当前位置:文档之家› 电机实验报告

电机实验报告

电机实验报告
电机实验报告

实验一单相变压器

一、实验目的

1、通过空载(也称开路实验、也称负载实验)和短路实验测定变压器的变化和参数。

2、通过不同性质的负载实验测取变压器的运行特性。

二、预习要点

1、变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适?

2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小?

3、如何用实验方法测定变压器的铁耗及铜耗。

三、实验设备及仪表

1)单相变压器 1台

2)三项调压器 1台

3)交流电压表 2块

4)交流电流表 2块

5)低功率因数功率表 1块

6)高功率因数功率表 1块

7)负载灯箱 1台

8)功率因数表 1块

9)单相可调电抗器 1台

或电机及电气技术实验装置 1台

四、实验内容

1、空载实验:测取空载特性U

0=f(I

),P

=f(U

)。

2、短路实验:测取短路特性U

k =f(I

k

),P

k

=f(I

k

)。

3、负载实验

(1)纯电阻负载:保持U

1=U

1N

,cosφ

2

=1的条件下,测取U

2

=f(I

2

)。

(2)阻感性负载:保持U

1=U

1N

,cosφ

2

=0.8的条件下,测取U

2

=f(I

2

)。

五、实验说明

1)中小型电力变压器的空载电流约为I

0=(3~10)%I

N

,短路电压约为U

k

=(5~

10)%U

N

,以此选择电流表和功率表的量程。

2)空载实验应选择低功率因数功率表测量功率,短路实验选择高功率因数功率表测量功率,以减小测量误差。实验时应辨明调压变压器的输入和输出端,以免错接而损坏实验设备。

3)空载和短路实验时,若电源电压加在变压器一次侧,由所测数据计算的参数不必归算到一次侧。若电源电压加在变压器二次侧,由所测数据计算的参数应归算到一次侧。

4)空载实验时,应注意读取额定电压U

N

时的相关数据。短路实验时,应注

意读取额定电流I

N

时的相关数据。

5)变压器的铁耗与电源电压的频率及波形有关,实验要求电源电压的频率等于或接近被测试变压器的额定频率(允许偏差不超过±1%),其波形应属实际正弦波。

1

6)变压器短路实验时操作应尽快进行,以免线圈发热而引起电阻阻值的变化。

7)变压器负载实验时,所加负载不应超过变压器的额定容量。

六、实验线路及操作步骤

1、空载实验

实验线路如图1-1所示。被试变压器选用单相变压器,其额定容量P N =1kw ,U 1N /U 2N =380/220v ,I 1N /I 2N =2.6A/4.5A 。变压器的低压线圈接电源,高压线圈开路。低压边交流电压表选用250V 挡,交流电流表选用0.5A 挡,功率表选用量程选择300V 、2.5A 、cos φ=0.2挡。接通电源前,选好所有电表量程,将交流电源调压旋钮调到输出电压为零的位置,然后打开钥匙开头,按下面板上“通”的按钮,此时变压器接入交流电源,调节交流电源调压旋钮,使变压器空载电压U 0=1.2U 2N ,然后,逐渐降低电源电压,在1.2~0.2U 2N 的范围内,测取变压器的U 0、I 0、P 0,

3

电压表选择15V 档,电流表选择5A 档,功率仍选择150V 、5A 、cos φ=0.2挡。接通电源前,先将交流调压旋钮调到输出电压为零的位置,选好所有电表量

最大(不开灯泡),然后合上S 1,按下接通电源的按钮,逐渐升高电源电压,使变压器输入电压U 1=U 1N =380V ,在保持U 1=U 1N 的条件下,逐渐增加负载电流,即减少负载电阻R L 的阻值(开灯泡),从空载到额定负载的范围内(0~5A ),测取变压器的输出电压U 2和电流I 2,共取5-6组数据,记录于表1-3中,其中I 2=0和I 2=I 2N 两点必测。

表1-3 cos φ2=1,U 1=U N = 380

4

七、实验报告

1、计算变化

由空载实验测取变压器的原、副方电压的三组数据,分别计算出变比,然后取其平均值作为变压器的变比K 。

K=U AX /U aX =380/220=1.727

2、绘出空载特性曲线和计算激磁参数 (1)绘出空载特性曲线:U 0=f (I 0),P 0=f (U 0),cos φ0=f (U 0)。其中cos φ0=P 0/U 0I 0。

(2)计算激磁参数

空载特性曲线:U 0=f (I 0)

空载特性曲线:P 0=f (U 0)

空载特性曲线:cos φ0=f (U 0)

从空载特性曲线上查出对应于U 0=U N 时的I 0和P 0值,并由下式算出激磁参数

2

00I P m =γ=1.41 0

0I U

Z m ==65.67

2

2m m m Z X γ-==65.65

3、绘出短路特性曲线和计算短路参数 (1)绘出短路特性曲线:U K =f (I K ),P K =(I K ),cos φ0=f (I K )。 短路特性曲线:U K =f (I K )

5

短路特性曲线:P K =(I K )

短路特性曲线:cos φ0=f (I K )

(2)计算短路参数

从短路特性曲线上查出对应于短路电流IK=IN 时的UK 和PK 值,由下式计算出实验环境温度为θ(℃)下的短路参数。

K K K I U Z ='

=4.27

2K

K

K

I P ='γ=4.07 22K K K

Z X γ'-'='=1.29 然后,折算到试低压方:

2K

Z Z K K '

==1.43 2

K

K K γγ'=

=1.36

2K

X X K

K '=

=0.43 由于短路电阻r K 随温度而变化,因此,算出的短路电阻应按国家标准换算

6

到基准工作温度75℃时的阻值。

θ

γγθ

++=?5.23475

5.23475K c K =1.62 2

27575K C K c K X Z +=??γ=1.68

式中:234.5为铜导线的常数,若用铝导线常数应改为228。 阻抗电压

%10075?=?N

C K N K U Z

I U =0.39

%10075?=

?N C

K N Kr U r I U =0.38 %100?=N

K N KX

U X

I U =0.10 I K =I N 时的短路损耗为P KN =I 2N γK75℃ 。

4、用空载和短路实验测算的参数,画出被试变压器折算到高压方的“г”型等效电路。

5、变压器的电压变化率△u

(1)绘出cos φ2=1和cos φ2=0.8两条外特性曲线U 2=f (I 2),由特性曲线计算出I 2=I 2N 时的电压变化率△u 。

%10020

2

20?-=?U U U u

cos φ2=1特性曲线U 2=f (I 2)

