当前位置:文档之家› 量子力学教程(很多老师用过)(免费)

量子力学教程(很多老师用过)(免费)

量子力学教程(很多老师用过)(免费)
量子力学教程(很多老师用过)(免费)

量子力学教案

主讲周宙安

《量子力学》课程主要教材及参考书

1、教材:

周世勋,《量子力学教程》,高教出版社,1979

2、主要参考书:

[1] 钱伯初,《量子力学》,电子工业出版社,1993

[2] 曾谨言,《量子力学》卷I,第三版,科学出版社,2000

[3] 曾谨言,《量子力学导论》,科学出版社,2003

[4] 钱伯初,《量子力学基本原理及计算方法》,甘肃人民出版社,1984

[5] 咯兴林,《高等量子力学》,高教出版社,1999

[6] L. I.希夫,《量子力学》,人民教育出版社

[7] 钱伯初、曾谨言,《量子力学习题精选与剖析》,上、下册,第二版,科学出版社,1999

[8] 曾谨言、钱伯初,《量子力学专题分析(上)》,高教出版社,1990

[9] 曾谨言,《量子力学专题分析(下)》,高教出版社,1999

[10] P.A.M.Dirac,The Principles of Quantum Mechanics (4th edition), Oxford University Press (Clarendon),Oxford,England,1958;(《量子力学原理》,科学出版社中译本,1979)

[11]https://www.doczj.com/doc/b412967098.html,ndau and E.M.Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (2nd edition),Addison-Wesley,Reading,Mass,1965;(《非相对论量子力学》,人民教育出版社中译本,1980)

第一章绪论

量子力学的研究对象:

量子力学是研究微观粒子运动规律的一种基本理论。它是上个世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它不仅在进到物理学中占有及其重要的位置,而且还被广泛地应用到化学、电子学、计算机、天体物理等其他资料。

§1.1经典物理学的困难

一、经典物理学是“最终理论”吗?

十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段。那时,一般物理现象都可以从相应的理论中得到说明:

机械运动(v<

电磁现象←麦克斯韦方程→光现象(光的波动)

热现象←热力学、统计物理学(玻耳兹曼、吉布斯等建立)

有人认为:物理现象的基本规律已经被揭穿,剩下工作只是应用和具体的计算。

这显然是错误的,因为“绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们在各个一定发展阶段上的具体认识只具有相对的真理性”。

二、经典物理学的困难

由于生产力的巨大发展,对科学实验不断提出新的要求,促使科学实验从一个发展阶段进入到另一个发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象无法用经典理论解释。

1.黑体辐射问题

2.光电效应问题

3.原子的线状光谱和原子结构问题

4.固体在低温下的比热问题

三、量子力学的两个发展阶段

1.旧量子论(1900-1924)

以普朗克、爱因斯坦、玻尔为代表 2. 量子论(1924年建立)

以德布罗意、薛定谔、玻恩、海森堡、狄拉克为代表

四、学习上应注意的几点: 1. 牢记实验是检验真理的标准 2. 冲破经典理论的束缚 3. 建立创造性思维方法

4. 正确认识微观现象的基本特征

§1.2光的波粒二象性

1.光的波动性

最典型的实验是1802年的杨氏干涉实验和后来的单缝、双缝衍射实验。 相干条件:λδk = (k=0,1± ,2±,……)加强

2

)12(λ

δ+=k 相消

或位相差 =

λ

πδ

2=2k π 加强

=(2k+1)π 减弱

2.黑体辐射

热辐射同光辐射本质一样,都是电磁波对外来的辐射物体有反射和吸收的作用,如果一个物体能全部吸收投射到它上面的辐射而无反射,这种物体为绝对黑体(简称黑体),它是一种理想化模型。例如:一个用不透明材料制成的开小口的空腔,可以看作是黑体,其开口可以看成是黑体的表面,因为入射到小孔上的外来辐射,在腔内经多次反射后几乎被完全吸收,当腔壁单位面积在任意时间内所发射的辐射能量与它所吸收的辐射能相等时,空腔与辐射达到平衡,研究平衡时腔内辐射能流密度按波长的分布(或频率的分布)是19世纪末人们注意的基本问题。

1)实验表明:当腔壁与空腔内部的辐射在某一绝对温度T 下达到平衡时,单位面积上发出的辐射能与吸收的辐射能相等,频率ν到dv 之间的辐射能量密度ννρd )(只与ν和T 有关,与空腔的形状及本身的性质无关。即

ννννρd T F d ),()(=

其中ννd T F ),(表示对任何黑体都适用的某一普通函数。当时不能写出它的具体解析表达式,只能画出它的实验曲线。见5P 图2 2)维恩(Wien )公式

维恩在做了一些特殊的假设之后,曾用热力学的方法,导出了下面的公式:

νννρd c d e

v

c T

v

23

1)(-

=

其中c 1,c 2为常数,将维恩公式与实验结果比较,发现两者在高频(短波)区域虽然符合,但在低频区域都相差很大。 3)瑞利-琼斯(Rglaigh-Jeans )公式

瑞利-琼斯根据电动力学和统计物理也推出了黑体辐射公式: νπννρν

kTd d c

3

2

8)(=

其中k 是玻耳兹曼常数(10

23

38.1-?=κJ/K ),这个公式恰恰与维恩公式相

反,在低频区与实验符合,在高频区不符,且发散。 因为: ∞→=

=??∞

νπκννρμν

d T

d c

2

3

08)(

当时称这种情况为“紫外光灾难”。

由于经典理论在解释黑体辐射问题上的失败,便开始动摇了人们对经典物理学的迷信。

4)普朗克(Planck,1900)公式

1900年,普朗克在前人的基础上,进一步分析实验数据,得到了一个很好的经验公式:

νπνρν

ν

d h d e

c

kT

h v 1

1

·83

3

-=

式中h 称为普朗克常数, S J h ??=-3410626.6

在推导时,普朗克作了如下假定:黑体是由带电的谐振子组成,对于频率为ν的谐振子,其能量只能是νh 的整数倍,即:

νnh E n =

当振子的状态变化时,只能以νh 为单位发射或吸收能量。能量νεh =成为能量子,这就是普朗克能量子假设,它突破了经典物理关于能量连续性概念,开创了量子物理的新纪元。

3. 光电效应

在光的作用下,电子从金属表面逸出的现象,称为光电效应。自1887年Hertz 起,到1904年Milikan 为止,光电效应的实验规律被逐步揭露出来。其中,无法为经典物理学所解释的有:

