当前位置:文档之家› RSTP概要1,快速生成树原理

RSTP概要1,快速生成树原理

RSTP概要1,快速生成树原理
RSTP概要1,快速生成树原理

RSTP概要

关于此文有任何疑问或者建议请到https://www.doczj.com/doc/be13195082.html, 或者游来游去岛留言,也可以直接给我发邮件.

crazycat84@https://www.doczj.com/doc/be13195082.html,

二〇〇六年五月

目录

1. 协议简介(Overview) (1)

1.1 开天辟地的第一代生成树协议:STP/RSTP (1)

1.2 聪明伶俐的第二代生成树协议:PVST/PVST+ (5)

1.3 多实例化的第三代生成树协议:MISTP/MSTP (7)

1.4 生成树协议的未来之路 (9)

2. 基本概念(Definition) (9)

2.1 端口角色(Port Role) (9)

2.1.1 根端口(Root Port) (9)

2.1.2 指定端口(Designated Port) (9)

2.1.3 备份端口(Backup Port) (10)

2.1.4 替换端口(Alternate Port) (10)

2.2 端口状态(Port State) (10)

2.2.1 丢弃(Discarding) (11)

2.2.2 学习(Learning) (11)

2.2.3 转发(Forwarding) (11)

2.3 端口参数(Per-Port variables) (11)

2.3.1 端口ID(Port Identifier) (11)

2.3.2 边缘端口(Edge Port) (11)

2.3.3 链路类型(Link Type) (11)

2.3.4 端口链路代价(Port Path Cost) (12)

2.4 网桥参数(Per-Bridge variables) (12)

2.4.1 网桥ID(Bridge Identifier) (12)

2.4.2 最大消息生存时间(maximum age) (12)

2.4.3 转发延迟(Forward Delay) (12)

2.4.4 保活时间(Hello Time) (12)

2.5 状态机参数(State machine parameters) (13)

2.5.1 老化时间(Ageing Time) (13)

2.5.2 迁移时间(Migrate Time) (13)

2.5.3 拓扑变化通知时间(TC While) (13)

2.5.4 传输间隔(Transmit Hold Count) (13)

2.5.5 协议版本(Force Protocol Version) (13)

2.6 参数取值(Parameter Value) (14)

2.6.1 性能参数(Performace Parameter) (14)

2.6.2 端口链路代价(Port Path Cost) (14)

2.7 消息封装(Encoding of BPDUs) (15)

2.7.1 Encoding of Protocol Identifiers (16)

2.7.2 Encoding of Protocol Version Identifiers (16)

2.7.3 Encoding of BPDU Types (16)

2.7.4 Encoding of Flags (16)

2.7.5 Encoding of Bridge Identifiers (17)

2.7.6 Encoding of Root Path Cost (17)

2.7.7 Encoding of Port Identifiers (17)

2.7.8 Encoding of Timer Values (17)

2.7.9 Encoding of Length Values (17)

2.7.10 Validation of Received BPDUs (17)

3. 状态机(State Machine) (18)

3.1 overview and interrelationships (18)

3.2 Notational Conventions (19)

3.3 Port Timers State Machine (20)

3.4 Port Information State Machine (21)

3.5 Port Role Selection State Machine (22)

3.6 Port States Transitions State Machine (23)

3.7 Port Role Transitions State Machine (24)

3.8 Topology Change State Machine (28)

3.9 Port Protocol Migration State Machine (29)

3.10 Port Transmit State Machine (30)

3.11 Handshake (31)

4. 典型案例 (32)

4.1 链路备份 (32)

4.2 版本兼容 (34)

5. 注意事项 (35)

5.1 Protocol Design Requirements (35)

5.2 Symmetric Connectivity (35)

5.3 Temporary Loops (35)

5.4 Root (35)

5.5 Root Bridge Selction (35)

5.6 Root Port Selection (36)

5.7 Designated Bridge Selction (36)

5.8 STP compatibility (36)

5.9 Updating learned station information (37)

5.10 Protocol Version (37)

5.11 Port Role---Unknown (37)

5.12 Configuration Message and TCN Message (37)

6. 疑难解答 (38)

6.1 优先级设置 (38)

6.2 端口角色选择 (38)

图 1-1 生成树工作过程示意图 (2)

图 1-2 RSTP冗余链路快速切换示意图 (4)

图 1-3 非对称网络示意图 (4)

图 1-4 SST带宽利用率低下示意图 (5)

图 1-5 PVST+与SST对接示意图 (6)

图 1-6 PVST+负载均衡示意图 (6)

图 1-7 MSTP工作原理示意图 (8)

图 2-1 端口角色示意图 (10)

图 2-2 RSTP与STP端口状态比较示意图 (10)

图 2-3 性能参数取值范围 (14)

图 2-4 端口链路代价取值范围 (14)

图 2-5 协议封装格式 (15)

图 2-6 RST Flag示意图 (16)

图 3-1 RSTP state machines - overview and interrelationships (19)

图 3-2 Port Timers State Machine (20)

图 3-3 Port Information State Machine (21)

图 3-4 Port Role Selction State Machine (22)

图 3-5 Port States Transition State Machine (23)

图 3-6 Port Role Transition: Disabled, Alternate, and Backup Role (24)

图 3-7 Port Role Transition: Root Port Role (25)

图 3-8 Port Role Transition: Designated Port Role (26)

图 3-9 Topology Change State Machine (28)

图 3-10 Port Protocol Migration State Machine (29)

图 3-11 Port Transmit State Machine (30)

图 3-12 Handshake (31)

图 4-1 链路备份组网示意图 (32)

图 4-2 RSTP与STP组网示意图 (34)

图 5-1 端口角色选举示意图 (36)

图 6-1 端口角色选择初始状态示意图 (38)

图 6-2 各端口角色示意图 (39)

图 6-3 最终拓扑示意图 (39)

1.协议简介(Overview)

生成树协议是一种二层管理协议,它通过有选择性地阻塞网络冗余链路来达到消除网络二层环路的目的,同时具备链路的备份功能。

由于生成树协议本身比较小,所以并不像路由协议那样广为人知。但是它却掌管着端口的转发大权—“小树枝抖一抖,上层协议就得另谋生路”。真实情况也确实如此,特别是在和别的协议一起运行的时候,生成树就有可能断了其他协议的报文通路,造成种种奇怪的现象。

生成树协议和其他协议一样,是随着网络的不断发展而不断更新换代的。本章标题中的“生成树协议”是一个广义的概念,并不是特指IEEE 802.1D中定义的STP协议,而是包括STP以及各种在STP基础上经过改进了的生成树协议。

在生成树协议发展过程中,老的缺陷不断被克服,新的特性不断被开发出来。按照大功能点的改进情况,我们可以粗略地把生成树协议的发展过程划分成三代,下面一一道来。

1.1 开天辟地的第一代生成树协议:STP/RSTP

在网络发展初期,透明网桥是一个不得不提的重要角色。它比只会放大和广播信号的集线器聪明得多。它会悄悄把发向它的数据帧的源MAC地址和端口号记录下来,下次碰到这个目的MAC地址的报文就只从记录中的端口号发送出去,除非目的MAC地址没有记录在案或者目的MAC地址本身就是多播地址才会向所有端口发送。通过透明网桥,不同的局域网之间可以实现互通,网络可操作的范围得以扩大,而且由于透明网桥具备MAC地址学习功能而不会像Hub那样造成网络报文冲撞泛滥。

但是,金无足赤,透明网桥也有它的缺陷,它的缺陷就在于它的透明传输。透明网桥并不能像路由器那样知道报文可以经过多少次转发,一旦网络存在环路就会造成报文在环路内不断循环和增生,甚至造成恐怖的“广播风暴”。之所以用“恐怖”二字是因为在这种情况下,网络将变得不可用,而且在大型网络中故障不好定位,所以广播风暴是二层网络中灾难性的故障。

