当前位置:文档之家› 轻质高温TiAl金属间化合物合金及其制备加工的科学技术基础

轻质高温TiAl金属间化合物合金及其制备加工的科学技术基础

轻质高温TiAl金属间化合物合金及其制备加工的科学技术基础
轻质高温TiAl金属间化合物合金及其制备加工的科学技术基础

项目名称:轻质高温TiAl金属间化合物合金及其

制备加工的科学技术基础

首席科学家:林均品北京科技大学

起止年限:2011.1至2015.8

依托部门:教育部

二、预期目标

1总体目标:

获得新型轻质高温TiAl合金及其制备与加工技术基础,促进其产业化和应用,满足国家经济和社会发展对轻质高温材料的重大需求。即采用低密度的新型高温材料替代现有的高温合金,以降低重量;另一方面采用新型轻质高温材料可以大幅度降低燃料消耗。发展新型轻质高温材料可以大幅度提升我国民用工业和航空航天等工业的水平,有效减少能源消耗、实现社会可持续发展。

在高温TiAl合金设计理论基础及强韧化机制、高温TiAl合金凝固过程组织及缺陷的调控机制、高温TiAl合金粉末冶金制备过程的流变塑变理论、针对金属间化合物特性建立性能表征方法和评价体系研究上获得突破。

在此基础上,发展和形成高温TiAl合金材料制备与成形加工整套技术的科学基础,主要包括:高温TiAl合金不同使用条件下材料成分和组织优化,高洁净度铸锭的制备新熔炼技术基础、铸锭的热加工新技术、部件熔模精密铸造特殊技术、冷坩埚定向凝固新技术、高性能粉末冶金板材的新技术。同时制备出各种全尺寸样件,为进一步向部件性能测试试验发展打下基础。

以铸造叶片为重点,突破从小试样到批量生产的瓶颈关键技术基础。

针对铸造、热变形和粉末冶金三类加工技术发展的高温TiAl合金的材料成分范围为:

Ti-(44-46)Al - (6-9)Nb-(0 -2.5)W, B, Y, Mn (这些元素都是微量元素,只有Mn可高到2.5)

对于铸造合金:Nb 含量取低限,添加B(稍高含量)、Y 和Mn等;

对于变形合金:Nb 含量取中间值,添加W、B(较低含量)、Y等;

对于粉末冶金板材:Nb 含量取高限,添加W、Y,Mn等。

高温TiAl合金使用温度达到900 ℃,900 ℃的抗氧化性按航标达到抗氧化级,

对于三种典型部件:

铸造叶片样件: 尺寸为长350-400mm、宽50-70mm

900 ℃强度达到450 MPa,室温拉伸塑性1-2%;

锻件: 尺寸为直径400-600mm、厚50-100mm

900 ℃强度达到400 MPa,室温拉伸塑性大于2%;

粉末板材:宽度400-500mm、厚1-2mm;

900 ℃强度达到400 MPa,室温拉伸塑性2-3%。

研究成果将发表高水平学术论文200篇以上,申请国家发明专利20项以上,国家和省部级科技成果奖3项以上;培养优秀青年科技人才15人以上,造就一支高水平的具有创新与攻坚能力的研究队伍,形成优秀创新群体;建设本领域高水平的基础研究和技术创新基地。

2五年预期目标:

通过系统深入的研究,构建高温TiAl金属间化合物材料理论和制备加工理论基础,在精密铸造等形成关键示范技术,实现总体预期目标。具体内容包括:(1)高温TiAl合金成分-组织-性能设计和优化原理

揭示针对高温下使用和具体制备加工技术的、多组元高温TiAl合金的相关系和强韧化机制,获得高温TiAl合金设计和优化原理。揭示高温TiAl合金多相有序结构的动态回复和动态再结晶规律。

(2)高洁净度、均质大尺寸TiAl合金铸锭的熔炼和加工科学基础

建立等离子冷床熔炼高温TiAl合金的均质化和纯洁度控制方法,揭示熔炼工艺路线和工艺参数对铸锭夹杂物去除效果及成分组织均匀性的影响规律。探索出适合高温TiAl合金型材的均质、纯净的大尺寸铸锭制备技术;通过高温TiAl 合金包套挤压结合等温锻造工艺细化和均匀化组织,通过增加高温β相提高热变形能力,从而研制出组织均匀细小的大尺寸挤压棒材、锻造饼材、板材。

(3)高温TiAl合金熔模铸造关键科学技术基础

通过Nb、Al含量控制避免包晶相变以减少偏析和细化组织;揭示高温TiAl 合金在多场作用下铸造充型特性、壁厚效应以及熔体与型壳反应形成表面硬化层的规律,形成细晶铸造并有利于减少糊状区的变质处理及流场控制技术,建立以铸造为成形工艺路线的高温TiAl合金优化设计基础,掌握铸件冶金质量及表面硬化层的控制方法。

(4)高温TiAl合金冷坩埚定向凝固新技术基础

开发出冷坩埚定向凝固高温TiAl合金大尺度坯锭的成分优化与冶金行为控制技术,阐明合金定向凝固坯锭的凝固组织演化规律;建立高温TiAl合金定向

凝固坯锭的凝固组织及凝固缺陷的演化模型;揭示定向凝固合金的力学性能与定向组织状态的相关性,建立高温TiAl合金典型构件的定向凝固成形的理论基础。

(5)高温TiAl合金板材的粉末冶金及轧制新技术基础研究

通过添加β相稳定元素和高Nb合金化制备出的含高比例β相的高温TiAl 合金粉末,促进其后续轧制的热变形能力,保证大变形量大尺寸板材的制备;建立粉末冶金合金致密化过程微缺陷形成和控制理论,在应力场、温度场、速度场及外在约束等多场耦合作用下,板材轧制过程中的精确变形流动理论。建立从合金粉末-热等静压致密化-热机械处理-包套轧制制备大尺寸TiAl合金板材的完整的技术原型。

(6)高温TiAl金属间化合物材料使用性能表征和评价

确立高温TiAl合金安全服役条件下的力学性能控制参量和应用阈值范围,揭示组织类型和微观缺陷对合金裂纹萌生和扩展的影响规律,揭示合金损伤容限性能与微观组织的关系,建立具有工程应用价值的寿命评估方法和损伤容限参量设计准则,促进合金在航空、航天及其他领域的工程化应用。

三、研究方案

1学术思路:

本项目在具有国际领先水平和自主知识产权的高Nb-TiAl合金的成分-组织-性能关系研究成果的基础上,发展针对航空航天发动机应用的高性能高温TiAl 合金及其制备加工技术。研究材料集中在一类合金上,避免了研究目标的分散。通过研究高温TiAl合金成分-组织-性能关系和设计理论基础,主要包括合金元素Nb\Al上下限、微合金化元素的添加原则,为不同的制备和加工技术提供优化的合金成分和组织设计原则;强韧化机制的建立,为基本保持强度指标的前提下,提升高温TiAl合金的室温塑性和韧性打下基础。

通过研究高温TiAl合金熔炼和凝固过程的热力学与动力学理论,解决合金高洁净度熔炼的成分组织均匀性、精密铸造过程合金熔体充型及铸造组织和缺陷控制和定向凝固过程中的取向控制提供理论基础。

通过高温TiAl合金多相有序结构动态复原机制、热变形本构关系数学模型和热变形抗力图的研究,为变形合金的热挤压、等温锻造、轧制技术研究提供理论基础,解决高温TiAl合金热加工关键技术。

通过高温TiAl合金粉末冶金制备过程的流变塑变理论的研究、揭示粉末冶金合金制备过程中的缺陷形成和控制原理,以及对热加工行为的影响,为粉末冶金高温TiAl合金轧制技术提供保障。

针对金属间化合物特性建立高温TiAl合金性能表征方法和评价体系,对于整个课题涉及的制备加工技术提供的合金性能评估分析方法和标准,确保建立统一的性能数据库,为高温TiAl合金应用设计准则的建立提供数据支撑。

整个项目的研究围绕三个关键科学问题,研究内容相互联系紧密,研究体系完整,有利于解决关键技术,发展和形成高温TiAl合金制备与成形加工的技术原型。由于高温TiAl合金比普通TiAl合金的制备与成形加工难度大,因此制备与成形加工的技术原型也基本适合普通TiAl合金。

2技术途径:

具体技术路线见图1 所示。合金材料体系的发展重点采用高Nb合金化提高高温条件下使用温度和抗氧化性,Nb和Y交互作用提高长期高温抗氧化性;精密铸造合金的成分设计拟适度降低Nb含量,以减低成分偏析,添加Mn等提高

铸造性能和提高室温塑性,添加B和Y细化组织;粉末板材的合金设计适度提高Nb含量,满足航天高马赫数飞行的恶劣环境,提高使用温度和抗氧化性。

拟采用等离子冷床熔炼技术结合真空自耗熔炼达到均质化和高纯洁度冶炼,突破适合高温TiAl合金型材的均质、纯净、大尺寸铸锭制备。

通过熔体与型壳反应形成表面硬化层的规律探索型壳材料的选择和优化;采用计算模拟和试验研究结合,解决多场耦合作用下高温TiAl合金精密铸造过程充型问题;将控制液固相变路径得到β相凝固过程与变质处理相结合,降低偏析和细化铸态组织,以提高综合力学性能。

电磁冷坩埚定向凝固技术将合金连续熔化、电磁约束成形和连续凝固过程统一制备高纯净高温TiAl合金,避免了常规定向凝固造成的型壳反应和污染,揭示多外场耦合作用下冷坩埚定向凝固过程控制机理。

通过增加β相提高高温TiAl合金热变形能力、利用热挤压工艺结合等温锻造的热加工工艺,加大首次变形量,以达到细化铸态组织、提高变形高温TiAl 合金综合力学性能的目的。

拟采用添加β相稳定元素和高Nb合金化制备出的含高比例β相的预合金粉末为原料,促进后续热变形能力,通过热等静压,热机械处理和包套轧制制备大尺寸高性能高温TiAl合金板材。控制氧、氮及其它杂质的含量,完全消除微孔和微偏析等缺陷。

针对高温TiAl金属间化合物建立安全服役条件下的力学性能控制参量和应用阈值范围,建立具有工程应用价值的损伤容限参量设计准则,为合金在航空、航天及其他领域的工程化应用提供有力的技术支持。

图1 项目的具体技术路线

3创新点与特色:

把具有原始创新的高温TiAl合金开拓性研究工作推向解决针对我国航空航天重大工程需求的应用基础研究;