(1)对一定的金属,照射光存在一个临界频率0v ,低于此频率时,不发生光电效应。(不论光照多么强,被照射的金属都不发射电子)

(2)光电子的动能与照射光的频率成正比(ν∝k E ),而与光的强度无关。 (3)光电效应是瞬时效应(s 910-≈)

爱因斯坦的光量子假设:

光就是光子流,在频率为ν的光子流中,每一光子的能量都是νh 。(这样就可解释光电效应),由此得到爱因斯坦方程:

02

2

1w h v m -=νμ

光子的动量:

2

2

2

01c v c E -

=

μ 对于光子c v =,00=∴μ

又 因为:2222

02p c c E +=μ (相对论中能量与动量的关系) 所以:cp E = 而 ων ==h E 所以: λ

νh c h c E p ===

或 k n h n c h p

===λ

ν 其中n

表示该光子运动方向的单位矢量,πνω2=,n n c λ

ππνκ22==成为波矢。上式把光的两重性质——波动性和粒子性有机地联系了起来。 4.康普顿效应(略)

本节结论:光具有波粒两象性。

课外作业:(1)推导普朗克黑体辐射公式 (2)设计光电效应实验原理图

§1.3原子结构的玻尔理论

经典理论在原子结构问题上也遇到不可克服的困难。 玻尔理论的两个基本假设: (1)量子条件:π

?2h

n mvr p == (且存在定态) (2)频率条件:h E E m n -=

ν,有(1)、(2)可得)11(~2

22n m RZ -=ν 量子化通则:?=nh pdq n=1,2,3……

玻尔理论不能解释多电子原子和谱线的强度。玻尔理论是半经典半量子的理论。

§1.4微粒的波粒二象性

一、德布罗意假设

德布罗意仔细分析了光的波动说及粒子说发展的历史,并注意到了十九世纪哈密顿曾经阐述的几何光学与经典粒子力学的相似性[集合光学的三条基本原

理,可以概括为费米原理——亦即最小光程原理,0=?B

A

ndl δ,n 为折射系数,

经典粒子的莫培督(Maupertius )原理,亦即最小作用原理:

0)(2=-=??dl V E m pdl B

A

B

A

δδ,p 为粒子的动量],通过用类比的方法分析,使他

认识到了过去光学理论的缺陷是只考虑光的波动性,忽视了光的粒子性。现在在关于实物粒子的理论上是否犯了相反的错误,即人们只重视了粒子,而忽视了它的波动性了呢?运用这一观点,德布罗意于1924年提出了一个具有深远意义的假设:微观粒子也具有波粒二象性。

具有确定动量和确定能量的自由粒子,相当于频率为ν或波长为λ的平面波,二者之间的关系如同光子与光波一样,即:

ων ==h E (1)

κλ

==

n h p (2)

这就是著名的德布罗意关系式,这种表示自由粒子的平面波称为德布罗意波或“物质波”。

设自由粒子的动能为E ,当它的速度远小于光速时,其动能μ22P E =,由(2)

式可知,德布罗意波长为:

E

h p

h μλ2==

(3)

如果电子被V 伏电势差加速,则ev E =电子伏特,则: 0

25.122A V

eV

h ?

=

μλ (μ为电子质量)

当V=150伏特时,0

1A =λ,当V=10000伏时,0

122.0A =λ,所以,德布罗意波长在数量级上相当于晶体中的原子间距,它宏观线度要短得多,这说明为什么电子的波动性长期未被发现,若把电子改成其他实物粒子,情况是怎样的?

二、平面波方程

频率为ν,波长为λ,沿x 方向传播的平面波可用下面的式子来表示:

)](

2cos[t x

A νλ

π-=ψ

如果玻沿单位矢量n

的方向传播,则:

)cos()](2cos[t r A t n r A ωκνλ

π-?=-?=ψ

写成复数的形式:

)(exp t r k i A ω-?=ψ

或 ??

?

???-?=ψ)(e x p Et r p i A (量子力学中必须用复数形式) 这种波(自由粒子的平面波)称为德布罗意波。

三、德布罗意波的实验验证

德布罗意波究竟是一种什么程度的波呢?德布罗意坚信,物质波产生于任何物体的运动,这里所说的任何物体,包括大到行星、石头,小到灰尘或电子。这

些物质和物质波一样,能在真空中传播,因此它不是机械波;另一方面,它们都产生于所有物体——包括不带电的物体,所以它们不同于电磁波。这是一种新型的尚未被人们认识的波,就是这种波构成了量子力学的基础。 1. 电子的衍射实验

1927年美国科学家戴维孙(Davisson )和革末(Germer )用实验证实了德布罗意波的正确性。(注:介绍其发现过程、光强等),后来,汤姆逊又用电子通过金箔得到了电子的衍射图样。 2. 电子的干涉实验

它是由缪江希太特和杜开尔在1954年作出。后来又由法盖特和费尔特在1956年做出。

3. 其他实验表面:一切微观粒子都具有波粒二象性

4. 物质波的应用

电子显微镜 (α

λ

sin 61.0=d 分辨率的普遍表达式) 作业:p

16

,1.2,1.3,1.5

第二章波函数的薛定谔方程

§2.1波函数的统计解释

一、经典力学对质点的描述(坐标和动量) 规律:),,()

(2

2

t r

r F d t r m t

d

= 二、自由粒子的波函数(德布罗意假设)

ων ==h E

κλ

==n h p

??

?

???-?=ψ)(exp Et r p i A

问:ψ的物理意义?

错误的解释:(1)波是由它所描写的粒子组成,即它是一种疏密波。

(2)粒子是由波组成,一个粒子就是一个经典的波动。

三、波函数的统计解释

Born 首先提出了波函数意义的统计解释:

波函数在空间某点的强度(振幅绝对值的平方)和在这点找到粒子的几率成比例,即描写粒子的波可以认为是几率波。

分析:电子的衍射实验,见书18页

量子力学的一个基本原理:微观粒子的运动状态可用一个波函数),(t r

ψ来描写。

四、波函数的性质

1. τφd t z y x c t z y x dw 2

),,,(),,,(=

表示:在t 时刻,在r 点,在d τ = dxdy dz 体积内,找到由波函数Ψ(r,t)描写的粒子的几率2.几率密度:2

)

,,,(),,,(φτ

ωc d t z y x dw t z y x ==

3.粒子在全空间出现的几率(归一化):

12

=?+∞

-τφd c 则:?∞

=

τ

φ

d c 2

1

4.ψ?ψc ,描写的是同一态

5. 归一化波函数 令: φc =ψ

τd dw 2

ψ=

2

ψ=ω

12

=ψ?

