当前位置:文档之家› 键的极性和分子的极性氢键

键的极性和分子的极性氢键

键的极性和分子的极性氢键
键的极性和分子的极性氢键

题型一:键的极性和分子的极性

1.下列说法中不正确的是()

A.共价化合物中不可能含有离子键

B.有共价键的化合物,不一定是共价化合物

C.离子化合物中可能存在共价键

D.原子以极性键结合的分子,肯定是极性分子

2.以极性键结合的多原子分子,分子是否有极性取决于分子的空间构型。下列分子属极性分子的是()

A. H2O

B.CO2

C.BCl3

D. NH3

3.下列各分子中所有原子都满足最外层8电子稳定结构且共用电子对发生偏移的是()

A.BeCl2

B.PCl3

C.PCl5

D.N2

4.分子有极性分子和非极性分子之分。下列对极性分子和非极性分子的认识正确的是()

A.只含非极性键的分子一定是非极性分子

B.含有极性键的分子一定是极性分子

C.非极性分子一定含有非极性键

D.极性分子一定含有极性键

5.下列四种分子中,只含极性键而没有非极性键的是()

A.CH4

B.CH3CH3

C.CH2=CH2

D.CH≡CH

6.据2001年11月17日网易报道,意大利科学家使用普通氧分子和带正电的氧离子作用,制出了新型氧分子O4,它的结构很复杂,可能具有与S4相似的长方形结构,下列有关O4的说法不正确的是()

A.O4与O3、O2都是氧的同素异形体

B.合成O4的反应可看做核聚变反应,即不属于化学反应

C.O4分子内存在极性共价键

D.O4的能量比普通氧分子高,将来可用做火箭燃料的更强有力的氧化剂

7.下列物质中不含非极性共价键的是()

①Na2O2②CCl4③FeS2④NH4F ⑤H—O—O—H ⑥NaOH

A.①②③④B.④⑤⑥C.②④⑥D.②③⑤

8.NH3、H2S等是极性分子,CO2、BF3、CCl4等是极性键构成的非极性分子。根据上述实例可推出AB n型分子是非极性分子的经验规律是()

A.分子中不能含有氢原子

B.在AB n分子中A原子没有孤对电子

C.在AB n分子中A的相对原子质量小于B的相对原子质量()

D.分子中每个共价键的键长应相等

9.把下列液体分别装在酸式滴定管中,并使其以细流流下,当用带有静电的玻璃棒接近液体细流时,细流可能发生偏转的是()

https://www.doczj.com/doc/ba13126752.html,l4

B.C2H5OH

C.CS2

D.CH2Cl2

10.下列分子中,属于含有极性键的非极性分子的一组是()

A.CH4、CCl4、CO2

B.C2H4、C2H2、C6H6

C.Cl2、H2、N2

D.NH3、H2O、SO2

11.我们可把共价键按分为极性键和非极性键,而共价键产生极性的根本原因是,故此有人这样判断键的极性:凡是同种元素原子间形成的共价键属极性键,凡是异种元素原子间形成的共价键属非极性键。另外,对于键的极性与分子的极性的关系可作如下总结:在双原子分子中,如果化学键有极性则分子;如果化学键无极性,通常分子。在多原子分子中,如果所有化学键都无极性,则分子是;如果化学键是极性键,且重合,则分子是非极性分子;否则为极性分子。

12.请指出表中分子的空间构型,判断其中哪些属于极性分子,哪些属于非极性分子,并与同学讨论你的判断方法。

分子空间构型分子有无极性分子空间构型分子有无极性

O2HF

CO2H2O

BF3 NH3

CCl4

13.根据下列要求,各用电子式表示一实例:

(1)只含有极性键并有一对孤对电子的分子

(2)只含有离子键、极性共价键的物质

(3)只含有极性共价键、常温下为液态的非极性分子

14.二氯乙烯的同分异构体有非极性分子和极性分子两种,其中属于极性分子的结构简式

是;属于非极性分子的结构简式是。

题型二:范德华力、氢键及其对物质性质的影响

1.下列各组物质的晶体中,化学键类型相同,熔化时所克服的作用力也完全相同的是()

A.CO2和SiO2

B.NaCl和HCl

C.(NH4)2CO3和CO(NH2)2

D.NaH和KCl

2.你认为下列说法不正确的是()

A.氢键存在于分子之间,不存在于分子之内

B.对于组成和结构相似的分子,其范德华力随着相对分子质量的增大而增大

C.NH3极易溶于水而CH4难溶于水的原因只是NH3是极性分子,CH4是非极性分子

D.冰熔化时只破坏分子间作用力

3.沸腾时只需克服范德华力的液体物质是()

A.水

B.酒精

C.溴

D.水银

4.下列物质中分子间能形成氢键的是()

A.N2

B.HBr

C.NH3

D.H2S

5.关于氢键,下列说法正确的是()

A.每一个水分子内含有两个氢键

B.冰、水和水蒸气中都存在氢键

C.DNA中的碱基互补配对是通过氢键来实现的

D.H2O是一种非常稳定的化合物,这是由于氢键所致

6.下列氢键中最强的是()

A.S—H…O

B.N—H…N

C.F—H…F

D.C—H…N

7.下列气体最难液化的是()

A.H2

B.O2

C.N2

D.Cl2

8.碘的熔点和沸点较低,其原因是()

A.碘的非金属性较弱

B.碘分子中I-I键能较小

C.碘晶体中分子间范德华力较弱

D.碘分子中I-I键长较长

9.不存在氢键的是()

A.纯H2O中的H2O分子之间B.液态HF中的HF分子之间

C.NH3·H2O分子中的NH3与H2O之间 D.可燃冰CH4·n H2O中的CH4与H2O之间

10.SiH4的沸点比CH4高,其主要原因为()

A.SiH4分子间的范德华力比CH4强

B.SiH4是极性分子,CH4是非极性分子

C.SiH4分子内的共价键比CH4强

D.SiH4分子间会产生氢键,CH4则不会

11.下列物质中能够形成分子内氢键的是()

A.NH3

B.HNO3

C.HF

D.CH3CHO

12.对于HCl、HBr、HI,随着相对分子质量的增大而增强的是()

A.共价键的极性

B.氢化物的稳定性

C.范德华力

D.共价键的键能

13.下列物质中,按沸点降低次序排列的一组是()

A.CI4、CBr4、CCl4、CF4

B.O2、S、Se、Te

C.H2O、H2S、H2Se、H2Te

D.F2、Cl2、Br2、I2

14.以下说法哪些是不正确的?

