.制品的尺寸不稳定-- 1)加料量不稳定2)塑料的确颗粒大小不均匀3)料桶和喷嘴的温度太高4)注射压力太小5)充模和保压的时间不够6)浇口和流道的尺寸不恰当7)模具的设计尺寸不恰当8)模具的设计尺寸不准确9)推杆变形或磨损10)注射机的电气,液压系统不稳定 10.制品粘模-- 1)注射压力太大,注射时间太长2)模具温度太高3)浇口尺寸太大,且浇口位置不恰当

塑料成型工艺

在产品设计中,要达到合理运用塑料材料的目的,除了要掌握各种塑料的特性、按照正确的选材方法合理选材外,还要熟练掌握塑料的工艺,只有这样才能按照产品的功能要求合理的进行塑料构成类的产品设计。对于工业设计师来说,必须较全面地认识各种塑料的性质,懂得如何将造型设计的细节与成型、加工过程整体规划,最终才能获得满意的产品。 一、塑料的成型工艺 塑料的成型是将原材料制成具有一定形状制品的工艺过程。塑料的成型工艺有多种,着重介绍注射成型、挤出成型、压制成型、压延成型、吹塑成型、热成型、手糊成型、传递模塑成型、浇铸成型、缠绕成型、喷射成型、醮涂成型、片状模塑料成型、拉拔成型、发泡成型等。 (一)注射成型 注射成型又称注塑成型,是热塑性塑料的主要成型方法之一,也适应部分热固性塑料的成型。其原理是将粒状或粉状的原料加入到注射机的料斗里,原料经加热熔化呈流动状态,在注射机的螺杆或活塞推动下,经喷嘴和模具的浇注系统进入模具型腔,在模具型腔内硬化定型。如图6-53为注射成型原理图。 图6-53注射成型原理图 (引自杰姆斯·伽略特著常初芳译. 设计与技术. 北京:科学出版社,2004.)注射成型的模具具有一个型腔,其形状与需要加工成型的零件形状相反。熔融的塑料通过模具中心的浇注口进入,填充模具,溶液在模具内部形成了中空的形状。注射成型的模具有冷流道二板模具、冷流道三板模具、热流道模具几种。 注射成型工艺的优点有:能一次成型外形复杂、尺寸精确的塑料制件;可利用一套模具,成批地制得规格、形状、性能完全相同的产品;生产性能好、成型周期短、可实现自动化或半自动化作业;原材料损耗小、操作方便、成型的同时产品可取得着色鲜艳的外表等。

塑料注射成型实验报告

云硕航材控1505 U201511225

1.预习部分 1)塑料注射成型的概念 (1)注射成型周期 注射成型周期是指模具连续生产时,完成一次注射成型工艺过程所需的时间,它由注射时间、保压时间、冷却时间和辅助时间组成。(2)注射成型的主要缺陷 短射(Short shot):短射又称欠注、充填不足、制件不满、走胶不齐等,是指型腔未完全充满,使得制件不饱满、塑件外形残缺不完整的现象。产生的机理是熔体在流向末端的过程中冷却。 飞边(Flash):飞边又称溢料、溢边、毛边、批锋等,是指在模具的不连续处(通常是分模面、排气孔、排气顶针、滑动机构等)过量充填造成塑料外溢的瑕疵。产生的机理是注射和保压过程中锁模力不够,或是无法沿分型面将模具锁紧,模板间隙超过了塑料的溢料值。 熔合纹(Weld/meld lines)熔合纹又称熔接痕、熔接不良、熔合缝、缝合线等,是指各塑料流体前端相遇时在制品表面形成的一条线状痕迹,不仅有碍制品的美观,而且影响制品的力学性能。产生的机理是由若干熔体在型腔中汇合在一起时,在其交汇处彼此不能熔合为一体而形成线状痕迹。 翘曲(Warpage)翘曲是指制品产生弯曲或扭曲现象,导致平坦的地方有起伏,直边朝里或朝外弯曲或扭曲,产生的机理是高分子链在

成形中产生残余应力,脱模时制品的外部约束去除,残余应力的存在造成不同程度的变形。 还有喷射(Jetting)气穴(Air Traps)滞流(Hesitation)过保压(Overpacking)凹陷/空洞(Sink marks and voids)烧痕(Burn marks)Flow marks)银线痕(Silver streaks)裂纹(Crack)等等。 (3)成型的主要工艺对于缺陷,质量的影响 注射速度:主要影响熔体在型腔内的流动行为,通常伴随着注射速度的增大,熔体流速增加,剪切力作用增强,熔体内温度因剪切发热而升高,粘度降低,所以有利于充模。并且制品的融合纹强度也增加。但是,由于注射速度增大,可能使熔体从层流变为湍流,严重时会引起熔体在膜内喷射而造成空气无法排出,这部分空气在高压下被压缩迅速升温,会引起制品局部烧焦或分解。 还存在注射压力、注射温度、注射时间等参数对实验存在较大影响。 2) 塑料注射成型实验的目的与方案 目的:通过本环节的实验,了解塑料的加工性质及性能特点、注射机的操作原理及运动过程,具体来讲包括模具与注射机的关系、塑料塑化过程中温度、压力、时间、位置各要素的作用及调整等。通过实验对塑料注射成型过程、注射成型工艺参数及塑料注射成型模具有更为深刻的认识。 方案:A,针对两组模具,分别进行实际的注射加工操作,并进行分组实验和正交实验,观察并记录注射过程中参数及结果,