在这种大环境下,扮演着救世主角色的STP(Spanning Tree Protocol)协议来到人间,其中以IEEE的802.1D版本最为流行。

图 1-1 生成树工作过程示意图

STP协议的基本思想十分简单。大家知道,自然界中生长的树是不会出现环路的,如果网络也能够像一棵树一样生长就不会出现环路。于是,STP协议中定义了根桥(Root Bridge)、根端口(Root Port)、指定端口(Designated Port)、路径开销(Path Cost)等概念,目的就在于通过构造一棵自然树的方法达到裁剪冗余环路的目的,同时实现链路备份和路径最优化。用于构造这棵树的算法称为生成树算法SPA(Spanning Tree Algorithm)。

要实现这些功能,网桥之间必须要进行一些信息的交流,这些信息交流单元就称为配置消息BPDU(Bridge Protocol Data Unit)。STP BPDU是一种二层报文,目的MAC是多播地址01-80-C2-00-00-00,所有支持STP协议的网桥都会接收并处理收到的BPDU报文。该报文的数据区里携带了用于生成树计算的所有有用信息。

要了解生成树协议的工作过程也不难,首先进行根桥的选举。选举的依据是网桥优先级和网桥MAC地址组合成的桥ID(Bridge ID),桥ID最小的网桥将成为网络中的根桥。在图1-1所示的网络中,各网桥都以默认配置启动,在网桥优先级都一样(默认优先级是32768)的情况下,MAC地址最小的网桥成为根桥,例如图1-1中的SW1,它的所有端口的角色都成为指定端口,进入转发状态。

接下来,其他网桥将各自选择一条 “最粗壮”的树枝作为到根桥的路径,相应端口的角色就成为根端口。假设图1-1中SW2和SW2、SW3之间的链路是千兆GE链路,SW1和SW3之间的链路是百兆FE链路,SW3从端口1到根桥的路径开销的默认值是19,而从端口2经过SW2到根桥的路径开销是4+4=8,所以端口2成为根端口,进入转发状态。同理,SW2的端口2成为根端口,端口1成为指定端口,进入转发状态。

根桥和根端口都确定之后一棵树就生成了,如图中实线所示。下面的任务是裁剪冗余的

环路。这个工作是通过阻塞非根桥上相应端口(非根端口,非指定端口)来实现的,例如SW3的端口1的角色成为禁用端口,进入阻塞状态(图中用“×”表示)。

生成树经过一段时间(默认值是30秒左右)稳定之后,所有端口要么进入转发状态,要么进入阻塞状态。STP BPDU仍然会定时从各个网桥的指定端口发出,以维护链路的状态。如果网络拓扑发生变化,生成树就会重新计算,端口状态也会随之改变。

当然生成树协议还有很多内容,在这里不可能一一介绍。之所以花这么多笔墨介绍生成树的基本原理是因为它太“基本”了,其他各种改进型的生成树协议都是以此为基础的,基本思想和概念都大同小异。

STP协议给透明网桥带来了新生。但是,随着应用的深入和网络技术的发展,它的缺点在应用中也被暴露了出来。STP协议的缺陷主要表现在收敛速度上。

当拓扑发生变化,新的配置消息要经过一定的时延才能传播到整个网络,这个时延称为Forward Delay,协议默认值是15秒。在所有网桥收到这个变化的消息之前,若旧拓扑结构中处于转发的端口还没有发现自己应该在新的拓扑中停止转发,则可能存在临时环路。为了解决临时环路的问题,生成树使用了一种定时器策略,即在端口从阻塞状态到转发状态中间加上一个只学习MAC地址但不参与转发的中间状态,两次状态切换的时间长度都是Forward Delay,这样就可以保证在拓扑变化的时候不会产生临时环路。但是,这个看似良好的解决方案实际上带来的却是至少两倍Forward Delay的收敛时间!

为了解决STP协议的这个缺陷,在世纪之初IEEE推出了802.1w标准,作为对802.1D 标准的补充。在IEEE 802.1w标准里定义了快速生成树协议RSTP(Rapid Spanning Tree Protocol)。RSTP协议在STP协议基础上做了三点重要改进,使得收敛速度快得多(最快1秒以内)。

第一点改进:为根端口和指定端口设置了快速切换用的替换端口(Alternate Port)和备份端口(Backup Port)两种角色,当根端口/指定端口失效的情况下,替换端口/备份端口就会无时延地进入转发状态。图1-2中所有网桥都运行RSTP协议,SW1是根桥,假设SW2的端口1是根端口,端口2将能够识别这种拓扑结构,成为根端口的替换端口,进入阻塞状态。当端口1所在链路失效的情况下,端口2就能够立即进入转发状态,无需等待两倍Forward Delay时间。

图 1-2 RSTP冗余链路快速切换示意图

第二点改进:在只连接了两个交换端口的点对点链路中,指定端口只需与下游网桥进行一次握手就可以无时延地进入转发状态。如果是连接了三个以上网桥的共享链路,下游网桥是不会响应上游指定端口发出的握手请求的,只能等待两倍Forward Delay时间进入转发状态。

第三点改进:直接与终端相连而不是把其他网桥相连的端口定义为边缘端口(Edge Port)。边缘端口可以直接进入转发状态,不需要任何延时。由于网桥无法知道端口是否是直接与终端相连,所以需要人工配置。

可见,RSTP协议相对于STP协议的确改进了很多。为了支持这些改进,BPDU的格式做了一些修改,但RSTP协议仍然向下兼容STP协议,可以混合组网。虽然如此,RSTP和STP 一样同属于单生成树SST(Single Spanning Tree),有它自身的诸多缺陷,主要表现在三个方面。

第一点缺陷:由于整个交换网络只有一棵生成树,在网络规模比较大的时候会导致较长的收敛时间,拓扑改变的影响面也较大。

第二点缺陷:近些年IEEE 802.1Q大行其道,逐渐成为交换机的标准协议。在网络结构对称的情况下,单生成树也没什么大碍。但是,在网络结构不对称的时候,单生成树就会影响网络的连通性。

图 1-3 非对称网络示意图

图1-3中假设SW1是根桥,实线链路是VLAN 10,虚线链路是802.1Q的Trunk链路,Trunk了VLAN 10和VLAN 20。当SW2的Trunk端口被阻塞的时候,显然SW1和SW2之间VLAN 20的通路就被切断了。

第三点缺陷:当链路被阻塞后将不承载任何流量,造成了带宽的极大浪费,这在环行城域网的情况下比较明显。

图 1-4 SST带宽利用率低下示意图

图1-4中假设SW1是根桥,SW4的一个端口被阻塞。在这种情况下,SW2和SW4之间铺设的光纤将不承载任何流量,所有SW2和SW4之间的业务流量都将经过SW1和SW3转发,增加了其他几条链路的负担。

这些缺陷都是单生成树SST无法克服的,于是支持VLAN的多生成树协议出现了。 1.2 聪明伶俐的第二代生成树协议:PVST/PVST+

每个VLAN都生成一棵树是一种比较直接,而且最简单的解决方法。它能够保证每一个VLAN都不存在环路。但是由于种种原因,以这种方式工作的生成树协议并没有形成标准,而是各个厂商各有一套,尤其是以Cisco的VLAN生成树PVST(Per VLAN Spanning Tree)为代表。

为了携带更多的信息,PVST BPDU的格式和STP/RSTP BPDU格式已经不一样,发送的目的地址也改成了Cisco保留地址01-00-0C-CC-CC-CD,而且在VLAN Trunk的情况下PVST BPDU 被打上了802.1Q VLAN标签。所以,PVST协议并不兼容STP/RSTP协议。

Cisco很快又推出了经过改进的PVST+协议,并成为了交换机产品的默认生成树协议。经过改进的PVST+协议在VLAN 1上运行的是普通STP协议,在其他VLAN上运行PVST协议。PVST+协议可以与STP/RSTP互通,在VLAN 1上生成树状态按照STP协议计算。在其他VLAN 上,普通交换机只会把PVST BPDU当作多播报文按照VLAN号进行转发。但这并不影响环路的消除,只是有可能VLAN 1和其他VLAN的根桥状态可能不一致。