τd 为归一化条件

满足上式的波函数称为归一化波函数,使φ变为?的常数称为c 称为归一化常数。 注意:

1).波函数在归一化后也还不是完全确定的,还存在一个相因子?i e 的不确定。因为:12

=e

i ?

2).不是所有的波函数都可按上述归一化条件求一化,即要求τd 2

?∞

ψ为

有限(平方可积的),如果是发散的,则无意义。

例如:自由粒子的波函数e Et r p i p A t r )

(),(-?=ψ

1222

=∞?==ψ??A d A d p ττ 0→A

注意:波函数是时间位置的函数,即),,,(),,,(),,,(t z y x iv t z y x u t z y x +=ψ 例题:曾书第13页

§2.2态迭加原理

回顾:(1)在量子力学中用波函数描写微观粒子的量子状态

(2)波函数的统计解释:当ψ确定时,粒子的力学量取各种可能值的几率确定。

一、经典波的态迭加原理

两个可能的波动过程21,φφ的线形迭加的结果21φφb a +也是一个可能的波动过程。

二、态迭加原理

以粒子的双狭缝实验为例,见书第14页,图6

如果21,ψψ是体系的可能状态,那么,它们的线形迭加2211ψψc c +=ψ也是这个体系的可能状态

三、两种迭加原理的区别

1.在状态2211ψψc c +=ψ中,对某力学量Q 进行测量,测到Q 值可能是1λ,也可能是2λ,但绝对不会是其他的值(和抛硬币的情形差不多)。

2.若21ψψ=,则()

121ψc c +=ψ,这时ψ与1ψ是同一态,这与经典波的迭加不同

3.当粒子处于态1ψ和态2ψ的线形迭加态时,粒子是既处于态1ψ,又处于态2ψ,例如抛正六面体的塞子。

四、态迭加原理的一般表达式

∑=n

n n c ψψ,21,c c ……为复数

物理意义:书第23页,学生回答。

五、态迭加原理的一个实例(电子在晶体表面衍射实验中的情形)2523-P 。同学们自学,并看一看数理方法中的傅立叶变换。下次课解答疑问。

以一个确定的动量p

运动的电子状态的波函数

()()r p Et i

p Ae t r

·,--=ψ (1)

由态迭加原理,在晶体表面上反射后,粒子的状态ψ可以表示为p

取多种可能值

的平面波的线性迭加:

()()()∑=p

p t r p c t r ,,

ψψ

(2) 由于p

可以连续变化,求和改为积分:

()()()???∞

=z y x p dp dp dp r t p c t r

ψψ,, (3)

式中

()()

r p i p e

r

·2

3

21

πψ≡

(4)

()()

()???∞

-=

z y x r p i dp dp dp e t r t p c

·2

3

,21

,ψπ (5) 把(4)式代入(3)式得:

()()

()???∞

=

z y x r p i dp dp dp e t p c t r

·2

3

,21

,πψ (6) 显然(5)、(6)两式互为傅立叶变换式,且),(t p c 与),(t p

ψ描写的是一个状态。是同一个状态的两种不同的描写方式。),(t r

ψ是以坐标为自变量的波函数。),(t p c

则是以动量为自变量的波函数。

§2.3 薛定谔方程

简述经典力学中质点的状态及运动方程

类似地,详见曾书18P ,微观粒子状态的变化规律也应该遵循某一方程。

一、薛定谔方程应该满足的条件

1、方程应当是),(t r

ψ对时间的一阶微分方程 这是由波函数),(t r

ψ完全描写的基本假设所决定。

2、方程是线性的(只包含一次项)

即如果1ψ和2ψ是方程的解,那么它们的线性迭加2211ψψc c +也是方程的解,这是态迭加原理的要求。

3、这个方程的系数不应该包含状态的参量。如动量、能量等。但可含有()r U

,因为()r U

由外场决定,不是粒子的状态参量。

二、自由粒子波函数所满足的微分方程

∵ ()()Et r p i p Ae t r -=

·,ψ (1)

将上式两边对时间t 求一次偏导,得:

()p Et r p i p

E i EAe i t ψψ

-=-=??-· 或 p p E t

i ψψ=??

(2)

∵上式还包含状态参量——能量E ,故不是我们所要求的方程。 将(1)式两边对x 求二次偏导,得到:

()()()

p x Et zp yp xp i

x Et zp yp xp i

Et r p i p

p i

Ae p i

Ae x Ae x x z y x z y x ψψ

=

=????????=??

??????=??-++-++-·

p x p x P p p i x ψψψ2

2

2

22 -=??

?

??=?? 同理: p y P

p y ψψ22

22

-=?? p z

P p z ψψ2

2

22

-=?? 上三式相加得: p p p z y x ψψ222

2

2222 -=???

? ?

???+??+?? (3) 令 22

22222

z y x ??+??+??≡? ——Laplace 算符

则(3)式简化为:

p p p ψψ22

2

-=? (4)

对自由粒子: E p p E E K μμ2222

=?

=

=

(5) 将(5)代入(4)得:

p p E ψψμ=?-2

22

(6) 比较(2)、(6)两式得:

p p

t i ψμψ222?-=?? (7)

显然它满足前面所述条件。

三、薛定谔方程 1、能量算符和动量算符 由(2)式 p p E t

i ψψ=??

可看出E 与t

i ??

对波函数的作用相当: t

i E ??

(能量算符) (8) 将(4)式改写成:

()()()ψψ?-?-=

i i p p ··

由此知 ?-→

i p (动量算符) (9)

z

k y j x i ??+??+??≡? (劈行算符)

问:?=x p (x

i p x ??

-= ) 2、薛定谔方程

现在利用关系式(8)、(9)来建立在立场中粒子波函数所满足的微分方程。设粒子在力场中的势能为()r U ,则:

()r U p E +=μ22 (10)

上式两边乘以波函数()t r ,

ψ得:

()ψψμψr U p E +=22

将(8)、(9)式代入得:

()ψψμψr U t i +?-=??222

(11) 这个方程为薛定谔方程。(()t r U U ,

=)

注:上面我们只是建立了薛定谔方程,而不是推导,建立的方式有多种。薛定谔方程的正确与否靠实验检验。 3、关于薛定谔方程(详见曾书2119-P )

四、多粒子体系的薛定谔方程

∵ ()N n

I i

i r r r U p E

?+=∑=,,22112

μ

上式两边乘以波函数()t r r r N ,,,21

?ψ并做代换

t

i E ??→

i i i p ?-→

; 其中 i

i i i z k

y j x i ??+??