注射成型工艺

1注射成型的原理、特点、应用 原理:将粒状或粉状的塑料从注射机的料斗送入配有加热装置的机筒中进行加热熔融塑化,使之成为粘流态的熔体,然后再注射机柱塞的压推作用下,以很高的流速通过机筒前端的喷嘴注入温度较低的闭合型腔中,经过一点时间的保压冷却定型后,开模分型即可从型腔中脱出具有一定形状和尺寸的塑料制件。 特点: 应用: 2注射成型的工艺过程 答:注射成型工艺过程包括成型前的准备,注射过程和塑件的后处理三部分。 (1)成型前的准备:原料外观的检查和工艺性能测定;原材料的染色及对料粉的造粒;对易吸湿的塑料进行充分的预热和干燥,防止产生斑纹、气泡和降解等缺陷;生产中需要改变产品、更换原料、调换颜色或发现塑料中有分解现象时的料筒清洗;对带有嵌件塑料制件的嵌加进行预热及对脱模困难的塑料制件选择脱模剂等。 (2)注射过程:加料、塑化、注射、冷却和脱模。注射过程又分为充模、保压、倒流、交口冻结后的冷却和脱模。 (3)塑件的后处理:退火处理、调湿处理。 3注射成型工艺参数:温度、压力、作用时间 温度控制包括料筒温度、喷嘴温度和模具温度。 料筒温度分布一般采用前高后低的原则,即料筒的加料口(后段)处温度最低,喷嘴处的温度最高。料筒后段温度应比中段、前段温度低5~10°C。对于吸湿性偏高的塑料,料筒后段温度偏高一些;对于螺杆式注射机,料筒前段温度略低于中段。螺杆式注射机料筒温度比柱塞式注射机料筒温度低10~20°C。 压力分为塑化压力和注射压力。 作用时间(只完成一次注射成型过程所需的时间)亦称成型周期。 4注射成型周期包括哪几部分? 答:注射成型周期包括(1)合模时间(2)注射时间(3)保压时间(4)模内冷却时间(5)其他时间(开模、脱模、喷涂脱模剂、安放嵌件的时间)。 合模时间是指注射之前模具闭合的时间,注射时间是指注射开始到充满模具型腔的时间,保压时间是制型腔充满后继续加压的时间,模内冷却时间是制塑件保压结束至开模以前所需要的时间,其他是是指开模,脱模,涂脱磨剂,安放嵌件的时间。 塑件的结构工艺性设计

塑料注射成型

塑料注射成型试卷试题下载-样卷.doc 《塑料注射成型》课程考核题库 试卷一 一、选择题 (第1~60题。每题有三或四个备选答案,其中只有一个正确答案,请选择你认为正确的答案,将其填入答卷纸上。每题1分,共60分。) 1、注塑成型是生产效率()的一种成型方法。 A、低 B、一般 C、高 2、现在用移动螺杆普通注塑机注塑PC塑料,原来注塑机料筒中的残余塑料是RPVC,这时要清洗料筒,应该采用()。 A、拆机清理料筒 B、直接换料法 C、间接换料法。 3、下列三种树脂中,属于热固性树脂是()。 A、在酸性下合成的酚醛树脂 B、在碱性下合成的酚醛树脂 C、ABS树脂 4、EVA是()聚合物的英文缩写代号。 A、聚甲基丙烯酸甲酯 B、聚对苯二甲酸丁二醇酯 C、乙烯-醋酸乙烯酯共聚物 5、注塑用的热塑性塑料中,在下列三种中,属于热敏性塑料的塑料品种是()。 A、PS塑料 B、RPVC塑料 C、PET塑料 6、下列三种树脂中,在注射成型中必须设置防涎量的是()。 A、PC B、PA6 C、ABS 7、PC塑料的玻璃化温度是()。 A、100℃ B、150℃ C、280℃ 8、在PA中加入玻璃纤维后,其熔体的流动性和原PA相比是()。 A、不变 B、增加 C、下降 9、PMMA具有一定亲水性,其颗粒的吸水率达()。 A、0.03%~0.04% B、0.3%~0.4% C、3%~4% 10、在注塑聚砜(PSU)时,其熔体温度与料筒温度的差别()。 A、较小 B、中等 C、较大 11、加入30%玻纤增强的聚醚砜(PES),在200℃温度下,在高负荷作用下4个月的变形小

于()。 A、0.005% B、0.05% C、0.5% 12、注塑聚苯硫醚(PPS)时的料筒温度为()。 A、180~230℃ B、230~280℃ C、280~330℃ 13、从理论上讲,注塑普通塑料制品时,喷嘴温度比料筒末端(即出料口)温度()。 A、稍高 B稍低 C、相等。 14、注塑机料筒温度分布规律是,由加料斗向喷嘴方向()。 A、逐渐增高 B、逐渐降低 C、两头高而中间低 15、注塑制品具有明显的熔合纹,在下列三种因素中,与熔合纹无关的因素是()。 A、熔料温度 B、注射速率 C、注射机液压油的温度。 16、注塑制品出现脱模困难的主要原因是()。 A、熔料温度太高 B、冷却时间太长 C、模具结构设计得不合理 17、除PVC外,一般热塑性塑料都可采用()表征其熔体流动性。 A、拉西格流动长度 B、挤出量 C、熔体流动速率 18、热塑性塑料注塑制品存在较大内应力后,易产生()。 A、制品表面有黑斑 B、制品表面开裂 C、制品出现熔合纹 19、在下列三种PE品种中,不能用普通注塑机和普通注塑工艺成型的品种是()。 A、LLDPE B、HDPE C、UHMWPE 20、主流道横截面大的成型模具适用于成型()。 A、小规格的注塑制品 B、流动性较好的塑料 C、流动性较差的塑料 21、注塑热塑性塑料时,若模具温度过高,则会使制品产生()。 A、制品粘模 B、制品出现熔合纹 C、制品产生飞边 22、注塑热塑性塑料时,若制品的毛边过多,其原因可能是()。 A、固化剂用量过多 B、材料的流动性过大 C、材料的水分含量过高 23、在工业生产中,在某台注塑机上最适宜的工艺参数的依据是()。 A、符合理论知识 B、符合工艺卡片的数据 C、生产出合格的制品 24、注塑机开模取制品时如有遗留物,会()。 A、提高效率 B、操作延时 C、损坏模具 D、损坏设备 25、在下列参数中,()能使注塑模具合紧。 A、注射压力 B、保压压力 C、模腔压力 D、锁模力

