当前位置:文档之家› 运控实验指导书

运控实验指导书

运控实验指导书
运控实验指导书

拖动控制系统实验指导书

北林大自动化系

目录

1 晶闸管直流调速系统参数和环节特性的测定实验2单闭环晶闸管直流调速系统实验

3 双闭环晶闸管不可逆直流调速系统实验

实验一晶闸管直流调速系统参数和环节特性的测定实验

一、实验目的

1.了解电力电子实验台的结构及布线情况;

2.熟悉晶闸管直流调速系统的组成及基本结构;

3.掌握晶闸管直流调速系统参数及反馈环节测定方法。

二、实验线路及原理

晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。

在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压Ug作为触发器的移相控制电压Uct,改变Ug的大小即可改变控制角α,从而获得可调的直流电压和转速,以满足实验要求。

实验系统的组成原理图如图5-1所示。

三、实验内容

1.测定晶闸管直流调速系统主电路总电阻值R;

2.测定晶闸管直流调速系统主电路电感值L;

3.测定直流电动机电势常数Ce和转矩常数C M;

4.测定晶闸管触发及整流装置特性Ud=f(U ct);

5.测定测速发电机特性U TG=f(n)。

四、实验设备

1.电力电子实验台

2.RTDL05实验箱

3.RTDL08实验箱

4.RTDJ32电动机

5.RTDJ45校正电机

6.RTDJ47电机导轨、测速发电机

7.RTDJ10实验箱

8.万用表(自备)

9.示波器(自备)

10.单相自耦调压器(自备)

五、预习要求

学习本教材中有关晶闸管直流调速系统各参数的测定方法。

六、实验方法

1.电枢回路总电阻R的测定

电枢回路的总电阻R包括电机的电枢电阻Ra、平波电抗器的直流电阻R L及整流装置的内阻Rn。即:

R=Ra+R L+R n……………………………………….(5-1)

为测出晶闸管整流装置的电源内阻,可采用伏安比较法来测定电阻,其实验线路如图5-2所示。

将变阻器R1、R2接入被测系统的主电路,测试时电动机不加励磁,并使电机堵转。合上S将可变电阻R1短路,调节Ug,使Ud(由V1表读出)在30%Ude-70%Ude范围内,然后调整R2使电枢电流在80%Ide-90%Ide范围内;读取电流表A和电压表V2的数值为I1、U1,则此时整流装置的理想空载电压为:

U d0=I1R+U1……………………………………………..(5-2)

调节R1使之与R2的电阻值相近,打开开关S,在Ud保持不变的条件下读取电流表A、电压表V2的数值I2、U2,则:

U d0=I2R+U2……………………………………………..(5-3)

求解(6-2)、(6-3)两式,可得电枢回路总电阻:

R=(U2-U1)/(I1-I2)(6-4)………………………….(5-4)

如把电机电枢两端短接,重复上述实验,可得:

RL+Rn=(U′2-U1′)/(I1′-I2′)……………………….(5-5)

则电机电枢电阻为:

Ra=R-(R L+Rn)……………………. …….…………..(5-6)

同样,短接电抗器两端,也可测得电抗器直流电阻R L。

2.电枢回路电感L的测定

电枢回路总电感包括电机的电枢电感La、平波电抗器电感Ld和整流变压器漏感L B,由于L B数值

很小,可以忽略,故电枢回路的等效总电感为:

L=La+L d………………………………………………...(5-7)

电感的数值可用交流伏安法测定。实验时应给电动机加额定励磁,并使电机堵转,实验线路如图5-3所

示。

实验时交流电压的有效值应小于电机直流电压的额定值,用电压表和电流表分别测出通入交流电压后电枢两端和电抗器上的电压值Ua和U L及电流I,从而可得到交流阻抗Za和Z L,计算出电感值La 和Ld,计算公式如下:

Za=Ua/I………………………………………………….(5-8)

Z L=U L/I…………………………………………………..(5-9)

La=[(Za2-Ra2)1/2]/(2πf)…………………………….(5-10)

Ld=[(ZL2-RL2)1/2]/(2πf)…………………………..….(5-11)

3. 电动机电动势常数Ce和转矩常数CM的测定

将电动机加额定励磁,改变电枢电压Ud,使其空载运行,测得相应的n,由式n=Ud/Ce -RaTe/(Ce C M)得

n1=U d1/Ce -RaTe/(Ce C M)

n2=U d2/Ce -RaTe/(Ce C M)

两式相减,即可由下式算出Ce:

C eФ=(U d2-U d1)/(n2-n1)

式中,Ce的单位为V/(r/min)。

转矩常数(额定磁通)C M的单位为N.m/A。C M可由Ce求出:

C M=9.55Ce

4.晶闸管触发及整流装置特性Ud=f(Ug)和测速发电机特性U TG=f(n)的测定

实验线路如图5-4所示,可不接示波器,电动机加额定励磁,逐步增加触发电路的控制电压Ug,分别读取对应的Ug、UTG、Ud、n的数值若干组,即可描绘出特性曲线Ud=f(Ug)和U TG=f(n)。

由Ud=f(Ug)曲线可求得晶闸管整流装置的放大倍数曲线Ks=f(Ug),Ks=△Ud/△ug

七、实验报告

1.作出实验所得各种曲线,计算有关参数;

2.由Ks=f(Ug)特性,分析晶闸管装置的非线性现象。

八、注意事项

1.由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数;

2.为防止电枢过大电流冲击,每次增加Ug须缓慢,且每次启动电动机前给定电位器应调回零

位,以防过流;

3.当电机堵转时,大电流测量的时间要短,以防电机过热。

实验二单闭环晶闸管直流调速系统实验

一、实验目的

1.熟悉型电机控制系统实验装置的结构及调试方法;

2.了解单闭环直流调速系统的原理、组成及各主要单元部件的原理;

3.掌握晶闸管直流调速系统的一般调试过程;

4.认识闭环反馈控制系统的基本特性。

二、实验线路及原理

为了提高直流调速系统的动静态性能指标,可以采用闭环系统。图5-7所示的是速度单闭流调速系统。

在转速反馈的单闭环直流调速系统中,将反映转速变化情况的测速发电机电压信号经速度变换器后接至速度调节器的输入端,与负给定电压相比较,速度调节器的输出用来控制整流桥的触发装置,从而构成速度系统。而将电流互感器检测出的电压信号作为反馈信号的系统称为电流反馈单闭环直流调速系统。如图5-8。

三、实验内容

1.电力电子实验台的调试;

2.基本控制单元调试;

3.Uct不变时的直流电动机开环特性的测定;

4.转速反馈的单闭环直流调速系统;

四、实验设备

1.电力电子实验台

2.RTDL04实验箱

3.RTDL05实验箱

4.RTDL08实验箱

5.RTDJ32电动机

6.RTDJ45发电机

7.RTDJ47电机导轨、测速发电机

8.RTDJ10实验箱

9.示波器(自备)

10.万用表(自备);

五、预习要求

1.复习教材中有关晶闸管直流调速系统、闭环控制系统的内容;

2.掌握调节器的工作原理;

3.根据图5-7实验系统的接线图,并理解各控制单元在调速系统中的作用。

六、思考题

1.P调节器和PI调节器在直流调速系统中的作用有什么不同?