(1)氢键是化学键

(2)甲烷可与水形成氢键

(3)乙醇分子跟水分子之间存在范德华力

⑷碘化氢的沸点比氯化氢的沸点高是由于碘化氢分子之间存在氢键

15.你认为水的哪些物理性质与氢键有关?试把你的结论与同学讨论交流。

16.下图中A、B、C、D四条曲线分别表示ⅣA、ⅤA、ⅥA、ⅦA族元

素的气态氢化物的沸点,其中表示ⅥA族元素气态氢化沸点的是曲线

;表示ⅣA族元素气态氢化物沸点的是曲线;

同一族中第3、4、5周期元素的气态氢化物沸点依次升高,其原因是

A、B、C曲线中第2周期元素的气态氢化物的沸点显著高于第3周期元

素气态氢化物的沸点其原因是_______________,如果把这些氢

化物分子间存在的主要影响沸点的相互作用表示为A-H…A,则A

元素一般具有的特点是。

17.⑴现已知O3分子为V字形结构,据理推断O3应为________(极性或非极性)分子,

O3在水中的溶解度比O2要_______(大或小)得多,其主要原因是________ 。

⑵乙醇和甲醚互为同分异构体,但前者沸点(78.5℃)远比后者(-23℃)高,常温下乙醇为液态,甲醚为气体。原因是。

A:B:

18.现有A、B两有机物,结构简式如右图所示,、

A可通过分子内氢健形成了一个六元环,而B只能通过分子间氢健缔合。

⑴若用“ ”表示硝基、用“...”表示氢键,画出A分子形成分子内氢键时的结构_ __ _。

⑵A、B分别溶于水,的溶解度稍大些。(填A或B)

⑶工业上用水蒸气蒸馏法分离A、B的混合物,则首先被蒸出的成分是___ __。(填A或B)

题型三:溶解性、手性分子和无机含氧酸分子的酸性

1.下列现象不能用“相似相溶”规律解释的是( )

A.氯化氢易溶于水B.氯气易溶于NaOH溶液

C.碘易溶于CCl4 D.碘难溶于水

2.下列物质易溶于苯的是()

A.NH3 B.HF C.I2D.Br2

3.根据“相似相溶”规律,你认为下列物质在水中溶解度较大的是()

A .乙烯

B .二氧化碳 C.二氧化硫 D.氢气

4.下列氯元素含氧酸酸性最强的是()

A.HClOB.HClO2C.HClO3 D.HClO4

5.下列物质中溶解度最小的是()

A.LiF

B.NaF

C.KF

D.CsF

6.瑞典皇家科学院2001年10月10日宣布,2001年诺贝尔化学奖授予“手性碳原子的催化氢化、氧化反应”研究领域作出贡献的美、日三位科学家。下列分子中含有“手性碳原子”的是()A.CBr2F2B.CH3CH2OH

C.CH3CH2CH3D.CH3CH(OH)COOH

7.下列说法中错误的是()

A.1848年巴斯德用手工在光学显微镜下把左型酒石酸盐晶体和右型酒石酸盐晶体分开的实验于2003年被评选为化学史十项最美的实验之首。

B.通过手性合成的方法,可以只得到一种或者主要只得到一种手性分子,不得到或者基本不得到它的手性异构分子。

C.运用R—O—H原则,可以准确无误的判断一切无机含氧酸分子的酸性相对强弱。

D.前述三选项的说法全部错误。

8.已知氯化铝易溶于苯和乙醚,其熔点为190℃,则下列结论错误的是()

A.氯化铝是电解质

B.固体氯化铝是分子晶体

C.可用电解熔融氯化铝的办法制取金属铝

D.氯化铝为非极性分子

9.根据“相似相溶”的规律,下列溶剂可以用来从溴水中萃取溴的是()

(1)酒精(2) CCl4(3)液氨(4)苯(5)直馏汽油

A.(1)(2)(4)(5)

B.(2)(4)(5)

C.(1)(3)(5)

D.(1)(3)(4)

10. PtCl2(NH3)2可以形成两种固体,一种为淡黄色,在水中的溶解度小,另一种为黄绿色,在水中的溶解度较大,请回答下列问题:

⑴PtCl2(NH3)2是平面正方形结构,还是四面体结构

⑵ 请在以下空格内画出这两种固体分子的几何构型图,

淡黄色固体:,黄绿色固体:

⑶ 淡黄色固体物质是由分子组成,黄绿色固体物质是由分子组成(填“极性分子”或“非极性分子”)

⑷ 黄绿色固体在水中溶解度比淡黄色固体大,原因是

答案

题型一:键的极性和分子的极性

1、D、

2、AD、

3、B、

4、AD、

5、A、

6、BC、

7、C、

8、BD、

9、BD、10、AB、

11、电子对在两原子核间是否偏移、电子对发生生偏移、有极性、无极性、正负电荷中心

12、

分子空间构型分子有无极性分子空间构型分子有无极性

O2直线型无HF直线型有

CO2直线型无H2O V型有

BF3 三角形无NH3三角锥有

CCl4 正四面体无

13、

14、CHCl=CHCl、CH2=CCl2

15、

16、(1)氨气、、极性分子、PH3

(2)氯化氢、、极性分子、稳定性:HClHBr HCl>H2S

(3)氯化铵、、极性键、配位键、离子键

(4)NH3+HCl=NH4Cl NH4++OH-=NH3+H20 Cl-+Ag+=AgCl

题型二:范德华力、氢键及其对物质性质的影响

1、D、

2、AC、

3、C、

4、C、

5、C、

6、C、

7、A、

8、C、

9、D、10、A、11、B、12、C

13、A、

14、Ⅹ、Ⅹ、正确、Ⅹ

15、溶沸点、密度

16、A、D、M越大范德华力越大,沸点越高。H2O、HF、NH3分子存在氢键、电负性大

17、极性、大、相似相溶、乙醇分子间存在氢键。

18、B、A

题型三溶解性、手性分子和无机含氧酸分子的酸性

1、B、

2、CD、

3、C、

4、D、

5、A、

6、D、

7、CD、

8、C、

9、B、10、C、

11、⑴平面正方形结构

⑶非极性极性

⑷根据相似相溶原理,因为淡黄色固体为非极性分子,较难溶于极性溶剂水;而黄绿色固体为极性分

子,易溶于极性溶剂水。

12.(1)具有完全相同的组成和原子排列。结构互为镜像,在三维空间里不能重叠。

(2)手性催化剂催化。

(3)含有的碳原子是否连有4个不同的原子或原子团。

13.(1)HMnO4>H2CrO4>H3AsO4

HO O OH

(2)H3PO3 P H3AsO3 As

HO H HO OH

(3)按此规律判断碳酸应属于中强酸,与通常认为的碳酸的强度(弱酸)不一致。其原因可能是①CO2常温下在水中溶解度很小,其浓度小.②碳酸的结构HO—C—OH不稳定,共同削弱了碳酸的酸性.