塑料成型工艺试题

1、挤出成型——是将物料送入加热的机筒与旋转着的螺杆之间进行固体物料的输送、熔融压缩、熔体均化,最后定量、定速和定压地通过机头口模而获得所需的挤出制品。 2、聚合物成型机械——所有能对高聚物原料进行加工和成型制品的机械设备。 3、注射量——是指注射机在注射螺杆(或柱塞)作一次最大注射行程时,注射装置所能达到的最大注射量。 4、锁模力——是指注射机的合模机构对模具所能施加的最大夹紧力。 5、吹胀比——吹胀后膜管的直径与环形口模直径之比。 6、螺杆长径比——指螺杆工作部分长度L(螺杆上有螺纹部分长度,即由加料口后壁至螺纹末端之间的长度)与螺杆外径D之比,用L/D表示。 7、挤出胀大----巴拉斯效应,当高聚物熔体从小孔、毛细管或狭缝中挤出时挤出物在挤出模口后膨胀使其横截面大于模口横截面的现象。or聚合物熔体在流动中产生高弹形变,在出口端,高弹形变回复引起挤出物膨胀。 8、螺杆的压缩比——通常将加料段一个螺槽的溶剂与计量段一个螺槽容积之比称为螺杆的压缩比。 9、塑化——注射成型的准备过程,是指物料在料筒内受热达到流动状态并具有良好的可塑性的全过程。 10、中空吹塑成型—将挤出或注射成型的 塑料管坯或型坯趁热于半熔融的类橡胶状时,置于各种形状的模具中,并即时在管坯中通入压缩空气将其吹胀,使其紧贴于模腔壁上成型,经冷却脱模后即得中空制品。 11、注射成型—将塑料(一般为粒料)在注射成型机的料筒内加热熔化,当呈流动状态时,在柱塞或螺杆加压下熔融塑料被压缩并向前移支,进而通过料筒前端的喷嘴以很快速度注入温度较低的闭全模具内,经过一定时间冷却定型后,开启模具即得制品。 1、聚合物的加工性能包括:__可挤压性___,__可模塑性___,可纺性,可延性。

材料成型加工与工艺学-习题解答(9-10-11)备课讲稿

材料成型加工与工艺学-习题解答(9-10- 11)

第八章注射成型 2.塑料挤出机螺杆与移动螺杆式注射机的螺杆在结构特点和各自的成型作用上有何异同? (p278)注射螺杆与挤出螺杆在结构上有何区别: (a)注射螺杆长径比较小,约在10~15之间。 (b)注射螺杆压缩比较小,约在2~5之间。 (c) 注射螺杆均化段长度较短,但螺槽深度较深,以提高生产率。为了提高塑化量,加料段较长,约为螺杆长度的一半。 (d)注射螺杆的头部呈尖头形,与喷嘴能有很好的吻合,以防止物料残存在料筒端部而引起降解。 (p221)挤出机螺杆成型作用是对物料的输送、传热塑化塑料及混合均化物料。 移动螺杆式注射机的螺杆成型作用是对塑料输送、压实、塑化及传递注射压力。是间歇式操作过程,它对塑料的塑化能力、操作时的压力稳定以及操作连续性等要求没有挤出螺杆严格。 3.请从加热效率出发,分析柱塞是注射机上必须使用分流梭的原因? (p278)分流梭的作用是将料筒内流经该处的物料成为薄层,使塑料流体产生分流和收敛流动,以缩短传热导程。既加快了热传导,也有利于减少或避免塑料过热而引起热分解现象。同时塑料熔体分流后,在分流梭与料筒间隙中流速增加,剪切速度增大,从而产生较大的摩擦热,料温升高,黏度下降,使塑料进一步的混合塑化,有效提高柱塞式注射机的生产量及制品质量。

6.试分析注射成型中物料温度和注射压力之间的关系,并绘制成型区域示意图。 (p298) 料温高时注射压力减小;反之,所需的注射压力加大。 8.试述晶态聚合物注射成型时温度(包括料温和模温)对其结晶性能和力学性能的影响。 (p297)结晶性塑料注射入模具后,将发生向转变,冷却速率将影响塑料的结晶速率。缓冷,即模温高,结晶速率大,有利结晶,能提高制品的密度和结晶度,制品成型收缩性较大,刚度大,大多数力学性能较高,但伸长率和充及强度下降。反过来,骤冷所得制品的结晶度下降,韧性较好。但在骤冷的时不利大分子的松弛过程,分子取向作用和内应力较大。中速冷塑料的结晶和曲性较适中,是用得最多的条件。实际生产中用何种冷却速度,还应按具体的塑料性质和制品的使用性能要求来决定。例如对于结晶速率较小的PET塑料,要求提高其结晶度就应选用较高的模温。