2.实验中,如何确定转速反馈的极性并把转速反馈正确地接入系统中?调节什么元件能改变转

速反馈的强度?

3.实验时,如何能使电动机的负载从空载(接近空载)连续地调至额定负载?

七、实验方法

1.触发控制电路调试及开关设置

1.打开总电源开关,观察各指示灯与电压表指示是否正常。

2.电源控制屏交流电源输出切换到“直流调速”。RTDL08“触发电路脉冲指示”应显示“宽脉

冲”。

3.触发电路的调试方法:用示波器观察触发电路六路脉冲是否正常,观察三相的锯齿波并调整

A、B、C三相的锯齿波斜率调节电位器,使三相锯齿波斜率尽可能一致;观察六路触发脉冲,

应使其间隔均匀,相互间隔60o。

4.将RTDL05给定器输出Ug直接接至触发电路控制电压Uct处,调节偏移电压Ub,使Uct=0

时,α=90o。

5.将面板上的U If端接地,将正组触发脉冲的六个开关拨至“接通”,观察正桥VT1-VT6晶闸管

的触发脉冲是否正常。

2.Uct不变时的直流电机开环外特性的测定

1.控制电压Uct由给定器的输出Ug直接接入,直流发电机接负载电阻R G。

2.逐渐增加给定电压Ug,使电机起动,升速;调节Ug和RG使电动机电流Id=Ide、转速n=n N。

3.改变负载电阻R G即可测出Uct不变时的直流电机开环外特性n=f(Id),记录于下表5-1中。

3.基本单元部件调试

1.移相控制电压Uct的调节范围确定,直接将给定电压Ug接入移相控制电压Uct的输入端,

整流桥接电阻负载,用示波器观察u d的波形。当Uct由零开始增加时,Ud随Uct的增大而

增大,当Uct超过某一数值Uct′时,u d可能出现缺少波头的现象(双窄脉冲触发时),这时

Ud反而随Uct的增大而减少。一般可确定移相控制电压的最大允许值Uctmax=0.9Uct′,即

Uct的允许调节范围为0-Uctmax。

2.调节器的调整(RTDL05)

a.调节器的调零将调节器输入端接地,将串联反馈网络中的电容短接,使调节器成为比例(P)

调节器。调节面板上的调零电位器,用万用表的mV档测量,使调节器的输出电压为零。

b.正、负限幅值的调整将调节器的输入端接地线和反馈电路短接线去掉使调节器成为比例积分

(PI)调节器,然后将给定器输出端接到调节器的输入端,当加正给定时,调整负限幅电位器,使之输出电压为零(调至最小值即可)当调节器输入端加负给定时,调整正限幅电位器,使正限幅值符合实验要求。在本实验中,电流调节器和速度调节器的输出正限幅均为Uctmax,负限幅均调至零。

4. 转速单闭环直流调速系统

按图5-7接线,在本实验中,给定电压Ug为负给定,转速反馈电压为正电压,速度调节器接成比例(P)调节器。

调节给定电压Ug和直流发电机负载R G,使电动机运行在额定点,固定Ug,由轻载至满载调节直流发电机的负载,记录电动机的转速n和电枢电流Id于下表5-3中。

八、实验报告

1.根据实验数据,画出Uct不变时的直流电动机开环机械特性;

2.根据实验数据,画出转速反馈的单闭环直流调速系统的机械特性;

3.比较以上各种机械特性,并作出解释。

九、注意事项

1.双踪慢扫描示波器的两个探头的地线通过示波器外壳接地,故在使用时,必须使两控头的地

线同电位(只用一根地线即可),以免造成短路事故;

2.系统开环运行时,不能突加给定电压而起动电机,应逐渐增加给定电压,避免电流冲击;

3.通电实验时,可先用电阻作为整流桥的负载,待电路正常后,再换接电动机负载;

4.在连接反馈信号时,给定信号的极性必须与反馈信号的极性相反。

实验三双闭环晶闸管不可逆直流调速系统实验

一、实验目的

1.了解闭环不可逆直流调速速系统的原理、组成及各主要单元部件的原理;

2.掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定;

3.研究调节器参数对系统动态特性的影响。

二、实验线路及原理

双闭环晶闸管不可逆直流调速系统由电流和转速两个调节器综合调节。由于调速系统的主要参量为转速,故转速环作为主环放在外面,电流环作为副环放在里面,这样可抑制电网电压扰动对转速的影响,实验系统的组成如图5-9所示。

系统工作时,先给电动机加励磁,改变给定电压Ug的大小即可改变电机的转速。ASR、ACR均设有限幅环节,ASR的输出作为ACR的给定,利用ASR的输出限幅可达到限制启动电流的目的;ACR

的输出作为移相触发电路的控制电压,利用ACR的输出限幅可达到限制αmin的目的。

启动时,当加入给定电压Ug后,ASR即饱和输出,使电动机以限定的最大启动电流加速启动,直到电机转速达到给定转速(即Ug=U fn),并在出现超调后,ASR退出饱和,最后稳定运行在略低于给定转速的数值上。

三、实验内容

1.各控制单元调试;

2.测定电流反馈系数β、转速反馈系数α;

3.测定开环机械特性及高、低速时系统闭环静态特性n=f(Id);

4.闭环控制特性n=f(Ug)的测定;

四、实验设备

1.电力电子实验台

2.RTDL04实验箱

3.RTDL05实验箱

4.RTDL08实验箱

5.RTDJ32电动机

6.RTDJ45发电机

7.RTDJ47电机导轨、测速发电机

8.RTDJ10实验箱;

9.示波器(自备);

10.万用表(自备)。

五、预习要求

1.阅读教材中有关双闭环直流调速系统的内容,掌握双闭环直流调速系统的工作原理;

2.理解PI调节器在双闭环直流调速系统中的作用,掌握调节器参数的选择方法;

3.了解调节器参数、反馈系数、滤波环节参数的变化对系统动、静态特性的影响趋势。

六、思考题

1.为什么双闭环直流调速系统中使用的调节器均为PI调节器?

2.转速负反馈线的极性如果接反会产生什么现象?

3.双闭环直流调速系统中哪些参数的变化会引起电动机转速的改变?哪些参数的变化会引起

电动机最大电流的变化?