+??=? 则有: ψψμψU t i i N

i i

+?-=??∑=2

122

上式就是多粒子体系的薛定谔方程。

§2.4粒子流密度和粒子数守恒定律

一、几率随时间的变化

几率: 2|),(|),(),(),(t r t r t r t r

ψ=ψψ=*ω (1) 则:

ψψψψωt

t t ?*

?+??*=?? (2)

Sch-eq : ()ψ+?-=ψ??]2[2

2r U t i μ

()ψψμψr U i i t

122+?=?? (3)及 ()*

**ψ-ψ?-=?ψ?r U i i t 122μ

(4) (3)、(4)代入(2)式有:

()

**222ψψψψμ

ω?-?=?? i t ()**·2ψψψψμ

?-??=

i (5) 令: ][2ψ?ψ-ψ?ψ=**μ

i J (6) 则(5)式可写成:

0·=?+??J t

ω

(7) 这方程具有连续性方程的形式

为了说明(7)式和矢量J

的意义,下面考察(7)式对空间任意的一个体积

V 的积分:

ττωτωd J d t d t v v

v ????-=??

=?? ·

由高斯定理:??=?s

v

s d A d A ··

τ 可得到: ds J s d J d t s

n v ???-=-=?? ·τ?

(8) 面积分是对包围体积V 的封闭面S 进行的,(8)式左边表示单位时间内体积

V 中几率的增加,右边是矢量J

在体积V 的边界S 上法向分量的面积分,因而很自然的可以把J 解释为几率流密度矢量。n J

表示单位时间内流过S 面上单位体积的几率。(8)式也说明单位时间内体积V 中增加的几率,等于从体积V 的边界S 上而流进V 内的几率。

若0=∞

ψ

,则:

?

?∞

==

0*τψψτωd dt

d d dt

d

(9)

若波函数ψ是归一的,即?∞

=1*τψψd ,也有

0=??t

ω

,即ψ将保持归一的性质,而不随时间改变。

二、质量密度和质量流密度(守恒定律)

1.质量密度:2|),(|t r

ψ=≡μμωωμ

2.质量流密度:)(2

ψ?ψ-ψ?ψ=≡**

i J J μμ

3.质量守恒定律:以μ乘以方程(5)得:

0·=?+??μμωJ t

(10)

4.电荷守恒定律:

0·=?+??e e

J t

ω

其中: ωωe e ≡ J e J e

≡ 三、波函数的标准条件

单值,有限,连续(∵ω和J 满足连续性方程)

§2.5定态薛定谔方程

一、定态sch-eq :

如果()r U

不显含时间,则薛定谔方程的解可用分离变量法求之。

Sch-eq : ),()](2[),(2

2t r r V t r t i ψ+?-=ψ??μ

(1)

设: )()(),(t f r t r

ψ=ψ (2)

将(2)代入(1)式中:

())()(]2[)()(2

2r t f r U r t t f i ψμ

ψ+?-=??

上述方程两边除以)()(t f r

ψ得:

())(]2)[()()(2

2r r U t f t f dt d r i ψμ

ψ+?-= (3)

(3)式恒成立的条件是左边和右边都等于同一个函数,设这个常数为E ,则有:

)()

(t Ef dt

t df i =

(4) ())()(]2[2

2r E r r U ψψμ

=+?- (5)

方程(4)解为:

/)(iEt Ce t f -= (6)

C 为任意常数,将(6)代入(2)式得:

Et

i

e

r t r -=ψ)(),(ψ (7) 这个波函数与时间的关系是正弦式的,它的角频率

E

=ω ,(7)式所示的波函数称为定态波函数。

定态的特点:

1)粒子的几率密度和几率流密度与时间无关

∵ 2

2

2)()(),(r e r t r Et

i

ψ==ψ-ψ

显然,

0=??t

ω

2)能量具有确定的值(可由自由粒子的波函数进行验证) 3)各力学量的平均值不随时间变化 二、哈密顿算符的本征方程

以()r

ψ乘方程(4)两边,Et i e -乘方程(5)两边,可以看出定态波函数

)()(),(t f r t r

ψ=ψ满足下列两方程

ψω

E t

i =??

(8) ()ψψμ

E r U =+?-]2[2

2 (9)

从上面方程可看出:t i ?? 与()]2[2

2r U +?-μ

相当,它们都称为能量算符,

又由于算符()]2[22r U +?-μ是由?-→ i p 代换而来,()r U p E +=μ22

在经典力学

中称为哈密顿函数,所以这种算符又称为哈密顿算符,通常以H

表示,这样(9)

式可写为:

ψψE H =

(10)

这种类型的方程称为本征值方程,E 被称为算符H

的本征值,ψ称为算符

的本征方程。

讨论定态问题,就是要求出),(t r

ψ(或)(r ψ)和E ,含时间的薛定谔方程的

一般解,可以写成这些定态波函数的线性迭加:

t

E i

n n

n n e

r C t r -∑=ψ)(),(ψ n C 为常数。 作业:第52页,2.1,2.2

补充作业:试判定下列波函数是否为定态波函数 (1)t i x u t x u t x ωωψsin )(cos )(),(-= (2)t x u t x u t x ωωψsin )(cos )(),(+=

§2.6一维无限深势阱

从这一节起,我们将用薛定谔方程处理几个简单的定态问题,研究这些问题,不仅因为它们简单,容易得到严密的结果,而更重要的是因为这些问题具有典型性,处理方法带有一般性,是研究各种复杂问题的基础。此外,微观体系的许多特性,可以在这些问题中明显地表露出来,通过学习,可以进一步加深我们对微观现象所具有的特性的认识。 一、粒子的势能

在许多情况中,如金属中的电子、原子中的电子、原子核中的质子和中子等粒子的运动有一个共同点,即粒子的运动都被限制在有限的空间范围内,或者说,粒子处于束缚态。为了分析束缚态粒子的共同特点,我们可以将上述情况简单化、理想化,建立无限深势阱模型。粒子的势能为:

??