图 1-5 PVST+与SST对接示意图

图1-5中所有链路默认VLAN是VLAN 1,并且都Trunk了VLAN 10和VLAN 20。SW1和SW3运行单生成树SST协议,而SW2运行PVST+协议。在VLAN 1上,可能SW1是根桥,SW2的端口1被阻塞。在VLAN 10和VLAN 20上,SW2只能看到自己的PVST BPDU,所以在这两个VLAN上它认为自己是根桥。VLAN 10和VLAN 20的PVST BPDU会被SW1和SW3转发,所以SW2检测到这种环路后,会在端口2上阻塞VLAN 10和VLAN 20。这就是PVST+协议提供的STP/RSTP兼容性。可以看出,网络中的二层环路能够被识别并消除,强求根桥的一致性是没有任何意义的。

由于每个VLAN都有一棵独立的生成树,单生成树的种种缺陷都被克服了。同时,PVST 带来了新的好处,那就是二层负载均衡。

图 1-6 PVST+负载均衡示意图

图1-6中四台设备都运行PVST+协议,并且都Trunk了VLAN 10和VLAN 20。假设SW1是所有VLAN的根桥,通过配置可以使得SW4端口1上的VLAN 10和端口2上的VLAN 20阻塞,SW4的端口1所在链路仍然可以承载VLAN 20的流量,端口2所在链路也可以承载VLAN 10的流量,同时具备链路备份的功能。这在以往的单生成树情况下是无法实现的。

聪明伶俐的PVST/PVST+协议实现了VLAN认知能力和负载均衡能力,但是新技术也带来了新问题,PVST/PVST+协议也有它们的“难言之隐”。

第一点缺陷:由于每个VLAN都需要生成一棵树,PVST BPDU的通信量将正比于Trunk 的VLAN个数。

第二点缺陷:在VLAN个数比较多的时候,维护多棵生成树的计算量和资源占用量将急剧增长。特别是当Trunk了很多VLAN的接口状态变化的时候,所有生成树的状态都要重新计算,CPU将不堪重负。所以,Cisco交换机限制了VLAN的使用个数,同时不建议在一个端口上Trunk很多VLAN。

第三点缺陷:由于协议的私有性,PVST/PVST+不能像STP/RSTP一样得到广泛的支持,不同厂家的设备并不能在这种模式下直接互通,只能通过一些变通的方式实现,例如Foundry的IronSpan。IronSpan默认情况下运行的是STP协议,当某个端口收到PVST BPDU 时,该端口的生成树模式会自动切换成PVST/PVST+兼容模式。

一般情况下,网络的拓扑结构不会频繁变化,所以PVST/PVST+的这些缺点并不会很致命。但是,端口Trunk大量VLAN这种需求还是存在的。于是,Cisco对PVST/PVST+又做了新的改进,推出了多实例化的MISTP协议。

1.3 多实例化的第三代生成树协议:MISTP/MSTP

多实例生成树协议MISTP(Multi-Instance Spanning Tree Protocol)定义了“实例”(Instance)的概念。简单的说,STP/RSTP是基于端口的,PVST/PVST+是基于VLAN的,而MISTP就是基于实例的。所谓实例就是多个VLAN的一个集合,通过多个VLAN捆绑到一个实例中去的方法可以节省通信开销和资源占用率。

在使用的时候可以把多个相同拓扑结构的VLAN映射到一个实例里,这些VLAN在端口上转发状态将取决于对应实例在MISTP里的状态。值得注意的是网络里的所有交换机的VLAN 和实例映射关系必须都一致,否则会影响网络连通性。为了检测这种错误,MISTP BPDU里

除了携带实例号以外,还要携带实例对应的VLAN关系等信息。MISTP协议不处理STP/RSTP/PVST BPDU,所以不能兼容STP/RSTP协议,甚至不能向下兼容PVST/PVST+协议,在一起组网的时候会出现环路。为了让网络能够平滑地从PVST+模式迁移到MISTP模式,Cisco在交换机产品里又做了一个可以处理PVST BPDU的混合模式MISTP-PVST+。网络升级的时候需要先把设备都设置成MISTP-PVST+模式,然后再全部设置成MISTP模式。

MISTP带来的好处是显而易见的。它既有PVST的VLAN认知能力和负载均衡能力,又拥有可以和SST媲美的低CPU占用率。不过,极差的向下兼容性和协议的私有性阻挡了MISTP 的大范围应用。

多生成树协议MSTP(Multiple Spanning Tree Protocol)是IEEE 802.1s中定义的一种新型多实例化生成树协议。这个协议目前仍然在不断优化过程中,现在只有草案(Draft)版本可以获得。不过Cisco已经在CatOS 7.1版本里增加了MSTP的支持,华为公司的三层交换机产品Quidway系列交换机也即将推出支持MSTP协议的新版本。

MSTP协议精妙的地方在于把支持MSTP的交换机和不支持MSTP交换机划分成不同的区域,分别称作MST域和SST域。在MST域内部运行多实例化的生成树,在MST域的边缘运行RSTP兼容的内部生成树IST(Internal Spanning Tree)。

图 1-7 MSTP工作原理示意图

图1-7中间的MST域内的交换机间使用MSTP BPDU交换拓扑信息, SST域内的交换机使用STP/RSTP/PVST+ BPDU交换拓扑信息。在MST域与SST域之间的边缘上,SST设备会认为对接的设备也是一台RSTP设备。而MST设备在边缘端口上的状态将取决于内部生成树的状态,也就是说端口上所有VLAN的生成树状态将保持一致。

MSTP设备内部需要维护的生成树包括若干个内部生成树IST,个数和连接了多少个SST 域有关。另外,还有若干个多生成树实例MSTI(Multiple Spanning Tree Instance)确定的MSTP生成树,个数由配置了多少个实例决定。

MSTP具有VLAN认知能力,可以实现负载均衡,可以实现类似RSTP的端口状态快速切换,可以捆绑多个VLAN到一个实例中以降低资源占用率。最难能可贵的是MSTP可以很好

地向下兼容STP/RSTP协议。而且,MSTP是IEEE标准协议,推广的阻力相对小得多。

可见,各项全能的MSTP协议能够成为当今生成树发展的一致方向是当之无愧的。 1.4 生成树协议的未来之路

任何技术的发展都不会因为某项“理想”技术的出现而停滞,生成树协议的发展历程本身就说明了这一点。随着应用的深入,各种新的二层隧道技术不断涌现,例如Cisco的802.1Q Tunneling,华为Quidway S8016的QinQ,以及基于MPLS的二层VPN技术等。在这种新形势下,用户和服务提供商对生成树协议又会有新的需求。生成树协议该往何处走?这个问题虽然现在还没有一个统一的答案,但是各厂商已经开始了这方面的积极探索。也许不久的将来,支持二层隧道技术的生成树协议将成为交换机的标准协议。

本章出自《网管员世界》2003年第7期

以下重点介绍RSTP,以802.1D 2004, 802.1w 2001

为参考标准

在本文中,网桥(Bridge)与交换机(Switch)是等同的

2.基本概念(Definition)

2.1 端口角色(Port Role)

2.1.1根端口(Root Port)

收到最好(依次比较BPDU之间或者BPDU与端口存储的Root Id, Root Path Cost, Bridge ID, Port ID,数字越小,就是更好.处理更好的,丢弃更差的)BPDU的端口成为根端口.它提供到ROOT最近的距离,也就是Root Path Cost最小.

2.1.2指定端口(Designated Port)

在每个网段,发送最好BPDU的端口成为指定端口,对应的网桥成为指定网桥.每个网段通过指定端口到达ROOT的距离最近.

