当前位置:文档之家› 复变函数与积分变复习提纲

复变函数与积分变复习提纲

复变函数与积分变复习提纲
复变函数与积分变复习提纲

江苏大学复变函数复习提纲

(一)复数的概念

1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:两个复数不能比较大小.

2.复数的表示 1)模:2

2

z x y =

+;

2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan

y x

之间的关系如下:

当0,x > arg arctan y z x

=;

当0,arg arctan 0,0,arg arctan y y z x

x y y z x ππ

?

≥=+??

4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。 5)指数表示:i z z e θ

=,其中arg z θ=。

(二) 复数的运算

1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±

2.乘除法:

1)若111222,z x iy z x iy =+=+,则

()()1212122112z z x x y y i x y x y =-++;

()()()()

1122

1111

2121

2

212

2

2

22

22

2

2

2

222

22

x i y x i y z x i y x x y y y x y x i z x i y x i y x i y

x y x y +

-++-=

=

=

+++-++

。 2)若12

1122,i i z z e z z e

θ

θ==, 则 ()

12i z z z z e

θθ+=;

()

1211i z z e θθ-=

3.乘幂与方根

1) 若(cos sin )i z z i z e θ

θθ=+=,则(cos sin )n n

n in z z n i n z e θθθ=+=。 2) 若(cos sin )i z z i z e θ

θθ=+=,则

1

22cos sin (0,1,21)n

n

k k z z

i k n n n θπθπ++??=+=- ?

??

(有n 个相异的值)

(三)复变函数

1.复变函数:()w f z =,在几何上可以看作把z 平面上的一个点集D 变到w 平面上的一个点集G 的映射. 2.复初等函数 1)指数函数:()cos sin z

x

e e

y i y =+,在z 平面处处可导,处处解析;且()z z e e '=。

注:z e 是以2i π为周期的周期函数。(注意与实函数不同)

3) 对数函数: ln (arg 2)Lnz z i z k π=++(0,1,2)k =±± (多值函数);

主值:ln ln arg z z i z =+。(单值函数)

L nz 的每一个主值分支ln z 在除去原点及负实轴的z 平面内处处解析,且()1lnz z

'=

注:负复数也有对数存在。(与实函数不同) 3)乘幂与幂函数:(0)b

bLna

a e

a =≠;(0)

b bLnz

z e

z =≠

注:在除去原点及负实轴的z 平面内处处解析,且()1b b z bz -'

=。

4)三角函数:sin cos sin ,cos ,t ,22

cos sin iz iz

iz iz

e e e e

z z z z gz ctgz i

z

z

---+=

=

=

=

sin ,cos z z 在z 平面内解析,且()()sin cos ,cos sin z z z z ''==-

注:有界性sin 1,cos 1z z ≤≤不再成立;(与实函数不同)

4) 双曲函数 (这个没见考过,但记住也好) ,2

2

z

z

z z

e e e e shz chz ---+==

shz 奇函数,chz 是偶函数。,shz chz 在z 平面内解析,且()(),shz chz chz shz ''==。

(四)解析函数的概念

1.复变函数的导数

1)点可导:()0f z '=()()

000

lim

z f z z f z z

?→+?-?;

2)区域可导: ()f z 在区域内点点可导。 2.解析函数的概念

1)点解析: ()f z 在0z 及其0z 的邻域内可导,称()f z 在0z 点解析; 2)区域解析: ()f z 在区域内每一点解析,称()f z 在区域内解析; 3)若()f z 在0z 点不解析,称0z 为()f z 的奇点;

3.解析函数的运算法则:解析函数的和、差、积、商(除分母为零的点)仍为解析函数;解析函数的复合函数仍为解析函数;

(五)函数可导与解析的充要条件

1.函数可导的充要条件:()()(),,f z u x y iv x y =+在z x iy =+可导

?(),u x y 和(),v x y 在(),x y 可微,且在(),x y 处满足C D -条件:

,

u v u v x

y

y

x

????=

=-

????

此时, 有()u v f z i x

x

??'=

+??。

2.函数解析的充要条件:()()(),,f z u x y iv x y =+在区域内解析

?(),u x y 和(),v x y 在(),x y 在D 内可微,且满足C D -条件:

,

u v u v x

y

y

x

????=

=-

????;

此时()u v f z i x

x

??'=

+??。

注: 若()(),,,u x y v x y 在区域D 具有一阶连续偏导数,则()(),,,u x y v x y 在区域D 内是可微的。因此在使用充要条件证明时,只要能说明,u v 具有一阶连续偏导且满足C R -条件时,函数

()f z u iv =+一定是可导或解析的。

3.函数可导与解析的判别方法

1)利用定义 (题目要求用定义,如第二章习题1)

2)利用充要条件 (函数以()()(),,f z u x y iv x y =+形式给出,如第二章习题2) 3)利用可导或解析函数的四则运算定理。(函数()f z 是以z 的形式给出,如第二章习题3)

(六)复变函数积分的概念与性质

1. 复变函数积分的概念:()()1

lim

n

k

k

c

n k f z dz f z

ξ→∞

==?∑?,c 是光滑曲线。

注:复变函数的积分实际是复平面上的线积分。 2. 复变函数积分的性质 1) ()()1

c c

f z dz f z dz -=-??

(1

c -与c 的方向相反);

2) ()()()()[],,c

c

c

f z

g z dz f z dz g z dz αβαβαβ+=+???是常数;

3) 若曲线c 由1c 与2c 连接而成,则()()()1

2

c

c c

f z dz f

z dz f

z dz =

+??

?。

3.复变函数积分的一般计算法 1)化为线积分:()c

c

c

f z dz udx vdy i vdx udy =

-++??