化学键 非极性分子和极性分子

化学键 非极性分子和极性分子(上) 1. 复习重点 1.化学键、离子键、共价键的概念和形成过程及特征; 2.非极性共价键、极性共价键,非极性分子、极性分子的定义及相互关系。 B . 难点聚焦 (1) 化学键: 1.概念:化学键:相邻的原子之间强烈的相互作用. 离子键:存在于离子化合物中 2.分类: 共价键:存在于共价化合物中 金属键:存在于金属中 (2) 离子键: 一、 离子化合物:由阴、阳离子相互作用构成的化合物。如 NaCl/Na 2O/Na 2O 2/NaOH/Na 2SO 4等。 二、 离子键:使阴、阳离子结合成化合物的静电作用。 说明: (1)静电作用既包含同种离子间的相互排斥也包含异种离子间的相互吸引。是阴、阳离子间的静电吸引力与电子之间、原子核之间斥力处于平衡时的总效应。 (2)成键的粒子:阴、阳离子 (3)成键的性质:静电作用 (4)成键条件: ①活泼金属(IA 、IIA 族)与活泼非金属(VIA 、VIIA 族)之间相互化合―――― ne n me m M M X X ---+ +-???→???→ ????→吸引、排斥达到平衡 离子键(有电子转移) ②阴、阳离子间的相互结合: +-Na +Cl =NaCl (无电子转移) (5)成键原因: ①原子相互作用,得失电子形成稳定的阴、阳离子; ②离子间吸引与排斥处于平衡状态; ③体系的总能量降低。 (6)存在:离子化合物中一定存在离子键,常见的离子化合物有强碱、绝大多数盐(PbCl 2/Pb(CH 3COO)2等例外),强的金属的氧化物,如:Na 2O/Na 2O 2/K 2O/CaO/MgO 等。 三.电子式: 1.概念:由于在化学反应中,一般是原子的最外层电子发生变化,所以,为了简便起见,我们可以在元素符号周围用小黑点(或×)来表示原子的最外层电子。这种式子叫做电子式 例如: 2.离子化合物的电子式表示方法: 在离子化合物的形成过程中,活泼的金属离子失去电子变成金属阳离子,活泼的非金属离子得到电子变成非金属阴离子,然后阴阳离子通过静电作用结合成离子键,形成离子化合物。所以,在离子化合物的电子式中由阳离子和带中括号的阴离子组成且简单的阳离子不带最外

水分子吸收峰

水分子对红外线吸收是由于其结构中的羟基(OH)的伸缩振动和变角振动而产生的。其吸收波长随水分相互间或水分子和其他分子间所形成的氢键结合程度而变化,纸张中水分在红外线波段有四条吸收带,分别在1.18微米,1.4微米,1.94微米和2.92微米处。 日前,世界上使用的红外线水分仪都选用1.94微米作为测虽波长。因为在这个波段中可用普通光学玻璃作为仪表中的光学元件,检测用的硫化铅光敏元件的探测峰值较接近这个波段范围,探测灵敏度较高,同时水分子对1.94微米波段的吸收峰较大,而被测纸张中的纤维对1.8—2.0微米波段无吸收峰,减小了纤维对测量的影响。 水的光谱特征主要是由水本身的物质组成决定,同时又受到各种水状态的影响。地表较纯洁的自然水体对0.4~2.5μm 波段的电磁波吸收明显高于绝大多数其它地物。在光谱的可见光波段内,水体中的能量-物质相互作用比较复杂,光谱反射特性概括起来有一下特点: (1)光谱反射特性可能包括来自三方面的贡献:水的表面反射、水体底部物质的反射和水中悬浮物质的反射。 (2)光谱吸收和透射特性不仅与水体本身的性质有关,而且还明显地受到水中各种类型和大小的物质——有机物和无机物的影响。 (3)在光谱的近红外和中红外波段,水几乎吸收了其全部的能量,即纯净的自然水体在近红外波段更近似于一个“黑体”,因此,在1.1~2.5μm 波段,较纯净的自然水体的反射率很低,几乎趋近于零。 土壤的光谱反射特征 土壤反射率显得很少有“峰和谷”的变化。这是因为影响土壤反射率的因素较少作用在固定的波段范围。影响土壤反射率的因素有:含水量、土壤结构(砂、壤、粘土的比例)、表面粗糙度、铁氧化物的存在以及有机物的含量。这些因素是复杂的、可变的、彼此相关的。例如,土壤的含水量会降低反射率。对于植被在大约1.4um、1.9um和2.7um处水的吸收波段上,这种影响最为明显(粘土在1.4um和2.2um处也有氢氧基吸收带)。 土壤含水量与土壤结构密切相关:粗粒砂质土壤常常排水性好,因而含水量低,反射率相对高;反之,排水性不好的细粒结构土壤一般具有较低的反射率。然而,在缺水情况下,土壤自身会出现相反的趋势:粗粒结构土壤比细粒土壤看上去更深。所以,土壤的反射属性仅在特殊条件下才出现一致性。另外两个降低土壤反射率的因素是表面粗糙度和有机物的含量。在土壤中含有铁的氧化物也会明显降低反射率,至少在可见光波段如此。 水的光谱反射特征 考虑水的光谱反射率时,也许最明显的特征是在近红外及更长波波段的能量吸收问题。简单地说,不管我们说的是水体本身(如湖泊、河流)还是植被,土壤中含有的水都会吸收这一波段的能量。 当波长小于大约0.6um时,清澈的水只能吸收相对很少的能量,这些波长内的水具有高透射率的特点,其最大值在光谱的蓝绿区。但随着水的浑浊程度的变化(因水中含有有机物和无机物),会引起透射率继而反射率的急剧变化。例如,因土壤侵蚀而含有大量悬浮沉积物的水,其可见光的反射率一般比相同地区内的“洁净水”高得多。

键的极性与分子的极性

2.3.1 键的极性和分子的极性 【学习目标】1、区分键的极性和分子的极性;2、掌握判断键的极性和分子的极性的方法; 3、了解分子极性的应用。 【课前案——温故而知新】 一、电负性 1、含义:用来描述不同元素的原子对键合电子的大小。 2、递变规律:在元素周期表中,同主族元素,由上到下,原子的电负性依次; 同周期元素,由左到右,原子的电负性依次。 3、判断化学键的类型:一般来说,当键合原子的电负性差值大于时,形成离子键; 当键合原子的电负性差值小于时,形成共价键。 二、键的极性 按照共价键中,将共价键分为极性共价键和非极性共价键。 1、非极性共价键:由(“相同”或“不同”)种原子形成的共价键,电子对(“有”或“无”)偏移。 2、极性共价键:由(“相同”或“不同”)种原子形成的共价键,电子对(“有”或“无”)偏移,极性键中的两个键合原子,电负性较大的原子呈(“正”或“负”,下同)电性,电负性较小的 呈电性。 【课前检测】1、写出下列物质的电子式:① CCl4;②NH3; ③H2O ;④CO2;⑤Na2O2;⑥Mg(OH)2。 2、有下列物质:①O2;②CO2;③NH3;④Na2O;⑤Na2O2;⑥NaOH;⑦CaBr2;⑧H2O2;⑨NH4Cl;⑩HBr,回答下列问题: (1)只含有极性键的是;(2)只含有非极性键的是;(3)含有极性键和非极性键的是;(4)只含有离子键的是;(5)含有非极性键的离子化合物是。 【课中案】 一、分子的极性 对于一个分子来说,可以设想它的全部正电荷集中于一点,叫做正电荷中心,它的全部负电荷集 中于一点,叫做负电荷中心,但分子是电中性的。 1、极性分子:分子中正电中心和负电中心(“不重合”或“重合”),使分子的某一部分呈正电 性(δ+),另一部分呈负电性(δ—)。 2、非极性分子:分子中正电中心和负电中心(“不重合”或“重合”)。 【注意】极性分子、非极性分子都显电中性,都不带电荷。 二、分子极性的判断方法 1、物理模型法 AB n分子,A-B键看作AB原子间的相互作用力,根据中心原子A所受合 力是否为零来判断, F合=0,为非极性分子(极性抵消); F合≠0,为极性分子(极性不抵消)。 【理解与巩固】1、完成下列表格:

考点3:化学键和分子极性

第五章物质结构元素周期律 考点3:化学键和分子极性 一、教学目的: 1.知识目的: ?.掌握化学键的概念和类型。 ?.掌握键的极性和分子的极性。 ?.掌握离子化合物和共价化合物电子式的书写。 2.能力目的: ?.理解有关化学键、离子键、共价键、配位键、金属键等概念。 ?.掌握用电子式表示化学键的形成过程的方法,并能正确写出常见物质和微粒的电子式,结构式。 ?.掌握影响各类化学键强弱的因素,以及化学键的强弱对物质性质的影响。 3.考纲透视: ?.理解化学键及其包括的三种类型;离子键、共价键、金属键。 ?.理解极性键、非极性键,极性分子、非极性分子。 ?.了解分子间作用力、氢键。 ?.掌握电子式的书写及判断。 二、教学重点:离子键、共价键、电子式的书写。 三、教学难点:分子极性的判断。 四、教学过程: 1.学案导学 ?化学键 化学键:__________________________ ____________。 离子键:___________________________________。存在于____________________中。 离子键的形成条件:__________________________________________。 影响离子键强弱的因素:离子半径越____,离子带电荷越_____,离子键越______,熔沸点越____。 共价键:_________________________________。存在于_______________________中。 共价键的形成条件:__________________________________________。 影响共价键强弱的因素:原子半径越____,共用电子对数目越_____,共价键越______。 极性键:,非极性键:。 配位键:。 金属键:。 化学反应的实质:。 ?列出常见物质中符合下列要求的物质的化学式或名称 ①只有非极性键的物质:____________________________________________ ②只有极性键的物质:________________________________________________ ③既有极性键又有非极性键的物质:_______________________________________ ④只有离子键的物质:__________________________________________________

水分子簇中氢键作用

水分子簇中氢键作用 张建平 赵 林 王林双 (天津大学化工学院天津 300072) 摘要概述了近年来为揭示水分子簇存在形态的成因所做的理论和实验研究,指出除范德华力外,氢键和似共价键是水分子间的主要作用力。总结了水分子簇中氢键的四种作用方式,包括协同效 应、氢键的转动、氢键的振动以及氢键变换;分别讨论了这四种作用方式以及似共价键对水分子簇存 在状态的影响,最后对该领域的研究前景作了展望。 关键词水分子簇氢键似共价键 Hydrogen Bonds in Water Clusters Zhang Jianping, Zhao Lin, Wang Linshuang (School of Chemical Engineering,Tianjin University, Tianjin 300072) Abstract Theoretical and experimental studies that reveal the formation of water clusters have been summarized. Besides van der Waals force, hydrogen bonds and quasi-covalent bonds between water molecules are major forces. Four kinds of kinetic motions of hydrogen bonds in water clusters are outlined, including cooperative effect, rotation, vibration and inter conversion, and the effects on the structure of water clusters caused by quasi-covalent bonds and H-bond kinetic motions are explained in detail. Finally, the perspective in this research field is also discussed. Key words Water clusters, Hydrogen bond, Quasi-covalent bond 水是大自然赋予我们的宝贵资源,也是人类赖以生存的必要条件,关于水分子簇结构与功能的研究已成为当今科研前沿的热点之一,其深层研究可望为揭示物理化学、生命科学等领域的本质问题提供有力工具[1~3]。 近年来,随着光谱科学和微观测试技术的发展以及分子轨道理论的介入,水分子簇的研究进入了量子时期,从而为揭示水分子簇存在形态的成因提供了实验和理论依据。基于蒙特卡罗模拟的极化-解离多体经验势能函数(PD-PEF)[4]在计算(H2O)n(n=2~8)的水分子簇的结构特征和分子尺度过程中,将氢原子视为单一的裸露质子,由于其充分考虑到分子间氢键及分子内部作用力的影响,适于计算水分子簇的结构特征参数。在六元水分子簇稳定性的研究中[5,6],应用从头计算法的独立分子模型,通过平动矢量和欧拉角将簇中每个分子的位置和取向逐一标定,总结出六水分子簇的五种结构形式,并通过计算氢键强度及自由能的大小,得出环状六水分子簇具有最稳定结构的结论。进入上世纪90年代以来,美国加州大学Berkeley实验室设计的远红外振转隧道光谱仪能够清晰观测到分子间的振转谱线,为深层次研究氢键作用下水分子簇的微观结构开辟了一条崭新的途径[7]。 张建平 男,28岁,博士生,现从事废弃物处理和水的功能化研究。E-mail: jianpingzhang@https://www.doczj.com/doc/ba13126752.html, 国家自然科学基金资助项目(20376054) 2005-03-04收稿,2005-08-30接受

15_化学键_非极性分子和极性分子(上)

高中化学58个考点精讲 15、化学键非极性分子和极性分子(上) 1.复习重点 1.化学键、离子键、共价键的概念和形成过程及特征; 2.非极性共价键、极性共价键,非极性分子、极性分子的定义及相互关系。 2.难点聚焦 一.化学键: 1.概念:化学键:相邻的原子之间强烈的相互作用. 离子键:存在于离子化合物中 2.分类:共价键:存在于共价化合物中 金属键:存在于金属中 二.离子键: 1.离子化合物:由阴、阳离子相互作用构成的化合物。如NaCl/Na2O/Na2O2/NaOH/Na2SO4等。 2.离子键:使阴、阳离子结合成化合物的静电作用。 说明: (1)静电作用既包含同种离子间的相互排斥也包含异种离子间的相互吸引。是阴、阳离子间的静电吸引力与电子之间、原子核之间斥力处于平衡时的总效应。 (2)成键的粒子:阴、阳离子 (3)成键的性质:静电作用 (4)成键条件: ①活泼金属(IA、IIA族)与活泼非金属(VIA、VIIA族)之间相互化合―――― ne n me m M M X X - - -+ +- ???→ ???→ ????→ 吸引、排斥 达到平衡 离子键(有电子转移) ②阴、阳离子间的相互结合:+- Na+Cl=NaCl(无电子转移) (5)成键原因: ①原子相互作用,得失电子形成稳定的阴、阳离子; ②离子间吸引与排斥处于平衡状态; ③体系的总能量降低。 (6)存在:离子化合物中一定存在离子键,常见的离子化合物有强碱、绝大多数盐(PbCl2/Pb(CH3COO)2等例外),强的金属的氧化物,如:Na2O/Na2O2/K2O/CaO/MgO等。 三.电子式: 1.概念:由于在化学反应中,一般是原子的最外层电子发生变化,所以,为了简便起见,我们可以在元素符号周围用小黑点(或×)来表示原子的最外层电子。这种式子叫做电子式 例如: 2.离子化合物的电子式表示方法: 在离子化合物的形成过程中,活泼的金属离子失去电子变成金属阳离子,活泼的非金属离子得到电子变成非金属阴离子,然后阴阳离子通过静电作用结合成离子键,形成离子化合物。所以,在离子化合物的电子式中由阳离子和带中括号的阴离子组成且简单的阳离子不带最外层电子,而阴离子要标明最外层电子多少。如:

化学键的三种基本类型

化学键主要有三种基本类型,即离子键、共价键和金属键。 一、离子键 离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO4 2-,NO3-等。 离子键的作用力强,无饱和性,无方向性。离子键形成的矿物总是以离子晶体的形式存在。 二、共价键 — 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。共价键的作用力很强,有饱和性与方向性。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: (1)非极性共价键形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C—C 键。 (2)极性共价键形成共价键的电子云偏于对电子引力较大的一个原子,如Pb—S 键,电子云偏于S一侧,可表示为Pb→S。 (3)配价键共享的电子对只有一个原子单独提供。如Zn—S键,共享的电子对由锌提供,Z:+ ¨..S:=Z n→S 共价键可以形成两类晶体,即原子晶体共价键与分子晶体。原子晶体的晶格结点上排列着原子。原子之间有共价键联系着。在分子晶体的晶格结点上排列着分子(极性分子或非极性分子),在分子之间有分子间力作用着,在某些晶体中还存在着氢键。关于分子键精辟氢键后面要讲到。 · 三、金属键 由于金属晶体中存在着自由电子,整个金属晶体的原子(或离子)与自由电子形成化学键。这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键。对于这种键还有一种形象化的说法:“好象把金属原子沉浸在自由电子的海洋中”。金属键没有方向性与饱和性。 和离子晶体、原子晶体一样,金属晶体中没独立存在的原子或分子;金属单质的化学式(也叫分子式)通常用化学符号来表示。

键的极性与分子极性

键的极性与分子极性 一、非极性键、极性键、非极性分子、极性分子的比较 非极性键极性键非极性分子极性分子 定义共用电子对不发 生偏移的共价键 共用电子对发生 偏移的共价键 正、负电荷重心重 合,正、负电荷分 布均匀的分子 正、负电荷重心不重 合,正、负电荷分布 不均匀的分子 研究对象属于分子组成部 分的共价键 属于分子组成部 分的共价键 分子分子 主要特征无电性无极性有电性有极性无电性无极性有电性有极性 相互关系极性键、非极性键均属于化学键中的 共价键 极性分子、非极性分子都是电中性分子。 键无极性分子也无极性,键有极性分子不 一定有极性,分子有极性必含极性键。 二、键的极性与分子极性的关系 化学键的极性是分子极性产生的原因之一。当分子中所有化学键都是非极性键时,分子为非极性分子。当分子内的化学键为由于分子中电荷的空间分布不对称,即各键的极性无法抵消时为极性分子;由于分子中电荷的空间分布对称,使各个键的极性互相抵消时,形成非极性分子。所以,原子间的极性键形成的分子如NH3,分子中的电荷空间分布不对称,键的极性无法抵消,是极性分子。极性分子中一定存在极性键。但有的极性分子中可以存在非极性键,如H2O2。由非极性键形成的双原子分子,一定是非极性分子。如C12、O2等。而CH4、CO2分子中虽然存在极性键,但由于分子中电荷空间分布对称,正负电荷重心重合,键的极性相互抵消,亦属于非极性分子。正负电荷重心是否重合,键的极性能否相互抵消,则取决于分子的空间构型。所以AB n型多原子分子的极性需视分子的空间构型而定,键的极性与 构型原子数举例结构式对称性键的极性 非极性分子 直线型双原子H2、O2、N2、X2 H-H、Cl-Cl 对称非极性直线型三原子CO2、CS2 O=C=O 对称极性 平面正三 角型 四原子BF3、BCl3 对称极性 正四面体 型 五原子CH4、CCl4 对称极性 极性分子 直线型双原子HX H-Cl 不对称极性直线型三原子HCN H-C≡N 不对称极性 折线型三原子H2O、H2S 不对称极性三角锥型四原子NH3、PCl3 不对称极性四面体型五原子CH3Cl、CH2Cl2 不对称极性

化学键非极性分子和极性分子上考点

考点15化学键 非极性分子和极性分子(上) 1. 复习重点 1.化学键、离子键、共价键的概念和形成过程及特征; 2.非极性共价键、极性共价键,非极性分子、极性分子的定义及相互关系。 2. 难点聚焦 一.化学键: 1.概念:化学键:相邻的原子之间强烈的相互作用. 离子键:存在于离子化合物中 2.分类: 共价键:存在于共价化合物中 金属键:存在于金属中 二.离子键: 1. 离子化合物:由阴、阳离子相互作用构成的化合物。如 NaCl/Na 2O/Na 2O 2/NaOH/Na 2SO 4等。 2. 离子键:使阴、阳离子结合成化合物的静电作用。 说明: (1)静电作用既包含同种离子间的相互排斥也包含异种离子间的相互吸引。是阴、阳离子间的静电吸引力与电子之间、原子核之间斥力处于平衡时的总效应。 (2)成键的粒子:阴、阳离子 (3)成键的性质:静电作用 (4)成键条件: ①活泼金属(IA 、IIA 族)与活泼非金属(VIA 、VIIA 族)之间相互化合―――― ne n me m M M X X ---+ +-???→???→ ????→吸引、排斥达到平衡 离子键(有电子转移) ②阴、阳离子间的相互结合: +-Na +Cl =NaCl (无电子转移) (5)成键原因: ①原子相互作用,得失电子形成稳定的阴、阳离子; ②离子间吸引与排斥处于平衡状态; ③体系的总能量降低。 (6)存在:离子化合物中一定存在离子键,常见的离子化合物有强碱、绝大多数盐(PbCl 2/Pb(CH 3COO)2等例外),强的金属的氧化物,如:Na 2O/Na 2O 2/K 2O/CaO/MgO 等。 三.电子式: 1.概念:由于在化学反应中,一般是原子的最外层电子发生变化,所以,为了简便起见,我们可以在元素符号周围用小黑点(或×)来表示原子的最外层电子。这种式子叫做电子式 例如: 2.离子化合物的电子式表示方法:

水结成冰时密度减小——用氢键理论来解释

水结成冰时密度减小----------用氢键理论来解释在一般情况下,当物体的温度升高时,物体的体积膨胀、密度减小,也就是通常所讲的“热胀冷缩”现象。然而水在由0℃温度升高时,出现了一种特殊的现象。人们通过实验得到了P-t曲线,即水的密度随温度变化的曲线。由曲线可见,在温度由0℃上升到4℃的过程中,水的密度逐渐加大;温度由4℃继续上升的合过程中,水的密度逐渐减小;水在4℃时的密度最大。水在0℃至14℃的范围内,呈现出“冷胀热缩”的现象,称为反常膨胀。水的反常膨胀现象可以用氢键、缔合水分子理论予以解释。 物质的密度由物质内分子的平均间距决定。对于水来说,由于水中存在大量单个水分子,也存在多个水分子组合在一起的缔合水分子,而水分子缔合后形成的缔合水分子的分子平均间距变大,所以水的密度由水中缔合水分子的数量、缔合的单个水分子个数决定。具体地说,水的密度由水分子的缔合作用、水分子的热运动两个因素决定。当温度升高时,水分子的热运动加快、缔合作用减弱;当温度降低时,水分子的热运动减慢、缔合作用加强。综合考虑两个因素的影响,便可得知水的密度变化规律。 在水中,常温下有大约50%的单个水分子组合为缔合水分子,其中双分子缔合水分子最稳定。多个水分子组合时,除了呈六角形外(如雪花、窗花),还可能形成立体形点阵结构(属六方晶系)。每一个水分子都通过氢键,与周围四个水分子组合在一起。图中只画出了中央一个水分子同周围水分子的组合情况。边缘的四个水分子也按