%10020

2

20?-=

?U U U u =1.59﹪

实验二三相变压器实验

一、实验目的

1、通过空载和短路实验,测定三相变压器的变比和参数。

2、通过负载实验,测取三相变压器的运行特性。

二、预习要点

1、如何用双瓦特计法测三相功率,空载和短路实验应如何合理布置仪表。

2、三相芯式变压器的三相空载电流是否对称。

3、如何测定三相变压器的铁耗和铜耗。

三、实验设备及仪表

1、三相变压器3kw 1台

2、三相调压变压器15KV A 1台

3、交流电压表2块

4、交流电流表3块

5、低功率因数功率表2块

6、高功率因数功率表2块

7、三相可调电阻器或灯箱1台

8、三相可调电抗器1台

9、功率因数表1块

或电机及电气技术实验装置1台

四、实验内容

1、测定变比。

2、空载实验:测取空载特性U0=f(I0),P0=f(U0)。

3、短路实验:测取短路特性U K==f(I K),P K=f(U K)。

4、纯电阻负载实验:保持U1=U1N,cosφ2=1的条件下,测取U2=f(I2)。

五、实验说明

1、中小型电力变压器的空载电流以约为I0=(3~10)%I N,短路电压约为U K=(5~10)%U N,以此选择电流表和功率表的量程。

2、空载实验应选择低功率因数功率表测量功率,以减小测量误差。

3、空载和短路实验时,若电源电压加在变压器一次侧,由所测数据计算的参数不必归算。若电源电压加在变压器二次侧,由所测数据计算的参数应归算到一次侧。

4、空载实验读取数据时,要注意读取额定电压U N时的相关数据。短路实验要注意读取额定电流I N时的相关数据。

5、变压器一次和二次绕组接法不同时,参数计算应则注意对应的电压和电流。

6、感性负载实验时,功率因数测量使用一相测量的简单方法。

六、实验线路及操作步骤

1、测定变比

被试变压器选用三相三线圈芯式变压器,额定容量P N=3kw,U1N/U2N=380/220V,I1N/I2N=4.5/7.8A,Y-Y接法。

7

8

1N

图2-3 三相变压器短路实验接线图

实验线路如图2-4所示。变压器低压线圈接电源,高压线圈经开关S1接负载电阻R L,R L选用灯箱。负载灯箱开关全关。合上开关S1,接通电源,调节三相调压旋钮,使加入变压器低压边的电压U1=U2N=220V,并且三相电源基本对称,在保持U1=U2N的条件下,逐次增加负载电流,对称开灯泡,从空载到额定负载范围内,测取变压器三相输出线电压和相电流,共取5组数据,记录于表2-4中,其中I2=0和I2=I1N=4.5A两点必测。

9

10

V

U 2

A A

B C

V

X Y Z

a x B

C

b

c

y z

三相调压器

U 1

灯箱负载

A

图2-4 三相变压器负载实验接线图

量程选择。

七、实验报告

1、计算变压器的变化

根据实验数据,计算出各项的变化,然后取其平均值作为变压器的变比。

ab AB A U U

K = bc BC B U U K = ca

CA C U U K =

2、根据空载实验数据作空载特性曲线并计算激磁参数 (1)绘出空载特性曲线:U 0=f (I 0)、P=f (U 0)、cos φ0=f (U 0)。

3

0ca

bc ab U U U U ++=

3

0ca

bc ab I I I I ++=

P 0=P 01±P 02

003cos I U P

=?

11

U 0=f (I 0)

P=f (U 0)

cos φ0=f (U 0)

(2)计算激磁参数

从空载特性曲线查出对应于U 0=U N 时的I 0和P 0值,并由下式求取激磁参数。

20

03I P

m =γ=633.33

12

03I U Z m =

=1270.17

2

2m m m Z X γ-==1101.01

3、绘出短路特性曲线和计算短路参数 (1)绘出短路特性曲线U K =f (I K )、P K =f (I K )、cos φK =f (I K )。

3

CA

BC AB K U U U U ++=

3C B A

K I I I I ++= K K K

K I U P 3cos =? U K =f (I K )

P K =f (I K )

cos φK =f (I K )

(2)计算短路参数

13

从短路特性曲线查出对应于I K =I N 时的U=U K 值,并由下式算出实验环境温度θ(℃)时的短路参数。

θ=22°

N

I P K

K

23='γ=0.074 N

K K

I U Z 3='=2.386

22K K K

Z X γ'-'='=2.385 折算到试低压方

2K K

K γγ'==0.0248

2K

Z Z K

K '=

=0.8000 2K

X X K

K '=

=0.7997 换算到基准工作温度的短路参数为γK75℃和ZK75℃,计算出阻抗电压

%100375?=?N

C

K N K U Z I U =0.3353

%100375?=

?N

C

K N K U r I U =0.0125

%1003?=

N

K

N KX U X I U =0.3351 I K =I N 时的短路损耗P KN =3I 2N γK75℃。=1.8179

4、用空载和短路实验测算的参数,画出被试变压器的“г”型等效电路。

5、变压器的电压变化率△u

(1)根据实验数据绘出cos φ2=1时的特性曲线U 2=f (I 2),由特性曲线计算出I 2=I 2N 时的电压变化率△u 。

%10020

2

20?-=?U U U u =0.06316

(2)根据实验求出的参数,算出I 2=I N 、cos φ2=1时的电压变化率△u 。

△u=(U

K1cosφ

2

+U

KX

sinφ

2

)=24V

八、思考题

1、通常做变压器的空载实验时在低压边加电源,而做短路实验时在高压边加电源,这是为什么?

答:做变压器的空载实验时,要求电路中的线电压要大于等于额定电流值,因为在低压边的额定电压比在高压边的额定电压要小的很多,所以通常做变压器的空载实验时在低压边加电源;做短路实验时,要求电路中的线电流要大于等于额定电流值,因为在低压边的额定电流比在高压边的额定电流要大的很多,所以做短路实验时在高压边加电源。

2、在做变压器空载实验与短路实验时,仪表的布置有什么不同?说明理由。

答:做空载试验时,仪表是在低压侧;做短路实验时仪表在高压侧

3、为什么做空载实验时,所测量的数据中一定要包含额定电压点。

答:由于Zm 和磁路饱和程度有关,故应以额定电压下测得的数据来计算励磁支路的参数。

4、在接线时如果将三相自耦调压器的输入输出,接反调压器在零位时合闸,会出现什么情况?

答:输出还会有电压剩。

实验三三相变压器的联接组实验

一、实验目的

1、掌握用实验方法测定三相变压器的极性。

2、掌握用实验方法判别变压器的联接组。

3、观察三相变压器线圈不同的连接法和不同铁心结构对空载电源、电动势波形的影响。

二、预习要点

1、联接组的定义。为什么要研究联接组。国家规定的标准联接组有哪几种。

2、如何把Y/Y-12联接组改成Y/Y-6联接组以及把Y/△-11改为Y/△-5联接组。

3、三相变压器线圈的连接法和磁路系统对空载电流和电动势波形的影响。

三、实验设备及仪表

1)三相调压变压器1台

2)三相芯式变器1台

3)三相组式变压器1组

4)多量程交流电压表1块

5)可调电阻器1台

6)示波器1台

或电机及电气技术实验装置1台

四、实验内容

1、测定变压器的极性。

2、连接并判定以下联接组。

(1)Y/Y-12

14

(2)Y/Y-6

(3)Y/△-11

(4)Y/△-5

3、观察不同连接法和不同铁心结构对空载电流和电动势波形的影响(演示)。

五、实验说明

1)实验时应辨明三相调压器的输入和输出端,以免错接。

2)实验时外施电压不能过低(190V左右),以免引起仪表读数误差过大。

六、实验线路及操作步骤

1、测定极性

(1)测定相间极性

被试变压器选用三相芯式变压器,用其中高压和低压两组线圈,额定容量

S N=3KW,U N=380/220V,I N=2.6/4.5A,Y/Y接法。用万用表的电阻挡测出高、低压线圈12个出线端之间哪两个相通,并观察其阻值。阻值大为高压线圈,用A、B、C、X、Y、Z标出首末端。低压线圈标记用a、b、c、x、y、z。按照图3-1接线,将Y、Z两端点用导线相联,在A相施加约50%U1N的电压,测出电压U BY、U CZ、若U BC=|U BY-U CZ|,则首末端标记正确;若U BC=|U BY-U CZ|,则标记不对。须将B、C两相任一相线圈的首末端标记对调。

然后用同样方法,将N、C两相中的任一相施加电压,另外两相末端相联,定出A相首、末端正确的标记。

A A

B

C X

Y

Z

a x

B C

b

c y

z

图3-1 测定相间极性接线图

(2)测定原、副边极性

暂时标出三相低压线圈的标记a、b、c、x、y、z,然后按照图3-2接线。原、副方中点用导线相连,高压三相线圈施加约50%的额定电压,测出电压U AX、

U BY、U CZ、U ax、U by、U cz、U Aa、U Bb、U Cc,若U Aa=U AX-U ax,则A相高、低压线圈同柱,并且首端A与a点为同极性;若U Aa=U AX+U ax,则A与a端点为异极性。用同样的方法判别出B、C两相原、副方的极性。高低压三相线圈的极性确定后,根据要求连接出不同的联接组。

15

A A

B

C X

Y

Z

a

x

B C

b

c y

z

图3-2 测定原、副边极性接线图

(2)测定三相变压器联结组标号时为什么将一次、二次绕组的A、a两端子用导线连接?