七、实验方法

1.触发控制电路调试及开关设置

(1)打开总电源开关,观察各指示灯与电压表指示是否正常。

(2)电源控制屏交流电源输出切换到“直流调速”。RTDL08“触发电路脉冲指示”应显示“宽脉冲”。(3)触发电路的调试方法:用示波器观察触发电路六路脉冲是否正常,观察三相的锯齿波并调整A、

B、C三相的锯齿波斜率调节电位器,使三相锯齿波斜率尽可能一致;观察六路触发脉冲,应使

其间隔均匀,相互间隔60o。

(4)将RTDL05给定器输出Ug直接接至触发电路控制电压Uct处,调节偏移电压Ub,使Uct=0时,α=90o。

(5)将面板上的U If端接地,将正组触发脉冲的六个开关拨至“接通”,观察正桥VT1-VT6晶闸管的触发脉冲是否正常。

2.双闭环调速系统调试原则

(1)先单元、后系统,即先将单元的特性调好,然后才能组成系统;

(2)先开环、后闭环,即先使系统能正常开环运行,然后在确定电流和转速均为负反馈时组成闭环系统;

(3)先内环,后外环,即先调试电流内环,然后调试转速外环;

(4)先调整稳态精度,后调整动态指标。

3.开环外特性的测定

(1)控制电压Uct由给定器输出Ug,直接接入,直流发电机接负载电阻R G;

(2)逐渐增加给定电压Ug使电机启动,升速;调节Ug和R G,使电动机电流Id=Ide、转速n=n N;

(3)改变负载电阻R G,即可测出系统的开环外特性n=f(Id),记录于下表表5-5中。

4.单元部件调试

a)调节器的调零与上一节实验中的方法相同

b)调节器正、负限幅值的调整按上一节实验中的方法确定移相控制电压Uct的允许调节范围为

0-Uctmax。

(2)电流调节器和速度调节器的调试方法与上一节实验中的方法相同。在本实验中,电流调节器的负限幅为0,正限幅为Uctmax;速度调节器的负限幅为6V,正限幅为0。

(3)(3)电流反馈系数的整定直接将给定电压Ug接入移相控制电压Uct的输入端,整流桥接电阻负载,测量负载电流值和电流反馈电压,调节电流变换器(FBC)上的电流反馈

电位器RP1,使得负载电流Id=1A时的电流反馈电压Ufi=6V,这时的电流反馈系数

β=Ufi/Id=6V/A。

(4)转速反馈系数的整定直接将给定电压Ug接入移相控制电压Uct的输入端,整流电路接直流电动机负载,测量直流电动机的转速值和转速反馈电压值,调节速度变换器(FBS)

上转速反馈电位器RP1,使得n=1500r/min时的转速反馈电压Ufn=6V,这时的转速反馈系

数α=Ufn/n=0.004V/(r/min)。

5.系统特性测试

将ASR、ACR均接成P调节器后接入系统,形成双闭环不可逆系统,使得系统能基本运行,确认整个系统的接线正确无误后,将ASR、ACR均恢复成PI调节器,构成实验系统。

(1)机械特性n=f(Id)的测定

a.发电机先空载,调节转速给定电压Ug使电动机转速接近额定值,n N =1400r/min然后接入发电

机负载电阻R G,逐渐改变负载电阻,直至Id≤Ide,即可测出系统静态特性曲线n=f(Id),并记录于下表5-6中;

表5-6

b.降低Ug,使I d=I de,再测试n=800r/min时的静态特性曲线并记录于下表5-7中。

表5-7

(2)(2)闭环控制系统的测定调节Ug及RG,使Id=Ide,逐渐降低Ug,记录Ug和n,即可测出闭环控制特性n=f(Ug)。

八、实验报告

1.根据实验数据,画出闭环控制特性曲线n=f(Ug);

2.根据实验数据,画出两种转速时的闭环机械特性n=f(Id);

3.根据实验数据,画出系统开环机械特性n=f(Id),计算静差率,并与闭环机械特性进行比较;

4.分析系统动态波形,讨论系统参数的变化对系统动、静态性能的影响趋势。

九、注意事项

1.系统开环运行时,不能突加给定电压而启动电机,应逐渐增加给定电压,避免电流冲击;

2.在记录动态波形时,可先用双踪示波器观察波形,以便找出系统动态特性较为理想的调节器参

数,再用存储示波器记录动态波形。

微机接口技术实验指导书

《微机接口技术》实验指导书 主编李建波 主审黄忠宇、苏显 广东机电职业技术学院 计算机与信息工程系

前言 本实验指导书适用于机电一体化专业,实验时间10学时,5次上机时间。 主要学习内容为80X86语言实验环境配置、汇编源语言格式、输出字符、循环结构、子程序调用,以及加减乘除等指令操作。 学习结束后,要求学生能够独立编写出综合加减乘除等指令,以及循环结构、子程序调用等程序控制程序。

目录 实验项目一熟悉微机实验环境 (4) 实验项目二掌握中断方式显示数字或字符 (6) 实验项目三掌握汇编语言的寻址方式 (8) 实验项目四掌握循环指令的用法 (10) 实验项目五掌握子程序的用法 (12)

实验报告一熟悉微机实验环境 1、实验目的 1、熟悉微机实验环境安装 2、熟悉微机实验环境配置 3、通过练习加法,熟悉程序格式 4、单步运行程序,通过观察窗口观察指令对寄存器中数据的影响 2、实验步骤 1)软件安装 (拷贝三个文件夹) 复制:桌面| 网上邻居\ Techer\ c盘\ wave、comp86和in8088三个文件夹拷贝:将三个文件夹到自己计算机上C:盘根目录下 在资源管理器下可以看到:C:\wave,C:\comp86,C:\in8088三个文件夹2)通过资源管理器,进入汇编环境 C:\wave\Bin\wave.exe ,双击wave.exe 3)打开文件我的电脑 \ c: \ wave \ bin \ wave.exe环境配置(如下图) 选中菜单栏中“仿真器”——“仿真器设置”选项(如下图) a、选中“语言”一栏,编译器路径中填写: C:\COMP86\(如下图) b、选中“仿真器”一栏, 选择仿真器—————G6W(如下图) 选择仿真头—————8088/8086实验(如下图) 选择CPU —————8088/8086(如下图) 使用软件模拟器:打√表示软件实验,硬件实验则无√ 4)新建文件 a、选中菜单栏\文件\新建文件,建立空白文件 b、编辑文件,输入以下代码

09自动化《过程控制系统》实验指导书

实验1 用曲线拟合法估计模型参数 实验目的: 1) 掌握用曲线拟合法测试对象动态特性; 2) 熟悉MATLAB 仿真平台。 实验原理: 图1.1 输入-输出过程模型 在如图1.1 所示的过程模型中,可以通过实验测试或依据积累的操作数据,用数学方法得出过程的经验模型。 在获取了输入输出数据后,进行曲线拟合,可采用计算机和相关的软件实现。首先根据实验数据和其它验前知识,假定对象的模型结构,然后最小化模型输出)(t y 和实际输出y(t)在采样点上的误差平方和,即 ∑=-=n i i i t y t y J 1 2))()((min 进行搜索时,当J 最小时相应的对象参数即为最优参数。式中,n 为计算数据的个数。优化的算法很多,如共轭梯度法、最速下降法、Powell 法、单纯型法、罚函数法等。 本实验利用MA TLAB 优化工具箱中的“lsqcurvefit”函数对过程阶跃响应曲线进行拟合,用户假定模型的结构,编写相应的fun 函数,即ym=fun (x , t ),其中x 为模型的参数向量,待确定,t 为时间向量。给出待估计参数的初始值x0,调用曲线拟合函数计算模型参数向量的估计值x ,格式为x = lsqcurvefit (fun , x 0, t , y ),其中y 为与时间向量t 对应的输出实验数据。 实验要求: 1) 用SIMULINK 工具箱搭建如图1.2所示的开环对象测试系统,模拟实验测试环节 获取输入输出数据,此处输入采用单位阶跃信号。设置合适的“start time”和“stop time”,使得能够得到一个完整的动态过程。仿真类型设置为“Fixed -step”,并设置合适的计算步长(0.01~0.1)。 输入输出数据保存在dataty.mat 文件中,设置变量名为ty ;run 之后,可在命令窗口中输入load dataty.mat 将数据文件中的数据读入工作空间中,然后用size(ty)查看