?≥≤∞

<<=a

x x a

x x U ,00,

0)(

如下图所示:

二、粒子的能级和波函数 在势阱外: 0)(=x ψ [a x x ≥≤0

] (1)

在势阱内:因为0)(=x U ,所以其定态薛定谔方程为:

ψψ

μE dx d =-2

222 a x <<0 (2)

令 2

2 E

k μ=

(3) 则方程(2)可化为标准形式:

a x k dx

d <<=+00

222ψψ

(4)

其通解为: )sin()(δψ+=kx A x (5) 式中A ,δ为两个待定常数,单从数学上看,E 为任何值方程(2)都有解,然而,根据波函数连续性要求,在势阱边界上,有

0)0(=ψ (6) 0)(=a ψ (7) 由(5)式和(6)式得: 0sin =δa

令波函数不能恒为零,而A 不能为零,所以必须0=δ ,于是

kx A x sin )(=ψ (8) 再根据(7)式得

0sin )(==ka A a ψ

所以ka 必须满足:

πn ka = ......3,2,1=n

n 取负数给不出新的波函数。这告诉我们k 只能取下列值

a n k π

= ......3,2,1=n (9)

由(3)式可知,粒子的能量只能取下列值:

2

2

222a n E n μπ = ......3,2,1=n (10)

这就是说,并非任何E 值对应的波函数都满足问题所要求的边值条件(6)、(7),而只有当能量值取(10)式所给出那些n E 值时对应的波函数才有满足边值条件,这样我们就能很自然地得到,被束缚在阱中的粒子的能量只能取一系列离散的数值,即能量是量子化的。

将(9)式代入到(8)式中,并把势阱外的波函数也包括在内,我们就得到

简述建立量子力学基本原理的思想方法

简述建立量子力学基本原理的思想方法 摘要:量子力学是大学物理专业的一门必修理论基础课程,它研究的对象是分子、原子和基本粒子。本文对建立量子力学基本原理的思想方法作一简单叙述,供学员在学习掌握量子力学的基本理论和方法时参考。 关键词:量子力学;力学量;电子;函数 作者简介 0引言 19世纪末,由于科学技术的发展,人们从宏观世界进入到微观领域,发现了一系列经典理论无法解释的现象,比较突出的是黑体辐射、光电效应和原子线光谱。普朗克于1900年引进量子概念后,上述问题才开始得到解决。爱凶斯坦提出了光具有微粒性,从而成功地解释了光电效应。 1量子力学 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 2玻尔的两条假设 玻尔在前人工作的基础上提出了两条假设,成功地解释了氢原子光谱,但对稍微复杂的原予(如氦原子)就无能为力。直到1924年德布罗意提出了微观粒子具有波粒二象性之后才得到完整解释。 1924年,德布罗意在普朗克和爱因斯坦假设的基础上提出了微观粒子具有波粒二象性的假设,即德布罗意关系。1927年,戴维孙和革末将电子作用于镍单晶,得到了与x射线相同的衍射现象,从而圆满地说明了电子具有波动性。 2.1自由粒子的波动性和粒子性 它的运动是最简单的一种运动,它充分地反映了自由粒子的波动性和粒子性,将波(平面波)粒( p,E) 二象性统一在其中。如果粒子不是自由的,而是在一个变化的力场中运动,德布罗意波则不能描写。我们将用一个能够充分反映二象性特点的

第1章 量子力学基础-习题与答案

一、是非题 1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。对否 解:不对 2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。试用测不准关系判断该模型是否合理。 解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。 二、选择题 1. 一组正交、归一的波函数123,,,ψψψ。正交性的数学表达式为 a ,归一性的 表达式为 b 。 () 0,() 1i i i i a d i j b ψψτψψ** =≠=?? 2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E ) (A) dx d (B) ?2 (C) 用常数乘 (D) (E) 积分 3. 下列算符哪些可以对易-------------------------------------------- (A, B, D ) (A) x ? 和 y ? (B) x ?? 和y ?? (C) ?x p 和x ? (D) ?x p 和y ? 4. 下列函数中 (A) cos kx (B) e -bx (C) e -ikx (D) 2 e kx - (1) 哪些是 dx d 的本征函数;-------------------------------- (B, C ) (2) 哪些是的22 dx d 本征函数;-------------------------------------- (A, B, C ) (3) 哪些是22dx d 和dx d 的共同本征函数。------------------------------ (B, C ) 5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D ) (A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大 6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )

量子力学简明教程

量子力学教案 主讲周宙安 《量子力学》课程主要教材及参考书 1、教材: 周世勋,《量子力学教程》,高教出版社,1979 2、主要参考书: [1] 钱伯初,《量子力学》,电子工业出版社,1993 [2] 曾谨言,《量子力学》卷I,第三版,科学出版社,2000 [3] 曾谨言,《量子力学导论》,科学出版社,2003 [4] 钱伯初,《量子力学基本原理及计算方法》,甘肃人民出版社,1984 [5] 咯兴林,《高等量子力学》,高教出版社,1999 [6] L. I.希夫,《量子力学》,人民教育出版社 [7] 钱伯初、曾谨言,《量子力学习题精选与剖析》,上、下册,第二版,科学出版社,1999 [8] 曾谨言、钱伯初,《量子力学专题分析(上)》,高教出版社,1990 [9] 曾谨言,《量子力学专题分析(下)》,高教出版社,1999 [10] P.A.M.Dirac,The Principles of Quantum Mechanics (4th edition), Oxford University Press (Clarendon),Oxford,England,1958;(《量子力学原理》,科学出版社中译本,1979) [11]https://www.doczj.com/doc/b412967098.html,ndau and E.M.Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (2nd edition),Addison-Wesley,Reading,Mass,1965;(《非相对论量子力学》,人民教育出版社中译本,1980)

第一章绪论 量子力学的研究对象: 量子力学是研究微观粒子运动规律的一种基本理论。它是上个世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它不仅在进到物理学中占有及其重要的位置,而且还被广泛地应用到化学、电子学、计算机、天体物理等其他资料。 §1.1经典物理学的困难 一、经典物理学是“最终理论”吗? 十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段。那时,一般物理现象都可以从相应的理论中得到说明: 机械运动(v<

量子力学课后答案第一二章

量子力学课后习题详解 第一章 量子理论基础 1、1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b(常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(|| 5 2-?=?===kT hc v v e hc c d c d d dv λνλλ πλλρλ λλρλ ρρ 这里的λρ的物理意义就是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的就是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的就是,还需要验证λρ对λ的二阶导数在m λ处的取值就是否小于零,如果小于零,那么前面求得的m λ就就是要求的,具体如下: 01151186=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这就是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解就是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4、97,经过验证,此解正就是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便就是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