?;(常用于理论证明)

2)参数方法:设曲线c : ()()z z t t αβ=≤≤,其中α对应曲线c 的起点,β对应曲线c 的终点,

()()[]()c

f z dz f z t z t dt

β

α

'=??。

(七)关于复变函数积分的重要定理与结论

1.柯西—古萨基本定理:设()f z 在单连域B 内解析,c 为B 内任一闭曲线,则

()0c

f z dz =?

2.复合闭路定理: 设()f z 在多连域D 内解析,c 为D 内任意一条简单闭曲线,12,,n c c c 是c

内的简单闭曲线,它们互不包含互不相交,并且以12,,n c c c 为边界的区域全含于D 内,则

① ()c

f z dz ? ()1,k

n

k c

f z dz ==

∑? 其中c 与k

c

均取正向;

② ()0f z dz =?

,其中Γ由c 及1

(1,2,)c k n -= 所组成的复合闭路。

3.闭路变形原理 : 一个在区域D 内的解析函数()f z 沿闭曲线c 的积分,不因c 在D 内作连续

变形而改变它的值,只要在变形过程中c 不经过使()f z 不解析的奇点。

4.解析函数沿非闭曲线的积分: 设()f z 在单连域B 内解析,()G z 为()f z 在B 内的一个原函数,

()()()

21

2112(,)

z z f

z dz G z G z z z B =-∈?

说明:解析函数()f z 沿非闭曲线的积分与积分路径无关,计算时只要求出原函数即可。 5。 柯西积分公式:设()f z 在区域D 内解析,c 为D 内任一正向简单闭曲线,c 的内部完全属于D ,

0z 为c

内任意一点,则()

()00

2c

f

z dz if

z z z π=-?

6.高阶导数公式:解析函数()f z 的导数仍为解析函数,它的n 阶导数为

()

()

()

01

02(1,2)

()

!

n n c

f

z i dz f

z n z z n π+==-?

其中c 为()f z 的解析区域D 内围绕0z 的任何一条正向简单闭曲线,而且它的内部完全属于D 。 7.重要结论:

1

2,

01

0,

()

n c

i n dz n z a π+=?=?

≠-?? 。 (c 是包含a 的任意正向简单闭曲线)

8.复变函数积分的计算方法(积分计算背这个,很重要) 1)

()

f z 在

区域D 内处处不解析,用一般积分法

()()()[]c

f

z dz f z t z t dt

β

α

'=?

?

2)设()f z 在区域D 内解析,

● c 是D 内一条正向简单闭曲线,则由柯西—古萨定理,()0c

f z dz =?

c 是D 内的一条非闭曲线,12,z z 对应曲线c 的起点和终点,则有

()()()()21

21z c

z f z dz f z dz F z F z ==-?

?

3)设()f z 在区域D 内不解析

曲线c 内仅有一个奇点:()()()()

()0001022()!c n n c f z dz i f z z z

f z i dz f z z z n ππ+?

=?-??

?=?-?

?? (()f z 在c 内解析)

● 曲线c 内有多于一个奇点:

()c

f z dz ? ()1k

n

k c

f z dz

==∑? (i c 内只有一个奇

点k z )

或:

()1

2R e [(),]

n

k

k c

f z dz i s f z z π==∑? (留数基本定理)

● 若被积函数不能表示成

()

1

()

n o f

z z z +-,则须改用第五章留数定理来计算。

(八)解析函数与调和函数的关系

1.调和函数的概念:若二元实函数(,)x y ?在D 内有二阶连续偏导数且满足

2

2

2

2

x

y

????+

=??,

(,)x y ?为D 内的调和函数。 2.解析函数与调和函数的关系 ● 解析函数()f z u iv =+的实部u 与虚部v 都是调和函数,并称虚部v 为实部u 的共轭调和函数。 ●

两个调和函数u 与v 构成的函数()f z u iv =+不一定是解析函数;但是若,u v 如果满足柯西— 黎曼方程,则u iv +一定是解析函数。

3.已知解析函数()f z 的实部或虚部,求解析函数()f z u iv =+的方法。

1)偏微分法:若已知实部(),u u x y =,利用C R -条件,得

,

v v

x y

????; 对

v u y

x

??=

??两边积分,得()u

v dy g x x ?=

+?? (*)

再对(*)式两边对x 求偏导,得

()v u dy g x x

x x ?????

'=

+ ??????

? (**) 由C R -条件,

u v y

x

??=-

??,得

()u u dy g x y

x x ?????

'=-

+ ??????

?,可求出 ()g x ; 代入(*)式,可求得 虚部()u

v dy g x x ?=

+?? 。

2)线积分法:若已知实部(),u u x y =,利用C R -条件可得v v u u dv dx dy dx dy x y y x

????=

+

=-

+

????,

故虚部为(

)

()

00,,x y x y u u v dx dy c y

x

??=

-

+

+???;

由于该积分与路径无关,可选取简单路径(如折线)计算它,其中()00,x y 与(),x y 是解析区域中的两点。

3)不定积分法(曾经考过这种方法):若已知实部(),u u x y =,根据解析函数的导数公式和C R -条件得知,

()u v u u f z i i x

y

x

y

????'=

+=-????