答:为使A与a的电压相位相等,这样在在画相位图市,A与a就可以相连了。

(3)为什么三相组式变压器的三次谐波电动势比三相芯式变压器大?

答:三相变压器组的各相磁路是互相独立的,因此三相对称的磁通和三相同

18

19

相的磁通所遇到的磁阻是一样的,都是铁心磁路的磁阻。三相心式变压器的各相磁路是彼此相关的,因此三相对称的磁通和三相同相的磁通所遇到的磁阻是不一样。三相对称磁通的大小相等,时间相位互差120°,即他们的和为零,因此一相磁通实际上需要经过其他两相的磁路而闭合;三相同相磁通的大小相等,时间上同相,三相之和为每相磁通的3陪,它们无法通过铁心来闭合,而必须经过铁心之外的非铁磁材料(空气或变压器油等),因此遇到的磁阻主要是非铁磁材料的磁阻,其值比铁心磁路的要大很多。

(4)分析三相组式变压器不宜采用Yyn 与Yy 联结方式的原因。

答:三相变压器组的各组磁路互相独立。在励磁电流为正弦波、主磁通为平顶波时,主磁通中的3次谐波φ3

和其基波φ1

都通过铁心闭合,因此,在各相绕

组中,除了主磁通基φ1

产生的基波电动势e 1外,还有3次谐波磁通φ3

产生的3

次谐波电动势e 3,由于三相中的3次谐波电动势相同的,因此在线电动势中互相抵消,即线电动势仍为正弦波。但是,相电动势e e e 31+≈,e 的幅值较基波电动势e 1有了较大的增加。在工程实际中使用的变压器,e 3的幅值可能达到e 1的45%~60%。幅值较大的尖顶波形的相电动势会对变压器绝缘材料构成很大威胁,特别是对高压大容量变压器的威胁更大,因此三相变压器组不采用Yy 联结。

实验四 直流发电机

一、实验目的

1)掌握并励直流发电机建立稳定电压的操作过程。 2)掌握如何用实验方法测定直流发电机的运行特性。

二、实验内容

1)观察并励直流发电机的自励过程。

2)测定他励直流发电机的空载特性U 0=f(I f )、外特性U=f(I)和调整特性I f =f(I)。

3)测定并励直流发电机的外特性U=f(I)。

三、实验设备与仪表

1)直流发电机 1台 2)直流电动机 1台 3)可调电阻器(R f1=500欧 R f2=2K 欧) 3台 4)直流电压表 2块 5)直流电流表(I f1、I f2=1A 挡 I 、I F =10A 挡) 3块 6)转速表或测速仪 1台 7)可调有源负载 1台 或电机及电气技术实验装置 1台

四、实验预习

1)复习并励直流发电机的自励条件及达到自励条件应采取的措施。 2)预习直流发电机的空载特性和外特性的定义及测定的条件。 3)了解测取直流发电机空载特性和外特性的实验线路。

五、实验说明

1)注意正确起动直流电动机,使直流电动机的转向与发电机规定的转向一致。若电动机容量小则可以直接起动。

2)并励直流发电机实验时,应检查发电机是否有剩磁,若无剩磁应对发电机进行充磁。

3)直流发电机的负载使用可调有源负载,所加负载不能超过发电机的额定容量。

4)实验线路图4-1中Q2是双向开关,可以闭合直流发电机励磁回路至他励位置或并励位置。

5)直流发电机空载实验时,励磁电流应单方向调节。

六、实验操作方法

直流发电机的实验线路如图4-1所示,作为驱动电机的并励直流电动机M

的转子与直流发电机G的转子机械连接。

图4-1 直流发电机的实验线路

1.并励直流发电机的自励过程

1)将并励直流电动机M电枢回路的起动电阻R1,调至最大值、励磁回路电阻R f1调至最小值,断开直流发电机G的励磁开关Q2和负载开关Q3。

2)闭合电源开关Q l起动直流电动机,调节电动机电枢回路电阻R1和励磁回路电阻R f1,使电动机转速达到额定值n N并保持不变。

3)检查直流发电机有无剩磁的方法是,断开发电机励磁回路双向开关Q2,在发电机转速n=n N的状态下,用电压表测量发电机电枢两端有无剩磁电压。若无剩磁电压,则将发电机励磁回路双向开关Q2闭合至他励位置进行充磁即可。

4)将直流发电机励磁回路电阻R f2调至最大值,双向开关Q2闭合至并励位置。

5)在发电机空载且转速n=n N的状态下,逐步减小励磁回路电阻R f2值,观察发电机电枢两端的电压U F的变化情况。若电枢电压U F上升,即发电机励磁绕组与电枢绕组的连接极性正确。若电枢电压U F减小,则发电机励磁绕组与电枢绕组的连接极性错误。此时应断开电源开关Q1,待机组停机后,再断开励磁回路双向开关Q2,对调发电机励磁绕组的连接极性或改变发电机的转向。注意两者只取其一,不可同时改变。

6)并励直流发电机在有剩磁、励磁绕组极性接法正确和励磁回路总电阻小于

20

直流伺服电机实验报告

实验六 直流伺服电机实验 一、实验设备及仪器 被测电机铭牌参数: P N =185W ,U N =220V ,I N =1.1A , 使用设备规格(编号): 1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机); 4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04); 7.直流电压、毫安、安培表(MEL-06); 二、实验目的 1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。 2.掌握直流伺服电动机的机械特性和调节特性的测量方法。 三、实验项目 1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。

2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。4.测直流伺服电动机的机电时间常数。 四、实验说明及操作步骤 1.用伏安法测电枢的直流电阻Ra

表中Ra=(R a1+R a2+R a3)/3; R aref=Ra*a ref θ θ + + 235 235 (3)计算基准工作温度时的电枢电阻 由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: R aref=Ra a ref θ θ + + 235 235

异步电机实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相异步电动机的空载及堵转实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

三相异步电动机的空载及堵转实验 一.实验目的 1.掌握异步电动机空载和堵转实验方法及测试技术。 2.通过空载及堵转实验数据求取异步电动机的铁耗和机械损耗。 3.通过空载及堵转实验数据求取异步电动机的各参数 二.问题思考: 1.试就下列几个方面与变压器相比较,有何相同与相异之处? (1)空载运行状况及转子堵转状况。 (2)空载运行时的0cos ?,0I ,0P 。 (3)转子堵转实验时测得的12'k X X X =+。 答:变压器空载运行是指二次侧绕组开路时的变压的运行状态,此时二次侧绕组电流2i =0,空载电流的无功分量远大于有功分量,所以电流大多用于励磁。等效电路如下图: 异步电机的空载运行状况实际中并不存在,因为空载运行是指输出的机械功率为零,也就是转差率s =0,转子侧电流为0,转子转速n 与旋转磁场的转速1n 相同,这种情况下转子不受磁场力,所以不可能存在。实际中的空载是指轻载,即 0s ≈,1n n ≈,20i ≈,输出功率20P =,0m m s P p p =+≈。等效电路 可近似看为: ?m r m x m r m x ?