实验指导书

Matlab实验指导书 河北大学电子信息工程学院 2004年1月

目录 MATLAB实验教学计划 (2) 实验一MATLAB基本操作 (3) 实验二MATLAB图形系统......................................................... . (5) 实验三 MATLAB程序设计 (6) 实验四 MATLAB基本应用领域 (7) 实验五设计性综合实验1---数字信道编译码 (14) 实验六设计性综合实验2---fir滤波器设计................................. . (16) 2

MATLAB实验教学计划 指导教师:郑晓昆薛文玲王竹毅学时数:12学时周4学时2次实验,共3周6次实验,第7—9教学周,每次实验2学时 所用仪器设备:MATLAB7.0实验软件系统 实验指导书:Matlab实验指导书 自编 实验参考书:, 楼顺天等编著, 西安电子科大出版社,06年5月第二版 实验项目: A, MATLAB基本操作 内容:矩阵操作,基本数学函数,逻辑函数操作等; 要求:循序渐进完成P83练习题1—10 B, MATLAB图形系统 内容:图形绘制,图形标注,对数和极坐标,坐标轴控制,颜色控制等要求:循序渐进完成P146练习题1—10 C, MATLAB程序设计 内容:脚本script和函数function认识,流程控制,参数交互输入,基本程序设计技巧练习,程序调试DEBUG等 要求:循序渐进完成P184练习题1—10 D, MATLAB基本应用领域 内容:线性代数,多项式与内插,曲线拟合,数据分析与统计,泛函基础等 要求:循序渐进完成P146练习题1—4,6—19 E, 设计性综合实验----数字信道编译码 内容:1数字通信系统信道编码AMI编译码 2数字通信系统信道编码HDB3编译码 F,设计性综合实验----fir滤波器设计 内容:设计一个有限冲击相应数字滤波器FIR是该滤波器能够滤出规定频率以上的信号,而该频率以下的信号不受影响。 3

通信工程专业综合实验指导书

通信工程专业综合实验指导书 XX建筑大学 信息与电气工程学院 通信工程教研室 2009年3月

实验一、学习数字通信系统的SystemView仿真软件 一、实验目的 1.了解SystemView软件,学习数字通信系统SystemView仿真软件的使用方法,为实际的仿真应用打下良好的基础。 2.掌握软件设计和仿真的方法。 二、实验说明 SystemView是美国ELANIX公司推出的,基于Windows环境的用于系统仿真分析的可视化软件工具。使用它,用户可以用图符(Token)去描述自己的系统,无需与复杂的程序语言打交道,不用写代码即可完成各种系统的设计与仿真。 利用SystemView,可以构造各种复杂的模拟、数字、数模混合系统和各种多速率系统,它可用于各种线性或非线性控制系统的设计和仿真。 SystemView的图符资源十分丰富,特别适合于现代通信系统的设计、仿真和方案论证。还可进行CDMA通信系统和数字电视业务的分析;用户还可以自己用C语言编写自己的用户自定义库。 SystemView能自动执行系统连接检查,给出连接错误信息或尚悬空的待连接端信息,通知用户连接出错并通过显示指出出错的图标。 在系统设计和仿真方面,SystemView还提供了一个真实而灵活的窗口用以检查、分析系统波形,也可完成对仿真运行结果的各种运算、频谱分析、滤波。 三、实验设备 四、实验内容 1.安装SystemView,对该软件有一个感性认识

根据SystemView安装软件说明,在电脑上安装SystemView软件。 2.了解SystemView设计窗口 启动SystemView后就会出现如图1所示的系统设计窗口。它包括标题栏、菜单栏、工具条、滚动条、提示栏、图符库和设计窗工作区。其中设计窗口工作区是用于设置、连接各种图符以创建系统,进行系统仿真等操作;提示栏用于显示系统仿真的状态信息、功能快捷键的功能信息提示和图符的参数显示;滚动条用于移动观察当前的工作区域。当鼠标器位于功能图符上时,则该图符的具体参数就会自动弹出显示。 3.了解SystemView图符库 SystemView的图标库可分为3种,即基本库、专业库以及用户扩展库。分别了解相关图库的功能,便于后续设计使用。 4.了解SystemView分析窗口

微机保护实验指导书

微机保护(演示)实验提纲(暂用) 实验基本内容: ●微机保护装置硬件结构认识与基本接线 ●微机保护操作界面熟悉与整定操作 ●微机保护定值检验 实验项目 ●三段式微机电流保护实验 ●微机重合闸实验 ●微机变压器差动保护实验 实验设备: ●南瑞继电保护屏 ●LHDJZ-ⅢB试验台 实验地点: 电力实训中心9318,9227 南京工程学院电力学院继电保护教研室

1 观察微机保护装置的硬件结构 1.1观察对象: 220kV线路保护屏,110kV线路保护屏,主变保护屏,母线保护屏2.2内容及步骤: 观察各保护屏外部结构; 观察保护装置的面板及部件; 背板插件插拔,观察插件上的内容; 端子排,接口及连接片(压板)等。

2 三段式电流微机保护实验 2.1实验目的 熟悉微机保护调试过程和操作方法;学习微机电流保护定值调整的方法;研究系统运行方式对保护的影响;熟悉重合闸与保护配合方式。 2.2电流保护流程

2.3实验接线 电流、电压保护实验一次系统图 微机电流保护实验原理接线图 2.4实验步骤 (1) 按图接线,同时将变压器原方CT (TA )的二次侧短接。 (2)将模拟线路电阻滑动头移动到0欧姆处。 (3)运行方式选择,置为“最小”处。 (4)合上三相电源开关,调节调压器输出,使台上电压表指示从0V 慢慢升到100V ,注意此时的电压应为变压器二次侧电压,其值为100V 。 (5)合上微机保护装置电源开关,利用菜单整定有关定值。 (6)微机电流保护Ⅰ段(速断)、Ⅱ、Ⅲ段投入,将LP1接通(微机出口连接片投入)。 (7)合上直流电源开关,合上模拟断路器,负荷灯全亮。 (8)任意选择两相短路,如果选择AB 相,合上AB 相短路模似开关。 (9)合上故障模拟断路器3KO ,模拟系统发生两相短路故障,此时负荷灯部分熄灭,电流表读数约为7.14A 左右,大于速断(Ⅰ段)保护整定值,I 段保护动 2A 2B 2C (来自PT 测量) (来自2CT 互感器二次侧)