把我国航空航天发动机用高温结构材料系列,高温Ti合金→Ni基高温合金,发展成为:高温Ti合金→高温TiAl合金→Ni基高温合金,成为发动机减重新途径。

特色是在解决高温TiAl合金的发展上提出了高Nb合金化的创造性思想,通过高Nb合金化大幅度提高TiAl合金的高温力学性能和高温抗氧化性,达到提升航空航天发动机使用温度的目标。高Nb合金化引领了国内外TiAl合金的发展方向,具有我国的原创性。另一方面,从解决共性理论出发,强调围绕成分组织设计-熔炼-凝固-铸造-粉末冶金-变形等较全面的精密热成形技术进行研究,各个课题间相互有机结合,形成互相关联的整体。

主要创新点如下:

(1)高Nb合金化通过连续有序化,显著提高了合金熔点;高Nb合金化通过改变表面氧化层结构、提高Al2O3比例等因素极大提高了TiAl合金的高

温抗氧化性,与镍基高温合金相当;

(2)通过高Nb合金化和适量其它β相稳定元素,达到扩大β相相区,把液相和β相的包晶相变区推向高Al方向移动;调控Al含量有利于得到高温

TiAl合金β相凝固过程,达到提高熔点和细化组织的目的;

(3)通过等离子冷床熔炼技术实现高温TiAl合金的均质化和高纯洁度冶炼,突破适合高温TiAl合金型材的均质、纯净、大尺寸铸锭制备及热加工技

术;

(4)综合高温TiAl合金在多场作用下的铸造充型特性、壁厚效应以及熔体与型壳反应形成表面硬化层的规律,研究可有效提高其铸件冶金质量、抑制

表面硬化层生成的技术基础;将高温TiAl合金成分对液固界面生长以及

液固相变路径选择的作用与变质处理相结合,建立以铸造为成形工艺路线

的高温TiAl合金优化设计基础;

(5)以冷坩埚定向凝固新技术制备高纯净高温TiAl合金,避免了常规定向凝固造成的型壳反应和污染,揭示多外场耦合作用下冷坩埚定向凝固过程控

制机理;

(6)采用预合金粉末包套轧制途径,制备大尺寸高性能高温TiAl合金板材;

通过添加β相稳定元素和高Nb合金化制备出含高比例β相的高温TiAl

合金粉末,促进其后续轧制的热变形能力;

(7)确立高温TiAl合金安全服役条件下的力学性能控制参量和应用阈值范围,建立具有工程应用价值的损伤容限参量设计准则,为合金在航空、航天及

其他领域的工程化应用提供有力的技术支持。

4取得重大突破的可行性分析:

研究工作基础

本项目围绕一种具有国际领先水平、有我国自主知识产权的高温TiAl合金展开,目标集中,避免了研究目标过于分散造成研究工作缺乏深度。已经完成了高Nb-TiAl合金基础成分-组织-性能关系和实验室级别的制备加工技术研究,为本项目的顺利进行打下了良好的基础。

通过围绕本项目提出的三个关键科学问题的突破,解决高温TiAl合金制备与成形加工的关键技术,发展和形成高温TiAl合金制备与成形加工的技术原型。这些都是国内外TiAl合金制备、成形与加工领域的研究热点及前沿,符合国家中长期科技发展规划纲要的重点支持方向,符合国家保护环境、节能降耗的可持续发展方针。

国内在金属间化合物合金的研究与应用也己取得了许多突破性进展,IC10合金己在某型航空发动机取得应用,TAC-2在某型主战坦克发动机上通过寿命考核,TiAl合金板材也列入航天科技工程首批试验材料。针对更高推重比12 -15、大型飞机和高马赫数飞行器需求的高温TiAl合金已有开创性材料开发成果,在大量的合金制备、加工技术实践中充分暴露了问题,且对这些问题有了基本的认识。

本项目结合了国内TiAl 合金制备和加工领域优势单位,发挥各单位在该研究方向上的专长。北京科技大学是高温TiAl合金的发明单位,在合金基础成分-组织-性能关系和实验室级别的制备和热加工方面研究基础深厚。哈尔滨工业大学在合金熔炼、精密铸造、冷坩埚定向凝固、高温塑性变形、异种材料连接等方向上有深厚的研究基础,已针对TiAl合金的共性问题,从不同学科角度进行学科交叉和学科融合,开展了精密热成形技术的研究工作,在技术层面上已经取得了多项创造性的研究成果;中南大学在粉末冶金等方向上在国内处于领先地位,一直在对粉末冶金TiAl基合金进行研究,在2000年左右开始快速发展,特别是在高质量粉末和坯体制备方面,取得了不少成果,主要包括:采用元素粉末冶金方法制备与锻造材料力学性能相当的坯体,室温延伸率达到 1.5%,阐明了元素粉末反应合成TiAl基合金的机理以及相关的致密化原理。制备出了TiAl基合金发动机气门,在现场试验中表现出优异的性能。西北工业大学长期从事Ti及Ti 合金、TiAl合金、高温合金等材料冶金、精密铸造、稀有金属材料先进塑性成形技术等的研究与开发,近年来先后承担了数十项国家基础研究和国防型号研制任务。在国际上率先提出液固界面非平衡溶质再分配的概念及相关函数关系;在亚快速定向凝固及组织超细化、高温合金和稀土永磁合金的凝固组织与性能方面进行了开创性研究,获得性能提高数倍的超细胞/枝晶定向组织。并将这些理论研究成果应用于对各种金属材料的凝固过程模拟、金属单晶晶体生长热力学和动力学模拟、合金相组织模拟、三维晶体取向控制、合金性能及服役性能等方面的研究。近年来在相关现代凝固理论过冷熔体及溶液法生长、定向凝固、快速凝固、

半固态凝固以及激光快速熔凝等方面已取得了阶段性研究成果,其中部分成果居于国际先进水平。西北有色金属院长期从事Ti合金和TiAl合金研究,具有丰富的知识积累, 特别是在高Nb-TiAl合金熔炼的均匀化上有突出的研究成果。钢铁研究总院自1987年起在国家863高技术新材料研究计划支持下开展TiAl等金属间化合物基高温材料的研究,车用增压涡轮、航空发动机用涡流器和航天用TiAl 合金可逆涡轮转子等部件己进入应用研究。其中,铸造TiAl合金增压器涡轮于2003年11月实现了国内自主研制的TiAl合金发动机热端转动部件试车考核“零”的突破,通过与镍基高温合的对比试验表明,应用这种轻质材料可使大型柴油机的加速响应性提高35%以上、且可显著降低排放烟度和油耗。基于装配主机完成的包括500小时寿命试验的多项考核结果良好和其减重所产生的技术推动效果明显,己被列为某型发动机的正选增压器涡轮材料。通过这些需求牵引的TiAl 合金研究,钢铁研究总院己对这种轻质高温材料的性能和工艺特点有了较深入的认识,尤其是在国防型号技改支持下建立起了铸造工艺实验室和中间试验平台,可作为本申请项目的重要支撑条件钢铁研究总院积累了较丰富的TiAl 合金增压涡轮精密铸造材料和工艺研究经验,形成了较强的TiAl 合金材料研究和工艺实验技术力量。北京航空材料研究院航空材料检测研究中心长期进行材料的力学性能测试及行为表征研究工作,具有雄厚的技术力量并拥有多种先进的高温及常温材料试验机和其他仪器设备。在“七五”和“八五”期间,针对发动机FWP14的研制,编辑、出版了《航空发动机设计用材料性能数据手册》第一、第二册,2008年出版了根据FWS10发动机的材料性能数据编写的第三册;在《航空推进技术验证计划》研制过程中编写的第四册即将出版并利用存量资源创建了发动机材料性能数据库。提供了一定数量的具有置信度、存活率要求的A、B基值和-3σ值的性能数据,制定了材料力学性能数据表达准则:国军标GJB/Z 18A-2005《金属材料力学性能数据处理与表达》。在材料的力学性能测试与表征技术的研究方面积累了丰富的经验。

研制条件和基地

本研究团队拥有的与本项目有关的国家级重点实验室、国家工程(技术)研究中心8个,一个该领域国内最大的基础建设项目:高Nb-TiAl建设平台。

北京科技大学新金属材料国家重点实验室的TiAl研究平台,包括中等规模的熔炼和热加工中心、计算中心、专业测试和检测平台。

北京航空材料研究院从美国Retech公司引进的国内唯一一台200kg级

PAM525等离子束冷床熔炼炉,利用该设备成功制备出了国内最大的高Nb-TiAl 合金锭,尺寸Φ150?900mm、重67kg,铸锭冶金质量良好,成分比较均匀。

宝钢股份有限公司拥有国内最先进的大功率等离子冷床炉,可熔炼Ф860mm 圆锭、1200?400mm扁锭(2010年投产);采用先进的等温锻造技术,在万吨液压机上锻造成型国内最大的钛合金精密锻件,锻件尺寸精细、性能优异;国内最先进的6000吨挤压设备(2009年投产);以及4500吨快锻机,配合以创新的“软包套”保温锻造技术等,保证了大尺寸合金的超纯净、无缺陷材料制备与加工方面的研究工作。

上海交通大学、南京理工大学与丹阳市精密合金厂有限公司建立了整套Ti 合金和TiAl 精密铸造生产线,同时引入国外TiAl 精密铸造高水平的技术人才,使以后的研究工作有更高的起点,使具备全尺寸件的生产能力。

西北工业大学凝固技术国家重点实验室以航空航天为代表领域的国防重大材料技术需求为主要服务对象,以先进材料精确成形为主要技术方向,以科学基础、技术创新和工程化应用的综合集成为主要学术特色,在凝固组织形态的形成规律,多元合金凝固理论方面取得多项得到国内外同行认可的研究成果。拥有1吨、30kg真空自耗电弧炉及相关的3000T液压机、500T液压机、25kg真空感应熔炼炉、真空热处理炉、Ti及TiAl合金冷坩埚熔炼与精密铸造设备等,具备了本项目实施所需的各种设备条件保障。

钢铁研究总院是钢铁材料及冶金工艺综合技术的科研院所,研究领域涵盖了以金属材料为主的材料科学与工程、冶金生产流程的工艺及装备技术、分析测试技术和仪器设备以及产品质量控制等方面。先进钢铁材料国家工程研究中心、国家钢铁产品质量监督检验中心、国家钢铁材料测试中心、国家非晶微晶合金工程技术研究中心、国家钢铁物料进出口商品检验室、中国冶金质量体系认证中心均设在该院。高温结构材料是钢铁研究总院的重点研究方向之一,为给我国航空、航天、舰船和兵器等国防工业及国民经济的发展提供高温合金材料基础和技术支撑,己形成了变形高温合金、铸造高温合金、粉末高温合金和金属间化合物四大高温材料体系和研究队伍,建设了涿州粉末高温合金科研生产基地和永丰高温合金产业基地。

上述单位研究单位实力雄厚、优势互补,具有明显的产学研结合体,有利于解决高温TiAl合金产业化和应用的关键技术基础。从研究基础、研究人员素质到实验条件均可以满足本项目的研究需要。因此,具备了在高温TiAl合金及其