几乎全部用来 异步电机堵转的时候转子侧三相绕组断路,转子堵住不动,定子侧接三相交流电 源,此时因为转子不转,转子侧输出功率为零,电流较大,二次侧等效电阻, 22r r s =,最小等效电路如下图所示: 与变压器短路试验运行时等效电路类似。变压器短路运行时等效电路如下: I ? , ?

直流伺服电机实验报告

直流电机的特性测试 一、实验要求 在实验台上测试直流电机机械特性、工作特性、调速特性(空载)和动态特性,其中测试机械特性时分别测试电压、电流、转速和扭矩四个参数,根据测试结果拟合转速—转矩特性(机械特性),并以X 轴为电流,拟合电流—电压特性、电流—转速特性、电流—转矩特性,绘制电机输入功率、输出功率和效率曲线,即绘制电机综合特性曲线。然后在空载情况下测试电机的调速特性,即最低稳定转速和额定电压下的最高转速,即调速特性;最后测试不同负载和不同转速阶跃下电机的动态特性。 二、实验原理 1、直流电机的机械特性 直流电机在稳态运行下,有下列方程式: 电枢电动势 e E C n =Φ (1-1) 电磁转矩 e m T C I =Φ (1-2) 电压平衡方程 U E I R =+ (1-3) 联立求解上述方程式,可以得到以下方程: 2e e e m U R n T C C C = -ΦΦ (1-4) 式中 R ——电枢回路总电阻 Φ——励磁磁通 e C ——电动势常数 m C ——转矩常数 U ——电枢电压 e T ——电磁转矩 n ——电机转速

在式(1-4)中,当输入电枢电压U 保持不变时,电机的转速n 随电磁转矩e T 变化而变化的规律,称为直流电机的机械特性。 2、直流电机的工作特性 因为直流电机的励磁恒定,由式(1-2)知,电枢电流正比于电磁转矩。另外,将式(1-2)代入式(1-4)后得到以下方程: e e U R n I C C = -ΦΦ (1-5) 由上式知,当输入电枢电压一定时,转速是随电枢电流的变化而线性变化的。 3、直流电机的调速特性 直流电机的调速方法有三种:调节电枢电压、调节励磁磁通和改变电枢附加 电阻。 本实验采取调节电枢电压的方法来实现直流电机的调速。当电磁转矩一定 时,电机的稳态转速会随电枢电压的变化而线性变化,如式(1-4)中所示。 4、直流电机的动态特性 直流电机的启动存在一个过渡过程,在此过程中,电机的转速、电流及转矩 等物理量随时间变化的规律,叫做直流电机的动态特性。本实验主要测量的是转速随时间的变化规律,如下式所示: s m dn n n T dt =- (1-6) 其中,s n ——稳态转速 m T ——机械时间常数 本实验中,要求测试在不同负载和不同输入电枢电压(阶跃信号)下电机的 动态特性。 5、传感器类型 本实验中,测量电机转速使用的是角位移传感器中的光电编码器;测量电磁 转矩使用的是扭矩传感器。

电动机试验报告

设备名称;#3炉一次风机试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉二次风机试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 四、交流耐压: 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉引风机A试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉引风机B试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#1机电动给水泵A试验性质预试试验日期:2009 年04月14 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:GΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、任国东

设备名称;#1机电动给水泵B试验性质预试试验日期:2009 年04月14 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:GΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、任国东

计算机控制实验报告4(电机调速实验)

班级:座号:姓名成绩: 课程名称:计算机控制技术实验项目:电机调速实验 实验预习报告(上课前完成) 一、实验目的 1.了解直流电机调速系统的特点。 2.研究采样周期T对系统特性的影响。 3.研究电机调速系统PID控制器的参数的整定方法。 二、实验仪器 1.EL-AT-II型计算机控制系统实验箱一台 2.PC计算机一台 3.直流电机控制实验对象一台 三、控制的基本原理 1.系统结构图示于图8-1。 图8-1 系统结构图 图中 Gc(s)=Kp(1+Ki/s+Kds) Gh(s)=(1-e-TS)/s Gp(s)=1/(Ts+1) 2.系统的基本工作原理 整个电机调速系统由两大部分组成,第一部分由计算机和A/D&D/A卡组成,主要完成速度采集、PID运算、产生控制电枢电压的控制电压,第二部分由传感器信号整形,控制电压功率放大等组成。电机速度控制的基本原理是:通过D/A输出-2.5v~+2.5v的电压控制7812的输出,以达到控制直流电机电枢电压的目的。速度采集由一对红外发射、接收管完成,接收管输出脉冲的间隔反应了电机的转速。

第二部分电路原理图 3.PID递推算法: 如果PID调节器输入信号为e(t),其输送信号为u(t),则离散的递推算法如下:Uk=Kpek+Kiek2+Kd(ek-ek-1) 其ek2是误差累积和。 四、实验内容: 1、设定电机的速度在一恒定值。 2、调整P、I、D各参数观察对其有何影响。 五、实验步骤 1.启动计算机,在桌面双击图标[Computerctrl]或在计算机程序组中运行[Computerctrl]软件。 2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。 3. 20芯的扁平电缆连接实验箱和炉温控制对象,检查无误后,接通实验箱电源。 开环控制 4.选中[实验课题→电机调速实验→开环控制实验]菜单项,鼠标单击将弹出参数设置窗口。在参数设置窗口设置给定电压,及电机控制对象的给定转速,点击确认在观察窗口观

电动机实验报告doc

电动机实验报告 篇一:电机实验报告 黑龙江科技大学 综合性、设计性实验报告 实验项目名称电机维修与测试 所属课程名称电机学 实验日期 XX年5.6—5.13 班级电气11-13班 学号 姓名 成绩 电气与信息工程学院实验室 篇二:电机实验报告 实验报告本 课程名称:电机拖动基础班级:电气11-2 姓名田昊石泰旭孙思伟 指导老师:_史成平 实验一单相变压器实验 实验名称:单相变压器实验 实验目的:1.通过空载和短路实验测定变压器的变比和参数。

2.通过负载实验测取变压器的运行特性。 实验项目:1. 空载实验测取空载特性U0=f(I0), P0=f(U0)。 2. 短路实验测取短路特性Uk=f(Ik), Pk=f(I)。 3. 负载实验保持U1=U1N,cos?2?1的条件下,测取U2=f(I2)。 (一)填写实验设备表 (二)空载实验 1.填写空载实验数据表格 2. 根据上面所得数据计算得到铁损耗PFe、励磁电阻Rm、励磁电抗Xm、电压比k (三)短路实验 1. 填写短路实验数据表格 O (四)负载实验 1. 填写负载实验数据表格 表3 cos?2=1 (五)问题讨论 1. 在实验中各仪表量程的选择依据是什么? 根据实验的单相变压器额定电压、额定电流、额定容量、空载电压,单 相变压器电源电压和频率、线圈匝数、磁路材质及几何尺寸等。 2. 为什么每次实验时都要强调将调压器恢复到