将此式右端表示成z 的函数()U z ,由于()f z '仍为解析函数,故

()()f z U z dz c =+? (c 为实常数)

注:若已知虚部v 也可用类似方法求出实部.u

(九)复数项级数(级数考得不多)

1.复数列的极限

1)复数列{}{}n n n a ib α=+(1,2n = )收敛于复数a bi α=+的充要条件为

lim ,

lim n n n n a a b b →∞

→∞

== (同时成立)

2.复数项级数

1)复数项级数0

()n n n n n a ib αα∞

==+∑收敛的充要条件是级数0

n n a ∞

=∑与0

n n b ∞

=∑同时收敛;

2)级数收敛的必要条件是lim 0n n α→∞

=。

注:复数项级数的敛散性可以归纳为两个实数项级数的敛散性问题的讨论。

(十)幂级数的敛散性

1.幂级数的概念:表达式00

()n

n n c z z ∞

=-∑或0

n n n c z ∞

=∑为幂级数。

2.幂级数的敛散性

1)幂级数的收敛定理—阿贝尔定理(Abel):如果幂级数0

n n n c z ∞

=∑在00z ≠处收敛,那么对满足

0z z <的一切z ,该级数绝对收敛;如果在0z 处发散,那么对满足0z z >的一切z ,级数必

发散。

2)幂级数的收敛域—圆域

幂级数在收敛圆域内,绝对收敛;在圆域外,发散;在收敛圆的圆周上可能收敛;也可能发散。 3)收敛半径的求法:收敛圆的半径称收敛半径。

● 比值法 如果1lim

0n n n

c c λ+→∞

=≠,则收敛半径1

R λ

=

● 根值法 lim

0n n c λ→∞

=≠,则收敛半径1

R λ

=

如果0λ=,则R =∞;说明在整个复平面上处处收敛; 如果λ=∞,则0R =;说明仅在0z z =或0z =点收敛;

注:若幂级数有缺项时,不能直接套用公式求收敛半径。(如20

n n n c z ∞

=∑)

3.幂级数的性质

1)代数性质:设0

,n

n

n n n n a z b z ∞

==∑∑的收敛半径分别为1R 与2R ,记()12min ,R R R =,

00

()n

n

n

n

n n n n n n a

b z a z b z αβαβ∞∞

===+=+∑∑∑ (线性运算)

01100

()()()n

n

n

n n n

n n n n n a z b z a

b a b a b z ∞

∞∞

-====

+++∑∑∑ (乘积运算)

2)复合性质:设当r ξ<时,()0

n

n

n f a ξξ

==

∑,当z R <时,()g z ξ=解析且()g z r <,

则当z R <时,()()0

[][]n

n

n f g z a

g z ∞

==

∑。

3) 分析运算性质:设幂级数0

n n n a z ∞

=∑的收敛半径为0R ≠,则

其和函数()0

n

n

n f z a

z ∞

==

∑是收敛圆内的解析函数;

在收敛圆内可逐项求导,收敛半径不变;且()1

n n

n f z na

z

-='=

∑ z R <

在收敛圆内可逐项求积,收敛半径不变;()1

1

z

n n n a f z dz z

n ∞

+==+∑

? z R <

(十一)幂函数的泰勒展开(重点)

1. 泰勒展开:设函数()f z 在圆域0z z R -<内解析,则在此圆域内()f z 可以展开成幂级数

()()

()

()

000

!

n n

n f

z f z z z n ∞

==

-∑

;并且此展开式是唯一的。

注:若()f z 在0z 解析,则()f z 在0z 的泰勒展开式成立的圆域的收敛半径0R z a =-;

其中R 为从0z 到()f z 的距0z 最近一个奇点a 之间的距离。 2.常用函数在00

z =的泰勒展开式(一定要记熟)

1)

2

3

11!

2!

3!

!

n

z

n

n z

z

z

e z z n n ∞

===++

+

++

+∑

z <∞

2)2

1

11n

n

n z

z z z z

==

=+++++-∑

1z <

3

5

21

21

(1)

(1)

sin (21)!

3!

5!

(21)!

n

n

n n n z

z

z z

z z

n n ∞

++=--=

=-

+

-+

+++∑

z <∞

4)

2

4

220

(1)

(1)

cos 1(2)!

2!

4!

(2)!

n

n

n

n

n z

z

z z

z

n n ∞

=--=

=-

+

-+

+∑

z <∞

3.解析函数展开成泰勒级数的方法

1)直接法:直接求出()

()01!

n n c f

z n =

,于是()()00

n

n n f z c z z ∞

==-∑。

2)间接法:利用已知函数的泰勒展开式及幂级数的代数运算、复合运算和逐项求导、逐项求积等方法将函数展开。

(十二)幂函数的洛朗展开

1. 洛朗级数的概念:

()0n

n n c z z ∞

=-∞

-∑

,含正幂项和负幂项。

2.洛朗展开定理:设函数()f z 在圆环域102R z z R <-<内处处解析,c 为圆环域内绕0z 的任意

一条正向简单闭曲线,则在此在圆环域内,有()()0n

n n f z c z z ∞

=-∞

=

-∑

,且展开式唯一。

3.解析函数的洛朗展开法:洛朗级数一般只能用间接法展开。

*4.利用洛朗级数求围线积分:设()f z 在0r z z R <-<内解析,c 为0r z z R <-<内的任何一条正向简单闭曲线,则 ()12c

f z dz ic π-=? 。其中1c -为()f z 在0r z z R <-<内洛朗展开式中

1z z -的系数。

说明:围线积分可转化为求被积函数的洛朗展开式中1

0()z z --的系数。

(十三)孤立奇点的概念与分类(这里开始都是重点,后面就不用颜色了)

()

2。孤立奇点的类型:

1)可去奇点:展开式中不含0z z -的负幂项;()()()2

01020f z c c z z c z z =+-+-+ 2)极点:展开式中含有限项0z z -的负幂项;

()(1)2

1010201

000()()()

()

()

m m m

m c c c f

z c c z z c z z z z z z z z -----=

+

++

++-+-+--- ()0,()

m

g z z z =

-

其中()1

(1)01000()()()m m

m m g z c c z z c z z c z z -----=+-++-+-+ 在0z 解析,

且()00,1,0m g z m c -≠≥≠;

3)本性奇点:展开式中含无穷多项0z z -的负幂项;

()1010000()()()

()

m

m m m

c c f

z c c z z c z z z z z z --=+

++

++-++-+--

(十四)孤立奇点的判别方法

1.可去奇点:()0

0lim z z f z c →=常数;

2.极点:()0

lim z z f z →=∞

3.本性奇点:()0

lim z z f z →不存在且不为∞。

4.零点与极点的关系

1)零点的概念:不恒为零的解析函数()f z ,如果能表示成()()0()m

f z z z z ?=-,

其中()z ?在0z 解析,()00,z m ?≠为正整数,称0z 为()f z 的m 级零点; 2)零点级数判别的充要条件 0z 是()f z 的m 级零点?()()()

()000,(1,2,1)

n m f

z n m f

z ?==-??