照同样的规律再与其他的水分子组合,形成一个多分子的缔合水分子。由图可知,缔合水分子中,每一个氧原子周围都有——4个氢原子,其中两个氢原子较近一些,与氧原子之间是共价键,组成水分子;另外两个氢原子属于其他水分子,靠氢键与这个水分子组合在一起。可以看出,这种多个分子组合成的缔合水分子中的水分于排列得比较松散,分子的间距比较大。由于氢键具有一定的方向性,因此在单个水分子组合为缔合水分子后,水的结构发生了变化。一是缔合水分子中的各单个分子排列有序,二是各分子间的距离变大。 在液态水变成固态水时,即水凝固成冰、雪、霜时,呈现出缔合水分子的形状。此时,水分子的排列比较“松散”,雪、冰的密度比较小。 将冰熔化成水,缔合水分子中的一些氢键断裂,冰的晶体消失。0℃的水与0℃的冰相比,缔合水分子中的单个水分子数目减少,分子的间距变小、空隙减少,所以0℃的水比0℃的冰密度大。用伦琴射线照射0℃的水,发现只有15%的氢键断裂,水中仍然存在有约85%的微小冰晶体(即大的缔合水分子)。若继续加热0℃的水,随着水温度的升高,大的缔合水分子逐渐瓦解,变为三分子缔合水分子、双分子缔合水分子或单个水分子。这些小的缔合水分子或单个水分子,受氢链的影响较小,可以任意排列和运动,不必形成双分子、三分子、多分子缔合和立体形点阵结构(属六方晶系)那样的“缕空”结构,而且单个水分子还可以“嵌入”大的缔合水分子中间。在水温升高的过程中,一方面,缔合数小的缔合水分子、单个水分子在水中

高中化学《键的极性和分子的极性》优质课教学设计、教案

键的极性和分子的极性教学设计附学案

子极性的判 。概括归纳: 极性分子 非极性分子 学生思考。 宏观现象 微观本质 抽象概括 三个层次分析分子 的极性。 环节二问题4、如何判断是否是极性分子? 方法1、据概念判断: 找出下列物质的正电荷中心和负电荷中 寻找正电荷和负电荷中心 分析分子是否对称。 总结归纳。 。 。培养学生分析能力 学会透过现象看本 质。 学会总结归纳和建 : 心。 分 断 小结: 方法2、根据分子空间构型 分析下列物质结构是否对称。 小结: ABn 型分子: 1.当分子的空间构型是时,分子 的正负电荷中心,故为非极性分子。 2.当分子的空间构型不是时,分 子的正负电荷中心,一般为极性分子

方法的核 空间对称结构有 。 方法 3、向量法(力的合成) 总结归纳三种不同的判断 心。 立模型。 小结: 在 ABn 分子中,A-B 键的极性 可以看作 A 、B 原子间的相互作用力,根 据中心原子 A 所受合力是否为零来判断: ,极性抵消,为非极性分子。 ,极性不抵消,为极性分子。 环 节三 表面活性剂和细胞膜 一切知识都应该 为现实服务,否则就会失去它存在的必要性。 听讲。 : 应 用

环 i 、NH 3 j 、BF 3 k 、H 2O 2 内容 归理 问题 1、共价键的极性是如何产生的? 问题 2、极性键构成的就是极性分子吗? 节 【实验】用带电的塑料尺吸引水流和四氯化碳流 : 现象: 键 结论: 的 问题 3、分子的极性与哪些因素有关? 概括归纳: 极性分子 极 性 非极性分子 的关系 问题 4、如何判断是否是极性分子? 方法 1、据概念判断: 节 找出下列物质的正电荷中心和负电荷中心。 : 判断 小结: 性 方法 2、根据分子空间构型 宏观现象 微观本质 抽象概括 分子的极性与 那些因素有关? 概括归理: 正负电荷中心 在什么条件下重合? 二 一 环 极 性 与 分 子 的 分 子 的 极

(完整版)化学键知识点

离子键 一 离子键与离子化合物 1.氯化钠的形成过程: 2.离子键 (1)概念:带相反电荷离子之间的相互作用称为离子键。 (2)实质: (3)成键微粒:阴、阳离子。 (4)离子键的形成条件:离子键是阴、阳离子间的相互作用,如果是原子成离子键时,一方要容易失去电子,另一方要容易得到电子。 ①活泼金属与活泼的非金属化合时,一般都能形成离子键。如第IA 、ⅡA 族的金属元素(如Li 、Na 、K 、Mg 、Ca 等)与第ⅥA 、ⅦA 族的非金属元素(如O 、S 、F 、Cl 、Br 、I 等)化合时,一般都能形成离子键。 ②金属阳离子与某些带负电荷的原子团之间(如Na +与OH -、SO 4-2等)形成离子键。 ③铵根离子与酸根离子(或酸式根离子)之间形成离子键,如NH 4NO 3、NH 4HSO 4。 【注意】①形成离子键的主要原因是原子间发生了电子的得失。 ②离子键是阴、阳离子间吸引力和排斥力达到平衡的结果,所以阴、阳离子不会无限的靠近,也不会间距很远。 3.离子化合物 (1)概念:由离子键 构成的化合物叫做离子化合物。 (2)离子化合物主要包括强碱[NaOH 、KOH 、B a (O H )2等]、金属氧化物(K 2O 、Na 2O 、 MgO 等)和绝大数盐。 【注意】离子化合物中一定含有离子键,含有离子键的化合物一定是离子化合物。 二 电子式

1.电子式的概念 在元素符号周围,用“·”或“×”来表示原子的最外层电子的式子叫电子式。 (1)原子的电子式:元素周围标明元素原子的最外层电子,每个方向不能超过2个电子。当最外层电子数小于或等于4时以单电子分步,多于4时多出部分以电子对分布。例如:(2)简单阳离子的电子式:简单阳离子是由金属原子失电子形成的,原子的最外层已无电子,故用阳离子的符号表示,如: Na+、Li+、Mg+2、Al+3等。 (3)简单阴离子的电子式:不但要画出最外层电子数,而且还应用括号“[ ]”括起来,并在右上角标出“-n”电荷字样。例如:氧离子、氟离子。 (4)多原子离子的电子式:不仅要画出各原子最外层电子数,而且还应用括号“[ ]” 括起来,并在右上角标出“-n”或“+n电荷字样。例如:铵根离子氢氧根离子。 (5)离子化合物的电子式:每个离子都要单独写,而且要符合阴阳离子相邻关系,如MgCl 2要写成,不能写成,也不能写成。2.用电子式表示离子化合物的形成过程 例如:NaCl的形成过程:; Na 2 O的形成过程: CaBr 2 的形成过程: 【注意】用电子式表示离子化合物的形成过程是要注意: ①连接符号必须用“→”而不用“=”。 ②左边相同的原子的电子式可以合并,但右边构成离子化合物的每个离子都要单独写,不能合并。 第二课时共价键 一共价键 F