量子力学教程第二版答案及补充练习

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

第一章 量子力学基础和原子结构

第一章 量子力学基础和原子结构 一、填空题 1、若用波函数ψ来定义电子云,则电子云即为_________________。 2、氢原子s ψ1在 r =a 0和 r =2a 0处的比值为_____________。 3、有两个氢原子,第一个氢原子的电子处于主量子数 n =1 的轨道, 第二个氢原子的电子处于n =4 的轨道。 (1)原子势能较低的是______, (2) 原子的电离能较高的是____。 4、设氢原子中电子处在激发态 2s 轨道时能量为E 1, 氦原子处在第一激发态 1s 12s 1时的2s电子能量为E 2,氦离子He + 激发态一个电子处于 2s 轨道时能量为E 3, 请写出E 1,E 2,E 3的从大到小顺序。_____________。 5、对氢原子 1s 态: (1) 2ψ在 r 为_______________处有最高值 (2) 径向分布函数 224ψr π在 r 为____________处有极大值; (3) 电子由 1s 态跃迁至 3d 态所需能量为_____________。 6、H 原子(气态)的电离能为 13.6 eV, He +(气态)的电离能为 _______ eV。 二、选择题 1、波长为662.6pm 的光子和自由电子,光子的能量与自由电子的动能比为何值? (A )106:3663 (B )273:1 (C )1:C (D )546:1 2、一电子被1000V 的电场所加速.打在靶上,若电子的动能可转化

为光能,则相应的光波应落在什么区域? (A) X光区(约10-10m) (B)紫外区(约10-7m) (C)可见光区(约10-6m)(D)红外区(约10-5m 3、普通阴极管管径为10-2m数量级.所加电压可使电子获得105ms-1速度,此时电子速度的不确定量为十万分之一,可用经典力学处理.若以上其它条件保持不变则阴极管的管径在哪个数量级时必须用量子力学处理? (A)约10-7m (B)约10-5m (C)约10-4m (D)约10-2m 4、下列条件不是品优函数的必备条件的是 (A)连续(B)单值(C)归一(D)有限或平方可积 5、己知一维谐振子的势能表达式为V=kx2/2,则该体系的定态薛定谔方程应当为 6、粒子处于定态意味着 (A)粒子处于概率最大的状态 (B)粒子处于势能为0的状态 (C)粒子的力学量平均值及概率密度分布都与时间无关的状态

结构化学练习之量子力学基础习题附参考答案

结构化学练习之量子力学基础习题附参考答案

量子力学基础习题 一、填空题(在题中的空格处填上正确答案)1101、光波粒二象性的关系式为_______________________________________。1102、德布罗意关系式为____________________;宏观物体的λ值比微观物体的λ值_______________。1103、在电子衍射实验中,│ψ│2对一个电子来说,代表___________________。 1104、测不准关系是_____________________,它说明了_____________________。 1105、一组正交、归一的波函数ψ1,ψ2,ψ3,…。 正交性的数学表达式为,归一性的表达式为。1106、│ψ(x1,y1,z1,x2,y2,z2)│2

代表______________________。 1107、物理量xp y- yp x的量子力学算符在直角坐标系中的表达式是_____。 1108、质量为m的一个粒子在长为l的一维势箱中运动, (1)体系哈密顿算符的本征函数集为_______________________________ ; (2)体系的本征值谱为____________________,最低能量为____________ ; (3)体系处于基态时,粒子出现在0 ─l/2间的概率为_______________ ; (4)势箱越长,其电子从基态向激发态跃迁时吸收光谱波长__________ ; (5)若该粒子在长l、宽为2l的长方形势箱

中运动, 则其本征函数集为____________,本征 值 谱 为 _______________________________。 1109、质量为m 的粒子被局限在边长为a 的立方箱中运动。波函数ψ 211(x ,y ,z )= _________________________;当粒子处于状态 ψ 211 时,概率密度最大处坐标是 _______________________;若体系的能量为 2 247ma h ,其简并度是_______________。 1110、在边长为a 的正方体箱中运动的粒子,其能级E = 2 243ma h 的简并度是_____,E '= 2 2827ma h 的简 并度是______________。 1111、双原子分子的振动,可近似看作是质量为μ= 2 121m m m m +的一维谐振子,其势能为V =kx 2/2,它 的 薛 定 谔 方 程 是

量子力学课后习题答案

第一章 绪论 1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 0 3109.2 ,??==-λ。 证明:由普朗克黑体辐射公式: ννπνρννd e c h d kT h 1 1 83 3 -= , 及λ νc = 、λλ νd c d 2 - =得 1 185 -= kT hc e hc λλλπρ, 令kT hc x λ= ,再由0=λρλd d ,得λ.所满足的超越方程为 1 5-=x x e xe 用图解法求得97.4=x ,即得 97.4=kT hc m λ,将数据代入求得C m 109.2 ,03??==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010 A 7.09m 1009.72=?≈= =-mE h p h λ # 1.3. 氦原子的动能为kT E 2 3 = ,求K T 1=时氦原子的de Broglie 波长。 解:010 A 63.12m 1063.1232=?≈== =-mkT h mE h p h λ 其中kg 1066.1003.427-??=m ,1 23K J 1038.1--??=k # 1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。 (2)在均匀磁场中作圆周运动的电子的轨道半径。 已知外磁场T 10=B ,玻尔磁子123 T J 10 923.0--??=B μ,求动能的量子化间隔E ?,并与K 4=T 及 K 100=T 的热运动能量相比较。 解:(1)方法1:谐振子的能量2222 1 2q p E μωμ+= 可以化为 ( ) 1222 222 2=??? ? ??+ μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为2 2,2μω μE b E a = =,相空间面积为 ,2,1,0,2=== = =?n nh E E ab pdq ν ω ππ 所以,能量 ,2,1,0,==n nh E ν 方法2:一维谐振子的运动方程为02 =+''q q ω,其解为 ()?ω+=t A q sin 速度为 ( )?ωω+='t A q c o s ,动量为()?ωμωμ+='=t A q p cos ,则相积分为

第一章量子力学基础和原子轨道报告

第一章 量子力学基础与原子结构 一、单项选择题(每小题1分) 1.一维势箱解的量子化由来( ) ① 人为假定 ② 求解微分方程的结果 ③ 由势能函数决定的 ④ 由微分方程的边界条件决定的。 2.下列算符哪个是线性算符( ) ① exp ② ▽2 ③ sin ④ 3.指出下列哪个是合格的波函数(粒子的运动空间为 0+)( ) ① sinx ② e -x ③ 1/(x-1) ④ f(x) = e x ( 0 x 1); f(x) = 1 ( x 1) 4.基态氢原子径向分布函数D(r) ~ r 图表示( ) ① 几率随r 的变化 ② 几率密度随r 的变化 ③ 单位厚度球壳内电子出现的几率随r 的变化 ④ 表示在给定方向角度上,波函数随r 的变化 5.首先提出微观粒子的运动满足测不准原理的科学家是( ) ①薛定谔 ② 狄拉克 ③ 海森堡 ③波恩 6.立方势箱中22 810m a h E <时有多少种状态( ) ① 11 ② 3 ③ 7 ④ 2 7.立方势箱在22 812m a h E ≤的能量范围内,能级数和状态数为( ) ①5,20 ② 6,6 ③ 5,11 ④ 6,17 8.下列函数哪个是22 dx d 的本征函数( ) ① mx e ② sin 2x ③ x 2+y 2 ④ (a-x)e -x 9.立方势箱中22 87m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 10.立方势箱中22 89m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 11.已知x e 2是算符x P ?的本征函数,相应的本征值为( ) ① i h 2 ② i h 4 ③ 4ih ④ πi h