≠??

3)零点与极点的关系:0z 是()f z 的m 级零点?0z 是

()

1f

z 的m 级极点;

4)重要结论(似乎不重要)

若z a =分别是()z ?与()z ψ的m 级与n 级零点,则

z a =是()z ? ()z ψ的m n +级零点;

● 当m n >时,z a =是

()()z z ?ψ的m n -级零点;

当m n <时,z a =是()()z z ?ψ的n m -级极点;

当m n =时,z a =是()()

z z ?ψ的可去奇点;

当m n ≠时,z a =是()()z z ?ψ+的l 级零点,min(,)l m n = 当m n =时,z a =是()()z z ?ψ+的l 级零点,其中()l m n ≥

(十五)留数的概念

1.留数的定义:设0z 为()f z 的孤立奇点,()f z 在0z 的去心邻域00z z δ<-<内解析,c 为该域内包含0z 的任一正向简单闭曲线,则称积分

()1

2c

f z dz i

π? 为()f z 在0

z 的留数(或残留),记

作 ()0Re [,]s f z z =

()12c

f z dz i

π?

2.留数的计算方法

若0z 是()f z 的孤立奇点,则()0Re [,]s f z z =1c -,其中1c -为()f z 在0z 的去心邻域内洛

朗展开式中1

0()z z --的系数。

1)可去奇点处的留数:若0z 是()f z 的可去奇点,则()0Re [,]s f z z =0 2)m 级极点处的留数

法则I 若0z 是()f z 的m 级极点,则 ()0Re [,]s f z z =

()0

101

1lim

[()](1)!

m m

m z z d

z z f

z m dz

--→--

特别地,若0z 是()f z 的一级极点,则()0Re [,]s f z z =()0

0lim ()z z z z f z →-

注:如果极点的实际级数比m 低,上述规则仍然有效。 法则II 设()()()

P z f z Q z =

,()(),P z Q z 在0z 解析,()00,P z ≠

()()000,0Q z Q z '=≠,则()()

()()

000R e [

,]P z P z s z Q z Q z =

'

(十六)留数基本定理

设()f z 在区域D 内除有限个孤立奇点12,,n z z z 外处处解析,c 为D 内包围诸奇点的一条

正向简单闭曲线,则()()1

2R e [,]n c

n f z dz i s f z z π∞

==∑?

说明:留数定理把求沿简单闭曲线积分的整体问题转化为求被积函数()f z 在c 内各孤立奇点处留数的局部问题。

积分变换复习提纲(就是熟记公式,全要记住,重点的重点加红)

一、傅里叶变换的概念

● [()]()()j wt

F f t f t e dt F w +∞--∞

==?

1

1

[()]()()2j t

F

F F e d f t ωωωωπ

+∞--∞

=

=?

二、几个常用函数的傅里叶变换

1

[()]F e t j βω=

+

1[()]()F u t j πδωω

=+

● [()]1F t δ= ●

[1]2()F πδω=

三、傅里叶变换的性质

● 位移性(时域):0

0[()]jw t F f t t e --=[()]F f t

位移性(频域):00

0[()]()

()j w t

w w w F e

f t F w F w w =-==-

位移性推论:0001[sin ()][()()]2F w t f t F w w F w w j

=

--+

● 位移性推论:0001[cos ()][()()]2

F w t f t F w w F w w =-++

()

[()]()()n n F f

t jw F w =,(1)

,()0n t f

t -→+∞→

微分性(频域):()()()

[()],[()()]()n

n F jt f t F w F jt f t F w '-=-=

● 相似性:1[()](

)w F f at F a

a

=

(0)a ≠

● F[tf(t)]=jdF(w)/dw

F[t^nf(t)]=(j)^NF(n)(w) (F(w)的n 阶导数)

四、拉普拉斯变换的概念

[()]()()st

L f t f t e

dt F s +∞-=

=?

五、几个常用函数的拉普拉斯变换

● 1[]kt

L e s k =-;

● 1

1

(1)

![](m m m m m L t m s

s

++Γ+=

=是自然数);(1

(1)1,(),(1)()2

m m m πΓ=Γ=

Γ+=Γ)

● 1[()][1]L u t L s

==

● [()]1L t δ= ● 2

2

2

2

[sin ],[cos ]k s L kt L kt s k s k ==++

● 2

2

2

2[s ],

[]k s

L hkt L chkt s k

s k =

=

--

设()()f t T f t +=,则0

1

[()]()1T Ts

L f t f t dt e

-=

-?

。(()f t 是以T 为周期的周期函数)

六、拉普拉斯变换的性质

● 微分性(时域):()()()2

[]0,[()]()(0)(0)L f t sF s f L f t s F s sf f ''''=-=--

微分性(频域):()()[()]L t f t F s '-=,()()()

[()]n

n L t f t F

s -=

积分性(时域):()()0

[]t

F s L f t dt s

=

?

● 积分性(频域):()()[

]s

f t L F s ds t

∞=

?

(收敛)

● 位移性(时域):()()

[]at

L e

f t F s a =-

()()s τ

-

● 相似性:1

[()]()s

L f at F a a

=

(0)

a > 七、卷积及卷积定理 ●

1212()*()()()f t f t f f t d τττ+∞-∞

=

-?

● 1212[()()]()()F f t f t F w F w *=? ● 12121[()()]()()2F f t f t F w F w π

?=

*

● 1212[()()]()()L f t f t F s F s *=? 八、几个积分公式

● ()()(0)f t t dt f δ+∞-∞=? ● 00()()()f t t t dt f t δ+∞-∞-=?