制备和成形加工成形相关理论上取得重大突破的可能性。

5 课题之间的关系:

本项目集中在高温TiAl合金系列上,围绕轻质高温TiAl的合金设计理论基础及强韧化机制、高温TiAl合金凝固过程组织及缺陷的调控机制、高温TiAl合金粉末冶金制备过程的流变塑变理论科学问题,根据本项目的总体思路和预期目标,设置如下六个课题:(1)高温TiAl合金合金成分-组织-性能设计和优化原理、(2)高温TiAl合金的高洁净度熔炼和加工科学基础、(3)高温TiAl合金熔模铸造关键科学技术基础、(4)高温TiAl合金冷坩埚定向凝固新技术基础、(5)高温TiAl合金板材的粉末冶金及轧制新技术基础研究、(6)高温TiAl金属间化合物材料使用性能表征和评价。

课题之间联系紧密,见图2所示。其中第一个课题和第六个课题与其它四个课题的关联性最大,课题1为不同的制备和加工技术提供优化的合金成分和组织设计理论和强韧化机制,提升高温TiAl合金的室温塑性和韧性,以顺利完成项目提出的具体性能指标;课题6为不同的制备加工技术有关的课题提供性能表征方法确保建立统一的性能数据库,为高温TiAl合金应用设计准则的建立提供数据支撑。中间四个课题在合金的熔炼、凝固、成型(成形)、粉末冶金上相互关联和支撑,实现本项目提出的解决高温TiAl合金制备和加工关键科学问题,以发展出高温TiAl合金制备和加工技术原型。

图2 课题之间的关系图

课题1:高温TiAl合金成分-组织-性能设计和优化原理

研究目标:揭示针对高温条件和具体的制备加工技术下的合金成分-组织-性能关系,主要包括合金元素Nb\Al上下限、微合金化元素的添加原则、多组元高温TiAl合金的相关系和新型工程合金的强韧化机制、多相有序结构的热形变动态复原机制。

主要研究内容:

(1)基于密度函数理论第一性原理的高Nb-TiAl合金设计基础和组成相广义层错能、反相畴界能与孪晶形成能力等晶体缺陷性质,以及合金元素对以上合金的晶体缺陷性质作用规律;

(2)通过热力学计算和试验研究不同Nb含量的多组元高温TiAl合金的准相图、高温不同截面图和其它添加合金元素的影响,揭示多元合金的相变规

律和相关系;

(3)在不同制备和加工工艺下,Nb、Al含量对合金成分-组织-性能关系的影响规律,得到其Nb/Al含量的上下限,满足课题提出的性能指标;

(4)微合金化元素的作用规律及添加原则。主要研究W、B、Si等对细化晶粒及片层间距的作用机理和效果;研究Mn、稀土元素对合金铸造性能的影响;研究添加稀土元素改善高温抗氧化性的机制;

(5)研究形变过程中普通位错-超位错-孪晶交互作用,Nb降低层错能对形变和强韧化的影响机制;

(6)V、Mo等元素对高温TiAl合金多相有序结构的动态复原过程的影响规律,以提高合金的热加工性能。

(7)高温条件和不同加工方式下高Nb-TiAl合金的高温抗氧化机制。

经费比例:23%

承担单位:北京科技大学,上海交通大学

课题负责人:林均品,46岁,博士,教授,博导

主要承担人员:陈国良,宋西平,孙坚

课题2:高温TiAl合金的高洁净度熔炼和加工科学基础

研究目标:建立等离子冷床熔炼高温TiAl合金的均质化和纯洁度控制方法,揭示熔炼工艺路线和工艺参数对铸锭夹杂物去除效果及成分组织均匀性的影响规律。探索出适合高温TiAl合金型材的均质、纯净的大尺寸铸锭制备技术;通过高温TiAl合金包套挤压结合等温锻造工艺细化和均匀化组织,通过增加高温β相提高热变形能力,研制出组织均匀细小的大尺寸挤压棒材、锻造饼材、板材。

主要研究内容:

(1)利用有限元模拟研究高温TiAl合金等离子冷炉床熔炼和真空自耗电弧熔炼过程中热平衡,建立铸锭凝固过程传热、传质及流动的数学物理模型。

基于热/动力力学分析,对熔体中异质夹杂的界面反应及其迁移分离的机

制进行研究,预测铸锭凝固的宏观、微观偏析和缺陷类型;

(2)研究晶间熔体流体力学、富溶质熔体在凝固枝晶间的流动结晶行为以及溶质分配规律,分析高温TiAl合金熔炼过程熔池中液相流动特征及其受外

场的影响,结合对凝固过程中原子扩散、溶质偏聚等所引起的能量障碍的分析,明确铸锭成分分布规律及偏析机制;

(3)通过对高温TiAl 合金的冶金工艺途径和过程参数调控,研究大铸锭合金的偏析、夹杂、缩孔、疏松等冶金缺陷的形成机制及其对综合力学性能的影响规律、熔体流变行为,明确冶金过程纯净化、匀质化机理并提出调控方法;

(4)研究β相稳定元素对高温TiAl合金热变形能力的影响,研究热挤压工艺结合等温锻造的热加工工艺对细化铸态组织和综合力学性能的影响;(5)研究Z参数对组织演变的影响规律,建立热变形过程中宏观参量和材料微观组织演变之间的数学模型、热变形本构关系数学模型和热变形抗力图。利用计算机模拟计算和实验研究热变形参量对合金组织性能的影响规律,建立热加工工艺优化原理;

(6)研究在应力场、温度场、速度场及外在约束等多场耦合作用下热变形包套技术在挤压、等温锻造和轧制中的作用原理,优化热加工工艺参数。

经费比例:18%

承担单位:西北工业大学,北京科技大学,哈尔滨工业大学,宝钢股份有限公司

课题负责人:常辉,41,博士,副教授,博导

主要承担人员:张来启,陈玉勇,李金山,王宁,杨昭,孔凡涛

课题3:高温TiAl合金熔模铸造关键科学技术基础

研究目标:

以高温TiAl合金在多场作用下铸造充型特性、壁厚效应以及熔体与型壳反应形成表面硬化层的规律为基础,形成可有效提高高温TiAl合金铸件冶金质量并抑制表面硬化层生成的精铸技术;揭示高温TiAl合金成分对液固界面生长和液固相变路径选择的作用规律,选择变质处理作用明显且相容性良好的变质剂,建立以铸造为成形工艺路线的高温TiAl合金优化设计基础。

主要研究内容:

(1)研究离心和反重力铸造过程中高温TiAl合金中Ti及高熔点元素对液固界面生长特性的作用,揭示不同成分范围合金包晶凝固过程中组织和缺陷形

成规律及其对铸件可靠性的影响,探索氧、氮等间隙原子对凝固行为的作

用及作用机理,依此对铸造高温TiAl合金母合金的成分、间隙元素含量

进行优化调整;

(2)以Pro/E复杂结构造型、CA法组织模拟、Ansys有限元计算优化组合计算为基础研究高温TiAl精密铸件软件接口计算问题,通过多场耦合作用

下高温TiAl合金精密铸造过程的数值模拟,对柱状晶生长、糊状区形成

规律和充型特性进行全面描述;

(3)通过流动性、收缩性等工艺性能试验,分析铸造高温TiAl合金包晶凝固过程中组织和缺陷交互形成规律;通过设计标样和调整铸造参数,揭示精

密铸造高温TiAl合金的壁厚效应及可能的调控途径;研究系列变质处理

方法的作用以及析出物与基体的物理、力学相容性,进行变质剂优化选择;

进而提出综合优化铸造工艺技术的思路;

(4)研究熔体与型壳反应以及热交换对熔体充型流动的阻滞作用,分析高温TiAl合金熔体与铸型表面反应所产生表面硬化层,揭示表面硬化层的形成

机制,研究表面硬化层对高温TiAl合金力学性能的影响,探索有利于抑

制表面硬化层形成的型壳面层化学组分,以减少其对力学性能的不利影

响;

(5)设置不同工艺边界条件制备铸造TiAl合金标样,通过力学性能实验和整体铸件的考核,揭示组织和缺陷对高温TiAl合金铸件可靠性的影响规律,为推动高可靠性铸造高温TiAl合金进入工程应用。

经费比例:18.5%

承担单位:钢铁研究总院,上海交通大学,丹阳市精密合金厂有限公司,西北工业大学

课题负责人:张继,48岁,博士,教授,博导

主要承担人员:陆敏,张建伟,王新英,万柏方,张铁邦

课题4:高温TiAl合金冷坩埚定向凝固新技术基础

研究目标:揭示新型高温TiAl合金在冷坩埚定向凝固条件下的组织、缺陷演变规律;建立相关凝固理论模型,运用对凝固过程的控制,提高该合金的塑性、强度等性能指标,建立该定向凝固组织典型构件的关键成形技术方法。

主要研究内容:

(1)研究冷坩埚无污染定向凝固高温TiAl合金的相选择和组织演化规律,定向凝固过程电磁感应加热熔化及凝固界面的控制方法及原理;

(2)合金连续熔化、铸造与定向凝固用多功能冷坩埚系统的电热性能及优化设计;连续定向凝固制备合金锭的冷坩埚电磁感应熔化/凝固成形过程组织随工艺参数变化规律及其优化;

(3)研究高温TiAl合金的缺陷演化热力学及动力学及铸造质量控制。合金表面裂纹形成的热力学及动力学机理及其控制规律;缩孔缩松形成的热力学及动力学机理及其控制规律;成分偏析形成的机理及其控制规律;综合铸

造质量的控制方法优化;

(4)高温TiAl合金片层组织的定向热处理过程中组织演化规律及其取向控制。

高温平衡相组成及双相钛铝基合金梯度温度场内平衡相组成及分布;(5)定向凝固高温TiAl合金成分-组织-工艺参数-力学性能之间的关系。

经费比例:13%

承担单位:哈尔滨工业大学,南京理工大学

课题负责人:郭景杰,54岁,博士,教授,博导

主要承担人员:傅恒志,陈光,丁宏升

课题5:高温TiAl合金板材的粉末冶金及轧制新技术基础研究

研究目标:通过添加β相稳定元素和高Nb合金化制备出的含高比例β相的高温TiAl合金粉末,促进其后续轧制的热变形能力,保证大变形量大尺寸板材的制备;建立粉末冶金合金致密化过程微缺陷形成和控制理论,在应力场、温度场、速度场及外在约束等多场耦合作用下,板材轧制过程中的精确变形流动理论。建立从合金粉末-热等静压致密化-热机械处理-包套轧制制备大尺寸TiAl合金板材的完整的技术原型。形成具有自主知识产权的高温TiAl合金连接技术,实现高温TiAl合金本身及其与其他材料的连接。