塑料成型方法

塑料成型方法 1.压延成型 压延成型是利用热的辊筒,将热塑性塑料经连续辊压、塑化和延展成薄膜或薄片的一种成型方法。常用来生产厚度为0.05mm0.50mm的软聚氯乙烯薄膜和厚度为0.25mm0.70mm的硬聚氯乙烯片材。 压延成型方法生产能力大,产品质量好,易于实现自动化流水作业,是生产各种大长塑料薄膜、薄板、片材和人造革、壁纸等的主要方法,但其设备投资较大。适用于压延成型加工的塑料,除用得最多的聚氯乙烯外,还有聚乙烯、ABS、聚乙烯醇、醋酸乙烯酯与丁二烯的共聚物等。 压延成型的主要设备是压延机,一般按滚筒数和它的排列方式进行分类。常见的有直线型、逆L型、斜Z型和顺L型等。由于四辊压延机具有制品较薄、厚度均匀、表面光滑、生产率高等特点,因而是目前使用最普遍的一种压延机。 为了保证制品的质量和压延工艺的顺利进行,辊筒表面具有较高的硬度(HB540560)和较小的粗糙度(达14级镜面),并用过热蒸汽、过热水或蒸汽配合煤气红外线等方法,将辊筒加热到200℃左右。为了避免产生薄膜包辊现象,相邻两辊之间保持有5℃10℃的温差。根据物料碾压、混炼、塑化和延展成型的需要,四辊压延机各辊筒的线速度并不相同,相邻两辊之间线速度之比,通常取为1∶1.061∶1.3。 根据工艺过程的需要,压延成型的辅机部分,通常包括薄膜引离辊,冷却定型装置、胶带输送机,卷取切割装置等。 2.吹塑成型 吹塑成型是目前生产塑料制品的主要方法之一,主要用于生产热塑性塑料薄膜及中空制品,它包括挤出吹塑和中空吹塑两种工艺方法。 (1)挤出吹塑。挤出吹塑是将熔融塑料经挤出机的机头呈圆筒形薄管挤出,同时从机头中心向薄管中鼓入压缩空气,将处于热塑状态下的薄管沿横向吹胀成直径较大的管状薄膜(俗称泡管),经冷却后卷取。与压延法生产薄膜的工艺相比,吹塑制膜具有很多突出优点,例如:所用设备简单,可用小型挤出机生产宽度很大(10m以上)和极薄(0.01mm0.3mm)的薄膜;生产成本低;产品机械强度高;可利用挤出工艺吹制多色或多层复合薄膜,生产具有综合性能的复合材料。此外,圆筒形薄膜可以不经焊接而直接用于包装,等等。但吹塑薄膜的厚度均匀性较差,产量受冷却速度的限制,也不能太高。 挤出吹塑的主要设备是挤出机,而吹塑机头又是挤出机的关键部件。吹塑机头种类很多,常用的有侧面进料式、中心进料式和螺旋进料式几种。目前又发展了旋转机头和复合机头等形式。 (2)中空吹塑。中空吹塑成型是将从挤出机挤出的、尚处于软化状态的管状热塑性塑料坯料放入成型模内,然后通入压缩空气,利用空气的压力使坯料沿模腔变形,从而吹制成颈口短小的中空制品。中空吹塑目前已广泛用来生产各种薄壳形中空制品、化工和日用包装容器,以及儿童玩具等。 3.真空成型 真空成型是将热塑性塑料薄片或薄板(厚度小于6mm)重新加热软化,置于带有许多小孔的模具上,采取抽真空的方法使片材紧吸在模具上成型。这种方法成型速度快、操作容易,但制品表面粗糙,尺寸和形状的误差较大。真空成型广泛用来生产钙塑天花板装饰材料、洗衣机和电冰箱壳体、电机外壳、艺术品和生活用品等。 4.滚塑成型 滚塑成型是把粉状或糊状塑料置于塑模中,通过加热并滚动旋转塑模,使模内物料熔融塑化,进而均匀散布到模具表面,经冷却定型即得到制品,此法适用于生产中空制品、汽车车身、