● 0

()[()]()f t dt L f t ds F s ds t +∞∞∞=

=

?

?

?

● 0

()[()]

kt

s k

f t e dt L f t +∞-==?

复变函数积分方法总结

复变函数积分方法总结
[键入文档副标题]
acer [选取日期]

复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新
形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,
也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i2=-1 ,x,y 分别称为 z 的实部和虚部,记作
x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,
Arg=argz+2kπ 。利用直角坐标和极坐标的关系式 x=rcosθ ,
y=rsinθ,故 z= rcosθ+i rsinθ;利用欧拉公式 eiθ=cosθ+isinθ。
z=reiθ。
1.定义法求积分:
定义:设函数 w=f(z)定义在区域 D 内,C 为区域 D 内起点为 A 终点
为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点?k 并作和式 Sn=
(zk-zk-1)=
?zk 记?zk= zk-
zk-1,弧段 zk-1 zk 的长度 =
{?Sk}(k=1,2…,n),当
0 时,
不论对 c 的分发即?k 的取法如何,Sn 有唯一的极限,则称该极限值为
函数 f(z)沿曲线 C 的积分为:
=
?zk
设 C 负方向(即 B 到 A 的积分记作)
.当 C 为闭曲线时,f(z)
的积分记作
(C 圆周正方向为逆时针方向)
例题:计算积分
,其中 C 表示 a 到 b 的任一曲

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。 (1) i 解:2 cos sin 2 2 i i e i ππ π ==+ (2) -1 解:1cos sin i e i πππ-==+ (3) 1+ 解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解: 2221cos sin 2sin 2sin cos 2sin (sin cos )2 2 2 2 22 2sin cos()sin()2sin 222222 i i i i i e παα α α α α α αααπαπαα?? - ??? -+=+=+? ?=-+-= ??? (5) 3z 解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e + 解:()1cos1sin1i i e ee e i +==+ (7) 11i i -+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++ 二、计算下列数值 (1) 解: 1ar 21ar 21ar 2 b i ctg k a b i ctg a b i ctg a π?? + ??? = =??=??? (2) 解:6 2263634632 22i k i i i i e i e e e i πππππππ?? ??++ ? ??? ????+ ????=+????====-+? ??=-?

(3) i i 解:( )2222i i k k i i e e ππππ???? +-+ ? ??? ?? == (4) 解:( ) 1/2222i i k k e e ππππ???? ++ ? ??? ?? == (5) cos5α 解:由于:()()5 5 2cos5i i e e ααα-+=, 而: ()()()() ()()()() 5 5 5 55 5 5 5 55 cos sin cos sin cos sin cos sin n n i n n n n i n n e i C i e i C i αααααααααα-=--==+==-=-∑∑ 所以: ()()()()()()()()()()() 5555055550 4 3 2 5 3 543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n n n n n n n n n C i i C i i C i ααααααααααααααααα --=--=?? =+-????=+-??=++=-+∑∑ (6) sin5α 解:由于:()() 5 5 2sin 5i i e e ααα--=, 所以: ()()()()()()()()()()() () 5555055550 5234 245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n n n n n n n n n C i i i C i i i C i C i i ααααααααααααααααα --=--=?? =--? ??? =--??=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:

复变函数与积分变换 复旦大学出版社 习题六答案

习题六 1. 求映射1w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2 2 2 2 11i=+i i x y w u v z x y x y x y == = - +++ 2 2 1x x u x y ax a = == +, 所以1w z = 将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 2 2 2 2 1i x y w z x y x y = =- ++ 2 22 2 2 2 x y kx u v x y x y x y = =- =- +++ v ku =- 故1w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则 2 2 2 2 ,u v y x u v u v = = ++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12 w > (以(12 ,0)为圆心、12 为半径的圆) 3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z = X ? iy , X, y 是实数,x = Rez,y=lmz.r=_i. 中的幅角。 3)arg Z与arctan~y之间的关系如下: X y 当X 0, arg Z= arctan 丄; X y y -0,arg Z= arctan 二 ! X y y :: O,arg Z= arctan -二 J X 4)三角表示:Z = Z(COS8 +isin0 ),其中日=argz;注:中间一定是“ +”号。 5)指数表示:Z = ZeF,其中V - arg z。 (二)复数的运算 1.加减法:若Z I=X I iy1, z2=X2 iy2,贝廿z1二z2= x1二x2i y1- y2 2.乘除法: 1)若z1 = x1 iy1, Z2 =X2 iy2,贝U 狂h[N×2 一y$2 i x2% x1y2 ; 乙_ X1+ i y_ (x1 十 i 和X—i y_ XX y*y y x;。X Z2 X2+ i% (对讪-X )i2y 2+2X222+ 2X22 2)若Z I=Iz I e i^,z2 =∣z2 e iθ ,则 Z1Z2 = ZIll Z2 e i(t1也; 3.乘幕与方根 1)若Z= Z(COS J isin * n (CoS n i Sinn )= n e i"。 2)幅角:在Z=O时,矢量与X轴正向的夹角, 记为Arg Z (多值函数);主值arg Z 是位于(-理,二]注:两个复数不能比较大小 2.复数的表示