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ? ),故: 2e E P /(2)=μ 69 h /p h / hc / 1.2410/0.7110 m 0.71nm --λ====?=?=1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 10 2.07K 1K J 10 381.12 32 323 1 23 ---?=????= = kT E 于是有 一维谐振子处于2 2 /2 ()x x Ae α ψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知: 22 * 2x 2 (x)(x)dx A e dx 1 A /1 ∞∞-α-∞ -∞ ψψ===α=? ? 取相因子为零,则归一化系数1/21/4A /=απ 2.

2222 2 2 22 2 2 22 22 22 22 2 * 2x /2 x /22 2 2 x /2 x /2 2 2 x /2 2x /2 2 222x 2x /2 2 2 24 2x 2T (x)T (x)dx A e (P /2)e dx d A e ()e dx 2dx d A e (xe )dx 2dx A {xe (xe )dx} 2A x e dx A 22∞∞-α-α-∞-∞ ∞-α-α-∞∞-α-α-∞ ∞ ∞-α-α-∞ -∞ ∞-α-∞ = ψψ=μ=- μ =- -αμ=- -α- -αμ = α = μμ ? ?? ? ? ? =(= = 22 2 2 2 2 4 x 22 24 x x 2 2 22 24 21()xd(e ) 21A (){xe e dx}221A ()2442∞-α-∞ ∞ ∞-α-α-∞ -∞ α- α =α- -- μααα- - μ α μ μ α ? ? 若αT 4 ω= 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H 定理是 非常方便的。 一维谐振子的哈密顿量为: 2 2 22 d 1H x 2dx 2 =- + μωμ 它的基态能量01E 2 = ω 选择 为参量,则: 0dE 1d 2 = ω ; 2 2 2 d H d 2d 2()T d dx 2dx =- = - = μμ d H 20 0T d = 由F-H 定理知: 0dE d H 210 T d d 2= ==ω 可得: 1T 4 = ω

量子力学 第四版 卷一 习题答案

第一章 量子力学的诞生 1、1设质量为m 的粒子在谐振子势222 1 )(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1, x V E m p n nh x d p -===?? Λ )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:222 1 )(a m x V E a x ω===。 a - 0 a x 由此得 2/2ωm E a = , (2) a x ±=即为粒子运动的转折点。有量子化条件 h n a m a m dx x a m dx x m E m dx p a a a a ==?=-=-=??? ?+-+-222222222)21(22πωπ ωωω 得ω ωπm n m nh a η22 = = (3) 代入(2),解出 Λη,3,2,1, ==n n E n ω (4) 积分公式: c a u a u a u du u a ++-=-? arcsin 2222 22 2 1、2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()?==?Λ,3,2,1, x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, Λ,3,2,1,,=z y x n n n 粒子能量

《量子力学简明教程》授课教案

《量子力学》电子教案 杨子元编 宝鸡文理学院物理系

一、简单介绍《量子力学》在物理学中的地位与作用 1.物理学课程体系中,分为基础课与专业课 基础课包括力、热、光、电、原子物理 专业课——四大力学:理论、热统、电动、量子力学 2.大学四年中所学所有课程大多为经典物理(即十八、九世纪物理) 只有在量子力学中才涉及近代物理的内容 3.量子力学是从事物理教学及其研究中的一门基础专业学科(讲授意义) 二、学习中应注意的几个问题 1.关于“概念”问题; 量子力学中物理概念距离我们的生活越来越远,因此更加抽象。例“波函数” 概念(与经典概念比较,例“力”概念) 2.克服经典物理思想的束缚,防止用经典物理方法解决量子力学问题。 例:①轨道概念在量子力学已抛弃;②K P E E E +=不再成立,而用 P K E E E +=表示 3.必要的数学知识:偏微分方程,勒让德多项式,贝塞尔函数,矩阵(尤其是矩阵的对角化),厄米多项式,傅里叶变换。 三、教材与参考书 1.张怿慈 《量子力学简明教程》 人民教育出版社 2.曾谨言 《量子力学》上、下册 科学出版社 3.蔡建华 《量子力学》上、下册 人民教育出版社 4.梁昆淼 《物学物理方法》 人民教育出版社 5.[美]玻姆 量子理论 商务印书馆 6.大学物理(93.9—95.4) 《量子力学自学辅导》

第一章 绪 论 量子力学是反映微观粒子(分子、原子、原子核、基本核子等)运动规律的基础理论,它是本世纪二十年代总结大量事实和旧量子的基础上建立起来的,它不仅是近代物理学的基础,而且被广泛的应用于化学和电子学等领域。 在介绍量子力学之前,首先回顾一下量子力学产生的历史过程。 §1.1 经典物理学的困难 一、困难 1687年,牛顿的划时代巨著《自然哲学的教学原理》在伦敦出现。当时,自然科学没有完全从哲学分划出来,而用了哲学这个名称。 牛顿经典力学的主要内容是它的三大定律,到了十九世纪末,二十世纪初牛顿建立的力学大厦远远超出了这三条定律,可以说整个经典物理的大厦已竣工。 机械运动——牛顿力学 电磁现象——麦氏方程 光 学——波动理论 热 学——完整热力学和玻耳兹曼和吉布斯建立的统计物理学 当时物理学家非常自豪和得意,因为当时几乎所有的新发现都能很好地套进现有的模子中。然而正当经典物理大厦逐渐升高时,它庞大的躯体却产生了两大裂痕。 其一是迈克尔逊——莫雷关于地球相对于以太漂移速度零的结果。 经典力学相对原理表明,力学规律在不同参照系中应有相同形式 S 系 a m F = S/ 系 a m F '=' 也就是说对一切力学现象而言,一切惯性系都是等价的。 麦氏电磁理论中,有一光速C (常数),在伽利略变换下,由麦氏方程推出的波动