热塑性塑料注射成型

本文由shiling40521贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 热塑性塑料注射成型 (一)实验目的 通过实验使学生了解注射机和模具的基本结构、动作原理和使用方法,并对注射成型工艺过程以及工 艺条件有充分的了解,初步学会调整注射时的温度、压力与时间;使学生了解工艺控制条件与制品性能的 关系,初步学会如何正确拟定工艺条件。 (二)实验原理 热理性理料在注射机料筒内,受到机械剪切力、摩擦热及外部加热的作用,塑料熔融为流动状态,以 较高的压力和较快的速度流经喷嘴注射到温度较低的闭合模具中,经过一定时间的保压和冷却后,开启模 具取得制品。塑料的注射成型是一个物理变化过程,塑料的流变性、热性能、结晶行为、定向作用等因素 对注射工艺条件及制品性能都会产生很大的影响。本实验是按热塑性塑料试样注射制品的基本要求,制备 试样、测定塑料的性能。 (三)原料及仪器设备 1 .原料 聚乙烯、聚丙烯、聚苯乙烯或 ABS 等材料,自选。 2 .主要仪器设备 塑料注射机 XS — ZY — 125 塑料注射模具 ( 自选 ) 测温计 ( 量程 0 一 300 ℃ ,精确度不低于 2 ℃ ) (四)实验步骤 1 .拟定实验方案 根据实验所选甩原料的成型工艺特点及试样质量要求,拟出实验方案。其中必须包括如下内容: (1) 塑料的干燥条件。 (2) 注射压力、注射速度。 (3) 注射—保压时间、冷却时间。 (4) 料筒及喷嘴温度。 (5) 模具温度、塑化压力、螺杆转速 (6) 制品的后处理。 每组实验可改变上述内容中的一项或几项,但 (2) 、( 3 )、( 4 )、 (5) 这四项中必须有一项。 成型工艺条件包括温度 ( 料筒温度、喷嘴温度、模具温度 ) 、压力 ( 注射压力、塑化压力 ) 、时 间 ( 注射保压时间、冷却时间 ) 、注射速度、螺杆转速相加料量、原料干燥和制件后处理等。这些条件 的确定受到许多因素的影响,通常是根据塑料原理、制件规格和试样的几何尺寸,结合实践经验初步选定 工艺条件。根据试样的要求,按温度—压力—时间的顺序,逐步调整,直至获得比较合适的工艺条件。 温度:料筒温度与喷嘴温度,当注射机温度指示仪指示值达到预调温度时,再恒温 10 一 20min ,然 后进行对空注射。如从喷喷流出的料条光滑明亮,无变色、银丝、气泡,说明料筒温度和喷嘴温度比较适 宜。 此时即可按该条件用半自动操作方式制备试样。 调整料筒温度要注意恒温时间, —般料筒温度每变动 8 — 10 ℃ ,需要恒温 10 一 20min 。并注意不要在短时间内频繁变动料筒温度。在调整料筒温度的同时 必须注意对料温的测定,测量方法是在模塑周期固定的情况下,通过喷嘴将精确度不低于土 2 ℃ 的测温 计指针插入熔融塑料中去,并来回均匀移动,待测温计指针恒定后方能读数;模具温度,应控制在各种塑 料所要求的温度范围内。模具温度的测量方法是在模塑周期固定的情况下,将精确度不低于士 2 ℃ 的触 点测温计,分别测量模具动定板型腔不同部位温度,测量点不少于 3 处。 压力与速度:注射压力与注射速度。注射压力是指注射时螺杆头部施加于塑料的单位面积压力,一般 以注射油缸液压油的表压间接表示出来。注射压力通常是由低到高逐渐调节;注射速度是以注射时螺杆前 移的速度来表示,若试样较厚,注射速度宜慢、否则宜快,在保证熔体充满型腔、试样外观质量较好的情 况下,一般采用较快的注射速度。塑化压力与螺杆转速,塑化压力—般控制在 0 . 3 一 1MPa ,而螺杆 转速控制在 28 — 60r / min 。对于热敏性塑料宜用低的转速和塑化压力,熔休粘度高的塑料宜用低的 转速和高的塑化压力。 时间:成型周期各阶段的时间,如闭模时间、注射保压时间、冷却时间、启模时间等,这些时间用注 射机中的时间继电器测量。在保证试样(制品)不发生凹陷和变形的前提下,注射保压时间和冷却时间尽 可能缩短。 2 .注射试样(制品) (1) 按注射机使用说明书或注射机操作规程做好实验设备的检查和维护工作,并熟悉注射机的操作过程。 (2) 在指导教师的指导下进行模具的安装与注射机的调整。 (3) 试样注射过程: 根据所选择的塑料原料的性能, 对料筒与喷嘴进行预热。 当达到预调温度时恒温 10 一 20min ,再加料进行对空注射,认为熔体温度达到要求时,即可按该条件用半自动操作方式制备试样(制 品)。注射成型过程如下: 注射试样过程中,模具的型腔和流道不允许涂擦润滑性物质。 试样(制品)数量按测试需要而定。注射每一组试样时,—定要在基本稳定的工

塑料注射成型工艺中成型零部件

塑料注射成型工艺中成型零部件 摘要随着塑料制品在日常生活中的广泛利用,人们对塑料制品的质量与数量要求日趋提高,而国内塑料制造行业所掌握的技术普遍相对落后,要提高我国塑料行业的整体竞争力,对成型模具的研究与改进是必须的。实际上塑料注射所用的模具(简称注射模一一实现注射成型工艺的重要工艺装备)成型技术已成为衡量一个国家塑料制造水平的重要标志之一。本文介绍了几种塑料成型工艺中重要模具的特点,并对不同种类凹模凸模的结构和使用条件进行探究。 关键词塑料成型;注塑机;凹模;凸模 中图分类号TS91 文献标识码A 文章编号1674-6708 (2016 )162-0149-02 注射成型(注塑)是一种将已经在加热料筒中预先均匀塑化的热固性或热塑性材料,高速推挤到闭合模具的模腔中用以成型工业产品的生产方法。产品通常使用橡胶注塑和塑料注塑。注塑方法又可分注塑成型模压法和压铸法。注射成型机(简称注射机或注塑机)是一种常用的塑料成型设备,它利用塑料成型模具将热塑性塑料制成各种形状的塑料制品。近年来,注射成型也成功地用于成型某些热固性塑料。 我国的注塑机从无到有,从单一品种到多品种,已经有