过控控制系统综合设计实验

过程控制系统综合设计实验报告 项目:过程控制系统综合设计 班级:自动化133 姓名: 学号: 指导老师: 一:实验目的及要求 目的: 1.结合比值控制系统、串级控制系统、前馈反馈控制系统、解耦控 制系统的实施,掌握DDC系统应用,以及安装; 2.掌握P900系列智能调节器的参数整定与操作; 3.掌握各类标准信号的测定方法; 4.掌握传感器、执行器的使用; 5.掌握数学建模方法以及PID参数的整定方法。

要求: 1、按照实验指导书上的任务完成实验内容; 2、记录数据以及实验结果,保存实验结果图; 3、完成实验报告的设计,撰写,分析并处理实验结果; 4、进行答辩。

二:实验过程及实验结果 实验一、长滞后环节温度PID 控制实验 一、实验目的 1、熟悉纯滞后(温度)对象的数学模型及其阶跃响应曲线。 2、根据由实际测得的纯滞后(温度)阶跃响应曲线,分析加热系统的飞升特性。 二、实验器材 CS4100型过程控制实验装置 配置:C3000过程控制器、实验连接线。 三、实验原理 整个纯滞后系统如图4-1所示,加热水箱为纯滞后水箱提供热水,在加热水箱的出水口即纯滞后水箱的进水口装有温度传感器。纯滞后水箱,中间固定有一根有机玻璃圆柱,9块隔板呈环形排布在圆柱周围,将整个水箱分隔为9个扇形区间,热水首先流入A 区间,再由底部进入B 区间,流过B 区间后再由顶部进入C 区间,如此再依次流过D 、E 、F 、G 、H 最后从I 区间流出,测温点设在E 、H 区间,当A 区间进水水温发生变化时,各区间的水温要隔一段时间才发生变化,当进水水流流速稳定在1.5L/Min 时,与进水水温T1相比E 区间的水温T2滞后时间常数τ约为4分钟,H 区间的水温T3滞后时间常数τ约为8分钟。各隔板的上沿均低于水箱的外沿,这样如果水流意外过大则会漫过各隔板直接进入I 区间再流出。 A B C D E F G H I t2 t3 六号纯滞后水箱 五号加热水箱 调压 模块 手动设定 Q t1 图3-1 纯滞后系统示意图

实验指导书

苯甲酸红外光谱的测绘—溴化钾压片法制样 一、实验目的 1、了解红外光谱仪的基本组成和工作原理。 2、熟悉红外光谱仪的主要应用领域。 3、掌握红外光谱分析时粉末样品的制备及红外透射光谱测试方法。 4、熟悉化合物不同基团的红外吸收频率范围.学会用标准数据库进行图谱检索 及化合物结构鉴定的基本方法。 二、实验原理 红外光谱分析是研究分子振动和转动信息的分子光谱。当化合物受到红外光照射,化合物中某个化学键的振动或转动频率与红外光频率相当时,就会吸收光能,并引起分子永久偶极矩的变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应频率的透射光强度减弱。分子中不同的化学键振动频率不同,会吸收不同频率的红外光,检测并记录透过光强度与波数(1/cm)或波长的关系曲线,就可得到红外光谱。红外光谱反映了分子化学键的特征吸收频率,可用于化合物的结构分析和定量测定。 根据实验技术和应用的不同,我们将红外光划分为三个区域:近红外区(0.75~2.5μm;13158~40001/cm),中红外区(2.5~25μm;4000~4001/cm)和远红外区(25~1000μm;400~101/cm)。分子振动伴随转动大多在中红外区,一般的红外光谱都在此波数区间进行检测。 傅立叶变换红外光谱仪主要由红外光源、迈克尔逊干涉仪、检测器、计算机和记录系统五部分组成。红外光经迈克尔逊干涉仪照射样品后,再经检测器将检测到的信号以干涉图的形式送往计算机,进行傅立叶变换的数学处理,最后得到红外光谱图。

傅立叶变换红外光谱法具有灵敏度高、波数准确、重复性好的优点,可以广泛应用于有机化学、金属有机化学、高分子化学、催化、材料科学、生物学、物理、环境科学、煤结构研究、橡胶工业、石油工业(石油勘探、润滑油、石油分析等)、矿物鉴定、商检、质检、海关、汽车、珠宝、国防科学、农业、食品、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、法庭科学(司法鉴定、物证检验等)、气象科学、染织工业、日用化工、原子能科学技术、产品质量监控(远距离光信号光谱测量:实时监控、遥感监测等)等众多方面。 三、仪器和试剂 1、Nicolet 5700 FT-IR红外光谱仪(美国尼高力公司) 2、压片机(日本岛津公司) 3、压片模具(日本岛津公司) 4、玛瑙研钵(日本岛津公司) 5、KBr粉末(光谱纯,美国尼高力公司) 6、苯甲酸(分析纯) 四、实验步骤 1、样品的制备(溴化钾压片法)

A3000高级过程控制系统实验指导书V

HUATEC A3000过程控制实验系统 实验指导书 V3.0 华晟高科教学仪器编制

目录 第一章安全注意事项与设备使用 ................................................ - 1 - 1.1防止触电 ................................................................................. - 1 - 1.2防止烫伤 ................................................................................. - 2 - 1.3防止损坏 ................................................................................. - 2 - 1.4现场系统组成............................................................................ - 2 - 1.5控制系统组成............................................................................ - 2 - 第二章计算机测控系统实验 ..................................................... - 5 -实验1 实验系统认知 ....................................................................... - 5 - 实验2 ADAM4000模块的通讯和使用 ....................................................- 10 - 实验3 组态软件编程和数据获取.........................................................- 18 - 实验4 PLC系统通讯和使用...............................................................- 21 - 实验5 PLC Step7编程...................................................................- 28 - 实验6 现场总线技术与DCS实验 ........................................................- 33 - 第三章工艺设备和仪器仪表实验 .............................................. - 41 -实验1 温度、压力、液位和流量测量实验..............................................- 41 - 实验2 水泵负载特性测量实验 ...........................................................- 46 - 实验3 管道压力和流量耦合特性测量实验..............................................- 48 - 实验4 电动调节阀特性测量实验.........................................................- 51 - 实验5 调压器特性测量实验 ..............................................................- 53 - 实验6 变频器水泵控制特性测量实验 ...................................................- 55 - 第四章工业系统对象特性的测定研究......................................... - 59 -实验1 单容水箱液位数学模型的测定实验..............................................- 59 - 实验2 双容水箱液位数学模型的测定实验..............................................- 62 - 实验3 非线性容积水箱液位数学模型的测定实验 .....................................- 65 - 实验4 测定不同阻力下单容水箱液位数学模型实验...................................- 67 - 实验5 锅炉与加热器对象数学模型实验 ................................................- 70 - 实验6 滞后管数学模型实验 ..............................................................- 73 - 实验7 换热机组数学模型实验 ...........................................................- 76 - 第五章简单设计型控制实验 ................................................... - 80 -实验1 单闭环流量控制实验 ..............................................................- 80 - 实验2 单容水箱液位定值控制实验......................................................- 83 - 实验3 双容水箱液位定值控制实验......................................................- 89 - 实验4 三容水箱液位定值控制实验......................................................- 93 - 实验5 锅炉水温定值位式控制实验......................................................- 95 - 实验6 锅炉水温定值控制实验 ...........................................................- 99 - 实验7 换热器水温单回路控制实验.................................................... - 102 - 实验8 联锁控制系统实验............................................................... - 105 - 实验9 单闭环压力控制实验 ............................................................ - 109 - 第六章复杂设计型控制系统 .................................................. - 111 -实验1下水箱液位和进口流量串级控制实验.......................................... - 111 - 实验2 闭环双水箱液位串级控制实验 ................................................. - 120 - 实验3 换热器热水出口温度和冷水流量串级控制实验.............................. - 125 - 实验4 单闭环流量比值控制系统实验 ................................................. - 128 - 实验5 下水箱液位前馈反馈控制系统实验............................................ - 131 - 实验6 锅炉温度和换热器前馈反馈控制系统实验 ................................... - 135 - 实验7 管道压力和流量解耦控制系统实验............................................ - 138 -