2.1.3备份端口(Backup Port)

如果一个端口收到同一个网桥的更好BPDU,那么这个端口成为备份端口.

2.1.4替换端口(Alternate Port)

如果一个端口收到另外一个网桥的更好的BPDU,但不是最好的,那么这个端口成为替换端口.

图 2-1 端口角色示意图

2.2 端口状态(Port State)

图 2-2 RSTP与STP端口状态比较示意图

2.2.1丢弃(Discarding)

丢弃接收帧,不转发帧,不进行地址学习.能够处理和发送BPDU.

2.2.2学习(Learning)

丢弃接收帧,不转发帧,进行地址学习.能够处理和发送BPDU.

2.2.3转发(Forwarding)

转发帧.发送帧.进行地址学习, 能够处理和发送BPDU.

拓扑稳定时,根端口,指定端口处于Forwarding状态,替换端口,备份端口,Disable端口处于Discarding状态.

2.3 端口参数(Per-Port variables)

2.3.1端口ID(Port Identifier)

在一个交换机中,端口ID唯一标识一个端口.端口ID由端口优先级(Port Priority)和端口编号组成.端口优先级可以手动配置.端口编号不能手动配置,在交换机内唯一.

2.3.2边缘端口(Edge Port)

与终端直接相连的端口就是边缘端口.边缘端口不会形成环路.边缘端口UP/DOWN不会引发TCN.边缘端口也不会FLUSH MAC表.如果边缘端口收到一个BPDU,那么它就不再是边缘端口,而是一个通常的生成树端口.边缘端口无法自动识别,需要手动配置(802.1w).

2.3.3链路类型(Link Type)

端口只与一个网桥相连的链路是点对点(Point-to-Point)链路.端口与多个网桥相连的链路是共享(share medium)链路.链路类型对替换端口转换为根端口没有影响.指定端口快速迁移到转发状态只发生在点对点链路,除非是边缘端口.链路类型根据双工来判断.全双工认为

是点对点链路,半双工认为是共享链路.链路类型可以手动配置.

2.3.4端口链路代价(Port Path Cost)

用于计算最短路径,取决于链路带宽,可以手动配置.

2.4 网桥参数(Per-Bridge variables)

2.4.1网桥ID(Bridge Identifier)

每个网桥都有个唯一的网桥ID.网桥ID由网桥ID优先级(Bridge Identifier Priority)和网桥地址(Bridge Address)组成.网桥ID优先级可以手动配置,在比较网桥ID时,先比较网桥ID优先级,数字越小,优先级越高(better),相同时再比较网桥地址.网桥地址全球唯一,确保网桥ID全球唯一.

2.4.2最大消息生存时间(maximum age)

消息生存时间指配置消息(Configuration Message)产生后经历的时间,配置消息由ROOT产生,ROOT发送的BPDU中,消息生存时间总是0.最大消息生存时间也是由ROOT设置,全网网桥共用.为了避免旧消息在冗余链路上无休止的计算,也为了避免新消息的传输,每个Configuratoin Message 都包含了message age 和 maximum age, message age每经过一个交换机加1,当message age > maximum age时,消息被丢弃.所以网络上的交换机数量受到限制.

2.4.3转发延迟(Forward Delay)

Discarding-->Learning--->Forwarding的状态转换Timeout时间,由ROOT设置,全网统一. 这个时间也用于MAC表项的快速老化时间(Short Ageing Timer).

2.4.4保活时间(Hello Time)

BPDU发送的时间间隔,由ROOT设置,全网统一.

2.5 状态机参数(State machine parameters)

2.5.1老化时间(Ageing Time)

当mac地址项由Learning Process创建或者刷新后,在Ageine Time内,没有同样的源MAC 进入这个端口,那么这个mac地址项被删除.默认是300秒(normally Ageing Time),如果端口工作在stpVersion, Ageing Time被拓扑变化状态机(Topology Change State Machine)设置为15(Forward Delay)秒(Rapid Ageing Time).

2.5.2迁移时间(Migrate Time)

用于设置mdelayWhile和edgeDelayWhile(802.1D 2004). mdelayWhile是RSTP<--->STP

之间的转换最小间隔时间,如果在edgeDelayWhile时间内,端口没有收到BPDU,那么这个端口就会自动成为edge port.

2.5.3拓扑变化通知时间(TC While)

在TC While时间内,端口发送TCN Messages.在点对点链路上TC While=2*2(Hello Time), 在共享链路和STP端口上,TC While=20(Max Age)+15(Forward Delay). 在RSTP中,只有LINK UP才会引发拓扑变化.

2.5.4传输间隔(Transmit Hold Count)

Transmit Hold Count用来限制BPDU的发送速率.每发一个BPDU,txCount+1, T每秒txCount-1. 当txCount=TransmitHold时,延时发送BPDU.

2.5.5协议版本(Force Protocol Version)

Force Protocol Version<2, stpVersion=TRUE. 网桥工作在生成树模式.

Force Protocol Version>1, rstpVersion=TRUE. 网桥工作在快速生成树模式.

2.6 参数取值(Parameter Value)

2.6.1性能参数(Performace Parameter)

图 2-3 性能参数取值范围

2 * (Bridge_Forward_Delay – 1.0 seconds) >= Bridge_Max_Age

Bridge_Max_Age >= 2 * (Bridge_Hello_Time + 1.0 seconds)

2.6.2端口链路代价(Port Path Cost)

图 2-4 端口链路代价取值范围

STP.RSTP协议理解

STP/RSTP 协议理解 拟制 Prepared by 沈岭 Date 日期 2004-11-03 评审人 Reviewed by Date 日期 yyyy-mm-dd 批准 Approved by Date 日期 yyyy-mm-dd 华为三康技术有限公司 Huawei-3Com Technologies Co., Ltd. 版权所有 侵权必究 All rights reserved

修订记录Revision Record

目录 1 S TP 生成树协议 (7) 1.1STP的主要作用 (7) 1.2STP的基本原理: (7) 1.3STP端口的角色和状态 (8) 1.4端口状态: (9) 1.5STP算法 (9) 1.5.1问题1 (12) 1.5.2问题2 (13) 1.6STP的计时器: (13) 1.7STP拓扑结构改变 (14) 1.8问题讨论 (16) 1.8.1问题3的答案: (16) 1.8.2附加题: (16) 2 RSTP 快速生成树协议 (19) 2.1RSTP的改进 (19) 2.2P/A协商 (22) 2.3拓扑结构变化 (23) 2.3.1问题1: (24) 2.3.2问题2: (25) 2.3.3问题3 (25) 2.3.4问题4: (25) 2.3.5附加题 (26) 2.4RSTP新增特性 (26) 2.4.1BPDU Guard (26) 2.4.2Root Guard (27)

2.4.3Root Primary/Secondary (27) 2.4.4Loop Guard (27) 2.4.5STP Mcheck (28) 2.4.6STP TC-protection (28) 推荐资料: (29) 参考资料: (29)

实验:RSTP快速生成树配置

快速生成树配置---------------------晚上风出品 1.实验目标 ?理解生成树协议工作原理; ?掌握快速生成树协议RSTP基本配置方法; ?实验背景学校为了开展计算机教学和网络办公,建立了一个计算机教室和一个校办公区,这两处的计算机网络通过两台交换机互连组成内部校园网,为了提高网络的可靠性,作为网络管理员,你要用2条链路将交换机互连,现要求在交换机上做适当配置,使网络避免环路。 2.生成树配置技术原理 ?生成树协议(spanning-tree),作用是在交换网络中提供冗余备份链路,并且解决交换网络中的环路问题; ?生成树协议是利用SPA算法,在存在交换环路的网络中生成一个没有环路的树形网络。运用该算法将交换网络的冗余备份链路从逻辑上断开,当主链路出现故障时,能够自动的切换到备份链路,保证数据的正常转发; ?生成树协议版本:STP、RSTP(快速生成树)、MSTP(多生成树协议) ?生成树协议的特点收敛时间长。从主要链路出现故障到切换至备份链路需要50秒的时间。 ?快速生成树在生成树协议的基础上增加了两种端口角色:替换端口和备份端口,分别做为根端口和指定端口的冗余端口。当根端口或指定端口出现故障时,冗余端口不需要经过50秒的收敛时间,可以直接切换到替换端口或备份端口,从而实现RSTP 协议小于1秒的快速收敛。 3.实验步骤 ?新建packet tracer 拓扑图(如图) ?默认情况下STP协议启用的。通过两台交换机之间传送BPDU协议数据单元,选出根交换机、根端口等,以便确定端口的转发状态。上图中标记为黄色的端口处于block堵塞状态。 ?设置rstp; ?查看交换机show spanning-tree状态,了解根交换机和根端口情况; ?通过更改交换机生成树的优先级spanningtree vlan * priority 4096 可以变化根交换机的角色。 ?测试。当主链路处于down状态时候,能够自动的切换到备份链路,保证数据的正常转发。