了长足的发展。但相比于其他如德国等制造工艺技术发达的 国家,我国的塑料工业还处于初级发展阶段,所以注塑成型 在我国的高分子材料发展进程中有着广阔的前景。同时随着塑料制品在日常社会中得到广泛利用,塑料注射成型所用的模具(简称注射模,它是实现注射成型工艺的重要工艺装备)技术已成为衡量一个国家制造水平的重要标志之一。 注射模的基本组成: 1)成型零部件; 2)浇注系统:浇注系统是指注塑机喷嘴将塑料喷出后,流体到达模具型腔前所流经的通道; 3)导向机构:导向机构是用于保证动、定模合模时准确对合; 4)支承零部件:支承零部件是指起支持作用的零部件轴承,常与导向机构组合构成模架; 5)推出机构:推出机构是将模具中已经完成成型后的塑件及浇注系统中的凝料推出模具的装置; 6)侧向分型与抽芯机构:该机构将成型孔、凹穴或凸台的型芯或瓣合模块从塑件上脱开或抽出,合模时又将其复位; 7)温度调节系统:满足注射工艺对模温的要求; 8)排气系统:将型腔内的气体排出模外。 其中,成型零部件是指直接与塑料接触或部分接触,并决定塑件形状、尺寸、表面质量的零件,它们是模具的核心 零件。包括型腔、型芯、螺纹型芯、螺纹型环、镶件等。

塑料注射成型

塑料注射成型试卷试题下载-样卷.doc 《塑料注射成型》课程考核题库 试卷一 一、选择题(第1~60题。每题有三或四个备选答案,其中只有一个正确答案,请选择你认为正确的答案,将其填入答卷纸上。每题1分,共60分。) 1、注塑成型是生产效率()的一种成型方法。 A、低 B、一般 C、高 2、现在用移动螺杆普通注塑机注塑PC塑料,原来注塑机料筒中的残余塑料是RPVC,这时要清洗料筒,应该采用()。 A、拆机清理料筒 B、直接换料法 C、间接换料法。 3、下列三种树脂中,属于热固性树脂是()。 A、在酸性下合成的酚醛树脂 B、在碱性下合成的酚醛树脂 C、ABS树脂 4、EVA是()聚合物的英文缩写代号。 A、聚甲基丙烯酸甲酯 B、聚对苯二甲酸丁二醇酯 C、乙烯-醋酸乙烯酯共聚物 5、注塑用的热塑性塑料中,在下列三种中,属于热敏性塑料的塑料品种是()。 A、PS塑料 B、RPVC塑料 C、PET塑料 6、下列三种树脂中,在注射成型中必须设置防涎量的是()。 A、PC B、PA6 C、ABS 7、PC塑料的玻璃化温度是()。

A、100℃ B、150℃ C、280℃ 8、在PA中加入玻璃纤维后,其熔体的流动性和原PA相比是()。 A、不变 B、增加 C、下降 9、PMMA具有一定亲水性,其颗粒的吸水率达()。 A、0.03%~0.04% B、0.3%~0.4% C、3%~4% 10、在注塑聚砜(PSU)时,其熔体温度与料筒温度的差别()。 A、较小 B、中等 C、较大 11、加入30%玻纤增强的聚醚砜(PES),在200℃温度下,在高负荷作用下4个月的变形小于()。 A、0.005% B、0.05% C、0.5% 12、注塑聚苯硫醚(PPS)时的料筒温度为()。 A、180~230℃ B、230~280℃ C、280~330℃ 13、从理论上讲,注塑普通塑料制品时,喷嘴温度比料筒末端(即出料口)温度()。 A、稍高B稍低C、相等。 14、注塑机料筒温度分布规律是,由加料斗向喷嘴方向()。 A、逐渐增高 B、逐渐降低 C、两头高而中间低 15、注塑制品具有明显的熔合纹,在下列三种因素中,与熔合纹无关的因素是()。 A、熔料温度 B、注射速率 C、注射机液压油的温度。 16、注塑制品出现脱模困难的主要原因是()。 A、熔料温度太高 B、冷却时间太长 C、模具结构设计得不合理 17、除PVC外,一般热塑性塑料都可采用()表征其熔体流动性。 A、拉西格流动长度 B、挤出量 C、熔体流动速率

热塑性塑料的注塑成型

热塑性塑料注塑成型这种方法即是将塑料材料熔融,然后将其注入膜腔。熔融的塑料一旦进入模具中,它就受冷依模腔样成型成一定形状。所得形状往往就是最后的成品,在安装或作为最终成品使用之前不再需要其它的加工。许多细部,诸如凸起部。肋、螺纹,都可以在注射模塑一步操作中成型出来。 注射模塑机有两个基本部件:用于熔融和把塑料送人模具的注射装置与合模装置。合模装置的作用在于:(1)使模具在承受住注射压力情况下闭合;(2)将制品取出。 注射装置在塑料注入模具之前将其熔融,然后控制压力和速度将熔体注入模具。目前采用的注射装置有两种设计:螺杆式预塑化器或双级装置,以及往复式螺杆。螺杆式预塑化器利用预塑化螺杆(第一级)再将熔融塑料送人注料杆(第二级)。 螺杆预塑化器的优点是熔融物质量恒定,高压和高速,以及精确的注射量控制(利用活塞冲程两端的机械止推装置)。这些长处正是透明、薄壁制品和高生产速率所需要的。其缺点包括不均匀的停留时间(导致材料降解)、较高的设备费用和维修费用。 最常用的往复式螺杆注射装置不需柱塞即将塑料熔融并注射。将料斗中的粉状或粒状塑料熔融,通过转动的螺杆送到螺杆前端止逆间