实验指导书

实验一材料硬度测定(综合性) 一、实验内容 1.金属布氏硬度实验。 2.金属洛氏硬度实验。 二、实验目的及要求 该实验的目的是使学生熟悉金属布氏、洛氏、维氏硬度计的使用方法,巩固硬度试验方法的理论知识,掌握各种硬度计的结构原理、操作方法及注意事项。要求学生具有踏实的理论知识,同时也具有严谨、一丝不苟的作风。 三、实验条件及要求 (一)实验条件 1.布氏硬度计、洛氏硬度计和显维硬度计,读数放大镜,标准硬度块。 2.推荐试样用材:灰铸铁、经调质处理的45钢、淬火低温回火的T10钢。 (二)要求 制备试样过程中不得使试样因冷、热加工影响试验面原来的硬度。试验面应为光滑的平面,不应有氧化皮及污物,测布氏硬度、洛氏硬度时试验面的粗糙度Ra≤0.8μm。 试验时,应保证试验力垂直作用于试验面上,保证试验面不产生变形、挠曲和振动。试验应在10~35℃温度范围内进行。 不同硬度试验对试样及试验操作尚有具体要求。 四、实验相关知识点 1.硬度试验原理。 2.对试样的要求。 3.硬度试验方法的选择。 4.各种硬度计的结构原理、操作方法及注意事项。 5.试验数据的获得。 6.不同硬度试验方法的关系。 五、实验实施步骤 (一)金属布氏硬度试验 金属布氏硬度值是单位压痕表面积所承受的外力。

1.试验规范的选择 布氏硬度试验时应根据测试材料的硬度和试样厚度选择试验规范,即压头材料与直径、F/D2值、试验力F及试验力保持时间t。 (1)压头材料与直径的选择压头为硬质合金球。 球体直径D的选择按GB/T231.1-2009《金属布氏硬度试验方法》有五种,即10mm、5mm、2.5mm、2mm和1mm。压头直径可根据试样厚度选择,见压头直径、压痕平均直径与试样最小厚度关系表。选择压头直径时,在试样厚度允许的条件下尽量选用10mm球体作压头,以便得到较大的压痕,使所测的硬度值具有代表性和重复性,从而更充分地反映出金属的平均硬度。 (2)F/D2、试验力F及试验力的选择 F/D2比值有七种:30、15、10、5、2.5、1.25和1,其值主要根据试验材料的种类及其硬度范围来选择。 球体直径D和F/D2比值确定后,试验力F也就确定了。 试验须保证压痕直径d在(0.24~0.6)D范围内,试样厚度为压痕深度的10倍以上。 (3)试验力保持时间t的选择试验力保持时间t主要根据试样材料的硬度来选择。黑色金属:t=10~15s;有色金属:t=(30±2)s;<35HBW的材料:t=(60±2)s。 2.布氏硬度试验过程 (1)试验前,应使用与试样硬度相近的二等标准布氏硬度块对硬度计进行校对,即在硬度块上不同部位测试五个点的硬度,取其平均值,其值不超过标准硬度块硬度值的±3%方可进行试验,否则应对硬度计进行调整、修理。 (2)接通电源,打开电源开关。将试样安放在试验机工作台上,转动手轮使工作台慢慢上升,使试样与压头紧密接触,直至手轮与螺母产生相对滑动。同时应保证试验过程中试验力作用方向与试验面垂直,试样不发生倾斜、移动、振动。 启动按钮开关,在施力指示灯亮的同时迅速拧紧压紧螺钉,使圆盘随曲柄一起回转,直至自动反向转动为止,施力指示灯熄灭。从施力指示灯亮到熄灭的时间为试验力保持时间,转动手轮取下试样。 (3)用读数显微镜在两个互相垂直的方向测量出试样表面的压痕直径d1 。

WDT-IIIC综合实验指导书

第三章一机—无穷大系统稳态运行方式实验一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。 二、原理与说明 电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。实验用一次系统接线图如图2所示。

图2 一次系统接线图 本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 三、实验项目和方法 1.单回路稳态对称运行实验

微机原理实验指导书

微型计算机原理与应用 实验指导书 上海大学通信学院 2010 年 4 月

PC微机原理实验一 一、目的:掌握PC机DEBUG调试程序有关命令的操作及8086各类指令的 功能。 二、要求:在PC机上完成下列程序的调试运行,并写出运行结果。1.DEBUG的基本操作:(详细容请参阅教材“4.5程序的调试,P173”和“附 录F调试程序DEUBG的使用,P499”) (1)从WINDOWS进入DOS之后,输入命令启动DEBUG: C:>DEBUG 回车 (2)输入R命令,查看和记录CPU各个寄存器的容: -R回车 看到什么? (3)输入A命令,汇编下面的字符“WINDOWS”显示程序: -A100 ;从偏移地址是0100H处开始写指令 MOV AH,2 MOV DL, 57 ;57H 是“W”的ASCII码 INT 21 ;INT 21是DOS 功能调用,AH=2代表2号功能 ;这3句合起来的功能是:显示DL中的字符 MOV DL, 49 INT 21 MOV DL, 4E INT 21 MOV DL, 44 INT 21 MOV DL, 4F INT 21 MOV DL, 57 INT 21 MOV DL, 53 INT 21 INT 3 ;功能是产生一个断点,不要省略 (4)输入U命令反汇编上面的程序: -U 100 问:这里100代表什么? (5)输入G命令连续运行上面的程序,记录运行结果: -G=100 (6)输入E命令把上面程序中的数据57,49,4E,44,4F,57,53依次分别改为57,45,4C,43,4F,4D,45: -E 103 回车(以下同) -E 107 -E 10B