新高中化学 2.3.1键的极性和分子的极性课后作业 新人教版选修3

第三节分子的性质第1课时键的极性和分子的极性[目标要求] 1.掌握键的极性和分子极性的实质及其相互关系。2.会判断分子的极性,并知道分子极性对物质性质的影响。 一、键的极性 1.写出下列分子的结构式 (1)H2O ____________ (2)NH3 ________________ (3)CO2 ____________ (4)CCl4________________ (5)HCN ______________ (6)CH3Cl ______________ 2.共价键有两种:________共价键和____________共价键。 3.极性共价键是指______________________共价键,电子对会____________,电负性较大的原子呈________电性,电负性较小的原子呈________电性,简称极性键。 4.非极性共价键是指由__________________共价键,电子对______________,又简称非极性键。 二、分子的极性 1.极性分子中______________________________,使分子的某一个部分呈________,另一部分呈________。 2.非极性分子是指________________________________________。 3.分子的极性是分子中化学键的________________。当分子中各个键的极性的向量和为________时,该分子是非极性分子,否则是极性分子。 4.只含非极性共价键的分子________是非极性分子。只含极性键的分子________是极性分子,________是非极性分子。如H2O是________分子,而CH4是________分子。 5.极性分子中________含有非极性键,如H2O2;非极性分子中________含有极性键,如C2H4。 1.下列说法中不正确的是( ) A.共价化合物中不可能含有离子键 B.有共价键的化合物,不一定是共价化合物 C.离子化合物中可能存在共价键 D.以极性键结合的分子,肯定是极性分子 2.下列叙述中正确的是( ) A.以非极性键结合起来的双原子分子一定是非极性分子 B.以极性键结合起来的分子一定是极性分子 C.非极性分子只能是双原子单质分子 D.非极性分子中,一定含有非极性共价键 3.根据科学人员探测,在海洋深处的沉积物中含有可燃冰,主要成分是甲烷水合物。有关其组成的两种分子的下列说法正确的是( ) A.它们都是极性键构成的极性分子 B.它们都只有π键 C.它们的成键电子的原子轨道都是sp3-s D.它们的立体结构都相同 4.下列叙述不正确的是( ) A.卤化氢分子中,卤素的非金属性越强,共价键的极性越强,稳定性也越强 B.以极性键结合的分子,不一定是极性分子 C.判断A2B或AB2型分子是极性分子的依据是:具有极性键且分子构型不对称,键角小于180°,为非直线形结构 D.非极性分子中,各原子间都应以非极性键结合 5.A、B、C、D、E是相邻三个周期中的五种元素,它们的原子序数依次增大,B、C、D

分子间作用力和氢键

分子间作用力和氢键 一、分子间作用力 NH3、Cl2、CO2等气体,在降低温度、增大压强时,能凝结成液态或固态。在这个过程中,气体分子间的距离不断缩短,最后由不规则运动的混乱状态转变为有规则排列的固态。这说明物质的分子之间必定存在着某种作用力,能把它们的分子聚集在一起。这种作用力叫做分子间作用力,又称范德华力。 我们知道,化学键是原子结合成分子时,相邻原子间强烈的相互作用,而分子间作用力与化学键比起来要弱得多。分子间作用力随着分子极性和相对分子质量的增大而增大。 分子间作用力的大小,对物质的熔点、沸点、溶解度等有影响。对于组成和结构相似的物质来说,相对分子质量越大,分子间作用力越大,物质的熔点、沸点也越高。例如,卤素单质,随着相对分子质量的增大,分子间作用力增大,它们的熔点、沸点也相应升高(见图1-8),四卤化碳也有类似的情形(见图1-9)。

二、氢键 前面已介绍过某些结构相似的物质随着相对分子质量的增大分子间作用力增大,以及它们的熔点和沸点也随着升高的事实。但是有些氢化物的熔点和沸点的递变与以上事实不完全符合。让我们来看一下图 1-10。从图上可以看出,NH3、H2O和HF的沸点反常。例如,HF的沸点按沸点曲线的下降趋势应该在-90℃以下,而实际上是20℃;H2O的沸点按沸点曲线下降趋势应该在-70℃以下,而实际上是100℃。 为什么HF、H2O和NH3的沸点会反常呢?这是因为它们的分子之间存在着一种比分子间作用力稍强的相互作用,使得它们只能在较高的温度下才能汽化。经科学研究证明,上述物质的分子之间存在着的这种相互作用,叫做氢键。 氢键是怎样形成的呢?现在以HF为例来说明。在HF分子中,由于F 原子吸引电子的能力很强,H——F键的极性很强,共用电子对强烈地偏

极性键与非极性键的区别

极性键 由于两个原子吸引电子的能力不同,共用电子对必然偏向吸引电子能力较强的原子一方,因而吸引电子能力较弱的原子一方相对的显正电性。这样的共价键叫做极性共价键,简称极性键。 判别 同种原子之间的是非极性键 极性键存在于不同种元素间 但是存在极性键的物质不一定是极性分子. 区分极性分子和非极性分子的方法: 非极性分子的判据:中心原子化合价法和受力分析法 1、中心原子化合价法: 组成为ABn型化合物,若中心原子A的化合价等于族的序数,则该化合物为非极性分子.如:CH4,CCl4,SO3,PCl5 2、受力分析法: 若已知键角(或空间结构),可进行受力分析,合力为0者为非极性分子. 如:CO2,C2H4,BF3 3、同种原子组成的双原子分子都是非极性分子。 不是非极性分子的就是极性分子了 常见极性分子: HX,CO,NO,H2O,H2S,NO2,SO2,SCl2,NH3,H2O2,CH3Cl,CH2Cl2,CHCl3,CH3 CH2OH 非极性键:由同种元素的原子间形成的共价键,叫做非极性键。同种原子吸引共用电子对的能力相等,成键电子云对称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。非极性键可存在于单质分子中(如H2中H—H键、O2中O=O键、N2中N≡N键),也可以存在于化合物分子中(如C2H2中的C—C 键)。非极性键的键偶极矩为0。以非极性键结合形成的分子都是非极性分子。存在于非极性分子中的键并非都是非极性键,如果一个多原子分子在空间结构上的正电荷几何中心和负电荷几何中心重合,那么即使它由极性键组成,那么它也是非极性分子。由非极性键结合形成的晶体可以是原子晶体,也可以是混合型晶体或分子晶体。例如,碳单质有三类同素异形体:依靠C—C非极性键可以形成正四面体骨架型金刚石(原子晶体)、层型石墨(混合型晶体),也可以形成球型碳分子富勒烯C60(分子晶体)。 同种原子之间的是非极性键 极性键存在于不同种元素间 但是存在极性键的物质不一定是极性分子. 区分极性分子和非极性分子的方法: 非极性分子的判据:中心原子化合价法和受力分析法 1、中心原子化合价法: 组成为ABn型化合物,若中心原子A的化合价等于族的序数,则该化合物为非极性分子.如:CH4,CCl4,SO3,PCl5 2、受力分析法:

化学键知识点与练习题(含答案)

第三节 化学键 一、化学键:使离子相结合或使原子相结合的作用力叫做化学键。相邻的(两个或多个)离子或原子间的强烈的相互作用。 二、形成原因:原子有达到稳定结构的趋势,是原子体系能量降低。 三、类型: 化学键 离子键 共价键 极性键 非极性键 一、离子键和共价键比较 二、非极性键和极性键