处,塑料流体流经螺杆前端并堆积于螺杆前方。螺杆前方熔融塑料的积累将螺杆推向注射装置的后部,螺杆的转动、熔融物的积累和向后部的移动一直持续到形成一定的注射量。在下一个设备工作周期中,螺杆末梢止逆问关闭,防止物料沿螺杆返回。螺杆梢和进料螺杆的作用有如注料柱塞,将塑料压人模具。 往复式螺杆的优点包括减少了塑料的停留时间,自洁螺杆和螺杆梢。这些优点在加工热敏性材料以及当采用带色原料或树脂品种变更时,螺杆和机筒都要清理时,都是关键所在。 目前广泛应用的合模装置设计包括:肘杆式合模装置、液压式合模装置和液压一机械式合模装置。肘杆式合模装置鉴于其设计在制造时成本低,适用于小吨位设备。其特点包括闭锁作业的高机械效益、内设锁模减慢装置、模具损坏慢以及快速的合模操作。 合模油缸把横顶板推向前,使连肘伸长并使压板朝前运动。合模装置关闭时,机械利益降低,促使压板迅速移动。当压板到达模具关闭的位置时,连肘由高速一低机械利益转为低速一高机械利益。低速是保护模具的关键,而高机械利益是形成大吨位所需要的,一旦连肋充分伸展,液压就不再是保持吨位所必须的了。为了开启合模装置,将液压施加于合模柱塞相反的一面,为了防止成型好制品被损坏,要缓慢开启模具。通过整个连肘装置的移动和压板装置沿拉杠的移动

第4章 塑料注塑成型工艺

第4章 塑料注塑成型工艺 4.1 注射工艺参数选择 试模目的之一是为正式生产寻找最佳的成型工艺条件,因此试模的工艺选择应该严格遵守注射工艺规程,按正常的生产条件试模,这样才会使模具中存在的问题得到充分暴露,试模结果对修模才有指导作用。工艺参数选择主要是温度、压力和时间的选择。首次选择各个工艺参数时可以根据经验值、一般成型理论提供的参考值或设计时的CAE 模拟软件的给定值。 4.1.1温度 注射成型过程需要控制的有料筒温度、模具温度、喷嘴温度等。料筒和喷嘴温度决定熔体温度。 料筒温度的分布原则时从加料口到喷嘴由低到高的,这样能使塑料逐步塑化。料筒温度的选择与塑料特性的关系最大。每一种塑料有不同的流动温度(f t )或熔点(m t ),对非结晶塑料,料筒末端最高温度应高于f t ;对结晶型塑料,料筒末端最高温度应高于m t ,但它们都必须低于各自的分解温度d t ,即料筒末端最高温度范围在()f m t ~d t 之间。对于()f m t ~d t 区间狭窄或热敏性易分解的塑料,料筒最高温度应偏低,比()f m t 稍高即可;反之,对于()f m t ~d t 区间较宽或热稳定性较好的塑料,则可高些,即比()f m t 高的多,因为这样有利于成型和提高生产效率。 喷嘴温度通常应略低于料筒的最高温度,这样可以防止熔体在喷嘴处“流涎”,对热敏性塑料还可以避免喷嘴处因高速摩擦热带来过度的温升而导致分解现象。 此外,料筒和喷嘴的温度选择,还应考虑高聚物的平均分子量及其分布,塑料配方的组成、制品的形状及其厚薄、注射机的种类,以及其他工艺条件等因素,综合考虑,以便确定最佳的数值。 模具温度对制品的外观质量内在的性能影响很大,同时也影响注射成型的劳动效率。 热塑性塑料注射时,模具温度应低于料温,它是冷却定型过程。 模具温度的高低取决于塑料的特性(结晶与否)、制品的结构于尺寸、制品性能要求以及其他工艺条件。 无定型塑料熔体注入模腔后,不发生相转变,主要影响熔体粘度,影响充模速度。在顺利充模情况下,模温低可提高生产率。但对那些高粘度塑料,应采用较高模温,这样可调整制品冷却速率,以防止制品内外层温差过大而产生的凹痕、内应力和裂纹等缺陷。