主要研究内容:

(1)研究β相稳定元素和高Nb合金化对高温TiAl合金粉末的非平衡相的结构形成与演化规律影响,得出优化的板材成分组织和设计原则;

(2)研究成分偏扩散以及微偏析对合金粉末致密化过程的作用规律,致密化过程中Al,Nb,Cr,W等元素在粉末颗粒内部和界面的分布状态以及扩散途径,以及由此造成的对致密化过程物质流动、原始界面消除以及新结构形成的影响;

(3)杂质和缺陷分布及对粉末冶金高温TiAl合金损伤机理。粉末冶金材料杂质元素、残余孔隙和其它缺陷的存在方式,对材料室、高温以及动、静态力学性能的作用规律;

(4)研究高温TiAl合金粉末非平衡结构形成与演化,粉末致密化行为和缺陷形成与控制机理,在应力场、温度场、速度场及外在约束等多场耦合作用下,合金板材包套轧制过程中金属流动规律;

(5)研究热轧过程中组织结构演化行为,建立工艺-组织-性能交互作用关系模型,确定变形缺陷形成演化规律及其控制原理;研究高温TiAl合金板材后续热处理过程中的组织性能演变规律,实现组织性能精确控制;(6)研究板材的超塑性变形机理,超塑性变形过程中显微组织演变及孔洞的形核和长大规律;

(7)研究高温TiAl合金钎焊及扩散连接用中间层成分及其与母材的界面反应机理、反应相形成规律;探索电子束焊接时的接头质量控制方法及焊接热输入对接头力学性能的影响。

经费比例:16%

承担单位:中南大学, 西北有色金属研究院,哈尔滨工业大学

课题负责人:贺跃辉,46岁,博士,教授

主要承担人员:刘咏,刘海彦,冯吉才

课题6:高温TiAl金属间化合物材料使用性能表征和评价

研究目标:确立高温TiAl合金安全服役条件下的力学性能控制参量和应用阈值范围,揭示组织类型和微观缺陷对合金裂纹萌生和扩展的影响规律,揭示合金损伤容限性能与微观组织的关系,建立具有理论基础并具有工程应用价值的寿命评估方法和损伤容限参量设计准则,为合金在航空、航天及其他领域的工程化应用提供有力的技术支持。

主要研究内容:

(1)针对高温TiAl合金在发动机不同部件上的应用,研究合金在发动机部件典型使用温度与复杂载荷条件下(高温静力拉伸、持久/蠕变、应力/应变疲劳以及疲劳/蠕变等)应力与应变的本构关系,对合金的性能进行全面

的评估分析,确立安全服役条件下的性能控制参量和应用阈值范围,建立性能控制参量的表征技术;

(2)研究合金的微观断裂特征和失效机制,包括小裂纹萌生机制、小裂纹和长裂纹的扩展规律以及断裂机制;研究组织类型和微观缺陷对合金裂纹萌生和扩展的影响规律;

(3)揭示合金的断裂韧度KIC、疲劳裂纹扩展速率da/dN以及疲劳裂纹扩展门槛值ΔKth等损伤容限性能与微观组织的关系,发展计算机损伤模拟模型,为合金的微观组织设计和探讨微观组织对损伤容限性能的影响机理奠定

基础;

(4)研究合金在反复热循环和热冲击条件下的尺寸稳定性和性能稳定性评价方法;

(5)建立具有理论基础并具有工程应用价值的寿命评估方法和损伤容限参量设计准则;

(6)航天飞行器短时持久/蠕变、应力/应变疲劳以及疲劳/蠕变等的本构关系及性能表征。

经费比例:11.5%

承担单位:中航工业北京航空材料研究院,航天科工集团特种材料工艺技术研究所

课题负责人:于慧臣,44岁,博士,研究员

主要承担人员:郭广平,黄新跃,许沂,雷昆鸟

四、年度计划

《金属及其化合物》重要化学方程式

《金属及其化合物》重要化学方程式再书写 1.钠及其重要化合物 (1)知识网络构建 (2)重要反应必练 写出下列反应的化学方程式,是离子反应的写出离子方程式。 ①Na 和H 2O 的反应 2Na +2H 2O===2Na ++2OH -+H 2↑; ②Na 在空气中燃烧 2Na +O 2=====点燃 Na 2O 2; ③Na 2O 2和H 2O 的反应 2Na 2O 2+2H 2O===4Na ++4OH -+O 2↑; ④Na 2O 2和CO 2的反应 2Na 2O 2+2CO 2===2Na 2CO 3+O 2; ⑤向NaOH 溶液中通入过量CO 2 OH -+CO 2===HCO -3; ⑥将Na 2CO 3溶液与石灰乳混合 CO 2-3+Ca(OH)2===CaCO 3+2OH -; ⑦向Na 2CO 3稀溶液中通入过量CO 2 CO 2-3+CO 2+H 2O===2HCO -3; ⑧将NaHCO 3溶液和NaOH 溶液等物质的量混合 HCO -3+OH -===CO 2-3+H 2O ; ⑨将NaHCO 3溶液与澄清石灰水等物质的量混合 HCO -3+Ca 2++OH -===CaCO 3↓+H 2O ; ⑩将NaHCO 3溶液与少量澄清石灰水混合 2HCO -3+Ca 2++2OH -===CaCO 3↓+CO 2-3+2H 2O 。 2.铝及其重要化合物 (1)知识网络构建

(2)重要反应必练 写出下列反应的离子方程式。 ①Al和NaOH溶液的反应 2Al+2OH-+2H2O===2AlO-2+3H2↑; ②Al(OH)3和NaOH溶液的反应 Al(OH)3+OH-===AlO-2+2H2O; ③Al(OH)3和盐酸的反应 Al(OH)3+3H+===Al3++3H2O; ④Al2O3和NaOH的反应 Al2O3+2OH-===2AlO-2+H2O; ⑤Al2O3和盐酸的反应 Al2O3+6H+===2Al3++3H2O; ⑥NaAlO2和过量盐酸的反应 AlO-2+4H+===Al3++2H2O; ⑦向NaAlO2溶液中通入过量CO2气体AlO-2+CO2+2H2O===Al(OH)3↓+HCO-3; ⑧将NaAlO2溶液与NaHCO3溶液混合 AlO-2+HCO-3+H2O===Al(OH)3↓+CO2-3; ⑨将NaAlO2溶液与AlCl3溶液混合 3AlO-2+Al3++6H2O===4Al(OH)3↓; ⑩将AlCl3溶液与NaHCO3溶液混合 Al3++3HCO-3===Al(OH)3↓+3CO2↑。3.铁及其化合物 (1)知识网络构建

金属及其化合物知识点汇总

金属及其化合物知识点 1.金属原子的最外层电子排布特点 (金属原子最外层电子数较少。易失去最外层电子。) 2.在物理性质上金属有哪些共性?(常温下除汞外均为晶体,有金属光泽,是热、电的良导体,大多有良好的延展性。)3.金属的化学性质 (1)金属与氧气的反应①钠与氧气反应-常温:4Na + O2 == 2Na2O加热:2Na + O2△Na2O2; ②铝与氧气反应:通常与氧气易反应,生成致密的氧化物起保护作用 4Al + 3O2 == 2Al2O3 加热铝箔时,由于外层氧化膜的熔点比铝的熔点高,故熔化的液态铝并不滴落。除去氧化膜的铝箔加热很快生成新的氧化膜,熔化的液态铝并也不滴落。 ③铁与氧气反应:3Fe + 2O2点燃 Fe3O4(Fe2O3·FeO) (2)金属与水的反应①钠与水反应:2Na + 2H2O == 2NaOH + H2↑;实验现象:钠浮在水面 上,熔成小球,在水面上游动,有哧哧的声音,最后消失,在反应后的溶液中滴加酚酞,溶液变 红。 ②铝与水反应:加热时微弱反应 ③铁与水反应:高温与水蒸气反应3Fe + 4H2O(g) 高温Fe3O4 + 4H2↑。 (3)金属与酸的反应①钠与酸反应:如2Na + 2HCl == 2NaCl + H2↑,Na放入稀盐酸中,是先与酸反应,酸不足再与水 反应。因此Na放入到酸中Na是不可能过量的。比钠与水的反应剧烈多。 ②与酸反应:强氧化性酸,如浓硫酸和浓硝酸在常温下,使铝发生钝化现象;加热时,能反应,但 无氢气放出;非强氧化性酸反应时放出氢气。 ③与酸反应:强氧化性酸:常温下浓硫酸和浓硝酸使铁钝化。加热时,与强氧化性反应,但无氢气 放出。非强氧化性酸:铁与酸反应有氢气放出。 (4)某些金属与碱反应:和强碱溶液反应:2Al + 2NaOH + 2H2O == 2NaAlO2 + 3H2↑。 (5)金属与盐溶液反应:①钠与盐的溶液反应:钠不能置换出溶液中的金属,钠是直接与水反应。反应后的碱再与溶液 中的其他物质反应。如钠投入到硫酸铜溶液的反应式: 2Na + CuSO4 + 2H2O == Cu(OH)2↓+ Na2SO4 + H2↑。 ②铝与盐的溶液反应:如能置换出CuSO4、AgNO3等溶液中的金属。 ③铁与某些盐反应:如Fe + CuSO4 == Cu + FeSO4 , Fe +2 FeCl3 == 3FeCl2等。 4.金属的氧化物 (1)氧化钠和过氧化钠

第四章金属材料及热处理

第四章答案 1.解释名词:①滑移、②加工硬化、③回复、④再结晶 答:①滑移:晶体的一部分沿着一定的晶面(滑移面)和晶向(滑 移方向)相对于另一部分产生相对滑动的过程。滑移变形有如下特点: 滑移只能在切应力作用下发生。滑移常沿晶体中原予密度最大的晶面和晶向发生。 ②加工硬化:随着塑性变形量的增加,金属的强度、硬度升高, 塑性、韧性下降这种现象称为加工硬化。 ③回复:回复是指当加热温度较低时,仅使金属的点缺陷和位错 近距离运动(如大量的空位移动到表面或与间隙原于合并;异号位错在同一滑移面上合并消失)而使晶格畸变减少,内应力显著降低的过程。 ④再结晶:金属的组织和性能又重新恢复到冷性变形前的状态。 而且结晶出的晶格与变形前完金一样,所以称为再结晶过程 2.用手来回弯折一根铁丝时,开始感觉省劲,后来逐渐感到有些费劲,最后铁丝被弯断。试解释过程演变的原因? 答:铁丝在塑性变形前的塑性、韧性好,容易变形;用手来回弯 折铁丝时感觉省劲;随着变形量的增加,金属的强度、硬度升高,塑性、韧性下降产生了加工硬化。所以后来逐渐感到有些费劲了。3.当金属继续冷冲压有困难时,通常需要进行什么热处理?为什么? 答:金属的塑性变形,不仅会使金属的晶粒破碎拉长,而且还会 使位错等晶格缺陷大量增加,从而使金属产生加工硬化和残余内应