量子力学(周世勋)课后答案-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量) ; 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 νc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(| |5 2-?=?===kT hc v v e hc c d c d d dv λνλ λ πλλρλ λλρλ ρρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 01151186=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ --kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

第一章 量子力学基础

第一章 量子力学基础知识 一、概念题 1、几率波:空间一点上波的强度和粒子出现的几率成正比,即,微粒波的强度 反映粒子出现几率的大小,故称微观粒子波为几率波。 2、测不准关系:一个粒子不能同时具有确定的坐标和动量 3、若一个力学量A 的算符A ?作用于某一状态函数ψ后,等于某一常数a 乘以ψ,即,ψψa A =?,那么对ψ所描述的这个微观体系的状态,其力学量A 具有确定的数值a ,a 称为力学量算符A ?的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A =?称为A ?的本征方程。 4、态叠加原理:若n ψψψψ,,,,321????为某一微观体系的可能状态,由它们线性组 合所得的ψ也是该体系可能存在的状态。其中: ∑=+??????+++=i i i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321???为任意常 数。 5、Pauli 原理:在同一原子轨道或分子轨道上,至多只能容纳两个电子,这两个 电子的自旋状态必须相反。或者说两个自旋相同的电子不能占据相同的轨道。 6、零点能:按经典力学模型,箱中粒子能量最小值为0,但是按照量子力学箱中粒子能量的最小值大于0,最小的能量为228/ml h ,叫做零点能。 二、选择题 1、下列哪一项不是经典物理学的组成部分? ( ) a. 牛顿(Newton)力学 b. 麦克斯韦(Maxwell)的电磁场理论 c. 玻尔兹曼(Boltzmann)的统计物理学 d. 海森堡(Heisenberg)的测不准关系 2、下面哪种判断是错误的?( ) a. 只有当照射光的频率超过某个最小频率时,金属才能发身光电子

量子力学习题答案.

2.1 如图所示 左右 0 x 设粒子的能量为,下面就和两种情况来讨论(一)的情形 此时,粒子的波函数所满足的定态薛定谔方程为 其中 其解分别为 (1)粒子从左向右运动 右边只有透射波无反射波,所以为零 由波函数的连续性 得 得 解得 由概率流密度公式 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得两个方程 解 反射系数 透射系数

(二)的情形 令 ,不变 此时,粒子的波函数所满足的定态薛定谔方程为 其解分别为 由在右边波函数的有界性得为零 (1)粒子从左向右运动 得 得 解得 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得方程 由于全部透射过去,所以 反射系数 透射系数 2.2 如图所示 在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为 总透射系数

2.3 以势阱底为零势能参考点,如图所示 (1) ∞ ∞ 左中右 0 a x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得 ∴ ∴ 相应的 因为正负号不影响其幅度特性可直接写成 由波函数归一化条件得 所以波函数 (2) ∞∞ 左中右 0 x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得

当,为任意整数, 则 当,为任意整数, 则 综合得 ∴ 当时,, 波函数 归一化后 当时,, 波函数 归一化后 2.4 如图所示∞ 左 0 a 显然 在中间和右边粒子的波函数所满足的定态薛定谔方程为其中 其解为 由在右边波函数的有界性得为零 ∴ 再由连续性条件,即由 得 则 得 得 除以得 再由公式 ,注意到 令 ,

福师《结构化学》第一章 量子力学基础和原子结构 课堂笔记

福师《结构化学》第一章量子力学基础和原子结构课堂笔记 ◆主要知识点掌握程度 了解测不准关系,掌握和的物理意义;掌握一维势箱模型Schrodinger方程的求解以及该模型在共轭分子体系中的应用;理解量子数n,l,m的取值及物理意义;掌握波函数和电子云的径向分布图,原子轨道等值线图和原子轨道轮廓图;难点是薛定谔方程的求解。 ◆知识点整理 一、波粒二象性和薛定谔方程 1.物质波的证明 德布罗意假设:光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质,即波粒二象性,其基本公式为: 对于低速运动,质量为m的粒子: 其中能量E和动量P反映光和微粒的粒性,而频率ν和波长λ反映光和微粒的波性,它们之间通过Plank 常数h联系起来,普朗克常数焦尔·秒。 实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。 λ=h/P=h/mν 量子化是指物质运动时,它的某些物理量数值的变化是不连续的,只能为某些特定的数值。如微观体系的能量和角动量等物理量就是量子化的,能量的改变为E=hν的整数倍。 2.测不准关系: 内容:海森保指出:具有波粒二象性的微观离子(如电子、中子、质子等),不能同时具有确定的坐标和动量,它们遵循“测不准关系”: (y、z方向上的分量也有同样关系式) ΔX是物质位置不确定度,ΔPx为动量不确定度。该关系是微观粒子波动性的必然结果,亦是宏观物体和微观物体的判别标准。对于可以把h看作O的体系,表示可同时具有确定的坐标和动量,是可用牛顿力学描述的宏观物体,对于h不能看作O的微观粒子,没有同时确定的坐标和动量,需要用量子力学来处理。 3.波函数的物理意义——几率波 实物微粒具有波动性,其运动状态可用一个坐标和时间的函数来描述,称为波函数或状态函数。 1926年波恩对波函数的物理意义提出了统计解释:由电子衍射实验证明,电子的波动性是和微粒的行为的统计性联系在一起的,波函数正是反映了微粒行为的统计规律。这规律表明:对大量电子而言,在衍射强度大 的地方,电子出现的数目多,强度小的地方电子出现的数目少,即波函数的模的平方与电子在空间分布的密度成正比。

量子力学第四版卷一曾谨言著习题答案

第一章 量子力学的诞生 1.1设质量为m 的粒子在谐振子势2221)(x m x V ω= 中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1,x V E m p n nh x d p -===?? )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(a m x V E a x ω= ==。 a - 0 a x 由此得 2/2ωm E a = , (2) a x ±=即为粒子运动的转折点。有量子化条件 得ω ωπm n m nh a 22== (3) 代入(2),解出 ,3,2,1,==n n E n ω (4) 积分公式: c a u a u a u du u a ++-=-?arcsin 222222 2 1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, 粒子能量 1.3设一个平面转子的转动惯量为I ,求能量的可能取值。 提示:利用,,2,1,20 ==?n nh d p π ?? ?p 是平面转子的角动量。转子的能量I p E 2/2?=。 解:平面转子的转角(角位移)记为?。 它的角动量. ??I p =(广义动量),?p 是运动惯量。按量子化条件

相关主题
文本预览
相关文档 最新文档