长玻纤增强热塑性塑料注射成型技术

长玻纤增强热塑性塑料注射成型技术 https://www.doczj.com/doc/b613596362.html, 发布日期: 2007-10-10 阅读: 2372 字体:大中小双击鼠标滚屏 长玻纤增强材料指的是用长度在5 mm以上的玻纤增强的复合材料,这种材料主要应用在比短切玻纤增强材料要求更高的场合,在汽车零配件中的应用尤为突出。20世纪80年代中期,西欧国家生产轿车采用的纤维增强塑料为40~50 kg/辆,1987年美国轿车平均耗用纤维增强塑料约36.3kg/辆,1990年为40.6 kg/辆,1992年为56.8 Kg/辆,其中玻纤增强热塑性塑料占有相当大的比例。长玻纤增强热塑性塑料(LFT)首先在欧洲被成功应用到汽车零件生产中,同时也受到北美设备生产厂家的关注。在欧洲和北美,许多汽车零配件生产厂家都用LFT技术代替了原来的玻纤毡增强热塑性塑料(GMT)技术,它已经成为塑料市场中发展最快的技术,在过去的10年中用于汽车生产的长玻纤数量每年约增长30%。市场的巨大需求及加工水平的提高推动了LFT材料成型方法及设备的发展,其成型工艺及成型设备得到了飞速发展尤其是在线配混注射成型技术越来越受到人们的关注,具有广阔的应用前景。 1 LFT材料的性质与用途 LFT中的玻纤长度较长,而且纤维长度分布更好,与GMT相比具有以下优良的性能:(1)制品的力学性能高,特别是冲击强度提高显著;(2)制品刚度与质量比高,变形小,特别有利于LFT在汽车中的应用;(3)制品韧性提高(4)制品抗蠕变性能好,尺寸稳定;(5)材料耐疲劳性能优良;(6)材料加工性能好,可用于成型形状、结构复杂的制品,GMT只能用于模压成型,囚而LFT设计自由度比GMT更高;(7)可回收利用。 由于LFT材料所具有的优良比能,因而被广泛应用于汽车、机械、建筑、航天航空及高新技术领域,特别是在汽车中的应用日渐增多。目前已广泛应用于汽车中的制品有进气岐管、前端组件、保险杠、挡泥板、仪表盘、行李仓底板、车门、车身板等。此外由于LFT材料优良的防腐性能而广泛用于化工防腐方面的贮罐、管道、电镀槽器件、防腐地板等。 2 LFT材料注射成型方法 目前用于LFT注射成型的方法主要有两种,一种是LFT料粒法,也称“两步法”;另一种是在注塑生产线上配混连续玻纤、塑料及添加剂后直接成型为制品,省去造粒的中间环节,也称“一步法”。由于纤维增强塑料熔体粘度高,加工困难。传统加工过程会造成长玻纤的过度折断、对设备磨损严重等问题,常规的短切玻纤增强塑料的制备方法及设备不适宜于LFT材料,需要相应的成型设备及工艺与之配套。 2.1 “两步法”注射成型 在“两步法”成型工艺中,首先采用特殊方法加工制得LFT料粒(料粒中玻纤长度大于5 mm)。早期主要采用电缆包覆法、粉末浸渍法等制得LFT料粒。近年来国际上普遍采用一种新的工艺,即使玻纤无捻粗纱通过特殊模头,同时向模头供人热塑性塑料,在模头中无捻粗纱被强制散开,受到塑料熔体的浸溃,使每根纤维都被树脂包覆,冷却后切成较长的料粒(10~25 mm),

塑料注射成型工艺中成型零部件-精选文档

塑料注射成型工艺中成型零部件 注射成型(注塑)是一种将已经在加热料筒中预先均匀塑化的热固性或热塑性材料,高速推挤到闭合模具的模腔中用以成型 工业产品的生产方法。产品通常使用橡胶注塑和塑料注塑。注塑 方法又可分注塑成型模压法和压铸法。注射成型机(简称注射机 或注塑机)是一种常用的塑料成型设备,它利用塑料成型模具将 热塑性塑料制成各种形状的塑料制品。近年来,注射成型也成功地用于成型某些热固性塑料。 我国的注塑机从无到有,从单一品种到多品种,已经有了长足的发展。但相比于其他如德国等制造工艺技术发达的国家,我国的塑料工业还处于初级发展阶段,所以注塑成型在我国的高分子材料发展进程中有着广阔的前景。同时随着塑料制品在日常社会中得到广泛利用,塑料注射成型所用的模具(简称注射模,它是实现注射成型工艺的重要工艺装备)技术已成为衡量一个国家制造水平的重要标志之一。 注射模的基本组成: 1)成型零部件; 2)浇注系统:浇注系统是指注塑机喷嘴将塑料喷出后,流 体到达模具型腔前所流经的通道; 3)导向机构:导向机构是用于保证动、定模合模时准确对 合;

4)支承零部件:支承零部件是指起支持作用的零部件轴承,常与导向机构组合构成模架; 5)推出机构:推出机构是将模具中已经完成成型后的塑件 及浇注系统中的凝料推出模具的装置; 6)侧向分型与抽芯机构:该机构将成型孔、凹穴或凸台的 型芯或瓣合模块从塑件上脱开或抽出,合模时又将其复位; 7)温度调节系统:满足注射工艺对模温的要求; 8)排气系统:将型腔内的气体排出模外。 其中,成型零部件是指直接与塑料接触或部分接触,并决定塑件形状、尺寸、表面质量的零件,它们是模具的核心零件。包括型腔、型芯、螺纹型芯、螺纹型环、镶件等。 这里主要对成型零部件中凹模、凸模的结构进行分类,以及对其使用条件进行分析。 1凹模结构分类 凹模也可以称作型腔或者凹模型腔,是用来成型塑件外形轮廓的主要零件。可在安装在定模上也可以安装在动模上。凹模的类型有很多,凹模按外形可以分为圆形和矩形;按刃口有平刃和斜刃;按结构形式不同则可以把它们分为整体式凹模、整体嵌入式凹模、局部镶拼组合式凹模、大面积镶拼组合式凹模。 1.1整体式凹模 整体式凹模是由整块材料制作加工而成。这种凹模结构相对 比较简单,具有较高的强度和较好的刚性,不易使塑件因加工过 程中产生的拼接缝痕迹而出现质量问题,也可以使注射模中成型零件的数量大大减少,从而提高了模具的装配效率,也使整个模具的外形尺寸和结构得到一定程度的缩小。 但常出现的问题是塑件热处理不方便,如果整体式凹模用来成型

相关主题
文本预览
相关文档 最新文档