2)若 Z = IZ(COSB+isinT)=∣ze i ^,则 (三)复变函数 1?复变函 数: w = f z ,在几何上可以看作把 Z 平面上的一个点集 D 变到W 平面上的一个点集 G 的映射 . 2 ?复初等函数 1)指数函数:e z =e x cosy isiny ,在Z 平面处处可导,处处解析;且 注:e z 是以2二i 为周期的周期函数。(注意与实函数不同) 3)对数函数: LnZ=In z+i (argz + 2kιι) (k=0,±1,±2八)(多值函数); 主值:In Z = Inz+iargz 。(单值函数) ?1 LnZ 的每一个主值分支In z 在除去原点及负实轴的 Z 平面内处处解析,且 Inz Z 注:负复数也有对数存在。 (与实函数不同) 3)乘幕与幕函数:a — e bLna (a = 0) ; Z b = e bLnZ (Zn 0) 注:在除去原点及负实轴的 Z 平面内处处解析,且 Z S -bz b j 。 Sin z,cos Z 在 Z 平面内解析,且 Sinz = cosz, CoSZ=-Sinz 注:有界性Sin z 兰1, cosz ≤1不再成立;(与实函数不同) Z ■ Z Z ■ Z ,,,, e -e e +e 4) 双曲函数 ShZ ,chz = 2 2 ShZ 奇函数,ChZ 是偶函数。ShZ I ChZ 在Z 平面内解析,且 ShZ =chz, ChZ i - ShZ O (四)解析函数的概念 1 ?复变函数的导数 1)点可导: f r fZ0;fZ 0 2)区域可导:f Z 在区域内点点可导。 2 ?解析函数的概念 1 f 日 +2kπ ..日 +2kπ ) Z n I cos ----------- 十 ISi n -------- I n n (k =0,12…n -1)(有n 个相异的值) 4)三角函数: iz -iz e -e Sin Z = 2i iz JZ . e +e , sin z , ,cos z ,tgz ,ctgz 2 cos z cosz Sin Z

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有

向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点?k 并作和式S n =∑f (?k )n k ?1(z k -z k-1)= ∑f (?k )n k ?1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即?k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫ f (z )dz c =lim δ 0 ∑ f (?k )n k ?1 ?z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设?k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设?k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以

复变函数与积分变换重点公式归纳

复变函数与积分变换 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+== 反余弦函数 )1(1 cos 2-+= =z z Ln i z Arc w

复变函数与积分变换重要知识点归纳

复变函数复习重点 (一)复数的概念 1.复数的概念:z = x ? iy , x, y 是实数,x = Rez,y = lmz.r-_i. 注:一般两个复数不比较大小,但其模(为实数)有大小 2.复数的表示 1)模:z =y/x2+y2; 2)幅角:在z = 0时,矢量与x轴正向的夹角,记为Arg z (多值函数);主值arg z是位于(-二,二]中的幅角。 3)arg z与arctan y之间的关系如下: x y 当x 0, argz=arctan工; x [ y y - 0,arg z = arctan 二当x : 0, x y y :: 0,arg z = arctan 「愿 L x 4)三角表示:z = z COST i sinv ,其中二-arg z ;注:中间一定是“ +"号 5)指数表示:z = z e旧,其中日=arg z。 (二)复数的运算 仁加减法:若z1= x1iy1, z2= x2 iy2,贝寸乙 _ z2 = % _ x2i 比 _ y2 2.乘除法: 1 )若z^x1 iy1 ,z2=x2iy2,则 ZZ2 二XX2 —y』2 i X2% X』2 ; 乙x iy1 % iy1 X2 —iy2 xg yy ?- 丫2为 -- = --------- = ----------------------- = -------------- T i -------------- Z2 x? iy2 X2 iy2 x? - iy? x;y;x;y f 2)若乙=乙e°,z2= z2e°, _则 3.乘幂与方根e i "'2 ; 土評匀) Z2 Z2

1)若z =|z (cos日+isin 日)=|z e旧,则z"=上"(cosnT +i sin 用)=上"d吩。 2)若z =|z (cos日+isin 日)=|ze吩,贝U 阪=z n.'cos日+2" +i si肆+2" )(k =0,1,2[|I n—1)(有n个相异的值)l n n丿 (三)复变函数 1?复变函数:w = f z,在几何上可以看作把z平面上的一个点集D变到w平面上的一个点集G的映射. 2?复初等函数 1)指数函数:e z=e x cosy - isin y ,在z平面处处可导,处处解析;且e z= e z。 注:e z是以2二i为周期的周期函数。(注意与实函数不同) 3)对数函数:Lnz=lnz i(argz 2^:)(k=0, _1,_2[|[)(多值函数); 主值:In z = ln z +iargz。(单值函数) * 1 Lnz的每一个主值分支In z在除去原点及负实轴的z平面内处处解析,且Inz z 注:负复数也有对数存在。(与实函数不同) 3)乘幂与幂函数:a b= e bLna(a = 0);z b= e bLnz(z = 0) 注:在除去原点及负实轴的z平面内处处解析,且z b二bz b‘。 iz -iz iz -iz e -e e e sin z cosz 4)三角函数:sin z ,cos z ,t gz , ctgz = 2i 2 cosz si nz sin z,cos z 在z 平面内解析,且sin z 二cosz, cosz =—si nz 注:有界性sin z兰1, cosz兰1不再成立;(与实函数不同) z -z z - z e -e e +e 4)双曲函数shz ,chz二 2 2 shz奇函数,chz是偶函数。shz, chz在z平面内解析,且shz 二chz, chz = shz。 (四)解析函数的概念 1 ?复变函数的导数