力,这些不仅会造成金属进一步加工的困难,而且还会引起一系列的性能变化。所以,金属在塑性变形之后或在其加工变形的过程中,需要进行的热处理是退火,即对金属进行一定温度的加热,便其组织从不稳定的状态趋于稳定的状态,性能得以恢复。退火的目的是①为了消除加工硬化,以便进一步加工,②为了保留其加工硬化性能,仅只减小其残余内应力,或改善某些理化性能。 4.热加工对金属组织和性能有什么影响?钢材在热加工(如锻造)时,为什么不产生加工硬化现象? 答:热加工能消除铸态金属与合金的某些缺陷,如使气孔焊合, 使粗大的树枝晶和柱状晶破碎,从而使材料组织致密,晶粒细化,成分均匀,力学性能提高。 热加工使铸态金属中的夹杂物及枝晶偏析沿变形方向拉长,便枝 晶间富集的杂质及夹杂物的分布逐渐与变形方向一致,形成彼此一致的宏观条纹,称为流线,由这种流线所体现的组织称为纤维组织。纤维组织使钢产生各向异性,与流线平行的方向强度高,而垂直方向上强度低,在制订加工工艺时,应使流线分布合理,尽量便流线与工件工作时所受到的最大拉应力方向一致,与剪切或冲击应力方向相垂直。 在热加工亚共析钢时,常发现钢中的铁素体与珠光体呈带状或层 状分布,这种组织称为带状组织。带状组织是由于枝晶偏析或夹杂物在压力加工过程中被拉长所造成的。带状组织不仅降低钢的强度,而且还降低塑性和冲击韧度。轻微的带状组织可通过多次正火或高温扩

金属材料与热加工技术

绪论 材料的发展: 公元前1200年左右,人类进入了铁器时代,开始使用的是铸铁,以后制钢工业迅速发展,称为18世纪产业革命的重要内容和物质基础。 20世纪中叶以来,科学技术突飞猛进,日新月异,作为“发明之母”和“产业的粮食”的新材料研制更是异常活跃,出现了称之为“高分子时代”、“半导体时代”、“先进陶瓷时代”和“复合材料时代”等种种提法。在当今新技术革命波及整个国际社会的浪潮冲击下,人类进入了一个“材料革命”的新时代。 1.金属材料 金属具有正的电阻温度系数,通常有良好的导电性、导热性、延展性、高的密度和高的光泽。包括纯金属和以金属元素为主的合金。在工程领域有把金属及其合金分为两类:(1)黑色金属,即铁和铁基合金(钢铁及合金钢);(2)有色金属,黑色金属以外的所有金属及其合金,常见有铝及铝合金,铜及铜合金等。 金属材料一般有良好的综合机械性能(强度、塑性和韧性等),是工程领域应用最广的材料。金属材料是当今工程领域应用最广的材料材料的发展 2.高分子材料 又称聚合物,包括天然高分子材料(木材、棉、麻等)和合成高分子材料(塑料,合成橡胶等)。其主要组分高分子化合物是有许多结构相同的结构单元相互连接而成。 它具有较高的强度、良好的塑性、较强的耐腐蚀性、绝缘性和低密度等优良性能。高分子材料发明虽晚,但异军突起,因其物美价廉,在工程材料中应用越来越广。 3.复合材料 由两种或两种以上材料组成,其性能是它的组成材料所不具备的。复合材料可以有非同寻常的刚度、强度、高温性能和耐蚀性。按基本材料分类,它可分为金属基复合材料、陶瓷基复合材料和聚合物基复合材料等。复合材料具有极其优异性能,质轻,强度高,韧性好,可制作运动器材,而在航空航天领域更是无可替代。 第一章金属的主要性能 教学目标: 1.了解材料的主要力学性能指标:屈服强度、抗拉强度、伸长 率、断面收缩率、硬度、冲击韧性、疲劳强度、断裂韧性等力学 性能及其测试原理; 2.强调各种力学性能指标的生产实际意义; 3.了解工程材料的物理性能、化学性能及工艺性能。 第一节强度和塑性 一、拉伸实验与拉伸曲线

人教版高中化学必修一金属及其化合物方程式讲练

第三章章末 专练 1.在实验室中,少量的钠保存在煤油里,说明钠的密度比煤油的大。( ) 2.将钠投进水中,钠漂在水面上,熔化的钠球四处游动,发出嘶嘶响声,说明钠的密度比水的密度小、钠与水反应放热且钠的熔点低。( ) 3.向钠和水反应后的溶液中滴加酚酞,溶液变红色,反应的离子方程式为:2Na +2H 2O===2Na ++2OH -+H 2↑。( ) 4.4Na +O 2===2Na 2O 和2Na +O 2=====点燃Na 2O 2可说明相同的反应物在不同的 条件下可能发生不同的反应。Na 2O 2是淡黄色固体,氧元素呈-1价,阳离子和阴离子的个数比是1∶1。( ) 5.Na 2CO 3的俗名为纯碱、苏打,NaHCO 3的俗名为小苏打,不稳定,既与酸溶液反应,又与碱溶液反应,离子方程式分别为:HCO 3-+H +===H 2O + CO 2↑、HCO 3-+OH -===CO 32-+H 2O 。( ) 6.焰色反应是大多金属元素的性质,属于化学变化。钠元素焰色为黄色,钾元素的焰色为紫色。( ) 7.将铝箔用砂纸打磨(或在酸中处理后,用水洗净)除去表面的氧化膜,再加热至熔化但铝不滴落。原因是由于铝很活泼,磨去原来的氧化膜后,在空气中又很快地生出一层新的氧化膜,起保护作用。( ) 8.铝与NaOH 溶液反应的离子方程式为:2Al +2OH -+2H 2O===2AlO 2-+ 3H 2↑,1 mol Al 分别与足量NaOH 溶液和稀盐酸完全反应,失去电子的物质的量相同。( ) 9.Fe 2O 3是红棕色粉末,俗称铁红,常用作红色油漆和涂料。( ) 10.在空气中,FeCl 2与NaOH 溶液反应得到白色絮状沉淀。( ) 11.CuSO 4·5H 2O 即胆矾也称蓝矾,历史上曾用于湿法炼铜,现在可用于配制波尔多液。( ) 12.合金具有许多优良的物理、化学或机械性能,在许多方面不同于各成分金属。例如,合金的硬度一般比它的各成分金属的大,多数合金的熔点一般比它的各成分金属的低。( ) 13.钢是用量最大、用途最广的合金;根据化学成分,钢可分为碳素钢和合金钢;根据含碳量不同,碳素钢可分为低碳钢、中碳钢和高碳钢。( )

综合质量检测 (三) 金属及其化合物

金属及其化合物测试题 第Ⅰ卷(选择题,共54分) 一、选择题(每小题3分,共54分) 1.红珊瑚栖息于200~2000m的海域,产于台湾海峡、南中国海,它与琥珀、珍珠被统称为有机宝石。在中国,珊瑚是吉祥的象征,一直用来制作珍贵的工艺品。红珊瑚是无数珊瑚虫分泌的石灰质大量堆积形成的干支状物,其红色是因为在海底长期积淀某种元素,该元素是(). A.N a B.F e C.S i D.C u 2.下列化合物中,不能通过化合反应而得到的是(). ①S O3②F e(O H)3③H2S iO3④N a H C O3⑤F e C l2 A.③B.①③C.①⑤D.②③ 3.向100m L0.25m o l/L的A lC l3溶液中加入金属钠完全反应,恰好生成只含N a C l 和N a A lO2的澄清溶液,则加入金属钠的质量是(). A.3.45g B.2.3g C.1.15g D.0.575g 4.下列有关铁元素的叙述中正确的是(). A.氢氧化铁可以由相关物质通过化合反应而制得 B.铁是较活泼的金属,它与卤素(X2)反应的生成物均为F e X3 C.氢氧化铁与氢碘酸反应:F e(O H)3+3H I===F e I3+3H2O D.铁元素位于周期表的第4周期ⅧB族 5.将a g C u O和F e2O3的混合物分成两等份,向其中一份中加入b m L c m o l/L的稀盐酸正好完全反应;另一份在加热的条件下用H2还原,反应完全时用去H2d L(折算成标准状况)。则d等于(). A.11.2b c×10-3 B.22.4b c×10-3 C.22.4(3a-4b c×10-3)

3金属及其化合物的综合推断题

金属及其化合物的综合推断题 1.A 、B 、C 、X 均为中学常见的纯净物,它们之间有如下转化关系(副产物已略去)。 A ――――――→+X 一定条件反应①B ――――――→+X 一定条件反应② C (1)若X 是强氧化性气体单质,则A 可能是______(填序号)。 a .C b .Al c .Na d .Mg (2)若X 是金属单质,向C 的水溶液中滴加AgNO 3溶液,产生不溶于稀HNO 3的白色沉淀,X 在A 中燃烧产生棕黄色的烟。B 的化学式为________;C 溶液在贮存时应加入少量X ,理由是(用必要的文字和离子方程式表示)________;检验此C 溶液中金属元素的操作方法是________________;向C 的溶液中加入氢氧化钠溶液,现象是__________;请写出此过程中属于氧化还原反应的化学方程式__________________。 (3)若A 、B 、C 均为含有同种金属元素的化合物,X 是强酸或强碱,则B 的化学式为_________,反应①的离子方程式为_______________________或________________。 答案 (1)ac (2)FeCl 3 2Fe 3++Fe===3Fe 2+,防止Fe 2+ 被氧化 用试管取少量C 溶液,滴加KSCN 溶液,无颜色变化,再滴加氯水,溶液呈血红色,证明原溶液中有Fe 2+ 存在 生成白色沉淀,迅速变为灰绿色,最终变为红褐色 4Fe(OH)2+O 2+2H 2O===4Fe(OH)3 (3)Al(OH)3 Al 3++3OH -===Al(OH)3↓ AlO -2+H + +H 2O===Al(OH)3↓ 解析 (1)X 是强氧化性气体单质,可联想到X 是O 2,则实现图示转化关系的可能为C ―→CO ―→CO 2或Na ―→Na 2O ―→Na 2O 2。(2)根据题意,可知X 为Fe ,A 、B 、C 分别为Cl 2、FeCl 3、FeCl 2。(3)当X 为强碱时,可实现图示转化关系为AlCl 3―→Al(OH)3―→NaAlO 2;当X 为强酸时,可实现图示转化关系为NaAlO 2―→Al(OH)3―→AlCl 3,因此B 为Al(OH)3。 2.现有一份由C 、Al 、Fe 、Fe 2O 3、CuO 中的几种物质组成的混合物粉末,某校化学课外小组取样品进行了如下实验(其中部分产物已略去): [ (1)取少量溶液X ,加入过量的NaOH 溶液,有沉淀生成。取上层清液,通入CO 2,无明显变化,说明样品中不含有的物质是(填写化学式)________________。 (2)Z 为一种或两种气体: ①若Z 只为一种气体,试剂a 为饱和NaHCO 3溶液,则反应Ⅰ中能同时生成两种气体的化学方程式为______________________。 ②若Z 为两种气体的混合物,试剂a 为适量H 2O ,则Z 中两种气体的化学式是__________。