生成树的发展历程

生成树(STP)技术的部署与调试案例 8.1 生成树(STP)技术与实现原理 在一个包含有交换机与网桥的网络中,消除环路对于获得可靠通信与防止流量在网络中不停循环必不可少。生成树协议(Spanning-tree Protocol,STP),工作在ISO七层模型中第二层,其应用能够使交换机或者网桥通过构成“生成树”,在网络拓扑中动态执行“环路遍历”,通过逻辑判断网络的链路,达到网络无环路和链路冗余的目的。 8.1.1 生成树的发展历程 网络发展过程中,以太网设备由Hub发展到透明网桥到智能交换机。透明网桥比Hub 智能,Hub收到数据包后,向除自己外的其他所有端口进行广播,而透明网桥则记录物理端口上连接设备的MAC,收到数据帧后按照记录的MAC地址向该端口发送数据帧,这样大大减少数据帧冲突。 但是透明网桥由于他的透明性,一旦网络中存在环路,一台透明网桥收到的数据帧,又会在环路中返回,这样数据帧不停在网络中增生,最终形成广播风暴,导致整个网络瘫痪;一种阻止网络环路的协议——生成树协议(STP),IEEE 802.1D标准,生成树模拟自然界树的生长规律,从树根到树梢不会形成环路,生成树协议通过对比环路网络中的设备属性的优先级、链路的开销、端口优先级等来判断环路中链路的优先级,从而逻辑上阻断优先级低的网络链路。 生成树从阻断到转发状态需要经过阻断、监听、学习、转发延迟等阶段,这个阶段大约需要30~50s的时间,对于要求高可靠性的网络来,这是不允许的。快速生成树协议(RSTP)IEEE 802.1W按结构需求产生,RSTP将阻断的端口设置备用端口,一旦检测到主链路中断,备用端口直接进入转发状态,大大加大收敛速度。 上一章介绍了VLAN在园区网中的应用与划分,很多企业在网络中都会规划多个VLAN。STP和RSTP只支持一个VLAN,对于只有一个VLAN的网络非常适用,但现在网络中全部是多VLAN的结构,每VLAN生成树和多VLAN生成树协议被提上议程。其中,每VLAN生成树 PVST 为Cisco专有的协议,该协议不兼容其他厂家的生成树协议。同时,如果VLAN多的话,过多的生成树可能导致交换机CPU、内存过载,而IEEE 802.1S 制定的多生成树协议(MSTP)通过划分域的概念,解决了CPU过度运算的问题,同时向下兼容STP、RSTP协议。本章的后续案例将分别介绍各种生成树技术的应用。

决策树算法的原理与应用

决策树算法的原理与应用 发表时间:2019-02-18T17:17:08.530Z 来源:《科技新时代》2018年12期作者:曹逸知[导读] 在以后,分类问题也是伴随我们生活的主要问题之一,决策树算法也会在更多的领域发挥作用。江苏省宜兴中学江苏宜兴 214200 摘要:在机器学习与大数据飞速发展的21世纪,各种不同的算法成为了推动发展的基石.而作为十大经典算法之一的决策树算法是机器学习中十分重要的一种算法。本文对决策树算法的原理,发展历程以及在现实生活中的基本应用进行介绍,并突出说明了决策树算法所涉及的几种核心技术和几种具有代表性的算法模式。 关键词:机器学习算法决策树 1.决策树算法介绍 1.1算法原理简介 决策树模型是一种用于对数据集进行分类的树形结构。决策树类似于数据结构中的树型结构,主要是有节点和连接节点的边两种结构组成。节点又分为内部节点和叶节点。内部节点表示一个特征或属性, 叶节点表示一个类. 决策树(Decision Tree),又称为判定树, 是一种以树结构(包括二叉树和多叉树)形式表达的预测分析模型,决策树算法被评为十大经典机器学习算法之一[1]。 1.2 发展历程 决策树方法产生于上世纪中旬,到了1975年由J Ross Quinlan提出了ID3算法,作为第一种分类算法模型,在很多数据集上有不错的表现。随着ID3算法的不断发展,1993年J Ross Quinlan提出C4.5算法,算法对于缺失值补充、树型结构剪枝等方面作了较大改进,使得算法能够更好的处理分类和回归问题。决策树算法的发展同时也离不开信息论研究的深入,香农提出的信息熵概念,为ID3算法的核心,信息增益奠定了基础。1984年,Breiman提出了分类回归树算法,使用Gini系数代替了信息熵,并且利用数据来对树模型不断进行优化[2]。2.决策树算法的核心 2.1数据增益 香农在信息论方面的研究,提出了以信息熵来表示事情的不确定性。在数据均匀分布的情况下,熵越大代表事物的越不确定。在ID3算法中,使用信息熵作为判断依据,在建树的过程中,选定某个特征对数据集进行分类后,数据集分类前后信息熵的变化就叫作信息增益,如果使用多个特征对数据集分别进行分类时,信息增益可以衡量特征是否有利于算法对数据集进行分类,从而选择最优的分类方式建树。如果一个随机变量X的可以取值为Xi(i=1…n),那么对于变量X来说,它的熵就是

华为stp生成树协议笔记

STP 为什么会有stp 为了保证可靠,设计了一种环网拓扑,又因为交换机的工作原理,会出现环路问题,为了解决环路,才有了stp生成树 1 mac地址表震荡 2 广播风暴 作用:在保证可靠的基础上,解决环路问题 原理:阻塞端口(预备端口)通过选举阻塞端口,来防止环路 1 根桥(根交换机): 1 比较每台交换机上的网桥id (优先级+mac地址)越小越优先 默认优先级 32768 修改优先级修改的时候要改成4096的倍数 交换机上有默认的stp版本为mstp (多实例生成树)stp (生成树)rstp (快速生成树) [系统]stp mode stp 修改stp的模式 Stp priority 4096 修改优先级 2 根端口:非根交换机到达根交换机的最优端口 比较规则 1 路径开销值 2 对端网桥id 3 对端对口id 4 本端端口id (hub) 3 指定端口:每条链路上到达根交换机最优端口根交换机上所有端口都是指定端口 比较规则 1 路径开销 2 本端网桥id

3 本端端口id (端口优先级和端口编号)端口优先级默认是128 4 剩下的端口就叫做阻塞端口 Stp中的报文交互 BPDU 桥协议数据单元 两种bpdu 1 配置bpdu 作用:用于角色(端口)选举 维护网络拓扑 2秒1次最多20秒20 秒没有根的回应,则认为根down掉 2 tcn bpdu 拓扑变化bpdu 作用:当拓扑发生变化时,会发tcn bpdu Bpdu 字段 1 bpdu flsges标识字段 Tca 位拓扑变化确认位 Tc 位拓扑变化位 发生变化时置1 2 root identifier 根网桥id 3 root path cost 到达根的开销值 4 bridge id 本交换机的网桥id 5 port id 端口id 0x8001 前面的80 代表优先级128 , 01代表端口号 6 message age 消息寿命每经过一台交换机message age +1 7 max age 最大寿命 20 秒 8 hello time 2秒 9 forward delay 转发延迟 15秒 端口的状态变化 1 disable 开启stp时特点:不进行stp计算 2 blocking 阻塞端口直接进入blocking 状态 3 listening 非阻塞端口才进入侦听状态特点:加速mac地址表老化 中间有15秒的间隔时间,目的是为了加速mac地址表老化,mac地址表老化时间300秒 4 learning 学习状态 中间有相隔15秒的时间,加速mac地址表的学习 5 forwarding 转发状态