起始零位时方可合上电源开关或断开电源开关? 防止误操作造成人身伤害、防止对变压器及其它仪器仪表等设备过压过 流而损坏。 3. 实验的体会和建议 1.电压和电流的区别:空载试验在低压侧施加额定电压,高压侧开路;短路 试验在高压侧进行,将低压侧短路,在高压侧施加可调的低电压。2.测量范围的不同:空载试验主要测量的是铁芯损耗和空载电流, 而短路试 验主测量的是短路损耗和短路电阻。3.测量目的不同:空载试验主要测量数据反映铁芯情况,短路试验反映的是线圈方面的问题。 4.试验时,要注意电压线圈和电流线圈的同名端,要避免接错线。选择的导 线应该是高压导线,要不漏线头要有绝缘外皮保护。5.通过负载试验可以知道变压器的阻抗越小越好。阻抗起着限制变压器的电 流的作用,在设计时我们要考虑这些。 篇三:直流电动机实验报告 电机 实验报告 课程名称:______电机实验_________指导老师:___

实验(1)PWM电机调速实验报告

PWM电机调速 班级:09应电(5)班 姓名: 学号:0906020122 指导老师 时间:2011年10月20日

目录 一、实验名称 (2) 二、实验设计的目的和要求 (2) 三、预习要求 (2) 四、电路原理图 (4) 五、电路工作原理 (4) 六、 PCB图 (5) 七、实验结果 (6) · 八、实验中出现的问题以及解决方法 (13) 九、实验心得 (13) 十、参考文献 (14) 十一、元件清单 (14)

一、实验名称:PWM电机调速 二、实验设计的目的和要求 1)学习用LM339内部四个电压比较器产生锯齿波、直流电压、PWM脉宽; 2)掌握脉宽调制PWM控制模式; 3)掌握电子系统的一般设计方法; 4)培养综合应用所学知识来指导实践的能力; 5)掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法进一步掌握制版、电路调试等技能。 三、预习要求 3.1关于LM339器件的特点和一些参数 图3-1 LM339管脚分配图 1)电压失调小,一般是2mV; 2)共模范围非常大,为0v到电源电压减1.5v; 3)他对比较信号源的内阻限制很宽; 4)LM339 vcc电压范围宽,单电源为2-36V,双电源电压为±1V-±18V; 5)输出端电位可灵活方便地选用; 6)差动输入电压范围很大,甚至能等于vcc。

3.2 分析PWM电机调速电路的系统组成原理,画出每一级电路输出的波形 1)由1、6、7管脚构成的电压比较器,通过RC积分电路调节可调变阻器R5(203),产生锯齿波 图3-2 锯齿波 2) 由8、9、14管脚构成的比较器,通过8管脚接入前一个比较器1管脚产生的锯齿波信号与调节R7(103)取样得到的9管脚电压做比较通过比较器14管脚输出的是PWM脉宽 图3-3 脉冲波(pwm) 3)PWM电机调速电路中有两个三极管,是具有耦合放大作用的 4)另外电路中的输入4、5管脚和10、11管脚的两个电压比较器在整个电路中具有欠压保护和过流保护

北航电机学实验报告(全)

成绩 电机学实验报告 院(系)名称自动化科学与电气工程 学院 专业名称电气工程及其自动化学生学号 学生姓名 指导教师 201*年7月

目录 实验一等效电路参数的测定 (3) 实验二串励直流电动机负载特性实验 (7) 实验三并励直流发电机自励建压实验 (11) 实验四三相同步发电机参数的测定 (14) 实验五三相同步发电机并网实验 (17) 实验六三相异步电动机参数测量实验 (19) 2

实验一等效电路参数的测定 同组同学 一、开路试验 1、试验目的 确定变比k、激磁阻抗Z m等参数 2、试验方法 低压侧加电压,高压侧开路 3、接线图&计算原理 测量:U10、U20、I20、P0

4 计算: 开路试验注意事项: 开路电流和开路功率必须是额定电压时的值,并以此求取激磁参数; 开路试验的特点:电压高、电流小;铁耗大、铜耗小; 若要得到高压侧参数,须归算。 4、实验数据 2 2 2 20 0020 202010/,/,/m m m m Fe m R Z X I P R P p I U Z U U k -=≈≈≈=

二、短路试验 1、试验目的 确定短路阻抗Z k 等参数。 2、试验方法 高压侧加电压,低压侧短路。 3、接线图&计算原理 测量: U 1k 、I 1k 、P k 计算: 短路试验注意事项: 缓慢增加短路电压,使短路电流不超过一次测的额定电流; 短路试验的特点:电压低、电流大;铁耗小、铜耗大; θ ++=-==≈≈?5.23475 5.234,/,,/)75(2 2 2111k k k k k k k k Cu k k k k R R R Z X I P R p P I U Z

电机实验报告

步进电机控制报告 目录 引言 0 一系统技术指标 (1) 二总体方案 (1) 2.1 任务分析 (1) 2.2 总体方案 (1) 三硬件电路设计 (2) 3.1 单片机控制单元 (2) 3.2 nokia5110液晶显示单元 (3) 3.3 电机的选择 (4) 3.3.1 反应式步进电机(VR) (4) 3.3.2 永磁式步进电机(PM) (4) 3.3.3 混合式步进电机(HB) (4) 3.3.4 电机确定 (5) 3.4 驱动电路方案选择 (5) 3.4.1 单电压功率驱动 (5) 3.4.2 双电压驱动功率驱动 (6) 3.4.3 高低压功率驱动 (6) 3.4.4 斩波恒流功率驱动 (7) 3.4.5 集成功率驱动 (8)

3.4.6 驱动电路方案确定 (9) 3.5 键盘电路 (9) 四软件设计 (11) 五测试结果 (13) 六误差分析 (13) 七操作规范 (13)

引言 本系统是基于MSP430的步进电机控制系统,能够实现精密工作台位移、速度(满足电机的加、减速特性)、方向、定位的控制。用MSP430F449作为控制单元,通过矩阵键盘实现对步进电机转动开始与结束、转动方向、转动速度的控制。并且将步进电机的转动方向,转动速度,以及位移动态显示在LCD液晶显示屏上。硬件主要包括单片机系统、电机驱动电路、矩阵键盘、LCD显示等。

一系统技术指标 系统为开环伺服系统,执行元件为步进电动机,传动机构为丝杠螺母副。工作台脉冲当量:δ=0.01 mm /脉冲;最大运动速度=1.2m/min;定位精度=±0.01 mm;空载启动时间=25ms。 二总体方案 2.1 任务分析 本系统要求脉冲当量为δ=0.01 mm /脉冲,而工作台丝杠螺母副导程4mm,即电机转动一周需要400个脉冲,所以电机的步距选择0.9度;最大速度要求为1.2m/min(20mm/s),所以单片机输出的脉冲频率最大为2000Hz;空载启动时间为25ms,所以电机的启动频率为40Hz。 2.2 总体方案 根据系统要求,经过分析,可对MSP430F449单片机编程,实现按键控制和nokia5110液晶屏显示。由于MSP430F449的I/O的电压是3.3V,不符合L298驱动芯片的输入电压要求,固通过光耦隔离芯片TLP521-4,将I/0的3.3V 电压提升至5V,然后接进L298来控制电机的定位,加减速,正反转来实现精确系统总体框图如图1所示:

电机设计实验报告

一、实验内容 某一磁化曲线为 二、实验要求 1、画框图 2、编制c 语言程序 3、输出计算结果 三、实验项目 (一)、利用线性插值法求解 1、实验原理 (x)=f( )+(x-) 2、实验框图 3、试验程序 #include main() { static float X[10]={0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2};

static float Y[10]={0.96,1.48,2.54,4.14,7.30,19.4,67.0,230.0,700.0,2280}; int i; float B; float H; printf("Please input the B:"); scanf("%f",&B); for(i=1;i<=10;i++) { if(B<=X[i]) break; } H=Y[i]+(Y[i+1]-Y[i])*(B-X[i])/(X[i+1]-X[i]); printf("H=%f\n",H); } 4、输出计算结果 (二)、利用抛物线插值法求解 1、实验原理 (x)= ++ 2、实验框图