复变函数的积分及其计算方法

复变函数的积分及其计算方法 石睿 (北京林业大学工学院自动化10-1班,学号:101044118) 摘要:复变函数的积分是研究解析函数的一个重要工具,解析函数的很多重要性质都是通过复积分证明的。本文主要介绍柯西定理和柯西积分公式。 关键词:柯西定理;柯西积分公式 引言:首先介绍复积分的概念、性质和计算法,然后介绍解析函数积分的柯西积分定理及其推广——复合闭路定理. 在此基础上,建立柯西积分公式,然后利用这一重要公式证明解析函数的导数仍然是解析函数这一重要结论. 复积分的概念: 设C 是平面上一条光滑的简单曲线,其起点为A ,终点为B 。函数f(z)在C 上有定义。把曲线C 任意分成n 个小弧段。设分点为A=z 0,z 1,…,z n-1,z n =B,其中z k =x k +iyl k (k=0,1,2,…,n),在每个弧段 zk-1zk 上任取一点ζ k =ξ k +i η k ,做合式k n k k n k k k k n Δz )f(ζ)z (z )f(ζ S ∑∑==-?=-?= 1 1 1,其中 k k k k k y i x z z z ?+?=-=?-1 。 记 当λ→0时,如果和式的极限存在,且此极限值不依赖与ζk 的选择,也不依赖对 C 的分法,那么就称此极限值为f(z)沿曲线C 自A 到B 的复积分,记作 复积分的计算方法: 复积分可以通过两个二元实变函数的线积分来计算 设 ???==,)(,)(:t y y t x x C .βα≤≤t 则???'+'+'-'=β α β α t t y t y t x u t x t y t x v i t t y t y t x v t x t y t x u z z f C d )}()](),([)()](),([{d )}()](),([)()](),([{d )( ?'+'+= β αt t y i t x t y t x iv t y t x u d )}()()]}{(),([)](),([{ |,|max 1k n k z ?=≤≤λ.)(lim d )(1 0k n k k C z f z z f ??=∑ ? =→ζλ

复变函数积分方法总结定稿版

复变函数积分方法总结精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。 arg z=θ θ称为主值-π<θ≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有

向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点k 并作和式S n =∑f ( k )n k ?1(z k -z k-1)= ∑f ( k )n k ?1z k 记z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫ f (z )dz c =lim δ 0 ∑ f ( k )n k ?1 z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

学习复变函数与积分变换的心得

学习复变函数与积分变换的心得 这个学期我们学习了复变函数与积分变换这门课程,虽然它同概率统计一样也是考查课,但它的应用及延伸远比概率统计广,复杂得多。我从中学到了很多,上课也感受到了这门课程的魅力及授课老师的精彩的讲课。 每周二都很空闲,除了体育课就没课了,又因为这门课程是公共考查课,是四个班级在一起上课,所以有时候经常想逃课,但自从上了梁老师的一堂课,就感觉到了他是一个很负责的老师,他每次来教室都来得很早,他很喜欢点名,上课上的也很生动,他经常会叫同学上黑板做题目,来检查学生学得怎么样,他不希望同学带早餐进教室。以后的星期二基本上都没逃过课,我深深地被复变函数与积分变换这门课程给吸引住了。 关于这门课程,首先,它作为一门工科类各专业的重要基础理论课程,它与工程力学、电工技术、电磁学、无线电技术、信号系统和自动控制等课程的联系十分密切,其理论方法应用广泛。同时,作为一门工程数学的课程,它主要是以工程背景为依托来展开讨论和研究的,其前提就是为了服务于实际工程。其次,复变函数与积分变换作为一门工程数学课程,概念晦涩难懂、计算繁琐和逻辑推理不易理解。它既具有传统数学的一些特点,又具有与实际工程相结合才能理解的特点。传统数学主要注重对于基本概念的理解和对理论的讲解,要求理论推导具有严密的逻辑性,而不太注重其实际应用。而工程数学在推导定理或概念的过程中就会出现一些不完全符合严密逻辑的推理,但在现实中又是实实在在存在的一些特殊情况。如单位脉冲函数,对于集中于一点或一瞬时的量如点电荷、脉冲电流等,这些物理量都可以用通常的函数形式来描述。 复变函数是在实变函数的基础上产生和发展起来的一个分支,复变函数与积分变换中的理论和方法不仅是数学的许多后续课程如数理方程泛函分析多复变函数调和分析等课程的基础,而且在其它自然科学和各种工程技术领域特别是信号处理以及流体力学电磁学热学等的研究方面有着广泛的应用,可以说复变函数与积分变换既是一门理论性较强的课程,又是解决实际问题的有力工具各高校普遍将复变函数与积分变换课程作为工科各专业的一门重要的必修科来开设,尤其作为电子、机电自动化等电力专业的学生而言,该课程更是一门必不可少的专业基础类必修课,它为电路分析信号与系统以及自动控制原理等后续专业课程的学

复变函数与积分变换重点公式归纳解析

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数:y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1)'(ln =。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1sin 2z iz Ln i z Arc w -+= =

复变函数与积分变换试题及答案

复变函数与积分变换试题(一) 一、填空(3分×10) 1.)31ln(i --的模 ?? ,幅角 ?? 。 2.-8i的三个单根分别为: , , 。 3.Ln z在 的区域内连续。 4.z z f =)(的解极域为:? ?? ? 。 5.xyi y x z f 2)(22+-=的导数=')(z f ? ??。 6.=?? ? ???0,sin Re 3z z s ?? ?。 7.指数函数的映照特点是:??? ? ?? ??。 8.幂函数的映照特点是: ? ?? ? ?。 9.若)(ωF =F [f (t)],则)(t f = F )][(1ω-f ?? ??。 10.若f (t )满足拉氏积分存在条件,则L [f (t )]= ? ? 。 二、(10分) 已知222 1 21),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解 析函数,且f(0)=0。 三、(10分)应用留数的相关定理计算 ?=--2||6)3)(1(z z z z dz 四、计算积分(5分×2) 1.?=-2 ||) 1(z z z dz

2.? -c i z z 3 )(cos C :绕点i 一周正向任意简单闭曲线。 五、(10分)求函数) (1 )(i z z z f -= 在以下各圆环内的罗朗展式。 1.1||0<-

复变函数积分方法总结

复变函数积分方法总结 [键入文档副标题] acer [选取日期]

复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作 x=Re(z),y=Im(z)。 arg z=θ?θ?称为主值 -π<θ?≤π, Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点ξk并作和式S n=ξ(z k-z k-1)=ξ?z k记?z k= z k- z k-1, 弧段z k-1 z k的长度=,n),当0时,不论对c的分发即ξk的取法如何,S n有唯一的极限,则称该极限值为函数f(z) 沿曲线C的积分为: =ξ?z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作 (C圆周正方向为逆时针方向) 例题:计算积分 ,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0.