理解快速生成树协议(RSTP)

快速生成树协议(802.1w) 注:本文译自思科的白皮书Understanding Rapid Spanning Tree Protocol(802.1w). ---------------------------------------------------------------------------------------------------------------------- 介绍 Catalyst 交换机对RSTP的支持 新的端口状态和端口角色 端口状态(Port State) 端口角色(Port Roles) 新的BPDU格式 新的BPDU处理机制 BPDU在每个Hello-time发送 信息的快速老化 接收次优BPDU 快速转变为Forwarding状态 边缘端口 链路类型 802.1D的收敛 802.1w的收敛 Proposal/Agreement 过程 UplinkFast 新的拓扑改变机制 拓扑改变的探测 拓扑改变的传播 与802.1D兼容 结论 ---------------------------------------------------------------------------------------------------------------------- 介绍 在802.1d 生成树(STP)标准设计时,认为网络失效后能够在1分钟左右恢复,这样的性能是足够的。随着三层交换引入局域网环境,桥接开始与路由解决方案竞争,后者的开放最短路由协议(OSPF)和增强的内部网关路由协议(EIGRP)能在更短的时间提供备选的路径。 思科引入了Uplink Fast、Backbone Fast和Port Fast等功能来增强原始的802.1D标准以缩短桥接网络的收敛时间,但这些机制的不足之处在于它们是私有的,并且需要额外的配置。快速生成树协议(RSTP;IEEE802.1w)可以看作是802.1D标准的发展而不是革命。802.1D 的术语基本上保持相同,大部分参数也没有改变,这样熟悉802.1D的用户就能够快速的配置新协议。在大多数情况下,不经任何配置RSTP的性能优于思科的私有扩展。802.1w能够基于端口退回802.1D以便与早期的桥设备互通,但这会失去它所引入的好处。

决策树生成原理

决策树生成原理 Abstract This paper details the ID3 classification algorithm. Very simply, ID3 builds a decision tree from a fixed set of examples. The resulting tree is used to classify future samples. The example has several attributes and belongs to a class (like yes or no). The leaf nodes of the decision tree contain the class name whereas a non-leaf node is a decision node. The decision node is an attribute test with each branch (to another decision tree) being a possible value of the attribute. ID3 uses information gain to help it decide which attribute goes into a decision node. The advantage of learning a decision tree is that a program, rather than a knowledge engineer, elicits knowledge from an expert. Introduction J. Ross Quinlan originally developed ID3 at the University of Sydney. He first presented ID3 in 1975 in a book, Machine Learning, vol. 1, no. 1. ID3 is based off the Concept Learning System (CLS) algorithm. The basic CLS algorithm over a set of training instances C: Step 1: If all instances in C are positive, then create YES node and halt. If all instances in C are negative, create a NO node and halt. Otherwise select a feature, F with values v1, ..., vn and create a decision node. Step 2: Partition the training instances in C into subsets C1, C2, ..., Cn according to the values of V. Step 3: apply the algorithm recursively to each of the sets Ci. Note, the trainer (the expert) decides which feature to select. ID3 improves on CLS by adding a feature selection heuristic. ID3 searches through the attributes of the training instances and extracts the attribute that best separates the given examples. If the attribute perfectly classifies the training sets then ID3 stops; otherwise it recursively operates on the n (where n = number of possible values of an attribute) partitioned subsets to get their "best" attribute. The algorithm uses a greedy search, that is, it picks the best attribute and never looks back to reconsider earlier choices. Discussion ID3 is a nonincremental algorithm, meaning it derives its classes from a fixed set of training instances. An incremental algorithm revises the current concept definition, if necessary, with a new sample. The classes created by ID3 are inductive, that is, given a small set of training instances, the specific classes created by ID3 are expected to work for all future instances. The distribution of the unknowns must be the same as the test cases. Induction classes cannot be proven to work in every case since they may classify an infinite number of instances. Note that ID3 (or any inductive algorithm) may misclassify data.

Packet Tracer 5.0实验(五) 快速生成树配置

二、实验背景 学校为了开展计算机教学和网络办公,建立了一个计算机教室和一个校办公区,这两处的计算机网络通过两台交换机互相连接组成内部校园网,为了提高网络的可靠性,作为网络管理员,你要用2条链路将交换机互连,现要求在交换机上做适当的配置,使网络避免环路。 三、技术原理 生成树协议(spanning-tree),作用是在交换网络中提供冗余备份链路,并且解决交换网络中的环路问题; 生成树协议是利用SPA算法,在存在交换环路的网络中生成一个没有环路的树形网络。运用该算法将交换网络的冗余备份链路从逻辑上断开,当主链路出现故障时,能够自动的切换到备份链路,保证数据的正常转发; 生成树协议版本:STP、RSTP(快速生成树)、MSTP(多生成树协议); 生成树协议的特点是收敛时间长,从主要链路出现故障到切换至备份链路需要50秒的时间; 快速生成树协议在生成树协议的基础上增加了两种端口角色:替换端口和备份端口,分别做为根端口和指定端口的冗余端口。当根端口或指定端口出现故障时,冗余端口不需要经过50秒的收敛时间,可以直接切换到替换端口或备份端口,从而实现RSTP协议小于1秒的快速收敛。 四、实验步骤

实验拓扑 默认情况下STP协议启用的,通过两台交换机之间传送BPDU协议数据单元,选出根交换机、根端口等,以便确定端口的转发状态。上图中标记为橙色的端口处于block堵塞状态。 设置RSTP 查看交换机 show spanning-tree 状态,了解根交换机和根端口情况; 通过更改交换机生成树的优先级spanning-tree vlan * priority 4096 可以变化根交换机的角色; S1: Switch>en Switch#conf t Enter configuration commands, one per line. End with CNTL/Z. Switch(config)#hostname S1 S1(config)#end S1# %SYS-5-CONFIG_I: Configured from console by console

STP生成树协议原理与算法简析

STP生成树协议原理与算法简析 简介 在实际的网络环境中,物理环路可以提高网络的可靠性,当一条线路断掉的时候,另一条链路仍然可以传输数据。但是,在交换网络中,当交换机接收到一个未知目的地址的数据帧时,交换机的操作是将这个数据帧广播出去,这样,在存在物理的交换网络中,就会产生一个双向的广播环,甚至产生广播风暴,导致交换机死机。这就产生一个矛盾,需要物理环路来提高网络可靠性,而环路又可能产生广播风暴,如何才能两全其美呢? 本章将要讲述的STP,就是用来解决这个矛盾的。STP(Spanning Tree Protocol,生成树协议)是根据IEEE 802.1D 标准建立的,用于在局域网中消除数据链路层物理环路的协议。运行该协议的设备通过彼此交互信息发现网络中的环路,并有选择的对某些端口进行阻塞,最终将环路网络结构修剪成无环路的树型网络结构,从而防止报文在环路网络中不断增生和无限循环,避免设备由于重复接收相同的报文所造成的报文处理能力下降的问题发生。 STP采用的协议报文是BPDU(Bridge Protocol Data Unit,桥协议数据单元),也称为配置消息,BPDU中包含了足够的信息来保证设备完成生成树的计算过程。STP即是通过在设备之间传递BPDU来确定网络的拓扑结构。 1 STP 生成树协议 1.1 STP的主要作用 消除环路:通过阻断冗余链路来消除网络中可能存在的路径回环。 链路备份:当前活动路径发生故障时,激活冗余备份链路,恢复网络连通性。 1.2 STP的基本原理: 通过在交换机之间传递一种特殊的协议报文——BPDU(在IEEE 802.1D中这种协议报文被称为“配置消息”)来确定网络的拓扑结构。配置消息中包含了足够的信息来保证交换机完成生成树计算。(注:此BPDU被称为配置BPDU,另外STP还有TCN BPDU。)