综合实验试验指导书(一)

综合实验实验指导书 福建工程学院土木工程学院 2013年12月

学生实验守则 1、实验前应认真按教师布置进行预习,明确实验目的、要求,掌握实验内容、方法和步骤。 2、实验前的准备工作,经指导教师或实验技术人员检查,合格后方可进行实验。实验过程中认真观察各种现象,记录实验数据,不能马虎的抄袭。实验完毕必须整理好本组实验仪器,并经指导教师或实验技术人员验收后,方可离开。实验后,认真分析实验结果,正确处理数据,细心制作图表,做好实验报告。不符合要求者,应重做。 3、实验室内必须保持安静,不准高声喧哗打闹,不准抽烟,随地吐痰,乱抛纸屑杂物,不准做与实验无关的事。不准穿背心、裤衩、拖鞋(除规定须换专业拖鞋外)或赤脚进入实验室。 4、必须严格遵守实验制订的各项规章制度,认真执行操作规程。注意人身和设备安全。 5、爱护国家财物。节约水电和药品器材,不得动用他组的仪器、工具材料。凡损坏仪器、工具者应检查原因,填写报损单,并依照管理办法赔偿损失。 前言

为了达到预期目的,试验课必须注意以下几方面问题: 1、试验前认真预习指导书和课本有关内容,同时应复习其它已学有关课程的有关章节,充分了解各个试验的目的要求、试验原理、方法和步骤,并进行一些必要的理论计算。一些控制值的计算工作,试验前必须做好。 2、较大的小组试验,应选出一名小组长,负责组织和指挥整个试验过程,直至全组试验报告都上交后卸任,小组各成员必须服从小组长和指导教师的指挥,要明确分工,协调工作,不得擅离各自的岗位。 3、试验开始前。必须仔细检查试件和各种仪器仪表是否安装稳妥,荷载是否为零,安全措施是否有效,各项准备工作是否完成,要经指导教师检查通过后,试验才能开始。 4、试验时应严肃认真,密切注意观察试验现象,及时加以分析和记录,要以严谨的科学态度对待试验的每一步骤和每一个数据。 5、严格遵守实验室的规章制度,非试验用仪器设备不要乱动;试验用仪器、仪表、设备,要严格按规程进行操作,遇有问题及时向指导教师报告。 6、试验中要小心谨慎,不要碰撞仪器、仪表、试件和仪表架等。 7、试验结束后,要及时卸下荷载,使仪器、设备恢复原始状态,以后小心卸下仪器、仪表,擦净、放妥、清点归还,经教师认可并把试验记录交教师签字后离开。 8、试验资料应及时整理,按时独立完成试验报告,除小组分工由别人记录的原始数据外,严禁抄袭。 9、试验报告要求原始记录齐全、计算分析正确、数据图表清楚。 10、经教师认可,试验也允许采用另外方案进行。 试验一量测仪器的参观与操作练习

热电偶测温实验指导书

《建筑环境测试技术》 热电偶测温系统实验实验指导书 上海工程技术大学机械工程学院 能源与环境系统工程系 2014.3

一、实验目的 通过本实验掌握热电偶测量温度的主要内容和方法,了解引起测量误差的因素,达到以下实验目的: 1、观察了解热电偶的结构、校验装置; 2、熟悉热电偶工作特性; 3、掌握热电偶测温方法,学习查阅热电偶分度表; 4、掌握数据读取和数据处理方法。 二、实验原理 两种不同成份的导体两端接合成回路,当两接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端、自由端、参考端);冷端可以是室温值也可以是经过补偿后的0℃、25℃的模拟温度场。冷端与显示仪表或配套仪表连接,可显示测得的热电势。 国际上,将热电偶的A 、B 热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度表,即参考端温度为0℃时的测量端温度与热电动势的对应关系表。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃,才能利用热电偶分度表查得热电势对应的温度,而实际测量时,环境温度T 0(不为0)。对此,有如下关系式: )0,(),()0,(00T E T T E T E += 其中)0,(T E ——测量端温度为T ,参考端为0℃时的热电势 ),(0T T E ——测量端温度为T ,参考端为T 0时的热电势 )0,(0T E ——测量端温度为T 0,参考端为0℃时的热电势 热电偶校验有两种方法:定点法和比较法,后者常用于校验工业用和实验室用热电偶。

乐高实验指导书1

创新综合实验

目录 第一部分课程总览 (3) 第二部分综合实验 (6) Lab1 光电传感器自动跟踪小车 (6) Lab2 光电传感器测距功能测试 (8) Lab3 光电传感器位移传感应用 (12) Lab4 超声波传感器测试 (13) Lab5 超声波传感器位移传感应用 (17) 第三部分创新实验 a)双轮自平衡机器人; b)碰触传感机器人设计(基于Microsoft Robotics Studio平台); c)寻线机器人的仿真和建模及实例(基于Lejos-Osek 设计一个机器人的实例); d)自己提出一个合理的项目

第一部分 课程总览 1.目的与意义 提倡“素质教育”、全面培养和提高学生的创新以及综合设计能力是当前高等工科院校实验教学改革的主要目标之一。为适应素质教育的要求,高等工科院校的实验课程正经历着从“单一型”“验证型”向“设计型”“开放型”的变革过程。我院测试及控制类课程《电工电子技术》《测试技术》《微机原理及接口技术》等课程涵盖了机械设备及加工过程测试控制相关的电子电路、传感器、信号处理、接口、控制原理、测控计算机软件等理论及技术,具有综合性、实践性强的特点,但目前各课程的实验教学存在着孤立、分散、缺乏系统性的问题。为促进机械工程学科学生对于计算机测控技术的工程创新设计能力、促进相关理论知识的理解和灵活应用,本机电一体化创新综合实验以丹麦乐高(LEGO)公司教育部开发的积木式教学组件-智力风暴( MINDSTORMS)为基础进行。 采用LEGO MINDSTORMS 为基础建立开放型创新实验室,并根据我院测试及控制类课程《电工电子技术》《测试技术》《微机原理及接口技术》等课程设计多层次的综合创新实验设计项目,具有技术综合性和趣味性以及挑战性,能有效激发学生的学习兴趣,使学生在实践项目的过程中激发和强化他们的创造力、动手能力、协作能力、综合能力和进取精神;可使学生在实施项目的过程中对材料、机械、电子、计算机硬件、软件均有直观的认知并掌握机械工程测试与控制的综合分析设计能力。 2.实验基础 2.1 LEGO MINDSTORMS 控制器硬件 要求认识和理解RCX、NXT的基本结构,输入输出设备及接口,DCP传感器及接口,并熟练进行连接与操作。 2.2根据具体的实验要求选择适合的软件 ?Microsoft Robotics Studio基础 ?VPL编程 ?Microsoft Robotics Studio软件 ?Robolab软件 ?NXT软件 ?Matlab等等 2.3授课方式: 课堂讲授,编程以自学为主 参考书: a)LEGO快速入门 b)乐高组件和ROBOLAB软件在工程学中的应用 c)ROBOLAB2.9编程指南 d)ROBOLAB研究者指南