第四章 有色金属热处理原理与工艺

第四章有色金属热处理原理与工艺 一、概述 热处理是有色加工的重要组成部分 有色金属材料:黑色金属以外的所有金属及其合金。 分类:轻有色、重有色、稀有色、贵金属 作用:改善工艺性能,保证后续工序顺利进行;提高使用性能,充分发挥材料潜力。 类型:退火、淬火、时效、形变热处理 退火:加热到适当温度,保温一定时间,缓慢速度冷却。 有色中的退火:去应力退火、再结晶退火、均匀化退火 二、均匀化退火 对象:铸锭、铸件—→浇铸冷速大,造成成分偏析以及内应力 目的:提高铸件的性能,消除内应力,稳定尺寸与组织,消除偏析枝晶,改善性能。 非平衡铸态组织特征:晶内偏析or枝晶偏析;伪共晶or离异共晶;非平衡第二相;最大固溶度偏移。非平衡组织对性能的影响:枝晶偏析&非平衡脆性相—→塑性↓; 晶内偏析、浓度差微电池—→耐腐蚀性↓; 粗大的枝晶和严重的偏析—→各向异性&晶间断裂倾向↑; 非平衡针状组织—→性能不稳定。 固相线以下100~200℃长时间保温—→也称为扩散退火 组织变化:获得均匀的单相、晶粒长大、过饱和固溶体的分解、第二相聚集与球化 性能变化:塑性↑、改善冷变形的工艺性能、耐蚀性↑、尺寸形状稳定、消除残余应力 缺点:加热温度高,时间长,耗时耗能;高温长时间出现变形、氧化以及吸气缺陷;产品强度下降。制定均匀化推过规程的原则: (1)加热温度:温度越高,原子扩散越快,均匀化过程越快,但不宜过高,易发生过烧。一般为 0.90~0.95T m ①高温均匀化退火:在非平衡相线温度以上但在平衡固相线温度以下进行均匀化退火。 适用:大截面工件or铝合金 ②分级加热均匀化退火:现在低于非平衡固相线温度加热,待非平衡相部分溶解及固溶体 内成分不均匀部分降低,从而非平衡固相线温度升高后,再加热 至更高温度保温,在此温度下完成均匀化退火过程。 目的:均匀化更迅速、更彻底,且避免过烧 适用:镁合金 (2)保温时间:包括非平衡相溶解及消除晶内偏析所需的时间 取决于退火温度:T↑,D↑,时间↓; 铸锭原始组织特征:合金化程度、第二相分散度、尺寸 铸锭的致密程度 (3)加热速度与冷却速度 原则:铸锭不产生裂纹和大的变形,不能过快or过慢 主要采用均匀化退火的合金:Al合金、Mg合金、Cu合金中的锡磷青铜、白铜

金属材料与热处理基础考试题

金属材料与热处理基础考试题 部门__________姓名___________工号__________得分____________ 一、选择题 1、拉伸试验时,试样拉断前所能够承受的最大应力称为材料的()。 A、弹性极限 B、抗拉强度 C、屈服点 2、用拉伸试验可测定材料的()性能指标。 A、强度 B、韧性 C、硬度 3、将钢件奥氏体化后,先浸入一种冷却能力强的介质中,然后迅速浸入另一种冷却能力弱的介质中,使之发生马氏体转变的淬火方法称()。 A、分级淬火 B、等温淬火 C、水冷淬火 D、双介质淬火 4、制造小弹簧宜选用(),制造冷压件宜选用()钢。 A、08F B、45 C、65Mn D、T12A 5、滚动轴承钢GCrl5中的平均含铬量为()。 A、% B、% C、15% D、% 6、合金渗碳钢渗碳后必须进行()热处理才能使用。 A、淬火加高温回火 B、淬火加中温回火 C、淬火加低温回火 D、高温回火 7、工业纯铝的特点的是()。 A、密度小 B、导电性好 C、强度高 D、抗腐蚀能力高 二、判断题 1、材料的屈服点越低,则允许的工作应力越高。() 2、对钢进行热处理的目的都是为了获得细小、均匀的奥氏体组织。() 3、退火与正火的目的大致相同,它们主要的区别是保温时间长短。() 4、回火的目的主要是消除应力,降低硬度,便于进行切削加工。()

5、感应加热表面淬火时所使用的电流频率越高,则工件表面的淬硬层深度 越深。() 6、渗碳的零件可以是低碳钢也可以是高碳钢。() 7、在去应力退火过程中,钢的组织不发生变化。() 8、合金钢只有经过热处理,才能显著提高其力学性能。() 9、工业纯铝具有较高的强度,常用作工程结构材料。() 三、填空题 1、金属材料的使用性能包括、和等;工艺性能包括、、、和 ` 等。 2、材料的力学性能包括、、和等。 3、强度是指金属材料在作用下,抵抗和的能力。 4、热处理是将固态金属或合金采用适当的方式进行、 和以获得所需要的组织结构与性能的工艺。 5、生产中常用的冷却介质有、和等。 6、生产中在钢淬火后进行的热处理工艺称为调质,调质后的组织 为。 7、Q235—A 表示为235MPa,质量为级的钢。 8、T10A表示含碳量为的钢。 9、常用来制造高速切削的车刀、刨刀的高速工具钢有和。 10、不锈钢是指在介质或大气中具有抗腐蚀性能的钢,其成分特点是 含量较高,含量较低。 11、表面要求具有高的,而心部需要足够的的零件应进行表面热处理。 12、滚动轴承钢的热处理首先采用,以降低锻造后钢的硬度, 便于切削加工,然后采用,以提高轴承的硬度和耐磨性。

必修一金属及其化合物化学方程式大全(附答案)

第三章金属元素及其化合物方程式书写练习(必修一) 钠及其化合物(须注明反应条件,如为离子反应,请写离子方程式) 2.金属钠燃烧 3.金属钠与硫反应 4.金属钠与水反应 5.金属钠与盐酸反应 6.金属钠投入三氯化铁溶液中 7.金属钠投入到氯化铵溶液中并加热 8.氧化钠与水反应 9.过氧化钠与水反应 10.过氧化钠与盐酸反应 11.过氧化钠与二氧化碳反应 12.碳酸钠与少量盐酸反应 13.碳酸钠与过量盐酸反应 14.碳酸氢钠与过量盐酸反应 15.碳酸氢钠固体受热分解 16.向饱和碳酸钠溶液中通入二氧化碳 17.向碳酸氢钠溶液中加入过量的氢氧化钠溶液 18.向碳酸氢钠溶液中加入少量的氢氧化钙溶液 19.向碳酸氢钠溶液中加入过量的氢氧化钙溶液 20.氢氧化钠溶液中通入过量二氧化碳 21.氢氧化钠溶液中通入少量二氧化碳 铝及其化合物(须注明反应条件,如为离子反应,请写离子方程式) 1.铝在空气中缓慢氧化 2.电解熔融氧化铝制取铝单质 3. 铝与氢氧化钠溶液反应 4. 氧化铝与盐酸反应 5.氧化铝与氢氧化钠溶液反应 6.硫酸铝溶液与过量氨水反应 7.硫酸铝溶液与过量氢氧化钠溶液反应 8.硫酸铝溶液与少量氢氧化钠溶液反应 9.氢氧化铝与稀盐酸反应 10.氢氧化铝与氢氧化钠溶液反应 11.氢氧化铝受热分解 12.向偏铝酸钠溶液中通入少量的二氧化碳 13.向偏铝酸钠溶液中通入过量的二氧化碳 14.向偏铝酸钠溶液中逐滴滴入稀盐酸至过量涉及的离子方程式:刚开始滴入至n(AlO2-):n(H+)=1:1时发生: ,当AlO2-消耗完后发生。

总反应: 15.向稀盐酸中逐滴滴入偏铝酸钠溶液至过量涉及的离子方程式:刚开始滴入至n(AlO2-):n(H+)=1:4时发生: ,当H+消耗完后发生。 总反应: 16. 向氯化铝溶液中逐滴滴入氢氧化钠溶液至过量涉及的离子方程式:刚开始滴入至n(Al3+):n(OH-)=1:3时发生: ,当Al3+消耗完后发生。 总反应: 17. 向氢氧化钠溶液中逐滴滴入氯化铝溶液至过量涉及的离子方程式:刚开始滴入至n(Al3+):n(OH-)=1:4时发生: ,当OH-消耗完后发生。 总反应: 18.用离子方程式表示明矾净水的原理 铁及其化合物(须注明反应条件,如为离子反应,请写离子方程式) 1.铁在纯氧中点燃 2.铁在常温下缓慢氧化 3.铁在氯气中燃烧 4.铁与硫蒸汽反应 5.铁与水蒸汽反应 6.氧化亚铁与稀盐酸反应 7.铁红与稀盐酸反应 8.磁性氧化铁与稀盐酸反应 9.氢氧化亚铁在空气中被氧化 10.铁盐溶液中加入铁粉的离子方程式 11.向氯化铁溶液中加入铜粉 12.向氯化铁溶液中加入锌粒 *13.氯化铁溶液与碘化钾(有还原性)反应的离子方程式 *14.向氯化铁溶液中通入硫化氢气体(有还原性)的离子方程式 *15.氯化铁溶液与亚硫酸钠(有还原性)溶液反应的离子方程式 *16.将二氧化硫(有还原性)气体通入氯化铁溶液中的离子方程式 *17.氢氧化铁与过量的氢碘酸(有还原性)溶液反应的离子方程式 18.硫氢化钾溶液与氯化铁溶液反应 19.硫氢化钾溶液与氯化亚铁溶液反应 20.向氯化亚铁溶液中通入氯气(强氧化性) 21.向氯化亚铁溶液中加入溴水(强氧化性) *22.氯化亚铁溶液与酸性高锰酸钾(强氧化性)溶液反应的离子方程式 *23. 向酸性氯化亚铁溶液中加入双氧水(强氧化性)的离子方程式 24. 氢氧化铁受热分解 钠及其化合物 1、4Na+O2=2Na2O 2、Na+O2=Na2O2(加热) 3、2Na+S= Na2S(加热反应,发生爆炸)