RSTP快速生成树协议的配置课程设计

石河子大学 信息科学与技术学院 <网络技术>课程设计成果报告
2014—2015 学年第一学期
题目名称:
利用快速生成树协议(RSTP) 实现现交换机之间的冗余链路备份
专 班 学
业: 级: 号:
计算机科学与技术 计科 2012(一)班 2012508013 蒋 曹 能 传 凯 东
学生姓名: 指导教师:
完成日期:二○一五

一 月 七




一 课题介绍 ......................................................................................................................................................... - 3 1.1 课题名称 ............................................................................................................................................... - 3 1.2 课题简介 ............................................................................................................................................... - 3 1.3 课题拓展 ............................................................................................................................................... - 3 二 RSTP 简介....................................................................................................................................................... - 3 三 实验环境介绍 ................................................................................................................................................. - 5 3.1 实验软硬件环境 ................................................................................................................................... - 5 3.2 实验参数 ............................................................................................................................................... - 5 3.3 实验拓扑图 ........................................................................................................................................... - 8 四 实验内容 ......................................................................................................................................................... - 8 五 实验详细步骤 ................................................................................................................................................. - 9 5.1 绘制实验拓扑 ....................................................................................................................................... - 9 5.2 交换机及 PC 的基本配置 .................................................................................................................... - 9 5.3 Spanning-tree 的配置 .......................................................................................................................... - 13 5.3 链路测试 ............................................................................................................................................. - 14 六 课题总结 ....................................................................................................................................................... - 17 附录 A 参考文献................................................................................................................................................ - 18 -

流程图 决策表 决策树习题及答案

1、已知产品出库管理的过程是:仓库管理员将提货人员的零售出库单上的数据登记到零售出库流水账上,并每天将零售出库流水账上当天按产品名称、规格分别累计的数据记入库存账台。请根据出库管理的过程画出它的业务流图。 产品出库管理业务流图 2、设产品出库量的计算方法是:当库存量大于等于提货量时,以提货量作为出库量;当库存量小于提货量而大于等于提货量的10%时,以实际库存量作为出库量;当库存量小于提货量的10%时,出库量为0(即提货不成功)。请表示出库量计算的决策树。 3、有一工资处理系统,每月根据职工应发的工资计算个人收入所得税,交税额算法如下: 若职工月收入=<800元,不交税; 若800职工<职工月收入=<1300元,则交超过800元工资额的5%;

若超过1300元,则交800到1300元的5%和超过1300元部分 的10%。 试画出计算所得税的决策树和决策表。 1、解:(1)决策树 设X为职工工资,Y为职工应缴税额。 X<=800 ——Y=0 某工资处理系统8001300 ——Y=(1300-800)*5%+(X-1300)*10% (2)决策表 4、某货运站的收费标准如下: (1) 收费地点在本省,则快件每公斤6元,慢件每公斤4元; (2) 收费地点在外省,则在25公斤以内(含25公斤)快件每公斤8 元,慢件每公斤6元;如果超过25公斤时,快件每公斤10元,慢件 每公斤8元 试根据上述要求,绘制确定收费标准的决策表,并配以简要文字说明。 答:在货运收费标准中牵涉条件的有:本省、外省之分,有快、慢件之分,对于外省运件以25公斤为分界线,故货运站收费标准决策表的条件有三个,执行的价格有四档:4元/公斤、6元/公斤、8元/公斤、10元/公斤,从而可得某货运站的收费标准执行判断表如下表格所示。 收费标准判断表

快速生成树的配置(思科)

快速生成树的配置(已经测试过) 实验名称:快速生成树配置。 实验目的:理解快速生成树配置及原理。 背景描述:现有两台交换机互连组成内部局域网,为了提高网络的可靠性,网络管理员用2 条链路将交换机互连,现要在交换机上做适当配置,使网络避免环路。 技术原理:生成树协议是利用SPA算法(生成树算法),在存在交换环路的网络中生成一个没有环路的树形网络。运用该算法将交换网络冗余的备份链路逻辑上断开,当主要链路出现故障时,能够自动 的切换到备份链路,保护数据的正常转发。 生成树协议目前常见的版本有STP(生成树协议IEEE802.1d)、RSTP(快速生成树协议IEE E802.1w)、MSTP(多生成树协议IEEE802.1s)。 实现功能:使网络在有冗余链路的情况下避免环路的产生,避免广播风暴等。 实验设备:S2126(2台);PC机(2台);直连线(4根) 实验拓扑: 按照拓扑图连接网络时注意,两台交换机都配置完快速生成树协议后,再将两台交换机连接起来。 如果先连接再配置会造成广播风暴,影响交换机的正常工作。

实验步骤: 步骤1:交换机A的基本配置。 SwitchA(config)#vlan 10 SwitchA(config-vlan)#name sales SwitchA(config-vlan)#exit SwitchA(config)#interface fastEthernet 0/3 SwitchA(config-if)#switchport access vlan 10 SwitchA(config-if)#end SwitchA#sh vlan id 10 VLAN Name Status Ports ---- -------------------------------- --------- --------- 10 sales active Fa0/3 SwitchA# 步骤2:在交换机A上配置快速生成树。 SwitchA(config)# spanning mode pvst SwitchA(config)#interface range fastethernet 0/1 SwitchA(config-if)#swit mode trunk SwitchA(config)#interface range fastethernet 0/2 SwitchA(config-if)#swit mode trunk SwitchA(config-if)#exit 步骤3:交换机B的基本配置。

交换机生成树协议原理

交换机生成树协议原理 方便用户连接服务器或高速主干网。用户也可以通过设计多台服务器(进行业务划分)或追加多个网卡来消除瓶颈。交换机还可支持生成树算法,方便用户架构容错的冗余连接。 1.网络中的广播帧 目前广泛使用的网络操作系统有Netware、WindowsNT等,而LanServer的服务器是通过发送网络广播帧来向客户机提供服务的。这类局域网中广播包的存在会大大降低交换机的效率,这时可以利用交换机的虚拟网功能(并非每种交换机都支持虚拟网)将广播包限制在一定范围内。 每台文交换机的端口都支持一定数目的MAC地址,这样交换机能够“记忆”住该端口一组连接站点的情况,厂商提供的定位不同的交换机端口支持MAC数也不一样,用户使用时一定要注意交换机端口的连接端点数。 如果超过厂商给定的MAC数,交换机接收到一个网络帧时,只有其目的站的MAC地址不存在于该交换机端口的MAC地址表中,那么该帧会以广播方式发向交换机的每个端口。 2.虚拟网的划分 虚拟网是交换机工作原理的重要功能,通常虚拟网的实现形式有三种: (1)静态端口分配