3、试验程序 #include main() { static float X[10]={0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2}; static float Y[10]={0.96,1.48,2.54,4.14,7.30,19.4,67.0,230.0,700.0,2280}; int i; float B; float H; printf("Please input the B:"); scanf("%f",&B); for(i=2;i<=9;i++) { if(B<=X[i+1]&&B>=X[i-1]) break; } H=(B-X[i])*(B-X[i+1])*Y[i-1]/(X[i-1]-X[i])*(X[i-1]-X[i+1]) +(B-X[i-1])*(B-X[i+1])*Y[i]/(X[i]-X[i-1])*(X[i]-X[i+1]) +(B-X[i-1])*(B-X[i])*Y[i+1]/(X[i+1]-X[i-1])*(X[i+1]-X[i]); printf("H=%f\n",H); } 4、输出计算结果

电机实验报告一

西华大学实验报告(理工类) 开课学院及实验室: 电气与电子信息学院 6A-214 实验时间 :2018年12月01日 一、实验目的 1.熟悉他励直流电动机的启动、调速和改变转向的方法。 2.用实验方法测取他励直流电动机的工作特性和机械特性。 3.学习测取他励直流电动机调速特性的方法。 二、实验内容 1.他励直流电动机的启动、调速和改变转向的方法。 2.他励直流电动机额定工作点的求取和测取他励直流电动机的工作特性n =f (P 2)、 T =f (P 2)、 =f (P 2),机械特性n =f (T )。 3.测取他励直流电动机调速特性。 4.他励直流电动机的能耗制动实验。 三、实验线路 直流机电枢电源 同步机励磁电源 接触注:LDSP 为转矩/转速测量仪表 图1-1 他励直流电动机实验线路原理图 图1-2 他励直流电动机能耗制动原理图 直流机电枢电源

说明: 1.为了测量直流电机的转矩和转速大小,转矩/转速测量仪表LDSP的I a+、I a-必须串接到直流电机的电枢回路,U a+、U a-要并接到直流电机的电枢绕组两端,并且测量仪表的接线正负极性要与使用说明书中的规定一致。 2.接线时注意选择合适量程的仪表。 3.多功能表的接线详见附录二(后续实验同此)。 四、实验说明 在通电实验之前,请仔细阅读附录中有关直流电源和转矩/转速表LDSP的使用说明。 1.他励直流电动机的启动和改变转向 实验步骤: (1)请参照实验线路图1-1正确接线。检查ZDL-565多功能表为三相四线制接线方式,具体操作见附录。 (2)合上“总电源”开关,对应总电源指示灯亮,再合上“操作电源”空开,对应操作电源指示灯亮。按下“操作电源开关”合闸按钮,对应的红色指示灯亮;检查台面上所有的按钮处于断开位置,均为绿灯亮;所有数字表显示无错误。 (3)按下实验台直流机励磁电源合闸按钮,按下ZL-Ⅱ微机型直流电机励磁电源机箱面板上的“启动”按钮,面板上的“合闸”指示灯将会亮。点击“增加电压”按钮将直流电动机的励磁电压调到电机额定励磁电压值220V; (4)按下实验台直流电机电枢电源合闸按钮,点击“增加电压”按钮将电枢电压从零逐渐升高,观察“LDSP转矩/转速表”上的直流电机转速显示值,通过调节电枢电压的大小使电机的转速逐渐上升至其额定转速(约1500r/min)。启动电机时注意使电机的转向应与标定转向相同。 如果希望改变他励直流电动机的转向,只须改变电动机的电磁转矩方向,同学们自拟改变转向的方法。 2.额定工作点求取和测取他励电动机工作特性与机械特性 实验步骤: (1)实验接线参考图1-1,启动直流电动机步骤参考实验1。 (2)按下实验台同步电机励磁电源合闸按钮,点击“增加电压”按钮将同步发电机端电压逐渐升高,因为发电机以灯泡作负载,实验时其线电压不要超过额定电压380V。 (3)合上实验台交流接触器接通发电机负荷箱回路,依次将实验负荷箱上KM1~KM7按钮按下;注意每投入一组负载,需要同时调节直流电动机的电枢电压或励磁电流以便保持电动机转速为额定转速。同样,由于负荷的变化,同步发电机机端电压也会发生变化,需要随时调节同步发电机励磁电流,以保证机端电压基本不变。直流电动机的负载为同步发电机,改变同步发电机的输出功率,即可改变电动机的负载大小,电动机负载变化影响转速变化,因此需要相

三相异步电动机的起动与调速实验报告

实验五三相异步电动机的起动与调速 一.实验目的 通过实验掌握异步电动机的起动和调速的方法。 二.预习要点 1.复习异步电动机有哪些起动方法和起动技术指标。 2.复习异步电动机的调速方法。 三.实验项目 1.异步电动机的直接起动。 2.异步电动机星形——三角形(Y-△)换接起动。 3.绕线式异步电动机转子绕组串入可变电阻器起动。 4.绕线式异步电动机转子绕组串入可变电阻器调速。 四.实验设备及仪器 1.SMEL 电力电子及电气传动教学实验台主控制屏。 2.电机导轨及测功机、转矩转速测量(NMEL-13F )。 3.电机起动箱(NMEL-09)。 5.鼠笼式异步电动机(M04)。 6.绕线式异步电动机(M09)。 7.开关板(NMEL-0B5)。 五.实验方法 1.三相笼型异步电动机直接起动试验。 按图5-1接线,电机绕组为△接法。 起动前,把转矩转速测量实验箱(NMEL-13F ) 中“转矩设定”电位器旋钮逆时针调到底,“转速控 制”、“转矩控制”选择“转矩控制”,检查电机导轨 和NMEL-13F 的连接是否良好。 a .把三相交流电源调节旋钮逆时针调到底,合 上绿色“闭合”按钮开关。调节调压器,使输出电 压达电机额定电压220伏,使电机起动旋转。(电机 起动后,观察NMEL-13F 中的转速表,如出现电机转向不符合要求,则须切断电源,调整次序,再重新起动电机。) 图5-1 异步电动机直接启动接线图

b .断开三相交流电源,待电动机完全停止旋转后,接通三相交流电源,使电机全压起动,观察电机起动瞬间电流值,读取电压值U K 、电流值I K 、转矩值T K ,填入表5-1中。 U N :电机额定电压,V ; 表5-1 图5-3 绕线式异步电动机转子绕组串电阻启动接线图 2.星形——三角形(Y-△)起动 按图5-2接线,电压表、电流表的选择 同前,开关S 选用MEL-05。 a .起动前,把三相调压器退到零位, 三刀双掷开关合向右边(Y )接法。合上电 源开关,逐渐调节调压器,使输出电压升高 至电机额定电压U N =220V ,断开电源开关, 待电机停转。 b .待电机完全停转后,合上电源开关, 观察起动瞬间的电流,然后把S 合向左边(△ 接法),电机进入正常运行,整个起动过程结束,观察起动瞬间电流表的显示值以与其它起动方法作定性比较。 3.绕线式异步电动机绕组串入可变 电阻器调速 实验线路如图5-3,电机定子绕组Y 形 接法。转子串入的电阻由刷形开关来调节, 调节电阻采用NMEL-09的绕线电机起动电 阻(分0,2,5,15,∞五档) 实验线路同前。NMEL-13F 中“转矩控 制”和“转速控制”选择开关扳向“转矩控 制”,“转矩设定”电位器逆时针到底MEL-09 “绕线电机起动电阻”调节到零。 a .合上电源开关,调节调压器输出电压至U N =220伏,使电机空载起动。 b .调节“转矩设定”电位器调节旋钮,使电动机输出功率接近额定功率并保持输出转矩T 2不变,改变转子附加电阻,分别测出对应的转速,记录于表5-2中。 图5-2 异步电动机星-三角启动 图5-3 绕线式异步电动机转子串电阻起动