微机实验指导书

机自学院自动化系2016.3.20

目录 实验一开关状态显示 (3) 实验二模拟交通灯实验 (6) 实验三8253定时器/计数器实验 (10) 实验四D/A转换器实验 (15) 实验五A/D转换器实验 (18) 实验六8259中断控制(1) (22) 实验七8259中断控制(2) (25)

实验一开关状态显示 一、实验目的 熟悉实验箱和软件开发平台的使用。了解基本I/O端口的操作方法和技巧,掌握编程和调试基本技能。 二、实验内容 利用74LS244作为输入口,读取开关状态,根据给定表格中开关状态对应的输出关系,通过74LS273驱动发光二极管显示出来。 三、实验区域电路连接图

参考上图连线: Y0~Y1接K1~K2(对应J1、J2);Q0~Q7接L1~L8(对应J3至J10);CS1接8000H 孔(对应J12);CS2接9000H孔(对应J11);IOWR→IOWR;IORD→IORD;然后用数据排线连接JX7→JX17(BUS2)。 四、编程指南 本实验要求编写程序将连接在74LS244芯片端口的开关状态读入,根据下面表格给出的开关状态对应的LED输出灯亮状态,控制74LS273芯片驱动LED。按下MON或系统复位键则返回监控。 五、程序框图

六、实验步骤 1. 按连线图连接好,检查无误后打开实验箱电源。 2. 在PC端软件开发平台上输入设计好的程序,编译通过后下载到实验箱。 3. 运行程序后,拨动K1-K2,L1-L8会跟着亮灭。 4. 如果运行不正常就要检查连线,程序。排查错误,修改程序,直到运行程序正常。 七、实验程序清单及注释 根据要求编写程序,最后记录调试成功的程序,写好注释便于自己或他人阅读。 八、实验报告 应包括画电路图、实验程序框图、编程(要有注释)、调试过程及心得体会等。问答题: 1. I/O端口的寻址方式有哪2种?在x86系统中,采用哪一种? 2. 在输入/输出电路中,为什么常常要使用锁存器和缓冲器?

过控实验指导书最新本科

《过程控制系统》 安阳工学院 电子信息与电气工程学院

一、实验目的 1.掌握双容水箱特性的阶跃响应曲线测试方法; 2.根据由实验测得双容液位的阶跃响应曲线,确定其特征参数K、T1、T2及传递函数;3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验条件 1.THJ-3型高级过程控制系统实验装置; 2.计算机、组态王工控组态软件、RS232/485转换器1只、串口线1根; 3.万用表1只。 三、实验原理 图2-1 双容水箱对象特性测试系统

G(s)=G 1(s)G 2 (s)=1 2 1212 k k K T1T1(T1)(T1) s s s s ?= ++++ (2-1) 式中K=k 1 k 2 ,为双容水箱的放大系数,T 1 、T 2 分别为两个水箱的时间常数。 本实验中被测量为中水箱的液位,当上水箱输入量有一阶跃增量变化时,两水箱的液位变化曲线如图2-2所示。由图2-2可见,上水箱液位的响应曲线为一单调上升的指数函数(图2-2(a));而下水箱液位的响应曲线则呈S形曲线(图2-2(b) ),即下水箱的液位响应滞后了,它滞后的时间与阀F1-10和F1-11的开度大小密切相关。 图2-2 双容水箱液位的阶跃响应曲线 (a)中水箱液位(b)下水箱液位 双容对象两个惯性环节的时间常数可按下述方法来确定。在图2-3所示的阶跃响应曲线上求取: (1) h 2 (t)| t=t1 =0.4 h 2 (∞)时曲线上的点B和对应的时间t 1 ; (2) h 2 (t)| t=t2 =0.8 h 2 (∞)时曲线上的点C和对应的时间t 2 。 图2-3 双容水箱液位的阶跃响应曲线 然后,利用下面的近似公式计算式 阶跃输入量 输入稳态值 = ∞ = O h x ) ( K2 (2-2) 2.16 t t T T2 1 2 1 + ≈ + (2-3) ) 55 .0 74 .1( ) T (T T T 2 1 2 2 1 2 1- ≈ +t t (2-4) 0.32〈t 1 /t 2 〈0.46 由上述两式中解出T 1 和T 2 ,于是得到如式(2-1)所示的传递函数。 在改变相应的阀门开度后,对象可能出现滞后特性,这时可由S形曲线的拐点P 处作一切线,它与时间轴的交点为A,OA对应的时间即为对象响应的滞后时间τ。于是得到双容滞后(二阶滞后)对象的传递函数为: G(S)= )1 )(1 ( 2 1 + +S T S T K S eτ- (2-5)

传热实验指导书分析

实验三 平板导热系数测定实验 一. 实验目的 1.巩固和深化稳定导热过程的基本理论,学习用平板法测定材料导热系数的实验方法和技能。 2.测定试验材料的导热系数。 3.确定试验材料导热系数与温度的关系。 二.实验原理 导热系数是表征材料导热能力的物理量。对于不同的材料,导热系数是不同的;对同一材料,导热系数还会随着温度、压力、湿度、物质的结构和重度等因素而变异。各种材料的导热系数都用试验方法来测定,如果要分别考虑因素的影响,就需要针对各种因素加以试验,往往不能只在一种试验设备上进行。稳态平板法是一种应用一维稳态导热过程的基本原理来测定材料导热系数的方法,可以用来进行导热系数的测定试验,测定材料的导热系数及其和温度的关系。 试验设备是根据在一维稳态情况下通过平板的导热量Q 和平板两面的温差t ? 成正比,和平板的厚度δ成正比,以及和导热系数λ成正比的关系来设计的。 我们知道,通过薄壁平板(壁厚小于十分之一壁长和壁宽)的稳定导热 量为 F t Q ???=δλ [w] 测定时,如果将平板两面的温差 L R t t t -=?、平板厚度δ 、垂直热流方向的 导热面积F 和通过平板的热流量Q 测定以后,就可以根据下式得出导热系数: F t Q ???= δ λ )/(C m W ?? 需要指出,上式所得的导热系数是在当时的平均温度下材料的导热系数值,此平均温度为: ) (21 L R t t t += ][C ? 在不同的温度和温差条件下测出相应的λ值,然后将λ值标在t -λ 坐标图内,就可以得出 )(t f =λ 的关系曲线。 三.实验装置及测量仪表 稳态平板法测定材料导热系数的试验装置如图1和图2所示。 被试验材料做成二块方形薄壁平板试件,面积为300×300 ][2 mm ,实际导热计算面积 F 为200×200][2mm ,板的厚度为δ(实测)][2 mm ,平板试件分别被夹紧在加热器的上、

相关主题
文本预览
相关文档 最新文档