通常以晶体形态存在 (1)当一个化合物中只存在离子键时,该化合物是离子化合物(2)当一个化合中同时存在离子键和共价键时,以离子键为主,该化合物也称为离子化合物(3)只有 ..当化合物中只存在共价键时,该化合物才称为共价化合物。(4)在离子化合物中一般既含有金属元素又含有非金属元素;共价化合物一般只含有非金属元素(NH4+例外) 注意:(1)离子化合物中不一定含金属元素,如NH4NO3,是离子化合物,但全部由非金属元素组成。(2)含金属元素的化合物不一定是离子化合物,如A1C13、BeCl2等是共价化合物。 二、化学键与物质类别的关系 、

一、电子式: 1.各种粒子的电子式的书写: (1)原子的电子式:常把其最外层电子数用小黑点“·”或小叉“×”来表示。 例如: (2)简单离子的电子式: ①简单阳离子:简单阳离子是由金属原子失电子形成的,原子的最外层已无电子,故用阳离子符号表示,如Na+、Li+、Ca2+、Al3+等。 ②简单阴离子:书写简单阴离子的电子式时不但要画出最外层电子数,而且还应用括号“[]”括起来,并在右上 角标出“n—”电荷字样。例如:氧离子、氟离子。 ③原子团的电子式:书写原子团的电子式时,不仅要画出各原子最外层电子数,而且还应用括号“[]”括起来,并在右上角标出“n—”或“n+”电荷字样。 例如:铵根离子、氢氧根离子。 (3)部分化合物的电子式: ①离子化合物的电子式表示方法:在离子化合物的形成过程中,活泼的金属离子失去电子变成金属阳离子,活泼的非金属离子得到电子变成非金属阴离子,然后阴阳离子通过静电作用结合成离子键,形成离子化合物。所以,离子化合物的电子式是由阳离子和带中括号的阴离子组成,且简单的阳离子不带最外层电子,而阴离子要标明最外层电子多少。 如:。 ②共价化合物的电子式表示方法:在共价化合物中,原子之间是通过共用电子对形成的共价键的作用结合在一起的,所以本身没有阴阳离子,因此不会出现阴阳离子和中括号。 如: 2.用电子式表示化学反应的实质: (1)用电子式表示离子化合物的形成过程: (2)用电子式表示共价化合物的形成过程:

第二章第三节第1课时键的极性和分子的极性范德华力和氢键

第三节分子的性质 第1课时键的极性和分子的极性范德华力和氢键 1.了解共价键的极性和分子的极性及产生极性的原因。 2.知道范德华力、氢键对物质性质的影响。 3.能应用分子结构的知识判断分子的极性。 键的极性和分子的极性[学生用书P28] 1.键的极性 2.分子的极性 3.键的极性和分子的极性的关系 (1)一般只含非极性键的分子是非极性分子。 (2)含有极性键的分子,若分子结构是空间对称的,则为非极性分子,否则是极性分子。 1.判断正误(正确的打“√”,错误的打“×”)。 (1)极性分子中不可能含有非极性键。( )

(2)离子化合物中不可能含有非极性键。( ) (3)非极性分子中不可能含有极性键。( ) (4)一般极性分子中含有极性键。( ) (5)H2O、CO2、CH4都是非极性分子。( ) 答案:(1)×(2)×(3)×(4)√(5)× 2.下列各组物质中,都是由极性键形成极性分子的一组是( ) A.CH4和Br2B.NH3和H2O C.H2S和CCl4D.CO2和HCl 解析:选B。CH4、CCl4、CO2都是由极性键形成的非极性分子,NH3、H2O、H2S都是由极性键形成的极性分子,Br2是由非极性键形成的非极性分子。 分子极性的判定 1.判断分子极性的一般思路 2.判断AB n型分子极性的方法 (1)化合价法:AB n型分子中,中心原子的化合价的绝对值等于该原子的价电子数时,该分子为非极性分子,此时分子的空间结构对称;若中心原子的化合价的绝对值不等于其价电子数,则分子的空间结构不对称,该分子为极性分子。具体实例如下: 分子BF3CO2SO3(g) H2O NH3SO2中心原子的化 合价的绝对值 3 4 6 2 3 4 中心原子的 价电子数 3 4 6 6 5 6 分子极性非极性非极性非极性极性极性极性 类型实例键的极性立体构型分子极性 X2H2、N2非极性键直线形非极性分子 XY HCl、NO 极性键直线形极性分子 XY2 (X2Y) CO2、CS2极性键直线形非极性分子SO2极性键V形极性分子

高中化学氢键-分子间作用力

1.化学键:相邻的两个或多个原子(或离子)之间强烈的相互作用叫做化学键。 2.化学键的存在: (1)稀有气体单质中不存在; (2)多原子单质分子中存在共价键; (3)非金属化合物分子中存在共价键(包括酸); (4)离子化合物中一定存在离子键,可能有共价键的存在(Na2O2、NaOH、 NH4Cl),共价化合物中不存在离子 键; (5)离子化合物可由非金属构成,如:NH4NO3、NH4Cl 。 3.化学反应的本质:一个化学反应的的过程,本质上就是旧化学键断裂和新化学键形成的过程。 4.金属键:金属晶体中,金属阳离子与自由电子之间的强烈静电作用。 5.配位键:电子对由一个原子单方面提供而跟另一个原子共用而形成的共价键。 (1)孤对电子:原子最外层存在没有跟其它原子共用的电子对。 (2)虽然配位键和其它键的形成不同,但一旦形成后则与其它共价键无任何区别。 6.分子间作用力 定义:把分子聚集在一起的作用力叫做分子间作用力(也叫范德华力)。 (1)分子间作用力比化学键弱得多,是一种微弱的相互作用,它主要影响物质的熔、沸点等物理性质,而化学键主要影响物质的化学性质。 (2)分子间作用力主要存在于由分子构成的物质中,如:多数非金属单质、稀有气体、非金属氧化物、酸、氢化物、有机物等。 (3)分子间作用力的范围很小(一般是300-500pm),只有分子间的距离很小时才有。 (4)一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔、沸点越高。如卤素单质:

为什么HF、H2O和NH3的沸点会反常呢? (1)形成条件:原子半径较小,非金属性很强的原子X,(N、O、F)与H原子形成强极性共价键,与另一个分子的半径较小,非金属性很强的原子Y (N、O、F),在分子间H与Y产生较强的静电吸引,形成氢键 (2)表示方法:X—H…Y—H(X.Y可相同或不同,一般为N、O、F)。 (3)氢键能级:比化学键弱很多,但比分子间作用力稍强 (4)特征:具有方向性。 (5)氢键作用:使物质有较高的熔沸点(H2O、HF 、NH3)使物质易溶于水 (C2H5OH,CH3COOH)解释一些 反常现象。 结果1:氢键的形成会使含有氢键的物质的熔、沸点大大升高。如:水的沸点高、氨易液化等。这是因为固体熔 化或液体汽化时,必须破坏分子间作用力和氢键。 结果2:氢键的形成对物质的溶解性也有影响,如:NH3极易溶于水。

相关主题
文本预览
相关文档 最新文档