必修一金属及其化合物化学方程式大全附答案

第三章金属元素及其化合物方程式书写练习(必修一)钠及其化合物(须注明反应条件,如为离子反应,请写离子方程式) 2.金属钠燃烧 3.金属钠与硫反应 4.金属钠与水反应 5.金属钠与盐酸反应 6.金属钠投入三氯化铁溶液中 7.金属钠投入到氯化铵溶液中并加热 8.氧化钠与水反应 9.过氧化钠与水反应 10.过氧化钠与盐酸反应 11.过氧化钠与二氧化碳反应 12.碳酸钠与少量盐酸反应 13.碳酸钠与过量盐酸反应

14.碳酸氢钠与过量盐酸反应 15.碳酸氢钠固体受热分解 16.向饱和碳酸钠溶液中通入二氧化碳 17.向碳酸氢钠溶液中加入过量的氢氧化钠溶液 18.向碳酸氢钠溶液中加入少量的氢氧化钙溶液 19.向碳酸氢钠溶液中加入过量的氢氧化钙溶液 20.氢氧化钠溶液中通入过量二氧化碳 21.氢氧化钠溶液中通入少量二氧化碳 铝及其化合物(须注明反应条件,如为离子反应,请写离子方程式) 1.铝在空气中缓慢氧化 2.电解熔融氧化铝制取铝单质 3. 铝与氢氧化钠溶液反应 4. 氧化铝与盐酸反应 5.氧化铝与氢氧化钠溶液反应 6.硫酸铝溶液与过量氨水反应 7.硫酸铝溶液与过量氢氧化钠溶液反应

8.硫酸铝溶液与少量氢氧化钠溶液反应 9.氢氧化铝与稀盐酸反应 10.氢氧化铝与氢氧化钠溶液反应 11.氢氧化铝受热分解 12.向偏铝酸钠溶液中通入少量的二氧化碳 13.向偏铝酸钠溶液中通入过量的二氧化碳 14.向偏铝酸钠溶液中逐滴滴入稀盐酸至过量涉及的离子方程式:刚开始滴入至 -):n(H+)=1:1时发生: n(AlO 2 -消耗完后发 ,当AlO 2 生。 总反应: 15.向稀盐酸中逐滴滴入偏铝酸钠溶液至过量涉及的离子方程式:刚开始滴入至 -):n(H+)=1:4时发生: n(AlO 2 ,当H+消耗完后发生。 总反应: 16. 向氯化铝溶液中逐滴滴入氢氧化钠溶液至过量涉及的离子方程式:刚开始滴入至

第四章 测验二

第四章金属热加工基础测验二姓名______ 一、填空题(每空2分,共30分)。 1、铸造的方法主要分为_________________和_________________两类。 2、铸件的壁厚相差较大易产生__________________。 3、造型、____________和________________是铸造生产中的重要工序。 4、造型材料主要是___________和_____________,主要由____________、______________、__________、旧砂和__________组成 5、常用的紧砂方法有振实、_______________、_______________、抛砂和_______________,其中以_________________应用最广。 二、判断题(每题2分,共40分,正确的用“A”表示,错误的用“B”表示)。()1、缩孔主要是由于补缩不良造成的。 ()2、型砂的强度和紧实度不够,或浇注速度过快都可能会产生砂眼。 ()3、铸造是指熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得具有一定形状、尺寸和性能的金属零件或毛坯的成形方法。 ()4、模样用来形成铸型型腔,铸型用于形成铸件的外形等。芯盒用来制造砂芯(型芯),型芯用于形成铸件的内孔、内腔或局部外形。 ()5、型砂中的煤粉,其作用是煤粉燃烧后产生的气体使铸件与型砂不直接接触,改善型砂的透气性 ()6、造型材料应具有高的耐火度,即型砂承受高温作用而不软化、不熔融的能力。若型砂耐火度差,易使铸件产生粘砂缺陷。 ()7、造型材料的优劣决定了铸件的质量。 ()8、整体模造型时,铸件的型腔一般位于一个砂箱中,且多数位于上砂箱中。()9、形状简单,横截面一次减小、最大截面在端部的铸件一般采用分开模造型。()10、最大断面在模型中部的铸件一般采用整体模造型。 ()11、在采用活块造型时,活块的厚度与模样的厚度无关。 ()12、只用机器完成紧砂和起模的过程不是机器造型。 ()13、型芯的作用仅为用来获得铸件的内腔。 ()14、为了降低铸件内腔的表面粗糙度值,防止产生粘砂缺陷,铸铁件的型芯用石英粉涂料,铸钢件的型芯用石墨涂料。 ()15、铸件的大平面应尽可能的放在上边,以获得良好的铸造质量。

金属材料与热加工基础试题

金属材料与热加工基础试题 (一部分)填空题; 金属中常见的晶格类型有哪三种;1、体心立方晶格 2、面心立方晶格 3、密排立方晶格金属有铬、钨、钼、钒、及&铁属于(体心立方晶格) 金属有铜、铝、银、金、镍、y铁属于(面心立方晶格) 金属有铍、镁、锌、钛等属于(密排立方晶格) 金属的晶体缺陷:按照缺陷的几何特征,一般分为以下三类: 1.空位和间隙原子(点缺陷) 2.位错(线缺陷) 3.晶界和亚晶界(面缺陷) 金属结晶后的晶粒大小: 一般来说,在常温下细晶粒金属比粗晶粒金属具有较高的强度、硬度、塑性和韧性。 工业中常用以下方法细化晶粒: 1.增加过 2.变质处理 3.附加振动 4.降低浇注速度 二元合金的结晶过程 二元合金相图的基本类型有匀晶相图、共晶相图、包晶相图、共析相图等。

铁碳合金在固态下的基本相分为固溶体与金属化合物两类。属于固溶体的基本相有铁素体和奥氏体,属于金属化合物的有渗碳体。 1.铁素体 (F) 碳溶入&铁中的间隙固溶体称为铁素体, 2.奥氏体(A) 碳溶入y铁中的间隙固溶体称为奥氏体, 3.渗碳体(Fe3C) 铁与碳组成的金属化合物称为.渗碳体, 第四章铁碳合金相图 根据相图中S点碳钢可以分为以下几类 1.共析钢(含碳量小于%)的铁碳合金,其室温组织为铁素体。 2亚共析钢(含碳量等于%到%)的铁碳合金,其室温组织为珠光体+铁素体。 3过共析钢(含碳量等于%到%)的铁碳合金,其室温组织为+二次渗碳体。

第三节碳素钢 按用途分类:(1)碳素结构钢。主要用于各种工程结构件(如桥梁、船舶、建筑构件等)和机器零件(齿轮、轴、、螺钉、螺栓、连杆等)。这类钢属于低碳钢和中碳钢 (2)碳素工具钢。主要用于刃具、量具、模具等。这一类钢一般属于高碳钢。 第五章钢的热处理 一般加热时的临界点用Ac1、Ac3、Accm来表示;冷却时的临界点用Ar1、Ar3、Arcm来表示。 共析碳钢的过冷奥氏体在三个不同的温度转变,可发生三种不同的转变:珠光体型转变、贝氏体型转变、马氏体型转变。 珠光体型转变有区别起见,又分为珠光体、索氏体、和托氏体三种。 第十章铸造 合金的铸造性能铸造性能是合金在铸造生产中表现出来的工艺性能出来,通常用合金的流动性、收缩性、吸气性、偏析倾向等来衡量。 流动性最好的是HT200、其次是黄铜。流动性最差的是铸钢。 第十一章锻压 第二节金属的塑性变形 单晶体的塑性变形的方式有两种:滑移和孪生(孪晶),而滑移是单晶体塑性变形的主要方式。 多晶体的塑性变形的方式有两种:晶内变形和晶间变形。

常见金属及其化合物重要化学性质归纳总结

常见金属及其化合物重要化学性质归纳总结(2016.10.20) 一、金属单质 1.与非金属单质反应: (1)与Cl2:分别写出Na、Mg、Al、Fe、Cu与Cl2反应的化学方程式: (2)与O2:分别写出Na、Mg、Al、Fe、Cu与O2反应的化学方程式: (3)与S:分别写出Na、Al、Fe、Cu与S反应的化学方程式: ★特殊反应特别记: ①Na与O2加热时反应的化学方程式: ②Mg与N2反应的化学方程式: ③Fe与Br2、I2反应的化学方程式: 2.与水反应: 分别写出Na、Mg、Fe与水反应的化学方程式: 3.与酸反应 ①与非氧化性酸 分别写出Na、Mg、Al、Fe与非氧化性酸(如盐酸)反应的离子方程式: ②与强氧化性酸: 分别写出Al、Fe(少量、过量)与稀HNO3反应的离子方程式: 分别写出Cu与稀HNO3、浓HNO3、浓硫酸反应的化学方程式: ★特殊反应特别记: 常温下,Al、Fe与浓硫酸、浓硝酸发生钝化 4.与盐溶液反应: 分别写出Na、Mg、Al、Fe与CuSO4溶液反应的离子方程式: ★特殊反应特别记: Fe与FeCl3溶液反应的离子方程式: 5. 特殊反应 ①Mg与CO2反应的化学方程式: ②Al与Fe2O3反应的化学方程式: ③Al与强碱溶液(如NaOH溶液)反应的化学方程式: 6.金属的冶炼 分别写出Na、Mg、Al、Fe的工业冶炼的化学方程式: 二、金属氧化物 1.与水 ①分别写出K2O、CaO、Na2O2与水反应的化学方程式: ②Al2O3、FeO、Fe2O3、Fe3O4、CuO (填“能”或“不能”)与水反应直接生成相应的氢氧化物。 2.与酸: 分别写出Na2O、MgO、Al2O3、FeO、Fe2O3、Fe3O4、CuO与盐酸反应的离子方程式: ★特殊反应特别记: ①分别写出Na2O2与水、盐酸、CO2反应的化学方程式: ②写出Al2O3溶于NaOH溶液反应的离子方程式: ③分别写出FeO溶于稀硝酸,Fe2O3溶于HI酸反应的离子方程式:

金属热加工原理

金属材料与热加工基础试题 填空题; 金属中常见的晶格类型有哪三种;1、体心立方晶格2、面心立方晶格3、密排立方晶格金属有铬、钨、钼、钒、及&铁属于(体心立方晶格) 金属有铜、铝、银、金、镍、y铁属于(面心立方晶格) 金属有铍、镁、锌、钛等属于(密排立方晶格) 金属的晶体缺陷:按照缺陷的几何特征,一般分为以下三类:1.空位和间隙原子(点缺陷)2.位错(线缺陷)3.晶界和亚晶界(面缺陷) 金属结晶后的晶粒大小: 一般来说,在常温下细晶粒金属比粗晶粒金属具有较高的强度、硬度、塑性和韧性。 工业中常用以下方法细化晶粒1.增加过2.变质处3.附加振动4.降低浇注速度 二元合金的结晶过程 二元合金相图的基本类型有匀晶相图、共晶相图、包晶相图、共析相图等。铁碳合金在固态下的基本相分为固溶体与金属化合物两类。属于固溶体的基本相有铁素体和奥氏体,属于金属化合物的有渗碳体。 1.铁素体(F)碳溶入&铁中的间隙固溶体称为铁素体, 2.奥氏体(A)碳溶入y铁中的间隙固溶体称为奥氏体, 3.渗碳体(Fe3C)铁与碳组成的金属化合物称为.渗碳体, 第四章铁碳合金相图 根据相图中S点碳钢可以分为以下几类 1.共析钢(含碳量小于0.0218%)的铁碳合金,其室温组织为铁素体。 2亚共析钢(含碳量等于0.0218%到2.11%)的铁碳合金,其室温组织为珠光体+铁素体。 3过共析钢(含碳量等于0.77%到2.11%)的铁碳合金,其室温组织为+二次渗碳 第五章钢的热处理 一般加热时的临界点用Ac1、Ac3、Accm来表示;冷却时的临界点用Ar1、Ar3、Arcm来表示。共析碳钢

的过冷奥氏体在三个不同的温度转变,可发生三种不同的转变:珠光体型转变、贝氏体型转变、马氏体型转变。珠光体型转变有区别起见,又分为珠光体、索氏体、和托氏体三 第二节金属的塑性变形 单晶体的塑性变形的方式有两种:滑移和孪生(孪晶),而滑移是单晶体塑性变形的主要方式。多晶体的塑性变形的方式有两种:晶内变形和晶间变形。 (二部分)简答题 (一)淬火方法:目前常用淬火的方法有以下几种?答:(1)单介质淬火叙述)(2)双介质淬火3)马氏体分级淬(4)贝氏体等温淬5)冷处理 (二)简述合金元素在钢中的作用? 答:(1)强化铁素体(叙述)(2)形成合金碳化物(3)阻碍奥氏体晶粒长大(4)提高钢的淬透性(5)提高淬火钢的耐回火性 晶体:是指原子(离子、分子)在三维空间有规则地周期性重复排列的物体; 晶格:是指原子(离子、分子)在空间无规则排列的物体; 晶胞:通常只从晶格中选取一个能完全反应晶格特征的、最小的几何单元来分析晶体中原子的排列规律,这个最小的几何单元成为晶胞; 晶粒:多晶体中每个外形不规则的小晶体; 晶界:晶粒与晶粒间的界面; 共晶转变:在一定温度下,由一定成分的液相同时结晶出成分一定的两个固相的过程; 结晶:原子从排列不规则的液态转变为排列规则的晶态的过程。 二、问答题 1.金属中常见的晶体结构有哪几种? 答:(1)体心立方晶格(2)面心立方晶格(3)密排六方晶格 2.实际晶体的晶体缺陷有哪几种类型? 答:(1)点缺陷(2)线缺陷(3)面缺陷 3.固溶体的类型有哪几种? 答:(1)间隙固溶体(2)置换固溶体 4.纯金属的结晶是由哪两个基本过程组成的? 答:(1)晶核的形成(2)晶核的长大 5.何谓过冷现象和过冷度? 过冷度与冷却速度有何关系? 答:(1)过冷现象:金属的实际结晶温度低于理论结晶温度; 过冷度:理论结晶温度与实际结晶温度的差; (2)结晶时冷却速度越大,过冷度就越大,金属的实际结晶温度就越低。 6.晶粒大小对金属的力学性能有何影响? 细化晶粒的常用方法有哪几种? 答:(1)一般情况下,晶粒越细,金属的强度、塑性和韧性就越好; (2)①增加过冷度②变质处理③振动或搅拌 7.什么是共析转变?共晶转变与共析转变有何异同? 答:(1)共析转变:在恒定的温度下,由一个特定成分的固相同时分解成两个成分和结构均不同的新固相的转变 (2)①共晶反应母相是液相,而共析反应的是固相;②共析反应较共晶反应需要更大的过冷度: ③共析反应常出现母相与子相的比容不同而产生容积的变化,从而引起大的内应力。 第3章铁碳合金状态图(重点熟悉铁碳合金状态图)

第四章 金属材料和热处理基本知识(答案)

第四章金属材料的基础知识和热处理的基本知识 第一部分:学习内容 1、钢的分类:|(1)-碳钢:含碳量低于2%的铁碳合金;-合金钢:在钢中特意加入一种或几种其它合金元素组成的钢;-生铁:含碳量高于2%的铁碳合金.,可通过铸造方法制造零件,所以又称铸铁. (2)按化学成分分类: 碳钢-低碳钢:含碳量小于0.25%;-中碳钢:含碳量为0.25~0.55%;-高碳钢:含碳量大于0.55%. 合金钢-低合金钢:合金元素总含量小于3.5%;-中合金钢:合金元素总含量3.5~10%;-高合金钢:合金元素总含量大于10%; 2、洛氏硬度与布氏硬度值近似关系: HRC≈1/10HB 3、热处理及其常用工艺方法 热处理的定义-利用钢在固态下的组织转变,通过加热和冷却获得不同组织结构,从而得到所需性能的工艺方法统称热处理. 常用热处理工艺方法:退火-将钢加热到一定温度,保温一段时间,然后随炉一起缓慢冷却下来,以期得到接近平衡状态组织的一种热处理方法. 4、完全退火:AC3以上30~50℃,用于消除钢的某些组织缺陷和应力,改善切削加工性能; 等温退火:加热到AC3,以上30~50℃,较快的冷却到略低于Ar1的温度,并在此温度下等温到奥氏体全部分解为止,然后出炉空冷.适用于亚共析钢、共析钢,尤其广泛用于合金钢的退火。优点是周期短,组织和硬度均匀。 5、正火-正火和退火加热方法相似,只是冷却速度比退火稍快(空冷),得到的是细片状珠光体(索氏体),强度、硬度比退火的高,与退火相比,工艺周期短,设备利用率高。主要用于低碳钢获得满意的机械性能和切削性能、过共析工具钢消除网状渗碳体、中碳钢代替退火或作为淬火前的预先热处理。 6、淬火-将钢加热到AC1以上30~50℃(共析钢、过共析钢)或AC3以上30~50℃(亚共析钢),保温一段时间,然后快冷得到高硬度的马氏体组织的工艺方法。用以提高工件的耐磨性。 7、回火-将淬火后的工件加热到A1以下某一温度,保温一段时间,然后以一定的方式冷却(炉冷、空冷、油冷、水冷等) -目的:1)降低淬火工件的脆性,消除内应力(热应力和组织应力),使淬火组织趋于稳定,同时也使工件尺寸趋于稳定;2)获得所需的硬度和综合机械性能。 8、焊后消除应力热处理(PWHT、ISR):目的是消除应力、降低硬度、改善组织、稳定尺寸,避免制造和使用过程产生裂纹; 9、试述T8A的含义:含碳量为8‰的高级优质碳素工具钢。 10、怎样区别无螺纹的黑铁管与直径相似的无缝钢管? 答:无缝钢管是用优质碳钢、普通低合金钢、高强耐热钢、不锈钢等制成。不镀锌的瓦斯管习惯上称为黑铁管,从管子内壁有无焊缝和管子直径来判断。 11、何谓钢的热处理? 答:所谓钢的热处理就是在规定范围内将钢加热到预定的温度,并在这个温度保持一定的时间,然后以预定的速度和方法冷下来的一种生产工艺。 12、试述T7的含义。 答:T7的含义为:含碳量为7‰的碳素工具钢。 13,退火:将钢加热到一定的温度,保温一段时间,随后由炉中缓慢冷却的一种热处理工序。其作用是:消除内应力,提高强度和韧性,降低硬度,改善切削加工性。应用:高碳钢

金属及其化合物知识点总结

金属及其化合物知识点总结 1、《考试大纲》中对金属元素及化合物这块内容可分成二部分来理解。第一部分是钠、镁等典型的金属元素的化合物;第二部分是其他金属(如铁和铝)元素的化合物。每年的化学高考试题中往往都要考查到典型金属。 2、《考试大纲》中有多条类似于“以为例,了解(或理解、掌握)”的内容叙述,如:以过氧化钠为例,了解过氧化物的性质;以Fe(Ⅱ)、Fe(Ⅲ)的相互转化为例,了解变价金属元素的氧化还原性。对这些内容的要注意理解实质,达到“举一反三”的要求。在这些内容往往是高考命题的重点。 3、金属元素及其化合物跟化学实验的综合。近几年的实验试题中比较多地出现了以金属元素及其化合物为落点的实验试题和元素推断题,请大家加以重视。 4、常见金属元素(如Na、Al、Fe、Cu等)⑴了解常见金属的活动顺序。⑵了解常见金属及其重要化合物的主要性质及其应用。⑶了解合金的概念及其重要应用。知识梳理 1、钠及其化合物 2、镁及其化合物 3、铝及其化合物 4、铁、铜及其化合物 一、钠及其化合物

1、钠(1)钠的物理性质:钠是银白色金属,密度小(0、 97g/cm3),熔点低(97℃),硬度小,质软,可用刀切割。钠通常保存在煤油中。是电和热的良导体。(2)钠的化学性质:从原子结构可知钠是活泼的金属单质。①钠与非金属单质反应:常 温:4Na + O2 ==2Na2O,加热:2Na + O2 Na2O2;2Na + Cl22NaCl;2Na + S Na2S等。②钠与水反应:2Na +2H2O ==2NaOH + H2↑;实验现象:钠浮在水面上,熔成小球,在水面上游动,有 哧哧的声音,最后消失,在反应后的溶液中滴加酚酞,溶液变 红。 注意:钠在空气中的变化:银白色的钠变暗(生成了氧化钠)变白(生成氢氧化钠)潮解变成白色固体(生成碳酸钠)。③钠与酸反应:如2Na +2HCl ==2NaCl + H2↑,Na放入稀 盐酸中,是先与酸反应,酸不足再与水反应。因此Na放入到酸溶液中Na是不可能过量的。同时Na与H2的物质的量比始终是 2:1。当然反应要比钠与水的反应剧烈多。④钠与盐的溶液反应:钠不能置换出溶液中的金属,钠是直接与水反应。反应后的碱再 与溶液中的其他物质反应。如钠投入到硫酸铜溶液的反应式:2Na + CuSO4 +2H2O == Cu(OH)2 ↓+ Na2SO4 + H2 ↑。 ⑤钠与氢气的反应:2Na + H2 ==2NaH。NaH + H2O == NaOH + H2 ↑;NaH是强的还原剂。(3)工业制钠:电解熔融的NaCl,2NaCl(熔融)

相关主题
文本预览
相关文档 最新文档