静态虚拟网的划分通常是网管人员使用网管软件或直接设置交换机的端口,使其直接从属某个虚拟网。这些端口一直保持这些从属性,除非网管人员重新设置。这种方法虽然比较麻烦,但比较安全,容易配置和维护。 (2)动态虚拟网 支持动态虚拟网的端口,可以借助智能管理软件自动确定它们的从属。端口是通过借助网络包的MAC地址、逻辑地址或协议类型来确定虚拟网的从属。当一网络节点刚连接入网时。 交换机工作原理端口还未分配,于是交换机通过读取网络节点的MAC地址动态地将该端口划入某个虚拟网。这样一旦网管人员配置好后,用户的计算机可以灵活地改变交换机端口,而不会改变该用户的虚拟网的从属性,而且如果网络中出现未定义的MAC地址,则可以向网管人员报警。 (3)多虚拟网端口配置 该配置支持一用户或一端口可以同时访问多个虚拟网。这样可以将一台网络服务器配置成多个业务部门(每种业务设置成一个虚拟网)都可同时访问,也可以同时访问多个虚拟网的资源,还可让多个虚拟网间的连接只需一个路由端口即可完成。 但这样会带来安全上的隐患。虚拟网的业界规范正在制定当中,因而各个公司的产品还谈不上互操作性。Cisco公司开发了 Inter-SwitchLink(ISL)虚拟网络协议,该协议支持跨骨干网(ATM、FDDI、FastEther)的虚拟网。但该协议被指责为缺乏安全性上的考虑。

实验13 快速生成树协议RSTP

实验十三快速生成树协议RSTP 实验名称 快速生成树协议RSTP。 实验目的 理解生成树协议的配置及原理。 实现功能 使网络在有冗余链路的情况下避免环路的产生,避免广播风暴等。 实验设备 锐捷S2126(或S3550)交换机2台,网线4根。 实验步骤 1.用2根网线从交换机(除了1和2号端口)分别连到2台计算机,这两台计算机的IP 地址设为同一个网段地址。 2.连到交换机1,对交换机1进行配置。 3.对交换机1开启生成树协议。 configure terminal(进入交换机全局配置模式) spanning-tree(开启生成树协议) spanning-tree mode rstp(设置生成树模式为802.1W) spanning-tree priority 8192(设置此交换机的生成树优先级为8192) end show spanning-tree(显示交换机生成树的状态) StpVersion : RSTP

SysStpStatus : Enabled BaseNumPorts : 24 MaxAge : 20 HelloTime : 2 ForwardDelay : 15 BridgeMaxAge : 20 BridgeHelloTime : 2 BridgeForwardDelay : 15 MaxHops : 20 TxHoldCount : 3 PathCostMethod : Long BPDUGuard : Disabled BPDUFilter : Disabled BridgeAddr : 00d0.f8b8.1c5b Priority : 8192 TimeSinceTopologyChange : 0d:0h:7m:24s TopologyChanges : 0 DesignatedRoot : 200000D0F8B81C5B RootCost : 0 RootPort : 0 freezing1# 4.连到交换机2,对交换机2进行配置。 5.对交换机2开启生成树协议。 configure terminal(进入交换机全局配置模式) spanning-tree(开启生成树协议) spanning-tree mode rstp(设置生成树模式为802.1W) spanning-tree priority 16384(设置此交换机的生成树优先级为16384) end

决策树原理与应用:C5.0

决策树原理与应用:C5.0 分类预测指通过向现有数据的学习,使模型具备对未来新数据的预测能力。对于分类预测有这样几个重要,一是此模型使用的方法是归纳和提炼,而不是演绎。非数据挖掘类的软件的基本原理往往是演绎,软件能通过一系列的运算,用已知的公式对数据进行运算或统计。分类预测的基本原理是归纳,是学习,是发现新知识和新规律;二是指导性学习。所谓指导性学习,指数据中包含的变量不仅有预测性变量,还有目标变量;三是学习,模型通过归纳而不断学习。 事实上,预测包含目标变量为连续型变量的预测和目标变量为分在变量的分类预测。两者虽然都是预测,但结合决策树算法和我们之前介绍过的时间序列算法知,二者还是有明显的差别的。 Clementine决策树的特点是数据分析能力出色,分析结果易于展示。决策树算法是应用非常广泛的分类预测算法。 1.1决策树算法概述1.11什么是决策树决策树算法属于有指导的学习,即原数据必须包含预测变量和目标变量。决策树之所以如此命名,是因为其分析结果以一棵倒置的树的形式呈现。决策树由上到下依次为根节点、内部节点和叶节点。一个节点对应于数据中的一个字段,即一个字段——即Question——对数据进行一次划分。决策树分为分类决策树

(目标变量为分类型数值)和回归决策树(目标变量为连续型变量)。分类决策树叶节点所含样本中,其输出变量的众数就是分类结果;回归树的叶节点所含样本中,其输出变量的平均值就是预测结果。这一点需要格外注意。 与其它分类预测算法不同的是,决策树基于逻辑比较(即布尔比较)。可以简单描述为:If(条件1)Then(结果1);If (条件2)Then(结果2)。这样,每一个叶节点都对应于一条布尔比较的推理规则,对新数据的预测就正是依靠这些复杂的推理规则。在实际应用中,一个数据产生的推理规则是极为庞大和复杂的,因此对推理规则的精简是需要关注的。 1.12决策树的几何理解将训练样本集(即操作中常说的Training Data)看做一个n维空间上的一个点,则上面我们提到的布尔比较后的推理规则就像是存在于这个n维空间中的“线”。决策树建立的过程形象上看,就是倒置的树生长的过程,其几何意义上是,每个分枝(每条推理规则)完成对n维空间区域划分的过程。决策树正式生成,则n维空间正式划分完毕,则每一个小区域,代表一个叶节点。通常n 维空间不易于理解,故采用倒置的树来表示此结果。需要注意的一点是,在划分过程中,要尽量做到不同类别的结果归于不同的“区域”。 1.13决策树的核心问题:生成与修剪决策树核心问题有二。一是利用Training Data完成决策树的生成过程;二是利用

Cisco快速生成树协议RSTP协议原理及配置

Cisco快速生成树协议RSTP协议原理及配置

实验8 Cisco 快速生成树协议RSTP 协议原理及配置 一、相关知识介绍 1、生成树协议的主要功能有两个:一是在利用生成树算法、在以太网络中,创建一个以某台交换机的某个 端口为根的生成树,避免环路。二是在以太网络拓扑发生变化时,通过生成树协议达到收敛保护的目的。 2、根网桥的选择流程: (1)第一次启动交换机时,自己假定是根网桥,发出BPDU报文宣告。 (2)每个交换机分析报文,根据网桥ID选择根网桥,网桥ID小的将成为根网桥(先比较网桥优先级,如果相等,再比较MAC地址)。 (3)经过一段时间,生成树收敛,所有交换机都同意某网桥是根网桥。 (4)若有网桥ID值更小的交换机加入,它首先通告自己为根网桥。其它交换机比较后,将它当作新的根网桥而记录下来。 3、RSTP 协议原理 STP并不是已经淘汰不用,实际上不少厂家目前还仅支持STP。STP的最大缺点就是他的收敛时间太长,对于现在网络要求靠可靠性来说,这是不允许的,快速生成树的目的就是加快以太网环路故障收敛 的速度。 (1)RSTP 5种端口类型 STP定义了4种不同的端口状态,监听(Listening),学习(Learning),阻断(Blocking)和转发(Forwarding),其端口状态表现为在网络拓扑中端口状态混合(阻断或转发),在拓扑中的角色(根 端口、指定端口等等)。在操作上看,阻断状态和监听状态没有区别,都是丢弃数据帧而且不学习MAC 地址,在转发状态下,无法知道该端口是根端口还是指定端口。RSTP有五种端口类型。根端口和指定端口这两个角色在RSTP中被保留,阻断端口分成备份和替换端口角色。生成树算法(STA)使用BPDU来决定端口的角色,端口类型也是通过比较端口中保存的BPDUB来确定哪个比其他的更优先。 1)根端口:非根桥收到最优的BPDU配置信息的端口为根端口,即到根桥开销最小的端口,这点和STP 一样。请注意图8-16上方的交换机,根桥没有根端口。按照STP的选择根端口的原则,SW-1和SW-2和根连接的端口为根端口。 2)指定端口:与STP一样,每个以太网网段段内必须有一个指定端口。假设SW-1的BID比SW-2 优先,而且SW-1的P1口端口ID比P2优先级高,那么P1为指定端口,如图8-17所示。

相关主题
文本预览
相关文档 最新文档