控制步进电机调速系统实验报告

华北科技学院计算机系综合性实验 实验报告 课程名称微机原理及应用 实验学期 2011 至 2012 学年第二学期学生所在系部电子信息工程学院 年级 2009 专业班级 学生姓名学号 任课教师 实验成绩 计算机系制

《微机原理及应用》课程综合性实验报告 开课实验室:计算机接口实验室2012年5月29日 实验题目微机控制步进电机调速系统 一、实验目的 1、了解计算机控制步进电机原理 2、掌握步进电机正转反转设置方法 3、掌握步进电机调速工作原理及程序控制原理 二、设备与环境 TPC-2003A 微机。 Vc++编译器。 三、实验内容 硬件接线图参考实验指导书。 软件编程在TPC-2003A自带的VC++编译环境下使用。 在通用VC++下编程,需要拷贝相关的库文件。 用汇编语言编写控制程序需注明原理。 四、实验结果及分析 1、实验步骤 1、按如下实验原理图连接线路,利用8255输出脉冲序列,开关K0~K6控制步进电机转速,K7控制步进电机转向。8255 CS接288H~28FH。PC0~PC3接BA~BD;PA口接逻辑电平开关。 2、编程:当K0~K6中某一开关为“1”(向上拨)时步进电机启动。K7向上拨电机正转,向下拨电机反转。 实验原理图

2.实验结果 按照实验步骤连接实验电路,检查无误后运行程序。可以看到,当开关k0到k6依次为高电平时,电机转速越来越慢,k0闭合时速度最快,k6闭合时速度最慢,当k0到k6的低位有闭合时,步进电机按最低位的转速运行,因为程序中的查询方式是从k0-k6,即在程序的优先级别中k0的级别是最高的而k7的优先级别是最低的。k7控制电机的正转与反转。 3.实验分析 (1)步进电机的工作原理: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点,使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 步进电机驱动原理是通过对每相线圈中的电流的顺序切换来使电机作步进式旋转。驱动 电路由脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速。 如图(b)所示:本实验使用的步进电机用直流+5V 电压,每相电流为0.16A,电机线圈 由四相组成:即: φ1(BA) φ2(BB) Φ3(BC) Φ4(BD) 驱动方式为二相激磁方式,各线圈通电顺序如下表所示。图(b) 表中首先向φ1 线圈-φ2 线圈输入驱动电流,接着φ2-φ3,φ3-φ4,φ4-φ1,又返回到φ1-φ2,按这种顺序切换,电机轴按顺时针方向旋转。 实验可通过不同长度的延时来得到不同频率的步进电机输入脉冲,从而得到多种步进速度。

步进电机实验报告剖析

北华航天工业学院 课程设计报告(论文) 课程名称:微机控制技术课程设计 设计课题:步进电机的控制系统 专业班级: 学生姓名: 指导教师: 设计时间:2013年06月11日

北华航天工业学院电子工程系 微机控制技术课程设计任务书 姓名:专业:班级: 指导教师:职称:教授时间:2013.6.11 课程设计题目:步进电机的控制系统 设计步进电机单片机控制系统,其功能如下: 1.具有对步进电机的启停、正反转、加减速控制; 2.控制按钮分别为正转、反转、加速、减速、以及停止键; 3.能够通过三位LED数码管(或液晶显示器)显示当前的转动速度,并且由两只不同颜色的发光二极管分别指示正转和反转,因此可以清楚的显示当前转动方向和转速; 4.要求每组选择的步进电机控制字不同; 5.用单片机做控制微机; 应用软件:keil protues 成果验收形式: 1.课程设计的仿真结果 2.课程设计的报告书 参考文献: 【1】张家生. 电机原理与拖动基础【M】. 北京:北京邮电大学出版社,2006. 【2】马淑华,王凤文,张美金. 单片机原理与接口技术【M】.北京:北京邮电大学出版社,2007. 【3】顾德英,张健,马淑华.计算机控制技术【M】. 北京:北京邮电大学出版社,2006. 【4】张靖武,周灵彬. 单片机系统的PROTEUS设计与仿真【M】. 北京:电子工业出版社,2007 第16周 时间 安排 指导教师教研室主任: 2013年06 月11日

内容摘要 步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。 关键词:步进电机单片机数码管显示

步进电机实验报告

Arduino步进电机实验报告 步进电机是将电信号转变为或的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。在非超载的情况下,的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制来控制电机转动的和,从而达到调速的目的。 实验目的: (1)了解步进电动机工作原理。 (2)熟悉步进电机驱动器使用方法。 (3)掌握步进电动机转向控制编程。 实验要求: (1)简要说明步进电动机工作原理。 (2)熟记步进电机驱动器的使用方法。 (3)完成步进电动机转速转向控制编程与实现。 (4)提交经调试通过的程序一份并附实验报告一份。 实验准备: 1. ArduinoUNOR3开发板 Arduino是一块基于开放原始代码的Simplei/o平台,并且具有开发语言和开发环境都很简单、易理解的特点。让您可以快速使用Arduino做出有趣的东西。它是一个能够用来感应和控制现实物理世界的一套工具。它由一个基于单片机并且开放源码的硬件平台,和一套为Arduino板编写程序的开发环境组成。Arduino可以用来开发交互产品,比如它可以读取大量的开关和传感器信号,并且可以控制各式各样的电灯、电机和其他物理设备。Arduino项目可以是单独的,也可以在运行时和你电脑中运行的程序(例如:Flash,Processing,MaxMSP)进行通讯。 2. ULN2003芯片 ULN2003 是高耐压、大电流复合晶体管阵列,由七个硅NPN 复合晶体管组成。可以

三相鼠笼式异步电动机实验报告

三相鼠笼式异步电动机实验报告 实验名称:三相鼠笼异步电动机实验 实验目的:1.掌握三相异步电机的负载试验的方法。 2.用直接负载法测取三相鼠笼异步电动机的工作特性。 3.测定三相鼠笼型异步电动机的参数 实验项目:1.掌握三相异步电机的负载试验的方法。 2.用直接负载法测取三相鼠笼异步电动机的工作特性。 3.测定三相鼠笼型异步电动机的参数 (一)填写实验设备表 序号名称型号和规格用途 1 电机教学实验台NMEL-II 提供电源,固定 电机

2 三相笼型异步电动机M04 实验所需电机 3 电机导轨及测功机实验所需电机 4 转矩、转速测量及控制平台NMEL-13 测量和调节转矩 5 交流表NMEL-001 提供实验所需电压 表,电流表功率表以 及功率因数表 6 三相可调电阻器NMEL-03 改变输出电流 7 直流电压、毫安、安培表NMEL-06 测量直流电压,电流 8 直流电机仪表电源NMEL-1 提供电压 9 旋转指示灯及开关NMEL05 通断电路 (二)测量定子绕组的冷态直流电阻 填写实验数据表格 表3-1 室温25 ℃绕组I 绕组Ⅱ绕组ⅢI(mA)50 40 30 50 40 30 50 40 30 U(V) 2.35 1.89 1.41 2.35 1.88 1.41 2.36 1.89 1.41 R(Ω)160 120 80 160 120 80 160 120 80 (三)测取三相异步电动机的运行特性 填写实验数据表格 表3-2 N U=220V() 序号 I OL(A)P O(W) T2 (N. m) n (r/ min) P2(W)I A I B I C I1P I P II P1