∵f(z)=1 S n=ξ(z k-z k-1)=b-a ∴ =b-a,即 =b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设ξk=z k-1,则 ∑1= ( )(z k-z k-1) 有可设ξk=z k,则 ∑2= ( )(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得: = - vdy + i + udy 再设z(t)=x(t)+iy(t) (≤t≤) = 参数方程书写:z=z0+(z1-z0)t(0≤t≤1);z=z0+re iθ,(0≤θ≤2π) 例题1:积分路线是原点到3+i的直线段 解:参数方程 z=(3+i)t =′ =(3+i)3 =6+i 例题2:沿曲线y=x2计算( )

复变函数与积分变换重要知识点归纳

复变函数与积分变换重 要知识点归纳 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换复习重点

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1)模:22 z x y =+; 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

《复变函数与积分变换》期末考试试卷及答案[1]

一.填空题(每小题3分,共计15分) 1. 2 31i -的幅角是( 2,1,0,23 ±±=+- k k ππ ) ; 2.)1(i Ln +-的主值是( i 4 32ln 21π + ); 3. 2 11)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4 sin z z z -的( 一级 )极点; 5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题4分,共24分) 1.解析函数 ),(),()(y x iv y x u z f +=的导函数为(B ) ; (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周 3=z ,如果函数=)(z f ( D ) ,则0d )(=?C z z f . (A ) 23-z ; (B )2 ) 1(3--z z ; (C ) 2)2()1(3--z z ; (D ) 2 )2(3 -z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在(C ) (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C ) i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( B ) (A )如果函数 )(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果 )(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、) ,(y x v

《复变函数与积分变换》

《复变函数与积分变换》期末复习题 2009-6-22 一、判断题 1. 若{z n }收敛,则{Rez n }与{Imz n }都收敛. ( T ) 2. 如z 0是函数f (z )的本性奇点,则)(lim 0 z f z z →一定不存在. ( F ) 3. 若f (z)在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=?C dz z f . ( F ) 4.复数484z +=i 的模|z|=8。 ( T ) 5.设100i)(1z +=,则Imz =0。 ( T ) 6.设z=i 2e +,则argz =1。 ( T ) 7.f (z )的可导处为0。 ( T ) 8.设C 为正向圆周|z|=1,则?+c )dz z z 1 (=4πi 。 ( T ) 9.幂极数∑ ∞ =1 n n n z n n!的收敛半径为e 。 ( T ) 10.函数f(z)=]1)(z 1 1z 1[1z 15 +++++ 在点z=0处的留数为6。 ( T ) 11.cos z 与sin z 在复平面内有界。 ( F ) 12.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。( T ) 13.若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。 ( T ) 14.若函数f (z )在z 0可导,则f (z )在z 0解析。 ( F ) 15.若f (z )在区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=? C dz z f 。 ( F ) 16.若)(lim 0 z f z z →存在且有限,则z 0 是函数的可去奇点。 ( F ) 17.若函数f (z )在区域D 内解析且0)('=z f ,则f (z )在D 内恒为常数。 ( T ) 18.如果z 0是f (z )的本性奇点,则)(lim 0 z f z z →一定不存在。 ( F ) 19.非周期函数的频谱函数呈连续状态。 ( T ) 20.位移性质表明,一个函数乘以指数e at 后的拉氏变换等于其像函数作位移a 。( T )

复变函数与积分变换 学习笔记

第二章解析函数 一、复变函数的导数及微分 1、导数的定义 2、可导与连续 3、求导法则 实变函数的求导法则可以不加更改地推广到复变函数中来 4、微分的概念 与一元实变函数的微分概念完全一致 二、解析函数的概念 1、解析函数的定义 如果函数f(z)在z0及z0的邻域内处处可导,那么称f(z)在z0解析。 如果函数f(z)在区域D内每一点解析,则称f(z)在区域D内解析。或称f(z)是区域D 内的一个解析函数(全纯函数或正则函数) 2、奇点的定义 如果函数f(z)在z0不解析,那么称z0为f(z)的奇点。 根据定义可知,函数在区域内解析和区域内可导是等价的。但是,函数在一点处解析和一点处可导是不等价的,即在一点处可导,不一定在该点处解析。 函数在一点处解析比在该点处可导的要求高得多。 定理 (1)在区域D内解析的两个函数f(z)和g(z)的和、差、积、商(除去分母为零的点)在D内解析。 (2)设函数h=g(z)在z平面上的区域D内解析,函数w=f(h)在h平面上的区域G内解析。如果对于D内的每个点z,函数g(z)的对应值h都属于G,那么复合函数w=f|g(z)|在D内解析。 根据定理可知: (1)所有多项式在复平面内是处处解析的。 (2)任何一个有理分式函数P(z)/Q(z)在不含分母为零的点的区域内是解析的,使分母为零的点是它的奇点。 注意:复变函数的导数定义与一元实变函数的导数定义在形式上是完全一样的,它们的求导公式与求导法则也一样,然而复变函数极限存在要求与z趋于零的方式无关,这表明它在一点可导的条件比实变函数严格得多。 第二节、函数解析的充要条件 一、主要定理 定理一:设函数f(z)=u(x,y)+iv(x,y)定义在区域D内,则f(z)在D内一点z=x+yi 可导的充要条件是:u(x,y)与v(x,y)在点(x,y)可微,并在该点满足柯西-黎曼方 程:=,=。 根据定理一,可得函数f(z)=u(x,y)+iv(x,y)在点z=x+yi处的导数公式:f'(z)=+=+。 定理二:函数f(z)=u(x,y)+iv(x,y)在其定义域D内解析的充要条件是:u(x,y)与v(x,y)在D内可微,并满足柯西-黎曼方程。

相关主题
文本预览
相关文档 最新文档