PID控制电机实验报告范本

Record the situation and lessons learned, find out the existing problems and form future countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ PID控制电机实验报告

编号:FS-DY-20618 PID控制电机实验报告 摘要 以电机控制平台为对象,利用51单片机和变频器,控制电机精确的定位和正反转运动,克服了常见的因高速而丢步和堵转的现象。电机实现闭环控制的基本方法是将电机工作于启动停止区,通过改变参考脉冲的频率来调节电机的运行速度和电机的闭环控制系统由速度环和位置环构成。通过PID调节实现稳态精度和动态性能较好的闭环系统。 关键词:变频器PID调节闭环控制 一、实验目的和任务 通过这次课程设计,目的在于掌握如何用DSP控制变频器,再通 过变频器控制异步电动机实现速度的闭环控制。为实现闭环控制,我们需完成相应的任务: 1、通过变频器控制电机的五段调速。

2、通过示波器输出电机速度变化的梯形运行图与s形运行图。 3、通过单片机实现电机转速的开环控制。 4、通过单片机实现电机的闭环控制。 二、实验设备介绍 装有ccs4.2软件的个人计算机,含有ADC模块的51单片机开发板一套,变频器一个,导线若干条。 三、硬件电路 1.变频器的简介 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,变频器还有很多的保护功能。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。 2.变频器的使用 变频器事物图变频器原理图

大工《电机与拖动实验》实验报告

大工《电机与拖动实验》实验报告 机与拖动实验报告学习中心: 奥鹏学习中心层次: 专业: 电气工程及其自动化学号: 学生: 完成日期: 年月日实验报告一实验名称: 单项变压器实验实验目的: 1、通过空载和短路实验测定变压器的变比和参数。 2、通过负载实验测取变压器的运行特性。 实验项目: 1、空载实验测取空载特性Uo=F(uo), P=F(uo) 2、短路实验测取短路特性Yk=F(Ik), PK=F(I) 3、负载实验保持UI =U1u1,cosφ2=1的条件下,测取U2=F (I2) (一)填写实验设备表名称型号和规格用途使用注意事项电机教学实验台NMEL-II为实验室提供电源和固定电机使用前调节输出电压为0 三相组式变压器实验所需变压器短路实验时操作要快,以免线路过热三相可调电阻器NMEL-03改变输出电流大小注意量程运用功率表、功率因数表NMEL-20测量功率及功率因素不

得超过量程,线不能接错交流电压表、电流表MEL-001C测量交流电压和交流电流值适当选择量程且注意正反接线旋转指示灯及开关板NMEL-05通断电电路连完后闭合、拆电路前断开(二)空载实验 1、填写空载实验数据表格表1-1序号实验数据计算数据U1U1。1U211 19、 70、13 31、942 24、 40、12211 30、 50、08 91、622 12、 70、163109、 90、00 71、48206、 30、174105、 20、06 61、311 96、

90、195 99、0 70、05 71、141 85、 80、206 86、0 80、04 30、841 61、 30、237 74、7 90、03 50、631 39、 60、2 42、根据上面所得数据计算得到铁损耗、励磁电阻、励磁电抗、电压比表1-2序号实验数据计算数据U1U1。1U211 19、 30、13 11、932 24、

电机学实验报告

电机学实验报告 学院:核技术及其自动化工程专业:电气工程及其自动化 教师:黄洪全 姓名:许新 学号:200706050209

实验一异步电机的M-S曲线测绘 一.实验目的 用本电机教学实验台的测功机转速闭环功能测绘各种异步电机的转矩~转差曲线,并加以比较。 二.预习要点 1.复习电机M-S特性曲线。 2.M-S特性的测试方法。 三.实验项目 1.鼠笼式异步电机的M-S曲线测绘测。 2.绕线式异步电动机的M-S曲线测绘。 >T m, (n=0) 当负载功率转矩 当S≥S m 过读取不同转速下的转矩,可描绘出不同电机的M-S曲线。

四.实验设备 1.MEL 系列电机系统教学实验台主控制屏。 2.电机导轨及测功机、转矩转速测量(MEL-13、MEL-14)。 3.电机起动箱(MEL-09)。 4.三相鼠笼式异步电动机M04。 5.三相绕线式异步电动机M09。 五.实验方法 1 被试电动机M04法。 G 功机,与按图线,实验步骤: (1)按下绿色“闭合”按钮开关,调节交流电源输出调节旋钮,使电压输出为220V ,起动交流电机。观察电机的旋转方向,是之符合要求。 (2)逆时针缓慢调节“转速设定”电位器经过一段时间的延时后,M04电机的负载将随之增加,其转速下降,继续调节该电位器旋钮电机由空载逐渐下降到200转/分左右(注意:转速低于200转/分时,有可能造成电机转速不稳定。) (3)在空载转速至200转/分范围内,测取8-9组数据,其中在最大转矩附近多测几点,填入表5-9。

(4)当电机转速下降到200转/分时,顺时针回调“转速设定”旋钮,转速开始上升,直到升到空载转速为止,在这范围内,读出8-9组异步电机的转矩T,转速n,填入表5-10。 2.绕线式异步电动机的M-S曲线测绘

PWM电机调速实验报告

PWM电机调速 ——课程实验报告 题目:PWM点机调速 专业:应用电子技术 班级:应用电子技术(五)班 学号:0906020129 姓名:刘* 日期:2011-10-18 指导老师:陈*

目录 1设计的目的及任务 (1) 1.1课程设计目的 (1) 1.2课程设计任务 (1) 1.3课程设计要求 (1) 2 各部分电路设计 (2) 2.1总电路图 (2) 2.2锯齿波振荡电路 (2) 2.3锯齿波转方波电路 (2) 2.4输出放大级 (3) 3 各部分电路调试结果 (4) 3.1 R5、R6均不变时各级输出波形及数据 (4) 3.2 R6(103)电阻减小时各级输出波形及数据 (5) 3.3 R6(103)电阻上升时各级输出波形及数据 (6) 3-4 R5(203)电阻下降各个输出的波形及数据 (7) 3.5 R5(203)电阻上升各个输出的波形及数据 (8) 4 电路的安装与调试 (9) 4.1 安装调试步骤 (9) 4.2 安装调试中遇到的问题及解决办法 (9) 5 实验总结 (10) 6 参考文献 (10) 附件1 (11) 附件2 (12)

1 设计的目的及任务 1.1课程设计目的 1.学会用LM339及场效管设计一个电机调速电路。 2.知道如何调整电路利用其占空比调速。 3.熟练PCB制板等。 1.2课程设计任务 设计由LM339,场效管组合而成的pwm电机调速电路,并调节电路使电路达到最佳。 1.3课程设计要求 1.掌握脉宽调制PWM控制模式 2.进一步掌握制版、电路调试等技能。 3.要求用protel按照器件标准画出原理图。

2 各部分电路设计 2.1总电路图 图2-1 pwm电机调速总电路图 2.2锯齿波振荡电路 如图2-2所示R5、C1及运放组成锯齿波产生电路,通 过调节R5可调节锯齿波产生的时间常数(t=R5*C1),锯齿 波通过1脚输出。 (图2-2) 2.3锯齿波转方波电路 如图2-3所示反相端输入由前级产生的锯齿波信号,通 过与同向输入端的直流信号进行比较,通过调节R7调节占 空比,调整输出信号大小。

相关主题
文本预览
相关文档 最新文档